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Abstract

In this paper we propose a way of measuring the difference between two fuzzy sets by

means of a function which we will call divergence. We define this concept by means of a

group of natural axioms and we study in detail the most important classes of such

measures, those which have the local property. � 2002 Elsevier Science Inc. All rights

reserved.

Keywords: Divergence measure; Local divergence measure; Fuzziness measure; Uncer-
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1. Introduction

Our work regards the study of uncertainty associated with systems in a fuzzy
environment. The starting point of our research has been the axiomatic in-
formation theory of Forte [7], where uncertainty is directly associated with a
collection of (crisp) subsets of a space X (see also [1–3,8–10]). In the frame of
this theory it is possible to guess that there exists a fairly strong relationship
between uncertainty (and information) and fuzziness. In this respect, a fun-
damental work has been developed by De Luca–Termini [6], who introduced a
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kind of measure of fuzziness (the non-probabilistic entropy of a fuzzy set)
which was defined by

f ðeAAÞ ¼ �
X
x2X

eAAðxÞ log2ðeAAðxÞÞh
þ eAAcðxÞ log2ðeAAcðxÞÞ

i
for any eAA fuzzy subset of a finite referential X.

This measure is based on the probabilistic uncertainty measure proposed by
Shannon (Shannon entropy [20]) defined by

Hðfp1; p2; . . . ; pngÞ ¼ �
Xn
i¼1

pi log2ðpiÞ½ 
;

where P ¼ fp1; p2; . . . ; png is a probability measure on X.
These previous definitions have been generalized and later these concepts

have been axiomatized. In general, a fuzziness measure quantifies the un-
certainty concerning our unknowledgement about the inclusion of the ele-
ments of X in a fuzzy set eAA, that is, it is a fuzzy uncertainty. On the other
hand, an entropy quantifies the uncertainty concerning our unknowledgement
about the occurrence of a random experiment, that is, it is a probabilistic
uncertainty.

Thus, fuzziness measures and entropies quantify two different kinds of un-
certainty. However, we have proven [5] that a fuzziness measure can be ob-
tained from any uncertainty measure H, provided it satisfies the Principle of
Transfer. In this case we have that

f ðeAAÞ ¼X
x2X

HðeAAðxÞ; eAAcðxÞÞ 8eAA 2 PðXÞ

is a fuzziness measure, where we consider jXj probability systems formed by
feAAðxÞ; eAAcðxÞg.

At that time, we suspected that there would exist a strong relationship be-
tween probabilistic uncertainty and fuzzy uncertainty, but moreover there
exists a strong relationship between probabilistic uncertainty and classical di-
vergence. Thus, we guessed these classical divergence measures could generate
some interesting measure in a fuzzy environment. To do this, we were inter-
ested in probabilistic divergence measures.

The first one was proposed by Kulback and Leibler [12]. These authors
developed the idea from a Jeffreys paper in which the concept of divergence
appears to study the problem of finding an invariant density with respect to a
probability ‘‘a priori’’. Thus, let P ¼ fp1; p2; . . . ; png, Q ¼ fq1; q2; . . . ; qng be
two probability distributions on X, Kullback and Leibler quantified the di-
vergence between these two distributions by means of:

DðP ;QÞ ¼
Xn
i¼1

pi log2
pi

qi
:
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This divergence measure was later generalized by many authors (see for in-
stance: [4], [18], [21]). Finally, Men�eendez et al. [15] tried to propose a generic
expression for the most part of the different definitions and they introduce the
ðh� /Þ-divergences.

These definitions were not symmetrical with respect to their arguments, and
then the symmetrical version of these divergences was given by means of

D
ðP ;QÞ ¼ DðP ;QÞ þ DðQ; P Þ:

Since a probabilistic divergence measure quantifies the difference between
two probability distributions, we thought to use these ideas to measure the
difference between two fuzzy subsets.

Our initial aim was to define these ‘‘fuzzy divergence measures’’ by means of
a general (axiomatic) definition. Then, we intended to use them to define new
fuzziness measures as well as to measure the difference between two fuzzy
partitions. In the near future, we would like to apply these studies to develop
the questionnaire theory in the framework of the fuzzy subsets environment,
where we suspect the divergence will play a fundamental role.

The study of the difference between two subsets, to which we will refer to as
divergence between subsets, is given in Section 2. Departing from this defini-
tion some special class of divergence measures will be studied in Section 3 (the
class of local divergence measures). We will study some interesting properties
of this wide class. In Section 4 we will propose some examples of divergence
measures which are particularly important. These examples provide us diver-
gence measures obtained from fuzziness measures (by using again the link
between fuzzy and probabilistic uncertainty), distances (by showing the strong
relationship between divergence and distance) and probabilistic divergence
measures (in particular we have use the Kullback–Leibler symmetrical diver-
gence). We will conclude presenting some additional comments about this
paper and our future researches in this field.

2. Divergence measure

The measure of the difference of two fuzzy subsets is defined axiomatically
on the basis of the following natural properties.
• It is a nonnegative and symmetric function of the two fuzzy subsets to be

compared.
• It becomes zero when the two sets coincide.
• It decreases when the two subsets become ‘‘more similar’’ in some sense.
Whereas it is easy to analytically formulate the first and the second condition,
the third one depends on the formalization of the concept of ‘‘more similar’’.
We base our approach on the fact that if we add (in the sense of union) a
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subset eCC to both fuzzy subsets eAA; eBB, we obtain two subsets which are closer to
each other; the same happens with the intersection. So we propose the fol-
lowing:

Definition 2.1. Let X be the universe we study and let ePPðXÞ be the family of the
fuzzy subset of X. A map D : ePPðXÞ � ePPðXÞ ! R is a divergence measure iff
8eAA; eBB 2 ePPðXÞ, D satisfies the following conditions:
1. DðeAA; eBBÞ ¼ DðeBB; eAAÞ;
2. DðeAA; eAAÞ ¼ 0;
3. maxfDðeAA [ eCC ; eBB [ eCCÞ;DðeAA \ eCC ; eBB \ eCCÞg6DðeAA; eBBÞ; 8eCC 2 ePPðXÞ.

Though we can think that the two conditions in Axiom 3 of Definition 2.1
are equivalent, this is not true in general.

The assumption that the divergence is nonnegative can be deduced from
Axioms 1 and 2, as follows:

Lemma 2.2. If D is a divergence measure, then

DðeAA; eBBÞP 0 8eAA; eBB 2 ePPðXÞ:

Before continuing with the study of the divergence measures, we are going to
examine a first example of divergence.

Example 2.3. Let X be a finite universe. The mapping

DðeAA; eBBÞ ¼ >
x2X

½jeAAðxÞ � eBBðxÞj
;
where > is a t-conorm, is a divergence.

It is quite evident that function D satisfies Axioms 1 and 2. The proof of
Axiom 3 is more complicated. The details can be found in [16]. We give here a
sketch.

We subdivide X into the following seven subsets:

X ¼ fx 2 X=eAAðxÞ6 eBBðxÞ ¼ eCCðxÞg [ fx 2 X=eAAðxÞ6 eBBðxÞ < eCCðxÞg
[ fx 2 X=eAAðxÞ6 eCCðxÞ < eBBðxÞg
[ fx 2 X=eBBðxÞ < eAAðxÞ6 eCCðxÞg
[ fx 2 X=eBBðxÞ6 eCCðxÞ < eAAðxÞg
[ fx 2 X=eCCðxÞ < eAAðxÞ6 eBBðxÞg
[ fx 2 X=eCCðxÞ < eBBðxÞ < eAAðxÞg;

which we will denote by P1; . . . ; P7. Since > is associative, we can compute >x2X

in two steps. Firstly, we compute > in each of the subsets Pi, then we combine
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the results, thus obtaining >x2X. We proved that in each Pi jðeAA [ eCCÞðxÞ
�ðeBB [ eCCÞðxÞj6 jeAAðxÞ � eBBðxÞj and jðeAA \ eCCÞðxÞ � ðeBB \ eCCÞðxÞj6 jeAAðxÞ � eBBðxÞj.
Since > is monotonic, this suffices to prove that Axiom 3 holds as well.

The following result emphasizes the fact that the closer two sets, the smaller
their divergence is.

Proposition 2.4. Let eAA; eBB; eCC and eDD subsets of X such that eAA � eCC � eDD � eBB. Then
DðeCC ; eDDÞ6DðeAA; eBBÞ.
Proof. From eCC \ eDD ¼ eCC ; eBB \ eDD ¼ eDD; eCC [ eAA ¼ eCC ; eBB [ eCC ¼ eBB, we obtain that
DðeCC ; eDDÞ ¼ DðeCC \ eDD; eBB \ eDDÞ6DðeCC ; eBBÞ ¼ DðeAA [ eCC ; eBB [ eCCÞ6DðeAA; eBBÞ. �

3. Local divergences

In this paragraph we will consider only the case where X ¼ fx1; x2; . . . ; xng is
finite, and we will denote ai ¼ eAAðxiÞ; bi ¼ eBBðxiÞ; 8xi 2 X. Then

DðeAA; eBBÞ ¼ F ½ða1; b1Þ; . . . ; ðan; bnÞ
:
Clearly, F is symmetric in the pairs ðai; biÞ, that is, if rð1Þ; . . . ; rðnÞ is a per-
mutation of 1; . . . ; n, then

F ½ða1; b1Þ; . . . ; ðan; bnÞ
 ¼ F ½ðarð1Þ; brð1ÞÞ; . . . ; ðarðnÞ; brðnÞÞ
:

Now let us apply Axiom 3 of Definition 2.1 with eCC ¼ fxig. We obtain that

F ½ða1; b1Þ; . . . ; ð1; 1Þ; . . . ; ðan; bnÞ
6 F ½ða1; b1Þ; . . . ; ðai; biÞ; . . . ; ðan; bnÞ
:
The pairs ðeAA; eBBÞ; ðeAA [ eCC ; eBB [ eCCÞ only differ in the ith element which has been
changed from ðai; biÞ to ð1; 1Þ. Thus, it seems natural to suppose that the
variation of divergence only depends on what has been changed, that is

F ½ða1;b1Þ; . . . ; ðai;biÞ; . . . ; ðan;bnÞ
 � F ½ða1;b1Þ; . . . ; ð1;1Þ; . . . ; ðan;bnÞ
 ¼ hðai;biÞ:

Thus, we introduce the following:

Definition 3.1. A divergence measure has the local property or, briefly, ‘‘is lo-
cal’’ if, 8eAA; eBB 2 ePPðXÞ; 8xi 2 X, we have that

DðeAA; eBBÞ � DðeAA [ fxig; eBB [ fxigÞ ¼ hðeAAðxiÞ; eBBðxiÞÞ:
The following example shows a divergence which does not have the local
properties.

Example 3.2. The function

DðeAA; eBBÞ ¼ max
x2X

½jeAAðxÞ � eBBðxÞj
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is a divergence, since max is a t-conorm (Example 2.3) but it does not have the
local property. In fact, the variation of the divergence values not only depends
on the point where the values are changed, but also on the point where
max½jeAAðxÞ � eBBðxÞj
 is located.

This is not the only example of non-local divergence. In fact, it is easy to
prove that the divergence defined as in Example 2.3 is always non-local, unless
the t-conorm (considered as an associative, commutative, etc, function in any
interval ða; bÞ [19]) is the sum.

Proposition 3.3. Let X be a finite universe of discourse and let > be a t-conorm,
the divergence measure D defined by

DðeAA; eBBÞ ¼ >
x2X

½jeAAðxÞ � eBBðxÞj
 8eAA; eBB 2 ePPðXÞ

is local if and only if >ðx; yÞ ¼ xþ y.

The following statement characterizes the local divergences.

Proposition 3.4. A mapping D : ePPðXÞ � ePPðXÞ ! R over a finite frame X ¼
fx1; x2; . . . ; xng is a local divergence iff there exists a function h : ½0; 1
 �
½0; 1
 ! R such that

DðeAA; eBBÞ ¼Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ
and
(i) hðx; yÞ ¼ hðy; xÞ; 8x; y 2 ½0; 1
;
(ii) hðx; xÞ ¼ 0; 8x 2 ½0; 1
;
(iii) hðx; zÞP maxfhðx; yÞ; hðy; zÞg; 8x; y; z 2 ½0; 1
 with x < y < z.

Proof. This is a sketch of the proof (details can be found in [16]).
) It is enough to apply Definition 3.1 n times to all the couples ðai; biÞ. At

the end of this process we obtain

DðeAA; eBBÞ ¼ DðX;XÞð¼ 0Þ þ
Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ:
Properties (i)–(ii) are immediate consequences of Axioms 1,2. Property (iii) can
be obtained easily by applying Axiom 3 to the three subsets eAAðxiÞ ¼ x; eBBðxiÞ ¼
y; eCCðxiÞ ¼ z.

( Properties (i)–(ii) ensure that Axioms 1,2 of Definition 2.1 hold. To
obtain Axiom 3 we use the partition of X in Example 2.3. We write the sum

over X, which defines DðeAA [ eCC ;B [ eBBÞ (or DðeAA \ eCC ;B \ eBBÞÞ, as a sum of the
sums over Pi. In three of the subsets the sum equals zero, in two of them it
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coincides with the corresponding sum of DðeAA; eBBÞ, and in the remaining two it is
lower than or equal to, due to Condition (iii). Thus, Axiom 3 is proved. Fi-
nally, it is quite evident that function D is local. �

The preceding proposition allows us to construct local divergence starting
from a two-side function h. Sometimes some difficulties may arise in verifying
Condition (iii). So we stated the following:

Proposition 3.5. Condition (iii) in Proposition 3.4 can be replaced by:
ðiii0Þ hð�; yÞ is a function decreasing in ½0; y
 and increasing in ½y; 1
 (see [16]).

From Propositions 3.4 and 3.5 we can give two equivalent definitions of
local divergence both based on Lemma 3.6. These new definitions will be based
in the intersection instead of the union.

Lemma 3.6. If D is a local divergence on a finite universe X, then

DðeAA [ fxig; eBB [ fxigÞ ¼ DðeAA \ fxigc
; eBB \ fxigcÞ 8xi 2 X:

Proposition 3.7. A divergence measure D, has the local property iff there exists a
function h0 such that for all xi 2 X,

DðeAA; eBBÞ � DðeAA \ fxigc
; eBB \ fxigcÞ ¼ h0ðeAAðxiÞ; eBBðxiÞÞ:

Proposition 3.8. A divergence measure D, has the local property iff 8eAA; eBB 2ePPðXÞ; 8X 2 PðXÞ

DðeAA; eBBÞ ¼ DðeAA \ X ; eBB \ X Þ þ DðeAA \ X c; eBB \ X cÞ:

The lemma and the propositions are stated without proofs, which can be
found in [16].

In the following proposition we establish some important properties of the
local measures, which express natural characteristics of the meaning of our
measure.

Proposition 3.9. We define on the family ePPðXÞ, a partial ordering (‘‘sharper
than’’) n by means of eAAneBB () jeAAðxÞ � 1=2jP jeBBðxÞ � 1=2j; 8x 2 X. If D
has the local property, then

if eAAneBB then DðeAA; eAAcÞPDðeBB; eBBcÞ:

Proof. Let X ¼ fx 2 X=eAAðxÞ6 1=2g and Y ¼ fx 2 X=eBBðxÞ6 eBBcðxÞg.
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DðeAA; eAAcÞ ¼ DðeAA \ X \ Y ; eAAc \ X \ Y Þ þDðeAA \ X \ Y c; eAAc \ X \ Y cÞ
þDðeAA \ X c \ Y ; eAAc \ X c \ Y Þ þDðeAA \ X c \ Y c; eAAc \ X c \ Y cÞ

PDðeBB \ X \ Y ; eBBc \ X \ Y Þ þDðeBB \ X \ Y c; eBBc \ X \ Y cÞ
þDðeBB \ X c \ Y ; eBBc \ X c \ Y Þ þDðeBB \ X c \ Y c; eBBc \ X c \ Y cÞ

¼ DðeBB; eBBcÞ: �

This means that as the fuzzyness decreases, the divergence between a set and
its complementary increases. It takes the maximum when eAA is crisp. Moreover,

Proposition 3.10. Let Z; V be two crisp subsets of X ¼ fx1; x2; . . . ; xng and let D
be a local divergence. Then

DðZ; ZcÞ ¼ DðV ; V cÞ:

Proof. The value of DðZ; ZcÞ is n � hð1; 0Þ, that is, this value is independent on
the elements in Z, and it depends only on the cardinal of the universe, and
therefore this divergence coincides for all crisp sets Z in X. �

Proposition 3.11. Let D be a local divergence and let Z be a crisp subset of X.
Then 8eAA; eBB 2 X we have

DðeAA; eBBÞ6DðZ; ZcÞ:

Proof. Since D has the local property, then

DðeAA; eBBÞ ¼Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ6 n � hð1; 0Þ ¼ DðZ; ZcÞ

for all eAA and eBB in ePPðXÞ. �

Proposition 3.12. Let D be a local divergence over X ¼ fx1; x2; . . . ; xng, let c be a
generalized fuzzy complement ðeAAcðxiÞ ¼ cðeAAðxiÞÞÞ with equilibrium point e, and

finally let Ec be the equilibrium set defined by eEEcðxiÞ ¼ e; 8xi 2 X. If hðx; eÞ ¼
hðcðxÞ; eÞ; 8x 2 X, then

DðeAA; eEEcÞ ¼ DðeAAc; eEEcÞ; 8eAA; ePPðXÞ:

Proof. It is an immediate consequence of property of the function h. �

If c is the classical complementary suggested by Zadeh ðeAAcðxÞ ¼ 1� eAAðxÞ,
for all x 2 XÞ, in this proposition we establishes that hð�; 1=2Þ has to be sym-
metric with respect to 1=2.

98 S. Montes et al. / Internat. J. Approx. Reason. 30 (2002) 91–105



Proposition 3.13. If 8xi 2 X either eAAðxiÞ6 eBBðxiÞ6 eCCðxiÞ or eCCðxiÞ6 eBBðxiÞ6eAAðxiÞ, and D is a local divergence, then

DðeAA; eCCÞP maxfDðeAA; eBBÞ;DðeBB; eCCÞg:

Proof. It is sufficient to consider the following partition of X:

X ¼ fxi 2 X=eAAðxiÞ6 eBBðxiÞ6 eCCðxiÞg [ fxi 2 X=eAAðxiÞ
P eBBðxiÞP eCCðxiÞg [ fxi 2 X=eAAðxiÞ ¼ eBBðxiÞ ¼ eCCðxiÞg: �

As a consequence, we obtain that if eAA is sharper than eBB, then DðeAA; eEEÞP
DðeBB; eEEÞ.

Although trivial, the following proposition allows us to change the scale
factor of a divergence according to our particular requirements.

Proposition 3.14. Let D be a local divergence generated by the function hðx; yÞ,
and let / : R ! R be a non-decreasing function with /ð0Þ ¼ 0. The maps D/ and
D/ defined below by

D/ðeAA; eBBÞ ¼Xn
i¼1

/ðhðeAAðxiÞ; eBBðxiÞÞÞ;
D/ðeAA; eBBÞ ¼ /

Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ
 !

are also divergence measures and D/ is local.

4. Some classes of divergence

In the subsections of this paragraph we will present and study three im-
portant classes of divergence measures, each of them having some specific
properties. The divergence measure attempts to quantify the degree of differ-
ence between two fuzzy sets eAA; eBB. The local divergence reaches this goal by
comparing the membership functions of eAA and eBB at each point of the reference
universe X. This can be done in various ways.

4.1. Divergence from fuzziness

The first way we choose to compare the membership values is that of
comparing the fuzziness of both eAA and eBB with the fuzziness of the intermediate
fuzzy subset. This leads to a wide class of measures. In fact, this was the first
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application of divergence measures we proposed when we started our research
in this field [17].

Let us consider the class of fuzziness measures [11] (of local type) given by

f ðeAAÞ ¼X
xi2X

gðeAAðxiÞÞ;
where g : ½0; 1
 ! Rþ is a concave function, increasing in ½0; 1=2
, symmetric
with respect to the point 1=2, with gð0Þ ¼ gð1Þ ¼ 0. Note that a local fuzziness
measure belongs to the class of fuzziness measures proposed by Loo [13] if
F ¼ Id and ci ¼ 1; fi ¼ g; 8i ¼ 1; 2; . . . ; n are considered in Loo’s definition.

The generator of the fuzziness (function g) can also generate a local diver-
gence. In fact, by considering

hðx; yÞ ¼ g
xþ y
2

� �
� gðxÞ þ gðyÞ

2
8x; y 2 ½0; 1
;

we obtain a function h which has all the properties required in Proposition 3.4
if g is twice differentiable, so that

DðeAA; eBBÞ ¼Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ
is a local divergence measure.

A particular important case of this type is given by the measure obtained
from the De Luca–Termini entropy. Function h obtained from its g function
�x log x� ð1� xÞ logð1� xÞ is depicted in Fig. 1.

It seems to be evident from the figure that h increases as jx� yj increases,
attains its maximum at the points ð0; 1Þ and ð1; 0Þ ðhð0; 1Þ ¼ hð1; 0Þ ¼ gð1

2
ÞÞ and

its minimum at the points x ¼ y ðhðx; xÞ ¼ 0Þ.

Fig. 1. Graphic of hðx; yÞ.
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As an example, let us consider the subsets eAA; eBB; eCC (see Table 1) of an uni-
verse X with four elements.

For these sets we obtain that

DðeAA; eBBÞ ¼ 0:03; DðeAA; eCCÞ ¼ 0:46; DðeAA; eDDÞ ¼ 1:60:

The divergence measures show that eAA is very similar to eBB and quite different
from eDD. Notice that the absolute maximum that D can assume in this case is
Dmax ¼ 4.

Of course, De Luca and Termini entropy is only an example. Thus, if we
consider a fuzziness measure obtained from an probabilistic entropy H, as we
explained in Section 1, we then obtain a particularly important divergence
measure, which is defined by means of a probabilistic entropy. The fuzziness
measure obtained from H is a local one if we assume gðtÞ ¼ Hðt; 1� tÞ. Thus,
the divergence measure assumes the form

DðeAA; eBBÞ ¼ X
x2X

H
eAA þ eBB
2

 !
ðxÞ;

eAA þ eBB
2

 !c

ðxÞ
 !"

� HðeAAðxÞ; eAAcðxÞÞ þ HðeBBðxÞ; eBBcðxÞÞ
2

#
:

It is easy to recognize that, if D is constructed as above from a fuzzyness
measure, then it can be expressed in terms of function f as follows:

DðeAA; eBBÞ ¼ f ðmðeAA; eBBÞÞ � f ðeAAÞ þ f ðeBBÞ
2

 !
;

where mðeAA; eBBÞ is the ‘‘average’’ of the subsets eAA; eBB, that is, the fuzzy set defined
by

mðeAA; eBBÞðxÞ ¼ eAAðxÞ þ eBBðxÞ
2

8x 2 X:

This leads us to try to define a fuzzyness directly as

DðeAA; eBBÞ ¼ C½f ðeAAÞ; f ðeBBÞ; f ðmðeAA; eBBÞÞ
:
Table 1

Membership functions of eAA, eBB, eCC and eDD
X x1 x2 x3 x4eAA 0.3 0.9 0.6 0.2eBB 0.25 0.8 0.6 0.1eCC 0.05 0.4 0.9 0.5eDD 0.99 0.1 0.1 0.9
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In particular if, in order to obtain the measure f, we compose the values
gðeAAðxiÞÞ by means of a strict archimedean conorm in R (instead of the sum),
then DðeAA; eBBÞ as defined above ðthat is Cðx; y; zÞ ¼ z� ððxþ yÞ=2ÞÞ is a diver-
gence, provided that the additive generator h of the conorm is convex ðhðaxþ
ð1� aÞyÞ6 ahðxÞ þ ð1� aÞhðyÞÞ.

4.2. Divergence from distance

A particular form of getting local divergence consists in constructing func-
tion h by means of a suitable distance in R.

Let d be a distance in R which also satisfies the following property:
if x < y < z then maxfdðx; yÞ; dðy; zÞg6 dðx; zÞ. This is a natural property, and
it is verified by all the most known distances, such as

dðx; yÞ ¼ jx� yj 8x; y 2 R Euclidean;

dðx; yÞ ¼ 0 if x ¼ y
1 if x 6¼ y

�
8x; y 2 R discrete;

etc:

Nevertheless, distances exist which do not satisfy the above property, as
shown in the following example:

dðx; yÞ ¼

jx� yj if x; y 6¼ 1; 1000
jx� 1000j if y ¼ 1
jx� 1j if y ¼ 1000
j1000� yj if x ¼ 1
j1� yj if x ¼ 1000:

8>>>><>>>>: :

Let / be an increasing (or non-decreasing) function with /ð0Þ ¼ 0. The
function h defined by

hðx; yÞ ¼ /ðdðx; yÞÞ 8x; y 2 ½0; 1

satisfies all the properties required in Proposition 3.4. Thus, a local divergence
in ePPðXÞ can be defined by means of

DðeAA; eBBÞ ¼Xn
i¼1

/½dðeAAðxiÞ; eBBðxiÞÞ
 8eAA; eBB 2 ePPðXÞ:

If we choose as the distance the Euclidean one, and as the function / the
identity, then we measure the divergence by means of the Hamming distance
between fuzzy sets

dðeAA; eBBÞ ¼Xn
i¼1

jeAAðxiÞ � eBBðxiÞj:
This subsection shows that, although divergence and distances are different,

it would still be possible to make a confusion in what they measure, but we
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have to point out that the divergence is more general, and includes the distance
as a particular case.

4.3. Entropy-like divergences

The last class of divergence we will propose is related to the Kullbak–Leibler
symmetrical probabilistic divergence. It refers to two probability distributions
over the same finite space X. In the case where jX j ¼ 2 and the two distribu-
tions are fx; 1� xg and fy; 1� yg, the Kullbak–Leibler symmetrical function
takes on the expression

ðx� yÞ log2 yð1�xÞ
xð1�yÞ

� �
if x; y 62 f0; 1g;

0 if x ¼ y 2 f0; 1g;
1 otherwise;

which obviously depends on x; y and which we will denote by hðx; yÞ.
From this function we can construct a map DJ : ePPðXÞ � ePPðXÞ ! R by

means of

DJ ðeAA; eBBÞ ¼Xn
i¼1

hðeAAðxiÞ; eBBðxiÞÞ 8eAA; eBB 2 ePPðXÞ;

which has all the properties of a local divergence.
It has some relationship with the fuzziness-dependent divergence con-

structed via the De Luca–Termini fuzziness measure which we will denote by
DDL. In particular DDLðeAA; eBBÞ6DJ ðeAA; eBBÞ. Following this idea we can construct a
lot of divergence measure starting from all the known symmetrical probabi-
listic divergence measures such as those of order a, type b, class a; b and so on
([14]).

4.4. Concluding remarks

In this paper we propose an axiomatic form to measure the difference be-
tween fuzzy sets and we study in detail the case of local divergence. We think
that our proposal is quite general and contains, as special cases. almost all the
measures known till today. In particular we have completely determined the
form of local divergence in the case where the membership function assumes
only finite or countable values. We think that this is the main limitation of the
present work, so we have tried to extend our study to the continuous case.

The problem we faced in this attempt consists in the generalization of the
locality notion. We think that this generalization is not uniquely determinated,
but it depends on the choice of a measure m over the range of the membership
functions eAA, which will substitute the sum of the finite and countable case. We

S. Montes et al. / Internat. J. Approx. Reason. 30 (2002) 91–105 103



have partially studied the case where ranðeAAÞ ¼ ½0; 1
 and m is the Lebesgue
measure, but the general case is still an open problem.

Other open problems regard possible applications of the divergence mea-
sure. In particular we think that it could be useful in the detection processes
when trying to identify an object (crisp or fuzzy, it does not matter) by means
of partially reliable questions. In this case an unreliable answer (naturally
represented by a fuzzy set) has to be compared with the set representing the
object to be identified. The divergence seems to be the most natural index
which measure how they agree.
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