Milner’'s Lambda-Calculus with Partial Substitutions

Delia Kesnet and Shan® Concliiir?

1 PPS, CNRS, and Univeré&iParis 7, France
2 Trinity College Dublin, Ireland

Abstract. We study Milner’'s lambda-calculus with partial substitutions. Partic-
ularly, we show confluence on terms and metaterms, preservatigrsttbng
normalisation and characterisation of strongly normalisable terms via an inte
section typing discipline. The results on terms transfer to Milner’s bigraphic
model of the calculus. We relate Milner’s calculus to calculi with definitions, to
explicit substitutions, and to MELL Proof-Nets.

1 Introduction

The A, p-calculus was introduced by Milner as a means to modellieg\thalculus in
bigraphs [25]. However, thi,,,-calculus is interesting apart from the model; it enjoys
confluence on terms, step-by-step simulatiof-eséduction [28], and preservation Gf
strong normalisation (PSN)e. every A-calculus term which ig-strongly normalising

is also)g,p-strongly normalising [27].

In this paper we study many remaining open questions akgQyt The first of them
concernsconfluence on metatermghich are terms containinetavariableusually
used to denoteéncompleteprograms and/or proofs in higher-order frameworks [15]. To
obtain a confluent reduction relation on metaterms we neexitémd the existing notion
of reduction on terms. We develop a proof of confluence far éixtended new relation
by using Tait and Martin-tf's technique. This proof includes a formal argument to
show that the calculus of substitution itself is termingtin

Our main contribution lies in studying the connections lestn .., and other for-
malisms. We start by considering calculi with definitionsamrely, the partial
A-calculus [13, 26], which we callg,, and the\-calculus with definitions [30], which
we call A\qcr. We distinguish arbitrary terms of the calculi with defiaits, which we
call As-terms, from terms without definition, which are ordinarferms. We show that
the sets of strongly-normalisingrterms in\,,; and A, are the same. Similarly, we
show that the sets of strongly-normalising-terms in\,,; ands.; are equal. Thus,
we demonstrate that partial substitutions and definitioasenilar notions.

We also relate\.,;,-strongly normalising terms to typed terms. We start byoidtrc-
ing an intersection type discipline fois-terms and then give a simple (and construc-
tive) argument to prove\s, -strong normalisation for typed-terms. This argument
turns out to be sufficient to conclude,,,-strong normalisation fointersectiontyped
As-terms. By proving the converse. \,,,-strongly normalising\s-terms can be typed
in the intersection type discipline, we also provide a cbidsation of\,;-strongly
normalising terms.

The relation between typable and,,;,-strongly normalising\s-terms also gives
an alternative proof of PSN fok,,;, which is self-contained, and which simplifies
previous work [27] considerably: the existing proof is guitvolved, using a translation
of A4 iNto a rather complex calculus, a proof of PSN for the comphagulus, and a
proof of simulation.

Another contribution of the paper is the study of the relatietween partial substi-
tutions and explicit substitutions. More precisely, we wlefh translation from,;, to a
calculus with explicit substitutions calléds [18]. This translation preserves reduction
and has at least two important consequences. On one handtame a simple proof of
Asup-Strong normalisation fosimply typed\s-terms. A second consequence is that the
existing simulation of the simply typelles-calculus into MELL Proof-Nets [18] also
gives a natural interpretation for the simply typ&d,,-calculus by composition. As
a corollary, \¢,,-strong normalisation for simply typeks-terms can also be inferred
from strong normalisation of MELL Proof-Nets.

Finally, we transfer our confluence and strong normalisafimofs on\s-terms
without metavariables in,,;, to Milner's model using an existing result.

The paper is organised as follows. Section 2 introduces thgcalculus and con-
fluence on metaterms is proven using Tait and Martifid technique. In Section 3 we
relate).,;, to the calculi with definitionsd 5, and 4. ;. Section 4 presents a neat char-
acterisation of\,,,;-strongly normalising terms using intersection type systas well
as the PSN property for untypea-terms of),,;. In Section 5, we present the transla-
tion from \,,;, to Aes and prove that reduction in the former is simulated by noptgm
reduction sequences in the latter. We concludg,-strong normalisation for simply
typed\s-terms from strong\es-normalisation for simply typeds-terms. Last but not
least, we discuss a relation between,; and MELL Proof-Nets and transfer results to
the bigraphical setting in Section 6.

Due to lack of space the full proofs are contained in the edléchnical report [19].

2 The X\gup-calculus

The A4p-calculus was introduced by Milner to present a model of Xhealculus in
local bigraphs. The calculus was inspired hy [1] although it is anamedcalculus
and has turned out to have stronger properties as we showsipaper. Terms of the
Asup-cCalculus, called\s-terms, are given by:

tu=ao|tt] At tfz/t]

The piece of syntakz/¢], which is not a term itself, is called @xplicit substitution

Freeandboundvariables are defined as usual by assuming the témmsandt[z /]
bind x in t. We consider-conversion which is the congruence generated by renaming
of bound variables. Thus for exampley.z)[z/y] = (Az.2')[z’/y]. We work with
a-equivalence classes so that two bound variables of the saxrmeare assumed to be
distinct, and no free and bound variable of the same term theeveame name. Thus;
conversion avoids capture of variablésplicit Substitutioron As-terms can be defined
moduloa-conversion in such a way that capture of variables is aebide

x{z/v} =0 (tu){z/v} =t{x/v}u{z/v}
y{z/v} =yify #z Ay.t){z/v} = Ay.t{z/v}
tly/ul{z/v} = t{z/v}y/u{z/v}]

The set of\,,,;,-contexts can be defined by the following grammar:
C:=0|Ct|tC| z.C|Clz/t]| t[z/C)]

We use the notatiol’[u], to mean that the holel in the contextC' has been
replaced by the term without capture of the variables in the setThus for example,
if C' = \z.0, thenC[z] , with z € ¢ means in particular that # .

Reduction rules of tha,,;-calculus are given in the following table.

(Ax.t)u —p t[z/ul
t[z/u] —ge t if © ¢ £v(t)
Clz]ylz/u] —r Clu]ylz/u] if {z} Utv(u) C ¢

As Milner describes, an explicit substitutign/«] acts‘at a distance’on each free
occurrence of: in turn, rather than migrating a copy of itself towards eaathsoccur-
rencee.g.the reduction step\z.z (y v))[y/t] —r (Az.z (¢t y))[y/t] demonstrates a
partial substitution.

The rewriting systengenerated by the reduction rulesandGc is denoted bysm.
We write Bsm for B U sm. The reduction relationgenerated by theeduction rulessm
(resp.Bsm) modulo the equivalence relatian is denoted by—.,; (resp.—x..,)-

t —eup t' iffthereares, s’ s.t.t =, s —gn 8’ = '
t —x,,, t' iffthereares, s’ s.t.t =4 s —pen 8 =4 t/

Thus, the reduction relation acts erequivalence classes. We use the notation
s (resp.—{sub) to denote the reflexive (resp. reflexive and transitiveyuate of
..o AS @ consequenceff—3 ¢"in 0 steps, them =, ¢ and nott = ¢'.

Reduction enjoys the following properties. In particuthe second one, callddll
composition guarantees that explicit substitution implements theligitpne. While
this property seems reasonable/natural, it is worth magithat many calculi with ex-
plicit substitutions do not enjoy it. Fortunately, full cpsition holds for\,,; [28].

A

Lemma 1 (Preservation of Free Variables)If ¢t —,__, t/, thenfv(¢') C fv(¢).

Lemma 2 (Full Composition (i)). Lett, u be As-terms. Thent[z/u] —3 t{x/u}.

2.1 Confluence

We briefly discuss confluence on metaterms, usually usednotd@acompletepro-
grams/proofs in higher-order frameworks [15]. The sex®imetatermss obtained by
addingannotated metavariablesf the formX 4 (where A is a set of variables) to the
grammar generatings-terms. The notion of free variables is extended to metatdayn

fv(Xa) = A. As a consequence-conversion can also be defined on metaterms and
thus for example\z. X, , =, A2.X, ;.
We extend the standard notioniofplicit substitutiorto metaterms as follows:

Xa{z/v} :=Xa if e ¢ A
Xa{z/v} :=Xplz/v]ifz e A

It is worth noticing that Milner’s original presentationddinot consider metaterms
as the bigraphical system did not model them however all gnt@gs we prove here
involving metaterms hold also for terms.

We add to the reduction system fag-terms one equation and one reduction rule.

e/ally/o] =e iy/olle/d] iy & £v(u) & o & £v(0)

ClXalylz/u] —n, ClXalz/ul]ylz/u] ifz e A&rUtv(u) Cé
&C#Dfyi/vi] .. [yn/va] (n = 0)

Remark in particular thatx cannot be applied if the context is empty. Remark also
that the equatiog can always be postponed w.it,,,-reduction if only terms (and not
metaterms) are considered.

Throughout this section, we includk in the reduction relatiosm as well asC in
the equivalence relation, called n@y. Full composition still holds foAs-metaterms:

Lemma 3 (Full Composition (ii)). Lett, u beAs-metaterms. Thetjz /u] —3 t{x/u}.

While confluence on terms always holds for calculi with expBabstitutions, con-
fluence on metaterms is often based on some form of interaofisubstitutions such
as that in\o [1] or \,s [12]. To illustrate this requirement, let us consider thgidgl
diverging example adapted ¥q,;,-reduction:

Hy/vile/u{y/v}] 3, — (Qz.t) w)ly/v] —s tlx/u]ly/v]

This diagram can be closed using full composition with thgussicet[z/u][y/v]
=%, te/uly/v} = t{y/o}a/uly/o}]

However, while de Bruijn notation fox-terms allows a canonical representation of
bound variables given by a certain order on their naturalbensy calculi with named
variables suffer from the following (also typical) divengi example:

Xeyly/vlle/2] 5, — (AeXay) 2)[y/v] =8 Ko yl2/2][y/v]

The metaterm&, , [y/v][z/z] andX, ,[z/z][y/v] are equal modulo permutation
of independent substitutionthus justifying the introduction of the equati@nin the
definition of the calculus for metaterms.

One possible technical tool to show confluence Xermetaterms is the use of an-
other confluent calculus well-related ¥q,,;,. We prefer to give a self-contained argu-
ment, and so adapt a proof based on Tait and Martifisltechnique: define a simulta-
neous reduction relation denotesl, _ , ; prove that\,,,, can be projected te>_,, on
sub-normal forms; show that>} has the diamond property; and finally conclude.
Since this technique is considered nowadays as stand&tdriglwe just state here the
main reduction properties used in our particular case died tlee reader to [19].

Lemma 4. Thesub-normal forms of metaterms exist and are unique modylo

Proof. Details can be found in [19]. The systesnb can be shown to be terminating
by associating to eacks-metaterm a measure which does not changgsbyut strictly
decreases by-¢,. Thus,sub-normal forms exist. Thewub-critical pairs are joinable,
so sub is locally confluent and locally coherent. Therefore [15]) is confluent and
hencesub-normal forms are unique moduly-equivalence.

Remark that metaterms wub-normal form have all explicit substitutions directly
above metavariables. Thus in particular terms without waetables insub-normal
form have no explicit substitutions at all.

Definition 5. The relation= on metaterms isub-normal form is given by:

- r=Sx

Ift = t/, then\z.t = \z.t/

Ift= ¢ andu = «/, thent u = t' v/

Ift = ¢ andu = o/, then(Az.t) u = sub(t'[x/u'])

If u, =) andx; ¢ fv(u,;) forall i,j € [1,n], thenXalz1/u1]. .. [zn/un] =
Xalzr/uh] .. [on/uy,]

The relation= ., is defined byt =, ' iff 3s, 5" s.t.t =, s = &' =g, t'.

Lemma 6.

1. The reflexive and transitive closures®f, ,, and—,_,, are the same relation.
2. Ifs —y,,, s thensub(s) =»,,, sub(s).
3. The reduction relatioss _,, enjoys the diamond property.

Corollary 7. The),,,-reduction relation is confluent on terms and metaterms.

Proof. Suppose —3 t;fori=1,2.Lemma 6:2 givesub(t) =3 sub(t;). Since
the diamond property implies confluence [5], then Lemma Bilies confluence of
= .., therefore, there is a metatersrs.t. sub(t;) =3, s. We can then close the
diagram byt; —7,, sub(t;) —3_ , s using Lemma 6:1.

3 Relating Partial Substitutions to Definitions

Partial substitution can be related to calculi with defori8. A definition can be under-
stood as an abbreviation given by a name for a larger termhadaa be used several
times in a program or a proof. A definition mechanism is esakfdr practical use;
current implementations of proof assistants provide suelgitity.

We consider two calculi, the first one, which we call , appears in [13] and uses
a notion of partial substitution ok-terms, while the second one, which we call;,
uses partial substitutions oxs-terms to model definitions and combines standard
reduction with the rules of the substitution calcuka®. The general result of this sec-
tion is that normalisation in Ag, and A, are equivalent on
A-terms and normalisation ing.; and A, are equivalent oms-terms. More pre-
cisely, for every\-termt, t € SN, ifandonly ift € SNy, and for every\s-term
t,t € SNy, ifandonlyift € SNx..,. Thus, the\,,,-calculus can be understood as
a concise and simple language implementing partial andhargisubstitution, both in
implicit and explicit style at the same time.

3.1 The partial A-calculusAg,

Terms of the partial calculusg, are\-terms. The operational semantics\of is given
by the following rules:

(Az.Clx]g) u —p, (A2v.Clu],)w if {z}Utv(u) C ¢
(A\x.t) u —pge ¢ if z ¢ £v(t)

Consider the following translation frotkrterms tos-terms:
U(z) ==z U(tu) = U(t) U(u) if ¢ is not ax-abstraction
U(Az.t) := Az.U(t) YWEE L u)[x/u(w)] if t = Az
Lemma8. If t —,, ¢, thenu(t) —jm U(¢'). Proof.By induction on—, .
Corollary 9. Lett be aX-term. Ift € SN',_ ., thent € SNMP-

Proof. Lett € SNy,,, and suppose ¢ SN, . Then, from an infinite\, -reduction
sequence starting atwe can construct, by Lemma 8, an infinitg,,-reduction se-
quence starting at(¢). Sincet —3 U(t), thent ¢ SNy ,,, which leads to a contra-
diction. We thus concludee SNA%.

sub?

The converse reasoning also works. Define a translation koiterms to\-terms:
V(iz) === V(Az.t) = AzV(t)
V(tu) :=V(t) V(u) V(t[z/u]) := (Az.V(t)) V(u)

Remark that(¢){z/V(u)} = V(t{z/u}). Lemma 10 follows by induction om-

sub*

Lemma 10. Lett —,_, t'. If t —p t/, thenV(t) = V(¢'). Also, ift —g, ¢/, then
V(t) —qﬁ V().

Corollary 11. Lett be ai-term. Ift € SNABP, thent ¢ SN

Proof. Follows from Lemma 10 similarly to Corollary 9, using the ffabat infinite
— .., S€guences must contain an infinite numberqf,;, steps.

sub”®

3.2 The-calculus with definitions Age ¢

The syntax of the\-calculus with definitions\,.; [30], is isomorphic to that oA,
where the use of a definition := « in a termv, denotedlet = := u in v, can be
thought as the term[z/u] in As,p. The original presentation [30] of the operational
semantics of\s.s is given by a reduction system which is not a (higher-ordernt
rewriting system. This is due to the fact that given a definiti := wu, the termz
can be reduced to the term so that reduction creates new free variables siwe)
does not necessarily belong {o}. Here, we present,.; by a set of reduction rules
which preserve free variables of terms. Moreover, we cansidnore general reduction
system where ang-redex can be eithg?-reduced or transformed to a definition, while
the calculus appearing in [30] does not allow dynamic cosatif definitions.

(Az.t) u —g t{z/u} t[z/u] —gc t ?f x ¢ fv(t)
(Az.t) u —p t[z/u] Clz]ylz/u] = Clu]ylz/u] if {z} Ufv(u) C ¢

Lemma 12. If t —,,,, ¢, thent —{ ' Also, ift —_,, ¢', thent —{ .

Proof. The first point can be shown by induction e, . using the fact that ang
step can be simulated B/followed by severaR steps and onéc step. The second
point is straightforward.

We can then conclude that normalisation fgr ¢ and\,,; is equivalent.

Corollary 13. Lett be als-term. Thert € SA,_, if and only ift € SJ\/Adef.

sub

4 Normalisation Properties

Intersection type disciplines [9, 10] are more flexible tisample type systems in the
sense that not only are typed terms strongly normalisingtH®iconverse also holds,
thus giving a characterisation of the set of strongly noisirad terms. Intersection types
for calculi with explicit substitutions not enjoying fulloenposition have been stud-
ied [22, 20]. Here, we apply this techniqueXg,;, and obtain a characterisation of the
set of strongly-normalising terms.

Typesare built over a countable set of atomic symbols (base tyaed)the type
constructors— (functional types) and (intersection types). Aenvironments a finite
set of pairs of the formx : A. Two environmentd” and A are said to beompatible
iffforall x : A€ I'andy : B € A, x = y implies A = B. We denote thenion of
compatible contextby I' W A. Thus for exampldz : A,y : B)W (z: A,z : C) =
(x:Ay:B,z:C).

Definition 14. The relation< on types is defined by the following axioms and rules

lLAKA 4. A< B& B« CimpliesA <« C
2ANBx A 5, A B& A< CimpliesA < BNC
3.ANB« B

We usen for {1...n} andn, 4, for A; N...N A,,. The following property can be
shown by induction on the definition &f.

Lemma 15. LetNn,, 4; < N,,B;, where none of thel; and B; is an intersection type.
Then for eachB; there isA; s.t. B; = A;.

Typing judgementsave the form” I ¢ : A wheret is aterm,Aisatype and” is an
environmentDerivationsof typing judgements in a certain type discipline system are
obtained by application of the typing rules of the system.ddfesider several systems.

The additive simply typesystem forA-terms (resp. for\s-terms), writtenaddy
(resp.add,s), is given by the following rulesx™, app™, andabs™ (resp.ax™, app™,
abs™, andsubs™).

I'rt:A—-B TI'Fu:A
E—— (app™)
I'e:AFxz: A I'-(tu): B
Ixz:A+t: B I'ru:B Tx:BFt:A
(abs™) (subs™)
I'-Xzt:A— B I'tlz/u]: A

Theadditive intersection typsystem for\-terms (resp. fohs-terms), writteradd
(resp.add?.), is obtained by adding the following rules4dd, (resp.add,s).

I't:A TI'+t:B I'Ht: AN A

NI) (NE)
I'+-t:ANB I'Ht: A;

Themultiplicative simple typsystem forx-terms (resp. foAs-terms), writtennul
(respmuly), is given by the following rulesx*, app*, andabs™* (resp.ax*, app™*, abs*,
andsubs™). Themultiplicative intersection typgystem for\-terms (resp. foAs-terms),
writtenmul? (respmulf_), is obtained by adding the rulesI andn E.

(ax”) I't:A— B AI—u:A/ .
—(ax a
rz:AkFxz: A I''yAr (tu): B \9PP
I't:B I'ru:B AFt:A
(abs™) (subs™)
I'\{z:A}+-Xzt: A— B 'y (A\{z:B})Ft[z/u]: A

Atermt is said to baypablein system7, written I" 7 ¢ : A iff there isI" and
A s.t. the judgement” F ¢ : A is derivable from the set of typing rules of system
7. Remark that for anyp-term¢ we havel” 44 ¢ @ Aff I' b e ¢ : A and
r }_muli t: Alﬁ I l_"“ﬂiAS t: A.

We need generation lemmas for each system.

Lemma 16 (Multiplicative Generation Lemma).

1. 'tz Aiff T =2: BandB < A.

2. I'ttu: Aiff I' = IN W Iy, wherely = fv(t) and I = fv(u) and there exist
Ai,Bi,Z' S ﬂS.t.ﬂnAi < AandVi e n,Ih+t:B; — A7 andF2 Fu: B;.

3. 't tlz/u] - Aiff I' = It W Iy, wherelt = fv(t) \ {z} andI; = fv(u) and
there exist4;, B;,i € ns.t.N,A; < AandVi € n, Iy - u : B; and either
xg¢fvt) &Mt Ajorx e fv(t) &Iy, z: Byt A

4. I't Azt : Aiff I' = £v(\x.t) and there existd;, B;,i € ns.t.N,(4; — B;) <
Aand Vi e n,eitherc ¢ fv(t) & I'Ft:B;orz € fv(t) & I : A; Ft: B;.

5, 'tXxt:B—-Ciff ' =fv(\xt)andl,z:Brtt:CorI'Ht:C.

Proof. The right to left implications follow from the typing rulea the multiplicative
systems and two simple lemmas full detailed in [19].

The left to right implication of points 1-4 is by induction ¢ime typing derivation of
the left part. The left to right implication of point 5 follawfrom point 4 and Lemma 15.

Lemma 17 (Additive Generation Lemma).

1. I'tx: Aiffthereisz : Be I'andB <« A.

2. 't tu: Aiff there exist4;, B;,i e nst.N,A; < AandI'+t: B; — A; and
I'u: B;.

3. 'k tlx/u] : Aiffthere exist4;, B;,i e ns.t.N,A; < AandVien 'k wu: B;
andl,x: B; Ft: A,

4. I' b Azt : A iff there exist4;, B;,i € ns.t.N,(4; — B;) < AandVi € n
I''z:A; +t: B,
5. 'FXxt:B—-Ciff Ix: BEt:C.

Proof. Similar to the proof of Lemma 16.
In order to prove our main result we need a correspondenoeebatthe systems.

Lemma 18. Let¢ be aAs-term. Thenl" b gt : Aff "N fv(t) by ¢ 0 A
Moreover, ift is aA-term, thenl” - 4q; ¢ : Aiff I'N £v(t) Fpuys ¢ A

Proof. The right to left implication is by induction otusing both generation lemmas
and a Weakening Lemma (see [19]). The left to right implmaiis by induction ort
using the generation lemmas.

Thus, from now ontypedA-termmeans typable iadd} andmul}, andtypedXs-
termmeans typable iadd}, andmul.

4.1 TypedAs-terms are Ag,p-Strongly normalising

The goal of this section is to show that typgstterms are\,,;,-strongly normalising.
This result will be a consequence of strong normalisationh-tdrms in the partial cal-
culus\g,; a result which can be shown using a simple arithmeticalff@&ig 11]. The

proof is constructive as it only uses induction and intuiitic reasoning.

Lemma 19. Lett, u be typed\-terms. Ift, u € SNy, , thent{z/u} € SN, .
Proof. By induction on(type(u),nx,, (t), size(t)). We treat the interesting cases.

— t = zvv,. The i.h. givesV = v{z/u} andV; = v;{z/u} in SN, . To show
t{x/u} =uVV, € SN, itis sufficient to show that all its reducts areS ;.
We reason by induction o, (u) + s, V) + Zic1..m Mg, (V7).

o [f the reduction takes place in V' or V;, then the property holds by the i.h.

e Supposer = A\y.U and(\y.U) V' V,, —gec U V,,. We writeU V,, as(z V,,){z/U},
wherez is a fresh variable. Since evely € SNA}, ,thenz V,, € SNA[,Z].
Also,u € SN, impliesU € SN, . Thus,type(U) < type(u) implies
(2 Va){z/U} € SN, by theih.

e Supposer = \y.C[y] and(\y.C[y]) V Vi, =g, (\y.C[V]) V V,,. We write
Ay.C[V] as(Ay.C[z]){z/V}, wherez is a fresh variable. Since € SN, ,
thenC[y] € SN,\BP. The change of free occurrences of variables preserve
normalisation so thal'[z] € SN, and thus\y.C[z] € SN, . We also
havetype(V) = type(v) < type(u) so that we ge{\y.C[z]){z/V} €
SNy, bytheih.

— t = (\y.s)vy,. Thei.h. givesS = s{z/u}andV = v{z/u}andV; = v;{z/u} are
in SNy, - These terms are also typed. To shiqw/u} = (Ay. SYWV, € SN,
it is sufficient to show that all its reducts areSWAB We reason by induction on

Mg, (S) +1xg, (V) + Ziet.n rg, (Vi)

o If the reduction takes place ifl, V or V;, then the property holds by the i.h.

e Suppose\y.S) V V,, —pec S Vi,. We write S V,, as (s v,,){z/u}. Since
(Ay.s) v U7 —x, S U, thenny, (s 0n) < na, ((Ay-s) v v,) and thus we
concludeS V,, € SN, bythei.h.

e Suppose: = \y.C[y] and(\y.C[y]) V V,, —g, (A\y.C[V]) V V,,. We write
Ay.C[V] as(\y.C[v]){z/u}. Since(\y.Cly]) v U, —p, (Ay.Cv]) v vy,
thenny, ((Ay.Clo]) v) < mag, (Ay.Clo]) v v,) and thus we conclude
A\y.C[V]) V'V, € SNy, bytheih.

Theorem 20 (SN for)s)). If ¢ is a typedh-term, thent € SNA%.

Proof. By induction on the structure a@f The case$ = x andt = Ax.u are straight-
forward. If t = wv, then writet = (z v){z/u}. By the i.h.u,v € SN, and thus
Lemma 19 gives € S/\/’A[,p.

Corollary 21 (SN for Ay (i)). If t is a typedis-term, thert € SN,

Proof. Taket typed inaddj_. Then,V(t) is aA-term. One shows by induction drthat
V(t) is typable inadd’ and thatv(t) —7 t. By Corollary 20V(t) € SNy, and by
Corollary 11V(t) € SN»_,, - Thust is also inSN

sub sub”

We now show thah ., ,-reduction preserve8-strong normalisation. This property,
known as PSN, received a lot of attention (see for exampk [1]), starting from an un-
expected result given by Medis [23] who has shown that there d@etrongly normal-
isable terms in\-calculus that are not strongly normalisable in calculirsas\o [1].
Since then, many formalisms have been shown to enjoy PShrtitplar, \,.,;, €njoys
PSN [27]. We reprove this property in a more simple way.

Corollary 22 (PSN for A\yp). If t € SN, thent € SN,

sub”

Proof. If t € SN 3, thent is typable inadd} by [29], so that is also typable iradd}
and thus we concludee SNy, by Corollary 21.

sub

4.2 Agyup-strongly normalising terms are typed As-terms

We now complete the picture by showing that the intersediipe discipline foris-
terms gives a characterisation ®f,;-strongly normalising terms. To do this, we use
the translatiorv() introduced in Section 3.1 to relates-terms toA-terms.

Lemma 23. Lett be ais-term. Thenl" b qq; V(t) : Aiff I'Fqq; 10 A
Proof. By induction ont using the Generation Lemma 17.

Lemma 24. If V(t) —p ¢/, thenJus.t.t —F wandt’ = V(u).

Proof. By induction on the reduction stéfit) —z t’ and Lemma 2.

Theorem 25. If t € SN,_,, thent is a typedis-term.

sub?

Equations:
tlz/ully/v] =c tly/v][z/u] ify & fv(u) &z ¢ fv(v)
Reduction Rules:

Az.t)u —g t[z/u]
z[z/ul] —Var U

t[z/u] —ge if © ¢ fv(t)

(t u)[z/v] —app, (t[x/v] ulz/v]) ?f x € fv(t) &z € fv(u)
(t u)[z/v] —app, (L ufz/v]) !f z ¢ fv(t) &z € fv(u)
(t u)x/v] —appy (t[z/V]) if x € fv(t) & = ¢ £v(u)
(Ay.t)[z/v] —tamn Ay.t[z/v] .
tz/u]ly/v] —comp, t[y/v][z/uly/v] iy € fv(u) &y € £v(t)
tlefully/o] oo tlnfuly/u] iy € fv(u) &y & £u(t)

Proof. Lett € SN_,,. Supposé/(t) ¢ SN 3. Then, there is an infinitg-reduction
sequence starting &{t), which can be projected, by Lemma 24, to an infinitg,-
reduction sequence startingtafhust ¢ SN, , which leads to a contradiction.

Thereforev(t) € SN g, so thatv(t) is typable inadd’ by [29]. By Lemma 23 is
typable inadd} . Lemma 18 also givestypable inmul’_.

Corollary 26. For As-terms,¢ is typable inadd iff ¢ is typable |nmu1 L I ¢ €
SN .., iff t € SNy, Furthermore, for\-terms,t is typable inadd, iff ¢ is typable
inmul} iff t € SNy, iff t € SN, iff t € SNs.

sub

5 Relating Partial to Explicit Substitutions

We now relate),,;, to a calculus based on explicit substitutions calbegs, sum-
marised below. We then give a translation fram,;, to Aes and we show that each
Asup-reduction step can be simulated by a non-empty reductiQuesee in\es. This
translation will provide a second proof &f,,,-strong normalisation for typels-terms.

Terms of theles-calculus are\s-terms. Besidesv-conversion, we consider the
equations and reduction rules in the figure below. Remark wheking moduloa-
conversion allows us to assume implicitly some conditianavioid capture of variables
such as for example # y andy ¢ fv(v) in the reduction rul&amb.

We consider the equivalence relatibBngenerated byr andC. The rewriting sys-
tem containing all the reduction rules excepis denoteds. We write Bs for B U s.
We noteALC, thereduction relationgenerated by the rule&pp, , App,, Apps, Lamb,
Comp,, Comp, } modulo the equivalence relatidfy. Thereduction relationgenerated
by s (resp.Bs) moduloEg is denoted by—.; (resp.—»es), Wheree means equational
ands means substitution.

As expected, reduction preserves free variables. Rematild may only prop-
agate garbage substitutions through abstractions anthmatgh applications or inside
explicit substitutions. We now ugd.C as a function or;-equivalence classes.

Lemma 27. TheALC-normal forms of terms exist and are unique modido

Proof. The systenes is terminating and saLC is terminating and\L.C-normal forms
exist. As all theALC-critical pairs are joinable (see [19] for full detaild)LC is locally
confluent and locally coherent. Therefore [1¥]C is confluent and hence.C-normal
forms are unique modulbLC-equivalence.

We define the following translatioff from As-terms toALC-normal forms.

T(x) =z

T(A\x.t) = z.T(t)

Ttw) =T Tw)[y/T(u)] wherey is fresh

T(tly/u]) = ALC(T(1)[y/ T () it y ¢ £v(1)

T(tly/u]) = ALC(T(t)[y/T (w)][y/T (w)]) if y € £v(¢) wherey is fresh

Remark that the translation preserves free variables.

The translation of closuregy/u], y € £v(t) and application$t u) introduces extra
substitutiondy/T'(u)]. We do this for the following technical reason. The usaf-
normal forms allows us to simulatey reduction with—y,, reduction. However-y.,
reduction cannot simulate the reductiejx/z] —g z[z/z] unless the translation were
to discard garbage (which is unsound for reasoning abouhalgsation). Thus, the
translation keeps garbage copies of substitutions to aliese cases to be simulated.

Proposition 28 (\es simulatesis,). If t —.,, ¢’ thenT(t) —1 _ T(¢).

Proof. By induction on the definition of —_ . ¢’ using some technical lemmas [19].

sub

Corollary 29 (SN for A, (ii)). If ¢ is typable inmul,g, thent € SN

sub*

Proof. LetI" by, t : A. We show thafl'(¢) is also typable imul, by induction on
t. ThenT(t) € SN yes by [18]. Now, suppose ¢ SN, ,. Then given an infinite\ s,;-
reduction sequence startingtaive can construct, by Proposition 28, an infinkes-
reduction sequence starting®t). This leads to a contradiction. Thug SN »_,, -

6 Relating Partial Substitutions to Graphical Formalisms

6.1 MELL Proof-nets

Calculi with explicit substitutions enjoy a nice relatioitiwthe multiplicative exponen-
tial fragment of linear logic (MELL). This is done by integimg terms intgroof-nets

a graphical formalism which represent MELL proofs in nakdeduction style. In order
to obtain this interpretation, one first defines a (simplyety version of the term cal-
culus. The translation froms-terms to proof-nets gives a simulation of the reduction
rules for explicit substitutions via cut elimination in @fenets. As an immediate con-
sequence of this simulation, one proves that a simply tygesion of the term calculus
is strongly normalizing. Also, an important property of gimulation is that each step
in the calculus with ES is simulated bycanstantnumber of steps in proof-nets: this
shows that the two systems are very close, unlike what happkan simulating tha-
calculus. This gives also a powerful tool to reason abouttimeplexity of 3-reduction.

We apply this idea to tha,,;-calculus by using previous work based on an inter-
pretation ofAs-terms into MELL proof-nets [18] and our translation in Sent5. We
thus compose both translations:

Lett be typable imul,s. Then the translation afinto a MELL proof-net is given
by W(t) = Z(T'(t)), whereT is the translation from\s-terms toALC-normal forms
andZ is the translation fromks-terms to MELL proof-nets given in [18].

Call R/ FE the strongly normalising reduction relation on MELL praudts. Then:

Proposition 30. If ¢ is typable inmul,s andt —»,,, ', thenW (t) —5 , C[W(t)],
whereC[IV (t’)] denotes a proof-net containiri§y (') as a sub proof-net.

Proof. Proposition 28 gived'(t) —__ T(t'). Moreover, by a simple inspection of
the proof of this proposition we know that there at least Bnear, or Ge step in the
reduction sequencg(t) —__ T(t'). This together with Theorem 8.2 in [18] gives us
W(t) = Z(T(t)) — 4,5 CIZ(T(¢)] = CW ().

Corollary 31 (SN for A,y (iii)). If ¢ is typable inmul g, thent € SNy

sub*

Proof. As R/F is strongly normalising, we concludes SN, _,, using Proposition 30.

sub

6.2 Local bigraphs

Milner, Leifer, and Jensen’s bigraphical reactive syst¢pds 21, 16] have been pro-
posed as a framework for modelling the mobility of distrémiagents able to manipu-
late their own linkages and nested locations. Milner haseared an encoding of,,;
as a bigraphical reactive systéiBIG as a means to study confluence in bigraphs [25].
This encoding may also be understood as a formalism pdttial substitutions.

Asub IS Close tdABIG both statically and dynamicallyy-equivalent terms have the
same encoding and one-step reduction in the former matatestep reaction in the
latter. Thus, any properties proven fay,,;, hold for the image of the encoding ihB1G.

Proposition 32 ([25]). Let ¢ be aAs-term. Thent —_,, t’ iff the encoding of in
’ABIG can react in one step to the encoding:oih ‘ABIG.

Thus, the imagéABiG* of the encoding is closed under reaction. We can reason
about reaction iMBIG® by considering reduction of,,,; terms without metavariables:

Corollary 33 (Confluence, PSN, SN)ABIG® is confluent and satisfies PSN. Encod-
ings of intersection typed terms are strongly normalising.

7 Conclusions

We answer some fundamental remaining questions concetiningdequacy of Mil-
ner’s A-calculus with partial substitutions. In particular, wepe that the\,,,;-calculus

is confluent on terms and metaterms, that it enjoys PSN, atdt thllows a characteri-
sation of),,-strongly normalising terms by using intersection typeigines.

We relate),,;, to the calculi with definitions\3, and .., thus obtaining a certain
number of interesting results concerning normalisatioa i¥o relate tha,,,;,-calculus
to classical calculi with explicit substitutions. Thusethy,,;-calculus can be understood
as a concise and simple language implementing partial aidary substitution, both
in implicit and explicit style at the same time.

Last but not least, we establish a clear connection betwieplys typed A;.-
calculus and MELL proof-nets, thus injecting again a grappresentation to\,,-
terms which were inspired from bigraphical reactive system

In related work, Bundgaard and Hildebrandt [8] use partigissitution similar to
Asup IN their extension of Homer, a higher-order process catcuRartial substitution
is also used in different frameworks such as for example lAramd Felleisen’s [2]
call-by-need lambda calculus and Ariola and Klop's [3] aycl-calculus.

Grohmann and Miculan have modelled the call-by-name ardbgaralue\-calculi
with bigraphs [14] by adapting Milner's model. While they cemtrate on encodings
of \-terms, the model is still based dg,;, and our results can be used to reason about
normalisation and confluence in their models.

AcknowledgementgVe are grateful to V. van Oostrom who pointed out to us refegen
to calculi with partial notions of substitutions such)ag and ..

References

1. M. Abadi, L. Cardelli, P. L. Curien, and J.-Jély. Explicit substitutionsJournal of Func-
tional Programming4(1):375-416, 1991.

2. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculdsurnal of Functional
Programming 7(3):265-301, 1997.

3. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursiomformation and
Computation139(2):154-233, 1997.

4. F. Baader, editoiTerm Rewriting and Applications, 18th International Conference, RTA-07
volume 4533 oLecture Notes in Computer Scien&pringer-Verlag, June 2007.

5. F. Baader and T. Nipkovilerm Rewriting and All ThatCambridge University Press, 1998.

6. Z.-E.-A. Benaissa, D. Briaud, P. Lescanne, and J. RouyglD&v, a calculus of explicit
substitutions which preserves strong normalisatidournal of Functional Programming
6(5):699-722, 1996.

7. R. Bloo and K. Rose. Preservation of strong normalization in nameldaroalculi with
explicit substitution and garbage collection.@omputer Science in the Netherlands (CSN)
pages 62-72, 1995.

8. M. Bundgaard and T. T. Hildebrandt. Bigraphical semantics of ighger mobile em-
bedded resources with local hameElectronic Notes in Theoretical Computer Science
154(2):7-29, 2006.

9. M. Coppo and M. Dezani-Ciancaglini. A new type assignment for la¥tbdns.Archiv fur
mathematische Logik und Grundlagenforschuid®):139-156, 1978.

10. M. Coppo and M. Dezani-Ciancaglini. An extension of the basic funatity theory for the
A-calculus.Notre-Dame Journal of Formal Logi@(21):685-693, 1980.

11. R. David. A short proof of the strong normalization of the simply tylaedbda calculus.
Available ashttp://www.lama.univ-savoie.fr/ ~david/

12. R. David and B. Guillaume. A-calculus with explicit weakening and explicit substitution.
Mathematical Structures in Computer Scient#:169-206, 2001.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

N. G. de Bruijn. Generalizing Automath by Means of a Lambda-Tymedbda Calculus.
In Mathematical Logic and Theoretical Computer Sciemaember 106 in Lecture Notes in
Pure and Applied Mathematics, pages 71-92, New York, 1987. MBxaldter.

D. Grohmann and M. Miculan. Directed bigrapBgectronic Notes in Theoretical Computer
Sciencel73:121-137, 2007.

G. Huet. Résolution déquations dans les langages d’'ordre2, ..., w. These de doctorat
d’état, Universié Paris VII, 1976.

O. H. Jensen and R. Milner. Bigraphs and mobile processesddgviechnical Report
UCAM-CL-TR-580, Computer Laboratory, University of Cambrid§epruary 2004.

J.-P. Jouannaud and H. Kirchner. Completion of a set of rulekilo@ set of equations.
SIAM Journal on Computind.5(4):1155-1194, 1986.

D. Kesner. The theory of calculi with explicit substitutions revisited. Buparc and T. Hen-
zinger, editorsProceedings of the 16th Annual Conference of the European Assaociatio
Computer Science Logic (CShjplume 4646 ol ecture Notes in Computer Sciengages
238-252. Springer-Verlag, Sept. 2007.

D. Kesner and SO Conchiir. Milner's lambda-calculus with partial substitutions, 2008.
available onvww.pps.jussieu.fr/ ~ kesner/papers/

K. Kikuchi. Simple proofs of characterizing strong normalizationéwplicit substitution
calculi. In Baader [4], pages 257-272.

J. J. Leifer and R. Milner. Deriving bisimulation congruences &active systems. In
C. Palamidessi, editofONCUR volume 1877 of_ecture Notes in Computer Scienpages
243-258. Springer, 2000.

S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Cianéagtid S. van Bakel. Intersec-
tion types for explicit substitutiondnformation and Computatiqri89(1):17—-42, 2004.

P.-A. Mellies. Typed\-calculi with explicit substitutions may not terminate. In M. Dezani-
Ciancaglini and G. Plotkin, editor®roceedings of the 2nd International Conference on
Typed Lambda Calculus and Applications (TLQlume 902 of_ecture Notes in Computer
Sciencepages 328-334. Springer-Verlag, Apr. 1995.

R. Milner. Computational flux. I?OPL '01: Proceedings of the 28th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagages 220-221, New York,
NY, USA, 2001. ACM Press.

R. Milner. Local bigraphs and confluence: two conjectures. |ArRadio and I. Phillips,
editors,Proceedings of the 13th International Workshop on Expressivenéssrinurrency
(EXPRESS '06)Electronic Notes in Theoretical Computer Science, 2006.

R. P. Nederpelt. The fine-structure of lambda calculus. TechRigabrt Computing Sci-
ence Notes 92/07, Eindhoven University of Technology, DepartmeMathematics and
Computer Science, 1992.

S.0 Conctuir. Proving PSN by simulating non-local substitution with local substitution. In
D. Kesner, M.-O. Stehr, and F. van Raamsdonk, edifersceedings of the Third Interna-
tional Workshop on Higher-Order Rewriting (HORJages 37-42, Aug. 2006.

S.0 Conclhuir. As,p as an explicit substitution calculus. Technical Report TR-2006-95,
IT-Universitetet, Kgbenhavn, September 2006.

G. Pottinger. A type assignment for the strongly normalizakierms. InTo H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalimmges 561-577. Academic
Press, New York, 1980.

P. Severi and E. Poll. Pure type systems with definitionsogjical Foundations of Computer
Science’94volume 813 ofLecture Notes in Computer Sciengages 316—-328. Springer-
Verlag, 1994.

D. T. van DaalenThe language theory of automatfhD thesis, Technische Hogeschool
Eindhoven, 1977.

