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1 PPS, CNRS, and Université Paris 7, France
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Abstract. We study Milner’s lambda-calculus with partial substitutions. Partic-
ularly, we show confluence on terms and metaterms, preservation ofβ-strong
normalisation and characterisation of strongly normalisable terms via an inter-
section typing discipline. The results on terms transfer to Milner’s bigraphical
model of the calculus. We relate Milner’s calculus to calculi with definitions, to
explicit substitutions, and to MELL Proof-Nets.

1 Introduction

Theλsub-calculus was introduced by Milner as a means to modelling theλ-calculus in
bigraphs [25]. However, theλsub-calculus is interesting apart from the model; it enjoys
confluence on terms, step-by-step simulation ofβ-reduction [28], and preservation ofβ-
strong normalisation (PSN)i.e. everyλ-calculus term which isβ-strongly normalising
is alsoλsub-strongly normalising [27].

In this paper we study many remaining open questions aboutλsub. The first of them
concernsconfluence on metatermswhich are terms containingmetavariablesusually
used to denoteincompleteprograms and/or proofs in higher-order frameworks [15]. To
obtain a confluent reduction relation on metaterms we need toextend the existing notion
of reduction on terms. We develop a proof of confluence for this extended new relation
by using Tait and Martin-L̈of’s technique. This proof includes a formal argument to
show that the calculus of substitution itself is terminating.

Our main contribution lies in studying the connections betweenλsub and other for-
malisms. We start by considering calculi with definitions, namely, the partial
λ-calculus [13, 26], which we callλβp

, and theλ-calculus with definitions [30], which
we callλdef . We distinguish arbitrary terms of the calculi with definitions, which we
call λs-terms, from terms without definition, which are ordinaryλ-terms. We show that
the sets of strongly-normalisingλ-terms inλsub andλβp

are the same. Similarly, we
show that the sets of strongly-normalisingλs-terms inλsub andλdef are equal. Thus,
we demonstrate that partial substitutions and definitions are similar notions.

We also relateλsub-strongly normalising terms to typed terms. We start by introduc-
ing an intersection type discipline forλs-terms and then give a simple (and construc-
tive) argument to proveλβp

-strong normalisation for typedλ-terms. This argument
turns out to be sufficient to concludeλsub-strong normalisation forintersectiontyped
λs-terms. By proving the conversei.e.λsub-strongly normalisingλs-terms can be typed
in the intersection type discipline, we also provide a characterisation ofλsub-strongly
normalising terms.



The relation between typable andλsub-strongly normalisingλs-terms also gives
an alternative proof of PSN forλsub, which is self-contained, and which simplifies
previous work [27] considerably: the existing proof is quite involved, using a translation
of λsub into a rather complex calculus, a proof of PSN for the complexcalculus, and a
proof of simulation.

Another contribution of the paper is the study of the relation between partial substi-
tutions and explicit substitutions. More precisely, we define a translation fromλsub to a
calculus with explicit substitutions calledλes [18]. This translation preserves reduction
and has at least two important consequences. On one hand, we obtain a simple proof of
λsub-strong normalisation forsimply typedλs-terms. A second consequence is that the
existing simulation of the simply typedλes-calculus into MELL Proof-Nets [18] also
gives a natural interpretation for the simply typedλsub-calculus by composition. As
a corollary,λsub-strong normalisation for simply typedλs-terms can also be inferred
from strong normalisation of MELL Proof-Nets.

Finally, we transfer our confluence and strong normalisation proofs onλs-terms
without metavariables inλsub to Milner’s model using an existing result.

The paper is organised as follows. Section 2 introduces theλsub-calculus and con-
fluence on metaterms is proven using Tait and Martin-Löf’s technique. In Section 3 we
relateλsub to the calculi with definitions,λβp

andλdef . Section 4 presents a neat char-
acterisation ofλsub-strongly normalising terms using intersection type systems as well
as the PSN property for untypedλs-terms ofλsub. In Section 5, we present the transla-
tion fromλsub to λes and prove that reduction in the former is simulated by non-empty
reduction sequences in the latter. We concludeλsub-strong normalisation for simply
typedλs-terms from strongλes-normalisation for simply typedλs-terms. Last but not
least, we discuss a relation betweenλsub and MELL Proof-Nets and transfer results to
the bigraphical setting in Section 6.

Due to lack of space the full proofs are contained in the related technical report [19].

2 Theλsub-calculus

The λsub-calculus was introduced by Milner to present a model of theλ-calculus in
local bigraphs. The calculus was inspired byλσ [1] although it is anamedcalculus
and has turned out to have stronger properties as we show in this paper. Terms of the
λsub-calculus, calledλs-terms, are given by:

t ::= x | t t | λx.t | t[x/t]

The piece of syntax[x/t], which is not a term itself, is called anexplicit substitution.
Freeandboundvariables are defined as usual by assuming the termsλx.t andt[x/u]

bindx in t. We considerα-conversion which is the congruence generated by renaming
of bound variables. Thus for example(λy.x)[x/y] =α (λz.x′)[x′/y]. We work with
α-equivalence classes so that two bound variables of the sameterm are assumed to be
distinct, and no free and bound variable of the same term havethe same name. Thus,α-
conversion avoids capture of variables.Implicit Substitutiononλs-terms can be defined
moduloα-conversion in such a way that capture of variables is avoided:



x{x/v} := v (tu){x/v} := t{x/v}u{x/v}
y{x/v} := y if y 6= x (λy.t){x/v} := λy.t{x/v}

t[y/u]{x/v} := t{x/v}[y/u{x/v}]

The set ofλsub-contexts can be defined by the following grammar:

C ::= 2 | C t | t C | λx.C | C[x/t] | t[x/C]

We use the notationC[[u]]φ to mean that the hole2 in the contextC has been
replaced by the termu without capture of the variables in the setφ. Thus for example,
if C = λz.2, thenC[[x]]φ with x ∈ φ means in particular thatz 6= x.

Reduction rules of theλsub-calculus are given in the following table.

(λx.t) u →B t[x/u]
t[x/u] →Gc t if x /∈ fv(t)
C[[x]]φ[x/u] →R C[[u]]φ[x/u] if {x} ∪ fv(u) ⊆ φ

As Milner describes, an explicit substitution[x/u] acts‘at a distance’on each free
occurrence ofx in turn, rather than migrating a copy of itself towards each such occur-
rencee.g. the reduction step(λx.x (y y))[y/t] →R (λx.x (t y))[y/t] demonstrates a
partial substitution.

The rewriting systemgenerated by the reduction rulesR andGc is denoted bysm.
We writeBsm for B ∪ sm. The reduction relationgenerated by thereduction rulessm
(resp.Bsm) modulo the equivalence relationα is denoted by→sub (resp.→λsub

).

t→sub t′ iff there ares, s′ s.t. t =α s→sm s′ =α t′

t→λsub
t′ iff there ares, s′ s.t. t =α s→Bsm s′ =α t′

Thus, the reduction relation acts onα-equivalence classes. We use the notation
→∗

λsub
(resp.→+

λsub
) to denote the reflexive (resp. reflexive and transitive) closure of

→λsub
. As a consequence ift→∗

λsub
t′ in 0 steps, thent =α t′ and nott = t′.

Reduction enjoys the following properties. In particular,the second one, calledfull
composition, guarantees that explicit substitution implements the implicit one. While
this property seems reasonable/natural, it is worth noticing that many calculi with ex-
plicit substitutions do not enjoy it. Fortunately, full composition holds forλsub [28].

Lemma 1 (Preservation of Free Variables).If t→λsub
t′, thenfv(t′) ⊆ fv(t).

Lemma 2 (Full Composition (i)). Let t, u beλs-terms. Thent[x/u]→+

λsub
t{x/u}.

2.1 Confluence

We briefly discuss confluence on metaterms, usually used to denote incompletepro-
grams/proofs in higher-order frameworks [15]. The set ofλs-metatermsis obtained by
addingannotated metavariablesof the formX∆ (where∆ is a set of variables) to the
grammar generatingλs-terms. The notion of free variables is extended to metaterms by



fv(X∆) = ∆. As a consequence,α-conversion can also be defined on metaterms and
thus for exampleλx.Xx,y =α λz.Xz,y.

We extend the standard notion ofimplicit substitutionto metaterms as follows:

X∆{x/v} := X∆ if x /∈ ∆
X∆{x/v} := X∆[x/v] if x ∈ ∆

It is worth noticing that Milner’s original presentation did not consider metaterms
as the bigraphical system did not model them however all properties we prove here
involving metaterms hold also for terms.

We add to the reduction system forλs-terms one equation and one reduction rule.

t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

C[[X∆]]φ[x/u]→RX
C[[X∆[x/u]]]φ[x/u] if x ∈ ∆ & x ∪ fv(u) ⊆ φ

& C 6= 2[y1/v1] . . . [yn/vn] (n ≥ 0)

Remark in particular thatRX cannot be applied if the context is empty. Remark also
that the equationC can always be postponed w.r.t.λsub-reduction if only terms (and not
metaterms) are considered.

Throughout this section, we includeRX in the reduction relationsm as well asC in
the equivalence relation, called nowEs. Full composition still holds forλs-metaterms:

Lemma 3 (Full Composition (ii)). Lett, u beλs-metaterms. Thent[x/u]→+

λsub
t{x/u}.

While confluence on terms always holds for calculi with explicit substitutions, con-
fluence on metaterms is often based on some form of interaction of substitutions such
as that inλσ [1] or λws [12]. To illustrate this requirement, let us consider the typical
diverging example adapted toλsub-reduction:

t{y/v}[x/u{y/v}] ∗
λsub
← ((λx.t) u)[y/v]→B t[x/u][y/v]

This diagram can be closed using full composition with the sequencet[x/u][y/v]
→+

λsub
t[x/u]{y/v} = t{y/v}[x/u{y/v}].

However, while de Bruijn notation forλ-terms allows a canonical representation of
bound variables given by a certain order on their natural numbers, calculi with named
variables suffer from the following (also typical) diverging example:

Xx,y[y/v][x/z] ∗
λsub
← ((λx.Xx,y) z)[y/v]→B Xx,y[x/z][y/v]

The metatermsXx,y[y/v][x/z] andXx,y[x/z][y/v] are equal modulo permutation
of independent substitutions, thus justifying the introduction of the equationC in the
definition of the calculus for metaterms.

One possible technical tool to show confluence forλs-metaterms is the use of an-
other confluent calculus well-related toλsub. We prefer to give a self-contained argu-
ment, and so adapt a proof based on Tait and Martin-Löf’s technique: define a simulta-
neous reduction relation denotedVλsub

; prove thatλsub can be projected toVλsub
on

sub-normal forms; show thatV∗
λsub

has the diamond property; and finally conclude.
Since this technique is considered nowadays as standard folklore, we just state here the
main reduction properties used in our particular case and refer the reader to [19].



Lemma 4. Thesub-normal forms of metaterms exist and are unique moduloEs.

Proof. Details can be found in [19]. The systemsub can be shown to be terminating
by associating to eachλs-metaterm a measure which does not change byEs but strictly
decreases by→sm. Thus,sub-normal forms exist. Thesub-critical pairs are joinable,
so sub is locally confluent and locally coherent. Therefore [17],sub is confluent and
hencesub-normal forms are unique moduloEs-equivalence.

Remark that metaterms insub-normal form have all explicit substitutions directly
above metavariables. Thus in particular terms without metavariables insub-normal
form have no explicit substitutions at all.

Definition 5. The relationV on metaterms insub-normal form is given by:

– x V x
– If t V t′, thenλx.t V λx.t′

– If t V t′ andu V u′, thent u V t′ u′

– If t V t′ andu V u′, then(λx.t) u V sub(t′[x/u′])
– If ui V u′

i andxj /∈ fv(ui) for all i, j ∈ [1, n], thenX∆[x1/u1] . . . [xn/un] V

X∆[x1/u′
1] . . . [xn/u′

n]

The relationVsub is defined byt Vsub t′ iff ∃s, s′ s.t.t =Es s V s′ =Es t′.

Lemma 6.

1. The reflexive and transitive closures ofVλsub
and→λsub

are the same relation.
2. If s→λsub

s′ thensub(s) Vλsub
sub(s′).

3. The reduction relationVλsub
enjoys the diamond property.

Corollary 7. Theλsub-reduction relation is confluent on terms and metaterms.

Proof. Supposet→∗
λsub

ti for i = 1, 2. Lemma 6:2 givessub(t) V
∗
λsub

sub(ti). Since
the diamond property implies confluence [5], then Lemma 6:3 implies confluence of
Vλsub

; therefore, there is a metaterms s.t. sub(ti) V
∗
λsub

s. We can then close the
diagram byti →∗

sub sub(ti)→
∗
λsub

s using Lemma 6:1.

3 Relating Partial Substitutions to Definitions

Partial substitution can be related to calculi with definitions. A definition can be under-
stood as an abbreviation given by a name for a larger term which can be used several
times in a program or a proof. A definition mechanism is essential for practical use;
current implementations of proof assistants provide such afacility.

We consider two calculi, the first one, which we callλβp
, appears in [13] and uses

a notion of partial substitution onλ-terms, while the second one, which we callλdef ,
uses partial substitutions onλs-terms to model definitions and combines standardβ-
reduction with the rules of the substitution calculussub. The general result of this sec-
tion is that normalisation in λβp

and λsub are equivalent on
λ-terms and normalisation inλdef and λsub are equivalent onλs-terms. More pre-
cisely, for everyλ-termt, t ∈ SN λβp

if and only if t ∈ SN λsub
and for everyλs-term

t, t ∈ SN λdef
if and only if t ∈ SN λsub

. Thus, theλsub-calculus can be understood as
a concise and simple language implementing partial and ordinary substitution, both in
implicit and explicit style at the same time.



3.1 The partial λ-calculusλβp

Terms of the partial calculusλβp
areλ-terms. The operational semantics ofλβp

is given
by the following rules:

(λx.C[[x]]φ) u→βp
(λx.C[[u]]φ) u if {x} ∪ fv(u) ⊆ φ

(λx.t) u →BGc t if x /∈ fv(t)

Consider the following translation fromλ-terms toλs-terms:

U(x) := x
U(λx.t) := λx.U(t)

U(t u) :=

{
U(t) U(u) if t is not aλ-abstraction
U(v)[x/U(u)] if t = λx.v

Lemma 8. If t→λβp
t′, thenU(t)→+

λsub
U(t′). Proof.By induction on→λβp

.

Corollary 9. Let t be aλ-term. If t ∈ SN λsub
, thent ∈ SN λβp

.

Proof. Let t ∈ SN λsub
and supposet /∈ SN λβp

. Then, from an infiniteλβp
-reduction

sequence starting att we can construct, by Lemma 8, an infiniteλsub-reduction se-
quence starting atU(t). Sincet→∗

λsub
U(t), thent /∈ SN λsub

, which leads to a contra-
diction. We thus concludet ∈ SN λβp

.

The converse reasoning also works. Define a translation fromλs-terms toλ-terms:

V(x) := x V(λx.t) := λx.V(t)
V(t u) := V(t) V(u) V(t[x/u]) := (λx.V(t)) V(u)

Remark thatV(t){x/V(u)} = V(t{x/u}). Lemma 10 follows by induction on→λsub
.

Lemma 10. Let t →λsub
t′. If t →B t′, thenV(t) = V(t′). Also, if t →sub t′, then

V(t)→+

λβp
V(t′).

Corollary 11. Let t be aλ-term. If t ∈ SN λβp
, thent ∈ SN λsub

.

Proof. Follows from Lemma 10 similarly to Corollary 9, using the fact that infinite
→λsub

sequences must contain an infinite number of→sub steps.

3.2 Theλ-calculus with definitionsλdef

The syntax of theλ-calculus with definitionsλdef [30], is isomorphic to that ofλsub,
where the use of a definitionx := u in a termv, denotedlet x := u in v, can be
thought as the termv[x/u] in λsub. The original presentation [30] of the operational
semantics ofλdef is given by a reduction system which is not a (higher-order) term
rewriting system. This is due to the fact that given a definition x := u, the termx
can be reduced to the termu, so that reduction creates new free variables sincefv(u)
does not necessarily belong to{x}. Here, we presentλdef by a set of reduction rules
which preserve free variables of terms. Moreover, we consider a more general reduction
system where anyβ-redex can be eitherβ-reduced or transformed to a definition, while
the calculus appearing in [30] does not allow dynamic creation of definitions.

(λx.t) u→β t{x/u} t[x/u] →Gc t if x /∈ fv(t)
(λx.t) u→B t[x/u] C[[x]]φ[x/u]→R C[[u]]φ[x/u] if {x} ∪ fv(u) ⊆ φ



Lemma 12. If t→λdef
t′, thent→+

λsub
t′. Also, ift→λsub

t′, thent→+

λdef
t′.

Proof. The first point can be shown by induction on→λdef
using the fact that anyβ

step can be simulated byB followed by severalR steps and oneGc step. The second
point is straightforward.

We can then conclude that normalisation forλdef andλsub is equivalent.

Corollary 13. Let t be aλs-term. Thent ∈ SN λsub
if and only ift ∈ SN λdef

.

4 Normalisation Properties

Intersection type disciplines [9, 10] are more flexible thansimple type systems in the
sense that not only are typed terms strongly normalising, but the converse also holds,
thus giving a characterisation of the set of strongly normalising terms. Intersection types
for calculi with explicit substitutions not enjoying full composition have been stud-
ied [22, 20]. Here, we apply this technique toλsub, and obtain a characterisation of the
set of strongly-normalising terms.

Typesare built over a countable set of atomic symbols (base types)and the type
constructors→ (functional types) and∩ (intersection types). Anenvironmentis a finite
set of pairs of the formx : A. Two environmentsΓ and∆ are said to becompatible
iff for all x : A ∈ Γ andy : B ∈ ∆, x = y impliesA = B. We denote theunion of
compatible contextsby Γ ] ∆. Thus for example(x : A, y : B) ] (x : A, z : C) =
(x : A, y : B, z : C).

Definition 14. The relation� on types is defined by the following axioms and rules

1. A� A 4. A� B & B � C impliesA� C
2. A ∩B � A 5. A� B & A� C impliesA� B ∩ C
3. A ∩B � B

We usen for {1 . . . n} and∩nAi for A1 ∩ . . .∩An. The following property can be
shown by induction on the definition of�.

Lemma 15. Let∩nAi � ∩mBj , where none of theAi andBj is an intersection type.
Then for eachBj there isAi s.t.Bj = Ai.

Typing judgementshave the formΓ ` t : A wheret is a term,A is a type andΓ is an
environment.Derivationsof typing judgements in a certain type discipline system are
obtained by application of the typing rules of the system. Weconsider several systems.

The additive simply typesystem forλ-terms (resp. forλs-terms), writtenaddλ

(resp.addλs), is given by the following rulesax+, app+, andabs+ (resp.ax+, app+,
abs

+, andsubs+).

Γ, x : A ` x : A
(ax+)

Γ ` t : A → B Γ ` u : A

Γ ` (t u) : B
(app+)

Γ, x : A ` t : B

Γ ` λx.t : A → B
(abs+)

Γ ` u : B Γ, x : B ` t : A

Γ ` t[x/u] : A
(subs+)



Theadditive intersection typesystem forλ-terms (resp. forλs-terms), writtenaddi
λ

(resp.addi
λs), is obtained by adding the following rules toaddλ (resp.addλs).

Γ ` t : A Γ ` t : B

Γ ` t : A ∩ B
(∩ I)

Γ ` t : A1 ∩ A2

Γ ` t : Ai

(∩ E)

Themultiplicative simple typesystem forλ-terms (resp. forλs-terms), writtenmulλ

(resp.mulλs), is given by the following rulesax∗, app∗, andabs∗ (resp.ax∗, app∗, abs∗,
andsubs∗). Themultiplicative intersection typesystem forλ-terms (resp. forλs-terms),
writtenmuli

λ (resp.muli
λs), is obtained by adding the rules∩ I and∩ E.

x : A ` x : A
(ax∗)

Γ ` t : A → B ∆ ` u : A

Γ ] ∆ ` (t u) : B
(app∗)

Γ ` t : B

Γ \ {x : A} ` λx.t : A → B
(abs∗)

Γ ` u : B ∆ ` t : A

Γ ] (∆ \ {x : B}) ` t[x/u] : A
(subs∗)

A term t is said to betypablein systemT , written Γ `T t : A iff there isΓ and
A s.t. the judgementΓ ` t : A is derivable from the set of typing rules of system
T . Remark that for anyλ-term t we haveΓ `addi

λ
t : A iff Γ `addi

λs
t : A and

Γ `muli
λ

t : A iff Γ `muli
λs

t : A.
We need generation lemmas for each system.

Lemma 16 (Multiplicative Generation Lemma).

1. Γ ` x : A iff Γ = x : B andB � A.
2. Γ ` t u : A iff Γ = Γ1 ] Γ2, whereΓ1 = fv(t) andΓ2 = fv(u) and there exist

Ai, Bi, i ∈ n s.t.∩nAi � A and∀i ∈ n, Γ1 ` t : Bi → Ai andΓ2 ` u : Bi.
3. Γ ` t[x/u] : A iff Γ = Γ1 ] Γ2, whereΓ1 = fv(t) \ {x} andΓ2 = fv(u) and

there existAi, Bi, i ∈ n s.t.∩nAi � A and ∀i ∈ n, Γ2 ` u : Bi and either
x /∈ fv(t) & Γ1 ` t : Ai or x ∈ fv(t) & Γ1, x : Bi ` t : Ai.

4. Γ ` λx.t : A iff Γ = fv(λx.t) and there existAi, Bi, i ∈ n s.t.∩n(Ai → Bi) �
A and l∀i ∈ n, eitherx /∈ fv(t) & Γ ` t : Bi or x ∈ fv(t) & Γ, x : Ai ` t : Bi.

5. Γ ` λx.t : B → C iff Γ = fv(λx.t) andΓ, x : B ` t : C or Γ ` t : C.

Proof. The right to left implications follow from the typing rules in the multiplicative
systems and two simple lemmas full detailed in [19].

The left to right implication of points 1-4 is by induction onthe typing derivation of
the left part. The left to right implication of point 5 follows from point 4 and Lemma 15.

Lemma 17 (Additive Generation Lemma).

1. Γ ` x : A iff there isx : B ∈ Γ andB � A.
2. Γ ` t u : A iff there existAi, Bi, i ∈ n s.t.∩nAi � A andΓ ` t : Bi → Ai and

Γ ` u : Bi.
3. Γ ` t[x/u] : A iff there existAi, Bi, i ∈ n s.t.∩nAi � A and∀i ∈ n Γ ` u : Bi

andΓ, x : Bi ` t : Ai.



4. Γ ` λx.t : A iff there existAi, Bi, i ∈ n s.t.∩n(Ai → Bi) � A and∀i ∈ n
Γ, x : Ai ` t : Bi.

5. Γ ` λx.t : B → C iff Γ, x : B ` t : C.

Proof. Similar to the proof of Lemma 16.

In order to prove our main result we need a correspondence between the systems.

Lemma 18. Let t be aλs-term. ThenΓ `addi
λs

t : A iff Γ ∩ fv(t) `muli
λs

t : A.
Moreover, ift is aλ-term, thenΓ `addi

λ
t : A iff Γ ∩ fv(t) `muli

λ
t : A.

Proof. The right to left implication is by induction ont using both generation lemmas
and a Weakening Lemma (see [19]). The left to right implication is by induction ont
using the generation lemmas.

Thus, from now on,typedλ-termmeans typable inaddi
λ andmuli

λ, andtypedλs-
termmeans typable inaddi

λs andmuli
λs.

4.1 Typedλs-terms areλsub-strongly normalising

The goal of this section is to show that typedλs-terms areλsub-strongly normalising.
This result will be a consequence of strong normalisation ofλ-terms in the partial cal-
culusλβp

; a result which can be shown using a simple arithmetical proof [31, 11]. The
proof is constructive as it only uses induction and intuitionistic reasoning.

Lemma 19. Let t, u be typedλ-terms. Ift, u ∈ SN λβp
, thent{x/u} ∈ SN λβp

.

Proof. By induction on〈type(u), ηλβp
(t), size(t)〉. We treat the interesting cases.

– t = xvvn. The i.h. givesV = v{x/u} andVi = vi{x/u} in SN λβp
. To show

t{x/u} = uV Vn ∈ SN λβp
it is sufficient to show that all its reducts are inSN λβp

.
We reason by induction onηλβp

(u) + ηλβp
(V ) + Σi∈1...n ηλβp

(Vi).
• If the reduction takes place inu, V or Vi, then the property holds by the i.h.
• Supposeu = λy.U and(λy.U) V Vn →BGc U Vn. We writeU Vn as(z Vn){z/U},

wherez is a fresh variable. Since everyVi ∈ SN λβp
, thenz Vn ∈ SN λβp

.
Also, u ∈ SN λβp

impliesU ∈ SN λβp
. Thus,type(U) < type(u) implies

(z Vn){z/U} ∈ SN λβp
by the i.h.

• Supposeu = λy.C[[y]] and(λy.C[[y]]) V Vn →βp
(λy.C[[V ]]) V Vn. We write

λy.C[[V ]] as(λy.C[[z]]){z/V }, wherez is a fresh variable. Sinceu ∈ SN λβp
,

thenC[[y]] ∈ SN λβp
. The change of free occurrences of variables preserve

normalisation so thatC[[z]] ∈ SN λβp
and thusλy.C[[z]] ∈ SN λβp

. We also
havetype(V ) = type(v) < type(u) so that we get(λy.C[[z]]){z/V } ∈
SN λβp

by the i.h.

– t = (λy.s)vvn. The i.h. givesS = s{x/u} andV = v{x/u} andVi = vi{x/u} are
in SN λβp

. These terms are also typed. To showt{x/u} = (λy.S)V Vn ∈ SN λβp

it is sufficient to show that all its reducts are inSN λβp
. We reason by induction on

ηλβp
(S) + ηλβp

(V ) + Σi∈1...n ηλβp
(Vi).



• If the reduction takes place inS, V or Vi, then the property holds by the i.h.
• Suppose(λy.S) V Vn →BGc S Vn. We write S Vn as (s vn){x/u}. Since

(λy.s) v vi →λβp
s vn, thenηλβp

(s vn) < ηλβp
((λy.s) v vn) and thus we

concludeS Vn ∈ SN λβp
by the i.h.

• Supposeu = λy.C[[y]] and(λy.C[[y]]) V Vn →βp
(λy.C[[V ]]) V Vn. We write

λy.C[[V ]] as(λy.C[[v]]){x/u}. Since(λy.C[[y]]) v vn →βp
(λy.C[[v]]) v vn,

thenηλβp
((λy.C[[v]]) v vn) < ηλβp

((λy.C[[v]]) v vn) and thus we conclude

(λy.C[[V ]]) V Vn ∈ SN λβp
by the i.h.

Theorem 20 (SN forλβp
). If t is a typedλ-term, thent ∈ SN λβp

.

Proof. By induction on the structure oft. The casest = x andt = λx.u are straight-
forward. If t = uv, then writet = (z v){z/u}. By the i.h.u, v ∈ SN λβp

and thus
Lemma 19 givest ∈ SN λβp

.

Corollary 21 (SN for λsub (i)). If t is a typedλs-term, thent ∈ SN λsub
.

Proof. Taket typed inaddi
λs. Then,V(t) is aλ-term. One shows by induction ont that

V(t) is typable inaddi
λ and thatV(t) →+

B t. By Corollary 20V(t) ∈ SN λβp
and by

Corollary 11V(t) ∈ SN λsub
. Thust is also inSN λsub

.

We now show thatλsub-reduction preservesβ-strong normalisation. This property,
known as PSN, received a lot of attention (see for example [1,6, 7]), starting from an un-
expected result given by Melliès [23] who has shown that there areβ-strongly normal-
isable terms inλ-calculus that are not strongly normalisable in calculi such asλσ [1].
Since then, many formalisms have been shown to enjoy PSN. In particular,λsub enjoys
PSN [27]. We reprove this property in a more simple way.

Corollary 22 (PSN for λsub). If t ∈ SN β , thent ∈ SN λsub
.

Proof. If t ∈ SN β , thent is typable inaddi
λ by [29], so thatt is also typable inaddi

λs

and thus we concludet ∈ SN λsub
by Corollary 21.

4.2 λsub-strongly normalising terms are typedλs-terms

We now complete the picture by showing that the intersectiontype discipline forλs-
terms gives a characterisation ofλsub-strongly normalising terms. To do this, we use
the translationV() introduced in Section 3.1 to relateλs-terms toλ-terms.

Lemma 23. Let t be aλs-term. ThenΓ `addi
λ
V(t) : A iff Γ `addi

λs
t : A.

Proof. By induction ont using the Generation Lemma 17.

Lemma 24. If V(t)→β t′, then∃ u s.t.t→+

λsub
u andt′ = V(u).

Proof. By induction on the reduction stepV(t)→β t′ and Lemma 2.

Theorem 25. If t ∈ SN λsub
, thent is a typedλs-term.



Equations :
t[x/u][y/v] =C t[y/v][x/u] if y /∈ fv(u) & x /∈ fv(v)

Reduction Rules:
(λx.t) u →B t[x/u]
x[x/u] →Var u
t[x/u] →Gc t if x /∈ fv(t)
(t u)[x/v] →App

1
(t[x/v] u[x/v]) if x ∈ fv(t) & x ∈ fv(u)

(t u)[x/v] →App
2

(t u[x/v]) if x /∈ fv(t) & x ∈ fv(u)
(t u)[x/v] →App

3
(t[x/v] u) if x ∈ fv(t) & x /∈ fv(u)

(λy.t)[x/v] →Lamb λy.t[x/v]
t[x/u][y/v] →Comp

1
t[y/v][x/u[y/v]] if y ∈ fv(u) & y ∈ fv(t)

t[x/u][y/v] →Comp
2

t[x/u[y/v]] if y ∈ fv(u) & y /∈ fv(t)

Proof. Let t ∈ SN λsub
. SupposeV(t) /∈ SN β . Then, there is an infiniteβ-reduction

sequence starting atV(t), which can be projected, by Lemma 24, to an infiniteλsub-
reduction sequence starting att. Thust /∈ SN λsub

, which leads to a contradiction.
ThereforeV(t) ∈ SN β , so thatV(t) is typable inaddi

λ by [29]. By Lemma 23t is
typable inaddi

λs. Lemma 18 also givest typable inmuli
λs.

Corollary 26. For λs-terms,t is typable inaddi
λs iff t is typable inmuli

λs iff t ∈
SN λsub

iff t ∈ SN λdef
. Furthermore, forλ-terms,t is typable inaddi

λ iff t is typable
in muli

λ iff t ∈ SN λsub
iff t ∈ SN λβp

iff t ∈ SN β .

5 Relating Partial to Explicit Substitutions

We now relateλsub to a calculus based on explicit substitutions calledλes, sum-
marised below. We then give a translation fromλsub to λes and we show that each
λsub-reduction step can be simulated by a non-empty reduction sequence inλes. This
translation will provide a second proof ofλsub-strong normalisation for typedλs-terms.

Terms of theλes-calculus areλs-terms. Besidesα-conversion, we consider the
equations and reduction rules in the figure below. Remark that working moduloα-
conversion allows us to assume implicitly some conditions to avoid capture of variables
such as for examplex 6= y andy /∈ fv(v) in the reduction ruleLamb.

We consider the equivalence relationEs generated byα andC. The rewriting sys-
temcontaining all the reduction rules exceptB is denoteds. We writeBs for B ∪ s.
We noteALC, the reduction relationgenerated by the rules{App1, App2, App3, Lamb,
Comp1, Comp2} modulo the equivalence relationEs. The reduction relationgenerated
by s (resp.Bs) moduloEs is denoted by→es (resp.→λes), wheree means equational
andsmeans substitution.

As expected, reduction preserves free variables. Remark thatALC may only prop-
agate garbage substitutions through abstractions and not through applications or inside
explicit substitutions. We now useALC as a function onEs-equivalence classes.

Lemma 27. TheALC-normal forms of terms exist and are unique moduloEs.



Proof. The systemes is terminating and soALC is terminating andALC-normal forms
exist. As all theALC-critical pairs are joinable (see [19] for full details),ALC is locally
confluent and locally coherent. Therefore [17],ALC is confluent and henceALC-normal
forms are unique moduloALC-equivalence.

We define the following translationT from λs-terms toALC-normal forms.

T (x) = x
T (λx.t) = λx.T (t)
T (t u) = (T (t) T (u))[ŷ/T (u)] whereŷ is fresh
T (t[y/u]) = ALC(T (t)[y/T (u)]) if y /∈ fv(t)
T (t[y/u]) = ALC(T (t)[y/T (u)][ŷ/T (u)]) if y ∈ fv(t) whereŷ is fresh

Remark that the translation preserves free variables.
The translation of closurest[y/u], y ∈ fv(t) and applications(t u) introduces extra

substitutions[ŷ/T (u)]. We do this for the following technical reason. The use ofALC-
normal forms allows us to simulate→R reduction with→Var reduction. However,→Var

reduction cannot simulate the reductionx[x/z] →R z[x/z] unless the translation were
to discard garbage (which is unsound for reasoning about normalisation). Thus, the
translation keeps garbage copies of substitutions to allowthese cases to be simulated.

Proposition 28 (λes simulatesλsub). If t→λsub
t′ thenT (t)→+

λes T (t′).

Proof. By induction on the definition oft→λsub
t′ using some technical lemmas [19].

Corollary 29 (SN for λsub (ii)). If t is typable inmulλs, thent ∈ SN λsub
.

Proof. Let Γ `mulλs
t : A. We show thatT (t) is also typable inmulλs by induction on

t. ThenT (t) ∈ SN λes by [18]. Now, supposet /∈ SN λsub
. Then given an infiniteλsub-

reduction sequence starting att we can construct, by Proposition 28, an infiniteλes-
reduction sequence starting atT (t). This leads to a contradiction. Thust ∈ SN λsub

.

6 Relating Partial Substitutions to Graphical Formalisms

6.1 MELL Proof-nets

Calculi with explicit substitutions enjoy a nice relation with the multiplicative exponen-
tial fragment of linear logic (MELL). This is done by interpreting terms intoproof-nets,
a graphical formalism which represent MELL proofs in natural deduction style. In order
to obtain this interpretation, one first defines a (simply) typed version of the term cal-
culus. The translation fromλs-terms to proof-nets gives a simulation of the reduction
rules for explicit substitutions via cut elimination in proof-nets. As an immediate con-
sequence of this simulation, one proves that a simply typed version of the term calculus
is strongly normalizing. Also, an important property of thesimulation is that each step
in the calculus with ES is simulated by aconstantnumber of steps in proof-nets: this
shows that the two systems are very close, unlike what happens when simulating theλ-
calculus. This gives also a powerful tool to reason about thecomplexity ofβ-reduction.



We apply this idea to theλsub-calculus by using previous work based on an inter-
pretation ofλs-terms into MELL proof-nets [18] and our translation in Section 5. We
thus compose both translations:

Let t be typable inmulλs. Then the translation oft into a MELL proof-net is given
by W (t) = Z(T (t)), whereT is the translation fromλs-terms toALC-normal forms
andZ is the translation fromλs-terms to MELL proof-nets given in [18].

Call R/E the strongly normalising reduction relation on MELL proof-nets. Then:

Proposition 30. If t is typable inmulλs and t →λsub
t′, thenW (t) →+

R/E C[W (t′)],
whereC[W (t′)] denotes a proof-net containingW (t′) as a sub proof-net.

Proof. Proposition 28 givesT (t) →+

λes T (t′). Moreover, by a simple inspection of
the proof of this proposition we know that there at least oneB, Var, or Gc step in the
reduction sequenceT (t) →+

λes T (t′). This together with Theorem 8.2 in [18] gives us
W (t) = Z(T (t))→+

R/E C[Z(T (t′))] = C[W (t′)].

Corollary 31 (SN for λsub (iii)). If t is typable inmulλs, thent ∈ SN λsub
.

Proof. AsR/E is strongly normalising, we concludet ∈ SN λsub
using Proposition 30.

6.2 Local bigraphs

Milner, Leifer, and Jensen’s bigraphical reactive systems[24, 21, 16] have been pro-
posed as a framework for modelling the mobility of distributed agents able to manipu-
late their own linkages and nested locations. Milner has presented an encoding ofλsub

as a bigraphical reactive system′ΛBIG as a means to study confluence in bigraphs [25].
This encoding may also be understood as a formalism withpartial substitutions.

λsub is close to′ΛBIG both statically and dynamically;α-equivalent terms have the
same encoding and one-step reduction in the former matches one-step reaction in the
latter. Thus, any properties proven forλsub hold for the image of the encoding in′ΛBIG.

Proposition 32 ([25]). Let t be aλs-term. Thent →λsub
t′ iff the encoding oft in

′ΛBIG can react in one step to the encoding oft′ in ′ΛBIG.

Thus, the image′ΛBIGe of the encoding is closed under reaction. We can reason
about reaction in′ΛBIGe by considering reduction ofλsub terms without metavariables:

Corollary 33 (Confluence, PSN, SN).′ΛBIGe is confluent and satisfies PSN. Encod-
ings of intersection typed terms are strongly normalising.

7 Conclusions

We answer some fundamental remaining questions concerningthe adequacy of Mil-
ner’sλ-calculus with partial substitutions. In particular, we prove that theλsub-calculus
is confluent on terms and metaterms, that it enjoys PSN, and that it allows a characteri-
sation ofλsub-strongly normalising terms by using intersection type disciplines.



We relateλsub to the calculi with definitionsλβp
andλdef , thus obtaining a certain

number of interesting results concerning normalisation. We also relate theλsub-calculus
to classical calculi with explicit substitutions. Thus, theλsub-calculus can be understood
as a concise and simple language implementing partial and ordinary substitution, both
in implicit and explicit style at the same time.

Last but not least, we establish a clear connection between simply typed λsub-
calculus and MELL proof-nets, thus injecting again a graph representation toλsub-
terms which were inspired from bigraphical reactive systems.

In related work, Bundgaard and Hildebrandt [8] use partial substitution similar to
λsub in their extension of Homer, a higher-order process calculus. Partial substitution
is also used in different frameworks such as for example Ariola and Felleisen’s [2]
call-by-need lambda calculus and Ariola and Klop’s [3] cyclic λ-calculus.

Grohmann and Miculan have modelled the call-by-name and call-by-valueλ-calculi
with bigraphs [14] by adapting Milner’s model. While they concentrate on encodings
of λ-terms, the model is still based onλsub and our results can be used to reason about
normalisation and confluence in their models.

AcknowledgementsWe are grateful to V. van Oostrom who pointed out to us references
to calculi with partial notions of substitutions such asλβp

andλdef .
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