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This talk

Focus:
Applied pseudo-Boolean solving
Proof complexity of cutting planes
Connections between the two (or not)

Experimental evaluations of:
Sat4j [S4j, LP10]
cdcl-cuttingplanes [Elf16] (cdcl-CP for short)
Open-WBO [Ope, MML14]

Open-WBO: Re-encoding to CNF + CDCL
Sat4j & cdcl-CP: Conflict-driven search natively with PB constraints
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Pigeonhole Principle Formula

n∑
j=1

xi,j ≥ 1 i ∈ [n + 1]

n+1∑
i=1

xi,j ≤ 1 j ∈ [n]

How to show unsatisfiable?

Sum up all pigeons
Sum up all holes
Subtract to get 0 ≥ 1
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Subset Cardinality Formula [Spe10, VS10, MN14]
Variables = 1s in matrix with four 1s per row/column + extra 1
Each row wants majority true; each column wants majority false

1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



x1,1 + x1,2 + x1,4 + x1,8 ≥ 2
x2,2 + x2,3 + x2,5 + x2,9 ≥ 2

x3,3 + x3,4 + x3,6 + x3,10 ≥ 2
...

x2,9 + x6,9 + x8,9 + x9,9 ≤ 2
x3,10 + x7,10 + x9,10 + x10,10 ≤ 2

x4,11 + x8,11 + x10,11 + x11,11 ≤ 2

How to show unsatisfiable?
Sum up greater-equal constraints for rows
Sum up less-equal constraints for columns
Subtract to get 0 ≥ 1
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Even Colouring Formula [Mar06]
G = (V, E) connected graph; all deg(v) even
Constraints

∑
e3v xe = deg(v)/2

vu

w x

yz

u + w ≥ 1 u + w ≤ 1
u + z ≥ 1 u + z ≤ 1
v + x ≥ 1 v + x ≤ 1
v + y ≥ 1 v + y ≤ 1

x + y + z + w ≥ 2 x + y + z + w ≤ 2

Inconsistent iff |E| odd

How to show unsatisfiable?
Sum up greater-equal constraints, divide, and round up
Sum up less-equal constraints, divide, and round down
Subtract to get 0 ≥ 1
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Vertex Cover Formula [VEG+17]

Graph G = (V, E), size S ∈ N+

∑
v∈V

xv ≤ S

xu + xv ≥ 1 (u, v) ∈ E

Take m× n rectangular, toroidal grid; m even; n odd
Inconsistent for S = mn/2 (or even S = mdn/2e − 1)

How to show unsatisfiable?

Sum over edges in each row, divide, and round up
Subtract size constraint to get 0 ≥ 1
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Theory vs. Practice

All these instances supereasy in theory (tree-like cutting planes)
What about practice?
Investigate “same instance” scaled to different sizes
Study asymptotic behaviour (no cactus plots)

Pigeonhole principle
Super-easy for cdcl-CP & Sat4j; dead-hard for Open-WBO
Subset cardinality
Super-easy for cdcl-CP & Sat4j; dead-hard for Open-WBO
Even colouring
Challenging but doable for cdcl-CP & Sat4j (though depends on graph)
Hard for Open-WBO (though depends a lot on graph)
Vertex cover
Very challenging for cdcl-CP & Sat4j; super-easy for Open-WBO
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How to Explain This?

Rational v.s. Boolean solutions?
Pseudo-Boolean proof search and backdoors?
Pseudo-Boolean solving vs. CDCL?
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Rational v.s. Boolean Solutions?

Observation:
cdcl-CP & Sat4j fast when no rational solutions
More challenging when ∃ rational but not Boolean solutions

Rational Hypothesis
Pseudo-Boolean solver performance correlates with rational unsatisfiability

Beautiful hypothesis (or at least I thought so)
Only one problem: Not backed up by data
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Pseudo-Boolean Proof Search and Backdoors?
More detailed observation about cdcl-CP & Sat4j:

Can make run fast when ∃ small backdoors to no rational solutions
By tweaking heuristics, but not changing proof search fundamentals

Extended Rational Hypothesis
Pseudo-Boolean solvers have potential to run fast when there are small,
strong backdoors to rational unsatisfiability

Clearly not if-and-only-if — instances can be easy for other reasons
If-direction true in theory even for weakest PB proof system
Seems to hold in practice for (almost) all instances we have studied
But this is still ongoing work
What would the practical implications be? (Full division rule needed?)
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Pseudo-Boolean Solving vs. CDCL?

Instance hard for resolution ⇒ Open-WBO has no chance
Even “easy versions of hard formulas” can be dead-hard
(subset cardinality, even colouring)
Open-WBO can be very good when cardinality encoding works well
(vertex cover: 2-CNF + big cardinality constraint)
But very sensitive to input ordering — should we trust nicety of
encodings or prefer robust solvers?
cdcl-CP with good, fixed order competitive with Open-WBO
But cdcl-CP deviates if given free choice — what makes Open-WBO
stick with good order?
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But cdcl-CP deviates if given free choice — what makes Open-WBO
stick with good order?
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Subset Cardinality for Fixed Bandwidth Matrices
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Even Colouring on Rectangular Grids
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Vertex Cover on Grids (Rationally UNSAT)
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Take-Home Messages

Study easy, but tricky, crafted instances (not super-hard ones)
Evaluate asymptotic behaviour (not cactus plots)
Try to understand what is going on
Transfer theoretical insights to practical improvements (still ongoing)

We’re hiring!
Postdoc position(s) — deadline September 15
Talk to me or e-mail jakobn@kth.se if interested

Thank you for your attention!
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