
The PRISM Language - Semantics

This document gives the semantics for the PRISM language. For details of the language itself,
see the manual:

• http://www.cs.bham.ac.uk/˜dxp/prism/manual/ThePRISMLanguage

An important observation is that we do not define the semantics in a compositional manner,
i.e. by first giving the semantics of each module in the system and then combining these
results. The reason for this is that guards (and updates) of one module are allowed to refer to
the variables of other modules (and indeed global variables). Instead, we define the semantics
of a system by translating its set of modules into a single “system module” (in a compositional
manner) and then defining the semantics for the system through this single module.

Constructing the system module

In this section, we describe the process of constructing the system module from its component
modules. The composition of the modules is defined by a process-algebraic expression which
can include parallel composition of modules, action hiding and action renaming. We now
consider each of these in turn. Note that, in this construction process, we require that all
updates of all commands have been expanded to explicitly include all local variables of the
module and all global variables, even those that do not change.

Parallel composition

Although there are three types of parallel composition, we need only consider the case
M1|[A]|M2, since M1|||M2 is equivalent to M1|[∅]|M2 and M1||M2 is equivalent to M1|[A1 ∩
A2]|M2 where Ai is the set of actions that appear in module Mi. The commands of the
module M = M1|[A]|M2 are constructed according to the follow rules:

1. for each command [] g → λ1 : u1 + · · ·+ λn : un of M1,
add [] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

2. for each command [] g → λ1 : u1 + · · ·+ λn : un of M2,
add [] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

3. for each a 6∈ A and command [a] g → λ1 : u1 + · · ·+ λn : un of M1,
add [a] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

4. for each a 6∈ A and command [a] g → λ1 : u1 + · · ·+ λn : un of M2,
add [a] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

1

5. for each a ∈ A, command [a] g → λ1 : u1 + · · · + λn : un of M1 and command
[a] g′ → λ′1 : u′1 + · · ·+ λ′n′ : u′n′ of M2,
add

[a] g & g′ → λ1 ∗ λ′1 : u1 &u′1 + · · · + λn ∗ λ′1 : un &u′1
+λ1 ∗ λ′2 : u1 &u′2 + · · · + λn ∗ λ′2 : un &u′2

...
+λ1 ∗ λ′n′ : u1 &u′n′ + · · · + λn ∗ λ′n′ : un &u′n′

to the commands of M .

Action hiding

The commands of M = M ′/A are constructed according to the follow rules:

1. for each command [] g → λ1 : u1 + · · ·+ λn : un of M ′,
add [] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

2. for each a 6∈ A and command [a] g → λ1 : u1 + · · ·+ λn : un of M ′,
add [a] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

3. for each a ∈ A and command [a] g → λ1 : u1 + · · ·+ λn : un of M ’,
add [] g → λ1 : u1 + · · ·+ λn : un to the commands of M .

Action renaming

The commands of M = M ′{a1 ← b1, . . . , am ← bm} are constructed as follows:

1. for each command [] g → λ1 : u1 + · · ·+ λn : un of M ′,
add [] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

2. for each a 6∈ {a1, . . . , am} and command [a] g → λ1 : u1 + · · ·+ λn : un of M ′,
add [a] g → λ1 : u1 + · · ·+ λn : un to the commands of M ;

3. for each 1 ≤ i ≤ m and command [ai] g → λ1 : u1 + · · ·+ λn : un of M ′,
add [bi] g → λ1 : u1 + · · ·+ λn : un to the commands of M .

The semantics of the system module

In this section, we give the semantics of a system module, as constructed through the rules
in the previous section. We suppose that:

• C is the multiset of commands generated by the rules above;

• V = {v1, . . . , vm} is the set of variables, both local and global, that appear in the system
description.

Regardless of model type (DTMC, MDP or CTMC), we construct the state space of the
system as follows. A state is a tuple (x1, . . . , xm) where xi is a value for the variable vi. The
set of all states S is therefore the set of all possible valuations of the variables in V . The set
of initial states can be specified in one of two ways: either by giving an initial value for each
variable, or by giving a predicate over variables (using the init...endinit construct). In

2

the former case, S̄ = {s̄} where s̄ = (x̄1, . . . , x̄m) and x̄i is a the initial value of the variable vi

(recall that, if the initial value of a variable is left unspecified, it is taken to be the minimum
value of the variable’s range). In the latter case, S̄ is the subset of states S which satisfy the
predicate specified in the init...endinit construct.
We now consider the semantics for a single command of the system module. From this point,
we ignore any action-labels assigned to commands in C; these were required only for the
process-algebraic construction and can now be safely discarded. Hence, each command c of
C takes the form:

[] g → λ1 : u1 + · · ·+ λn : un

Since the guard g is a predicate over the variables in V and each state of the system is a
valuation of these variables, g defines a subset of the global state space S. We denote this set
of states Sc = {s ∈ S | s |= g}.
Each update uj of c corresponds to a transition that the system can make when in a state
s ∈ Sc. The transition is defined by giving the new value of each variable as an expression.
Hence, we can think of uj as a function from Sc to S. If uj is (v′1 = expr1)∧· · ·∧(v′m = exprm),
then for each state s ∈ Sc:

uj(s) = (expr1(s), . . . , exprm(s))

Using the value λj associated with each update uj , the command c defines, for each s ∈ Sc,
a function µc,s : S → IR≥0 where for each t ∈ S:

µc,s(t)
def=

∑
1≤j≤n
∧uj(s)=t

λj

Note that, for DTMCs and MDPs, the syntactic constraints placed on the constants λj mean
that the function µc,s is actually a probability distribution over S.
Finally, we can now define the probabilistic model itself, i.e. the probability matrix P for a
DTMC, the function Steps for an MDP, or the transition rate matrix R for a CTMC.

DTMC semantics

We define the transition probability matrix P : S × S → [0, 1] to be the matrix P̄ after its
rows have been normalised where for any s, t ∈ S:

P̄(s, t) =
∑
c∈C

µc,s(t) .

The normalisation is required since the values appearing in any row of this matrix P̄ can
sum to more than one, through either the nondeterminism introduced through the parallel
composition of modules or local nondeterminism in a module (i.e. overlapping guards). This
normalisation can be considered as replacing any nondeterministic choice between a set of
transitions with a uniform (probabilistic) choice between the transitions.

MDP Semantics

If the model is an MDP, the function Steps : S → 2Dist(S) is such that for any s ∈ S:

Steps(s) = {µc,s | c ∈ C and s ∈ Sc} .

3

CTMC Semantics

For a CTMC, the transition rate matrix R : S × S → IR≥0 is such that for any s, t ∈ S:

R(s, t) =
∑
c∈C

µc,s(t) .

4

