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Abstract

In classic pattern recognition problems, classes are mutually exclusive by de"nition. Classi"cation errors occur when the
classes overlap in the feature space. We examine a di5erent situation, occurring when the classes are, by de"nition, not
mutually exclusive. Such problems arise in semantic scene and document classi"cation and in medical diagnosis. We present
a framework to handle such problems and apply it to the problem of semantic scene classi"cation, where a natural scene may
contain multiple objects such that the scene can be described by multiple class labels (e.g., a "eld scene with a mountain in the
background). Such a problem poses challenges to the classic pattern recognition paradigm and demands a di5erent treatment.
We discuss approaches for training and testing in this scenario and introduce new metrics for evaluating individual examples,
class recall and precision, and overall accuracy. Experiments show that our methods are suitable for scene classi"cation;
furthermore, our work appears to generalize to other classi"cation problems of the same nature.
? 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In traditional classi"cation tasks [1]:

Classes are mutually exclusive by de-nition. Let � be
the domain of examples to be classi"ed, Y be the set
of labels, and H be the set of classi"ers for � → Y .
The goal is to "nd the classi"er h∈H maximizing the
probability of h(x)=y, where y ∈ Y is the ground truth
label of x, i.e.,

y = arg max
i

P(yi|x):
Classi"cation errors occur when the classes overlap in

the selected feature space (Fig. 2a). Various classi"cation
methods have been developed to provide di5erent operating

� A short version of this paper was published in the Proceedings
of the SPIE 2004 Electronic Imaging Conference.
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characteristics, including linear discriminant functions, arti-
"cial neural networks (ANN), k-nearest-neighbor (k-NN),
radial basis functions (RBF) and support vector machines
(SVM) [1].

However, in some classi"cation tasks, it is likely that
some data belongs to multiple classes, causing the actual
classes to overlap by de-nition. In text or music categoriza-
tion, documents may belong to multiple genres, such as gov-
ernment and health, or rock and blues [2,3]. Architecture
may belong to multiple genres as well. In medical diagno-
sis, a disease may belong to multiple categories, and genes
may have multiple functions, yielding multiple labels [4].

A problem domain receiving renewed attention is se-
mantic scene classi"cation [5–18], categorizing images into
semantic classes such as beaches, sunsets or parties. Se-
mantic scene classi"cation "nds application in many ar-
eas, including content-based indexing and organization and
content-sensitive image enhancement.

Many current digital library systems allow a user to spec-
ify a query image and search for images “similar” to it, where
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Fig. 1. Examples of multi-label images.

similarity is often de"ned only by color or texture proper-
ties. This the so-called “query by example” process has of-
ten proved to be inadequate [19]. Knowing the category of
a scene helps narrow the search space dramatically, reduc-
ing the search space, and simultaneously increasing the hit
rate and reducing the false alarm rate.

Knowledge about the scene category can "nd also appli-
cation in context-sensitive image enhancement [16]. While
an algorithm might enhance the quality of some classes
of pictures, it can degrade others. Rather than applying a
generic algorithm to all images, we could customize it to
the scene type (allowing us, for example, to retain or en-
hance the brilliant colors of sunset images while reducing
the warm-colored cast from tungsten-illuminated scenes).

In the scene classi"cation domain, many images may be-
long to multiple semantic classes. Fig. 1(a) shows an image
that had been classi"ed by a human as a beach scene. How-
ever, it is clearly both a beach scene and an urban scene.
It is not a fuzzy member of each (due to ambiguity), but is
a full member of each class (due to multiplicity). Fig. 1(b)
(beach and mountains) is similar.

Much research has been done on scene classi"cation
recently, e.g., [5–18]. Most systems are exemplar-based,
learning patterns from a training set using statistical pattern
recognition techniques. A variety of features and classi"ers

have been proposed; most systems use low-level features
(e.g., color, texture). However, none addresses the use of
multi-label images.

When choosing their data sets, most researchers either
avoid such images, label them subjectively with the base
(single-label) class most obvious to them, or consider
“beach+urban” as a new class. The last method is unreal-
istic in most cases because it would increase the number of
classes to be considered substantially and the data in such
combined classes is usually sparse. The "rst two methods
have limitations as well. For example, in content-based
image indexing and retrieval applications, it would be more
diLcult for a user to retrieve a multiple-class image (e.g.,
beach+urban) if we only have exclusive beach or urban la-
bels. It may require that two separate queries be conducted
respectively and the intersection of the retrieved images be
taken. In a content-sensitive image enhancement applica-
tion, it may be desirable for the system to have di5erent
settings for beach, urban, and beach+urban scenes. This is
impossible using exclusive single labels.

In this work, we consider the following problem:

The base classes are non-mutually exclusive and may
overlap by de-nition (Fig. 2b). As before, let � be
the domain of examples to be classi"ed and Y be the
set of labels. Now let B be a set of binary vectors,
each of length |Y |. Each vector b∈B indicates mem-
bership in the base classes in Y (+1 = member;−1 =
non-member). H is the set of classi"ers for � → B.
The goal is to "nd the classi"er h∈H that minimizes
a distance (e.g., Hamming), between h(x) and bx for a
newly observed example x.

In a probabilistic formulation, the goal of classifying
x is to "nd one or more base class labels in a set C and
for a threshold T such that

P(c|x)¿T; ∀c∈C:

Clearly, the mathematical formulation and its physical
meaning are distinctively di5erent from those used in classic
pattern recognition. Few papers address this problem (see
Section 2), and most of these are specialized for text classi-
"cation or bioinformatics. Based on the multi-label model,
we investigate several methods of training and propose a
novel training method, “cross-training”. We also propose
three classi"cation criteria in testing. When applying our
methods to scene classi"cation, our experiments show that
our approach is successful on multi-label images even with-
out an abundance of training data. We also propose a generic
evaluation metric that can be tailored to applications need-
ing di5erent error forgiveness.

It is worth noting that multi-label classi"cation is di5er-
ent from fuzzy logic-based classi"cation. Fuzzy logics are
used as a means to cope with ambiguity in the feature space
between multiple classes for a given sample, not as the end
for achieving multi-label classi"cation. The fuzzy member-
ship stems from ambiguity and often a de-fuzzi"cation step
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Fig. 2. Figure (a) is the typical pattern recognition problem. Two
classes contain examples that are diLcult to separate in the feature
space. (b) is the multi-label problem. The * data belongs to both
of the other two classes simultaneously.

is eventually used to derive a crisp decision (typically by
choosing the class with the highest membership value). For
example, a foliage scene and a sunset scene may share some
warm, bright colors, therefore there is confusion between
the two scene classes in the selected feature space if color
features are used; fuzzy logic would be suitable for solving
this problem.

In contrast, multi-label classi"cation is a unique problem
in that a sample may possess multiple properties of multiple
classes. The content for di5erent classes can be quite distinct:
for example, there is little confusion between beach (sand,
water) and city (buildings).

The only commonalty between fuzzy-logic classi"cation
and multi-class classi"cation is the use of membership func-
tions. However, there is correlation between fuzzy mem-
bership functions: when one membership takes low values,
the other also takes low values or high values and vice
versa [20]. On the other hand, the membership functions
in multi-label case are largely coincidence (e.g., resort on
the beach). In practice, the sum of fuzzy memberships usu-
ally is normalized to 1, while no such constraints apply to
the multi-class problem (e.g., a beach resort scene is both a
beach scene and a city scene, each with certainty).

With these di5erences aside, it is conceivable that one
could use the learning strategies described in this paper in
combination with a fuzzy classi"er in a similar way as they
were used with the pattern classi"ers in this study.

In this paper, we "rst review past work related to
multi-label classi"cation. In Section 3, we describe our
training models and testing criteria. Section 4 contains
the proposed evaluation methods. Section 5 contains the
experimental results obtained by applying our approaches
to multi-labeled scene classi"cation. We conclude with a
discussion and suggestions for future work.

2. Related work

The sparse literature on multi-label classi"cation is pri-
marily geared to text classi"cation or bioinformatics. For
text classi"cation, Schapire and Singer [3] proposed Boos-
Texter, extending AdaBoost to handle multi-label text cate-
gorization. However, they note that controlling complexity
due to over"tting in their model is an open issue. McCal-
lum [2] proposed a mixture model trained by EM, selecting
the most probable set of labels from the power set of possi-
ble classes and using heuristics to overcome the associated
computational complexity. However, his generative model
is based on learning text frequencies in documents, and is
thus speci"c to text applications. Joachims’ approach is most
similar to ours in that he uses a set of binary SVM classi-
"ers [21]. He "nds that SVM classi"ers achieve higher ac-
curacy than others. However, he does not discuss multi-label
training models or speci"c testing criteria. In bioinformat-
ics, Clare and King [4] extended the de"nition of entropy to
include multi-label data (gene expression in their case), but
they used a decision tree as their baseline algorithm algo-
rithm. As they stated, they chose a decision tree because of
the sparseness of the data and because they needed to learn
accurate rules, not a complete classi"cation. However we
desire to use Support Vector Machines for their high accu-
racy in classi"cation.

A related approach to image classi"cation consists of seg-
menting and classifying image regions (e.g., sky, grass)
[22,23]. A seemingly natural approach to multi-label scene
classi"cation is to model such scenes using combinations of
these labels. For example, if a mountain scene is de"ned as
one containing rocks and sky and a "eld scene as one con-
taining grass and sky, then an image with grass, rocks, and
sky would be considered both a "eld scene and a mountain
scene.

However, this approach has drawbacks. First, region la-
beling has only been applied with success to constrained
environments with a limited number of predictable objects
(e.g., outdoor images captured from a moving vehicle [22]).
Second, because scenes consist of groups of regions, there
is a combinatorial explosion in the number of region com-
binations. Third, scene modeling is a diLcult problem in
its own right, encompassing more than mere presence or
absence of objects. For example, a scene with sky, wa-
ter and sand could be best described as a lake or a beach
scene, depending on the relative size and placement of the
components.
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The diLculties with the segmentation-based approach
have driven many researchers to use a low-level feature,
exemplar-based approach (e.g., [5–18]). While many have
taken this approach, none handle the multi-label problem.
Furthermore, none of the approaches discussed above can
be used directly for scene classi"cation.

The main contribution of this work is an extensive
comparative study of possible approaches to training and
testing multi-label classi"ers. The key features of our work
include: (1) a new training strategy, cross training, to build
classi"ers. Experimental results show that this training
strategy is eLcient in using training data and e5ective in
classifying multi-labeled data; (2) various classifying cri-
teria in testing. The C-Criterion using a threshold selected
by the MAP principle is e5ective for multi-label classi-
"cation; (3) Two novel evaluation metrics, base-class-
and �-evaluation. �-evaluation can be used to evaluate
multi-label classi"cation performance in a wide variety of
settings. Advantages of our approach include simplicity and
e5ective use of limited training data. Furthermore, these
approaches seem to generalize to other problems and other
classi"ers, in particular, those that produce real-valued
output, such as ANN and RBF.

3. Multi-label classi�cation

In this section, we describe possible approaches for train-
ing and testing with multi-label data. Consider two classes,
denoted by ‘+’ and ‘x’ respectively. Examples belonging to
both the ‘+’and ‘x’ classes simultaneously are denoted by
‘*’ (see Fig. 2b).

3.1. Training models with multi-label data

For multi-label classi"cation, the "rst question to ad-
dress is that of training. Speci"cally, how should training
examples with multiple labels be used in the training
phase?

In previous work, researchers labeled the multi-label
data with the one class to which the data most likely
belonged, by some perhaps subjective criterion. For ex-
ample, the image of hotels along a beach would be
labeled as a beach if the beach covered the major-
ity of the image, or if one happened to be looking
for a beach scene at the time of data collection. In
our example, part of the ‘*’ data would be labeled as
‘+’, and part would be labeled as ‘x’ (e.g., depend-
ing on which class was most dominant). We call this
kind of model MODEL-s (s stands for “single-label”
class).

Another possible method would be simply to ignore the
multi-label data when training the classi"er. In our exam-
ple, all of the ‘*’ data would be discarded. We call the
model trained by this approach MODEL-i (i stands for
“ignore”).

Table 1
Experimental data

Class Training Testing Total
Images Images

Beach 194 175 369
Sunset 165 199 364
Fall foliage 184 176 360
Field 161 166 327
Beach+Field 0 1 1
Fall foliage+Field 7 16 23
Mountain 223 182 405
Beach+Mountain 21 17 38
Fall foliage+Mountain 5 8 13
Field+Mountain 26 49 75
Field+Fall foliage+Mountain 1 0 1
Urban 210 195 405
Beach+Urban 12 7 19
Field+Urban 1 5 6
Mountain+Urban 1 0 1
Total 1211 1196 2407

See Section 5.1 for details of ground truth labeling and split into
training and testing sets.

A straightforward method to achieve our goal of correctly
classifying the data in each class is to consider those items
with multiple labels as a new class (the ‘*’ class) and build
a model for it. We call the model trained by this method
MODEL-n (n stands for “new” class). However, one im-
portant problem with this approach is that the data belong-
ing to multiple classes are usually too sparse to build us-
able models. Table 1 shows the number of various images
in our training data. While the number of images belonging
to more than one class comprises over 7% of the database,
many combined classes (e.g., beach+-eld) are extremely
small. This is an even greater problem when some scenes
can be assigned to more than two classes.

A novel method is to use the multi-label data more than
once when training, using each example as a positive exam-
ple of each of the classes to which it belongs. In our exam-
ple, we consider the ‘*’ data to belong to the ‘+’ class when
training the ‘+’ model, and consider it to belong to the ‘x’
class when training the ‘x’ model. We emphasize that the
‘*’ data is not used as a negative example of either the ‘+’
or the ‘x’ classes. We call this approach “cross-training”.
The resulting class decision surfaces are illustrated in Fig.
3. The area A belongs to both the ‘+’ and ‘x’ classes. When
classifying a testing image in area A, the models of ‘+’ and
‘x’ are expected to classify it as an instance of each class.
According to the testing label criterion, that image will have
multiple labels, ‘+’ and ‘x’. This method avoids the problem
of sparse data since we use all related data that can be used
for each model. Compared with the training approach of
MODEL-n, cross-training can use training data more e5ec-
tively since the cross-training models contain more training
data than MODEL-n. Experiments show that cross-training
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Fig. 3. Illustration of cross-training.

is e5ective in classifying multi-label images. We call the
model obtained using this approach as MODEL-x (x stands
for “cross-training”).

One might argue that this approach gives too much weight
to examples with multiple labels. It may be so if a density
estimation based classi"er (e.g., ANN) is used. We recog-
nized that it seems natural to use a neural network with one
output node per class to deal with multi-label classi"cation.
However, we used SVMs in our study as they have been
empirically proved to yield higher accuracy and better gen-
eralizability in scene [24,25] and text [21] classi"cation. In-
tuitively, multi-label images are likely to be those that are
near the decision boundaries, making them particularly valu-
able for SVM-type classi"ers. In practice, the sparseness of
multi-label images also makes it imperative to use all such
images. If there are predominant percentages of multiple im-
ages, it is possible and may be necessary to use multi-label
examples by sampling according to the distribution over the
labels.

3.2. Multi-label testing criteria

In this section, we discuss options for labeling criteria to
be used in testing. As stated above, the sparseness of some
class combinations prohibits us, in general, from building
models of each combination (MODEL-n). Therefore, we
only build models for the base classes. We now discuss how
to obtain multiple labels from the output of the basic class
models.

To simplify our discussion, we use the SVM as an exam-
ple classi"er [26]. In the one-vs-all approach, one classi"er
is trained for each of the N base classes and each outputs a
score for a test example [27]. These outputs can be mapped
to pseudo-probabilities using a logistic function [28]; thus
the magnitude of each can be considered a measure of con-
"dence in the example’s membership in the corresponding
class.

Whereas for standard 2-class SVMs, the example is la-
beled as a positive instance if the SVM score is positive,
in the one-vs-all approach, the example is labeled with the

class corresponding to the SVM that outputs the maximum
score, even if multiple scores are positive. It is also possi-
ble that for some examples, none of the N SVM scores is
positive due to the imperfectness of features.

To generalize the one-vs-all approach to multi-level clas-
si"cation, we experiment with the following three labeling
criteria.

• P-Criterion: Label input testing data by all of the classes
corresponding to positive SVM scores. (In “P-Criterion”,
P stands for positive.) If no scores are positive, label that
data example as “unknown”.

• T-Criterion: This is similar to the P-Criterion, but di5er-
ing in how to deal with the all-negative-score case. Here,
we use the Closed World Assumption (CWA) that all ex-
amples belong to at least one of the N classes. If all the
N SVM scores are negative, the input is given the label
corresponding to the SVM producing the top (least neg-
ative) score. (T denotes top.)

• C-Criterion: The decision depends on the closeness be-
tween the top SVM scores, regardless of whether they
are positive or negative. (C denotes close.) Among all
the SVM scores for an example, if the top M are close
enough, then the corresponding classes are considered as
the labels for that example. We use the maximum a pos-
teriori (MAP) principle to determine the threshold for
judging if the SVM scores are close enough or not. (Note
that this is independent of the probabilistic interpretation
of SVM scores given above.)

The formalized C-Criterion problem, illustrated for two
classes, is as follows:

Given an example, x, we have two SVM scores s1 and
s2 for two classes c1 and c2, respectively. Without loss
of generality, assume that s1 ¿s2. Let dif=s1−s2 ¿ 0.
Problem: Should we label x with only c1 or with both
c1 and c2?

We use MAP to answer the question:

E1: Event that labels the image x with single class c1,
E2: Event that labels the image x with multiple classes
c1 and c2

Our decision is

E = arg max
i

p(Ei |dif)

= arg max
i

p(Ei) · p(dif |Ei):

The probabilities of p(dif |Ei) are calculated from the
training data. We apply the SVM models obtained by
cross-training to classify the training images. DIF1 and
DIF2 stand for two di5erence sets as follows.

DIF1: the set of di5erences between the top-two SVM
scores for each correctly labeled single-class training
image.
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Fig. 4. Histogram and distribution graph for threshold determination in C-Criterion. (a) DIF1 histogram; (b) DIF2 histogram; (c) Curves of
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DIF2: the set of di5erences between the SVM
scores corresponding to the multiple classes for each
multiple-class image.

We then "t Gamma distributions to the two sets, be-
cause the data is non-negative and it appears to be the best
"t.

Fig. 4 shows the histograms and distributions of the two
di5erence sets in our experiments. Fig. 4(c) shows the two
distributions obtained by "tting Gamma distributions to the
histograms in our experiment. Fig. 4(d) shows the curves
obtained by multiplying the distributions in (c) by p(Ei).
The x-axis value of the cross point, Tx, is the desired thresh-
old. If the di5erence of two SVM scores is bigger than Tx,
E = E1. Otherwise, E = E2.

Choosing Tx as the decision threshold provably minimizes
the decision error in the model. Given an arbitrary threshold
T , the decision error is the shaded area in Fig. 5. The area of
the shaded region is minimized only when T is the crossing Fig. 5. Illustration of the decision error of using threshold T .
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point of the two curves (i.e. p(E1) ∗ p(dif |E1) = p(E2) ∗
p(dif |E2)). The proof follows.

Let p1(x) and p2(x) denote two distributions having the
following property:

p1(x)¿p2(x) when x¿T0;

p1(x) = p2(x) when x = T0;

p1(x)¡p2(x) when x¡T0:

Given a threshold T , for any input x,

if x¿T , we decide that x is generated from model 1;
if x6 T , we decide that x is generated from model 2.

Our claim is that

T = T0 can minimize the decision error.

Proof. Given arbitrary thresholds T1 ¿T0 and T2 ¡T0, we
will show that error E1 and E2 obtained by using T1 and T2,
respectively, are both greater than E0, the error obtained by
using T0.

• Using T1:

E1 − E0 =
(∫ T1

0
p1(x) dx +

∫ ∞

T1

p2(x) dx
)

−
(∫ T0

0
p1(x) dx +

∫ ∞

T0

p2(x) dx
)

=
∫ T1

T0

(p1(x) − p2(x)) dx

¿ 0:

• Using T2:

E2 − E0 =
(∫ T2

0
p1(x) dx +

∫ ∞

T2

p2(x) dx
)

−
(∫ T0

0
p1(x) dx +

∫ ∞

T0

p2(x) dx
)

=
∫ T0

T2

(p2(x) − p1(x)) dx

¿ 0:

This shows that the C-Criterion provides the best trade-
o5 between the performance of the classi"er on single-label
images and multi-label images. We note our two assump-
tions: (1) the testing data and the training data have the same
distribution and (2) the cost of mis-labeling single-label im-
ages is the same as the cost of mis-labeling multi-label ones.
We also assume in this discussion that the base classi"ers
are calibrated, which is the case in the proposed application
to scene classi"cation, because the same features and equal
numbers of examples are used for each classi"er.

4. Evaluating multi-label classi�cation results

Evaluating the performance of multi-label classi"cation is
di5erent from evaluating performance of classic single-label
classi"cation. Standard evaluation metrics include precision,
recall, accuracy, and F-measure [29]. In multi-label classi"-
cation, the evaluation is more complicated, because a result
can be fully correct, partly correct, or fully incorrect. Take
an example belonging to classes c1 and c2. We may get one
of the following results:

1. c1, c2 (correct),
2. c1 (partly correct),
3. c1, c3 (partly correct),
4. c1, c3, c4 (partly correct),
5. c3, c4 (incorrect).

The above "ve results are di5erent from each other in the
degree of correctness.

Schapire and Singer [3] used three kinds of measures, all
customized for ranking tasks: one-error, coverage, and pre-
cision. One-error evaluates how many times the top-ranked
label is not in the set of ground truth labels. This measure is
used to compare with single label classi"cation, but is not
good for the multi-label case. Coverage measures how far
one needs, on average, to go down the list of labels in order
to cover all the ground truth labels. These two measures can
only reTect some aspects of the classi"ers’ performance in
ranking. Precision is a measure that can be used to assess
the system as a whole. It is borrowed from information re-
trieval (IR) [30]:

precisionS(h) =
1
m

m∑
i=1

1
|Yi|

∑
l∈Yi

×|{l′ ∈ Yi|rankh(xi; l′)6 rankh(xi; l)}|
rankh(xi; l)

;

where h is the classi"er, S is the training set, m is the total
number of testing data, Yi is the ground truth labels of an
testing data example, xi is a testing data example, rankh(xi; l)
is the rank of label l in the prediction ranking list output
from h for xi.

We propose two novel kinds of general evaluation meth-
ods for multi-label classi"cation systems.

4.1. �-Evaluation

Suppose Yx is the set of ground truth labels for test data
x, and Px is the set of prediction labels from classi"er h.
Furthermore, letMx=Yx−Px (missed labels) and Fx=Px−Yx

(false positive labels). In �-evaluation, each prediction is
scored by the following formula:

score(Px) =
(

1 − |(Mx + )Fx|
|Yx ∪ Px|

)�

(�¿ 0; 06 (; )6 1; ( = 1|) = 1):
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Table 2
Examples of scores as a function of ( and ) when the true label is {C1; C2} and � = 1

Prediction (P) ( = 1
4 ; ) = 1 ( = 1

4 ; ) = 1 ( = 1; ) = 1 ( = 1; ) = 1
4 ( = 1; ) = 1

4

C1; C2 1 1 1 1 1
C1 (1 miss) 0.875 0.750 0.500 0.500 0.500
C1; C2; C3 (1 false pos.) 0.667 0.667 0.667 0.833 0.917

Table 3
Example of alpha-evaluation scores as a function of � when the
true label is {C1; C2}

Prediction (P) ( = ) = 1

� = 0 � = 1
2 � = 1 � = 2 � = ∞

C1; C2 1 1 1 1 1
C1 1 0.71 0.50 0.25 1
C1; C3; C4 1 0.50 0.25 0.06 1
C3; C4 0 0 0 0 0

The constraints on ( and ) are chosen to constrain the
score to be non-negative. The more familiar parameteriza-
tion, constraining )= 2 − (, yields negative scores, causing
a need to bound the scores below by zero explicitly.

These parameters allow false positives and misses to be
penalized di5erently, allowing the evaluation measure to be
customized to the application. Table 2 contains examples
showing the e5ect of ( and ) upon the score of an example
with true label {C1; C2}.

Setting ( = ) = 1 yields the simpler formula:

score(Px) =
( |Yx ∩ Px|

|Yx ∪ Px|
)�

(�¿ 0):

We call � the forgiveness rate because it reTects how
much to forgive errors made in predicting labels. Small val-
ues of � are more aggressive (tend to forgive errors), and big
values are conservative (penalizing errors more harshly). In
the limits, when � = ∞, score(Px) = 1 only when the pre-
diction is fully correct and 0 otherwise (most conservative);
when � = 0, score = 1 except when the answer is fully in-
correct (most aggressive). In the single-label case, the score
also reduces to 1 if the prediction is correct or 0 if incorrect,
as expected. Table 3 shows some examples of the e5ect of
� on the score.

Using this score, we can now de"ne the precision, recall
and accuracy rate on a testing data set, D:

• Recall rate of a multi-label class C:

recallC =
1

|DC |
∑
x∈DC

score(Px);

where

DC = {x |C = Yx}:

• Precision of a multi-label class C:

precisionC =
1

|DC |
∑
x∈DC

score(Px);

where

DC = {x |C = Px}:
• Accuracy on a testing data set, D:

accuracyD =
1

|D|
∑
x∈D

score(Px):

Our �-evaluation metric is a generalized version of the
Jaccard similarity metric of P and Q [31], augmented with
the forgiveness rate and with weights on P − Q and Q − P
(misses and false positives, in our case). This evaluation
formula provides a Texible way to evaluate the multi-label
classi"cation results for both conservative and aggressive
tasks.

4.2. Base-class evaluation

To evaluate recall and precision of each base class, we
extend the classic de"nitions.

As above, let Yx be the set of true labels for example x and
Px be the set of predicted labels from classi"er h. Let Hc

x =1
if c∈ Yx and c∈Px (“hit” label), 0 otherwise. Likewise, let
Ỹ c

x = 1 if c∈ Yx, 0 otherwise, and let P̃c
x = 1 if c∈Px, 0

otherwise. Let C be the set of base classes.
Then base-class recall and precision on data set, D, are

de"ned as follows:

• Recall(c) =
∑

x∈D
Hc
x∑

x∈D
Ỹ c
x
,

• Precision(c) =
∑

x∈D
Hc
x∑

x∈D
P̃c
x
.

• AccuracyD =
∑

x∈D

∑
c∈C

Hc
x

max
(∑

x∈D

∑
c∈C

Ỹ c
x ;
∑

x∈D

∑
c∈C

P̃c
x

) .

Intuitively, base-class recall is the fraction of true in-
stances of a label classi"ed correctly, while base-class
precision is the fraction of predicted instances of a label
that are correct. As an example, for the data set contain-
ing "ve samples shown in Table 4, Recall(C1) = 2

3 , while
Precision(C1) = 2

4 .
This evaluation measures the performance of the sys-

tem based on the performance on each base class, which is
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Table 4
A toy data set consisting of "ve samples

True labels Predicted labels

C1, C2 C1, C3
C1 C1
C4 C1, C3
C1, C3 C3
C2 C1

For true and predicted label sets shown, Recall(C1) = 2
3 and

Precision(C1) = 2
4 .

consistent with the fact that the latter performance reTects
the former performance.

5. Experimental results

We applied the above training and testing methods
to semantic scene classi"cation. As discussed in the
Introduction, scene classi"cation "nds application in many
areas, including content-based image analysis and organi-
zation and content-sensitive image enhancement. We now
describe our baseline classi"er and features and present the
results.

5.1. Classi-cation system and features

Color information has been shown to be fairly e5ective in
distinguishing between certain types of outdoor scenes [18].
Furthermore, spatial information appears to be important as
well: bright, warm colors at the top of an image may corre-
spond to a sunset, while those at the bottom may correspond
to desert rock. Therefore, we use spatial color moments in
Luv space as features. These features are commonly used
in the scene classi"cation literature [18,24,25], but may not
necessarily be optimal for the problem.

With color images, it is usually advantageous to use a
more perceptually uniform color space such that perceived
color di5erences correspond closely to Euclidean distances
in the color space selected for representing the features. For
example in image segmentation, luminance-chrominance
decomposed color spaces were used by Tu and Zhu [32]
and Comaniciu and Meer [33] to remove the nonlinear de-
pendency along RGB color values. In this study, we use a
CIE L*U*V*-like space, referred to as Luv (due to the lack
of a true white point calibration), similar to [32,33]. Both
the CIE L*a*b* and L*U*V* spaces have good approx-
imate perceptual uniformity, but the L*U*V* has lower
complexity in its mapping.

After conversion to Luv space, the image is divided
into 49 blocks using a 7 × 7 grid. We compute the "rst
and second moments (mean and variance) of each band,
corresponding to a low-resolution image and to computa-
tionally inexpensive texture features, respectively. The end

Table 5
Average base-class recall, precision, and accuracy of the three
models (Single class, Ignore, and X-training) under 5 criteria:Top
1, All, Positive, Top negative, and Close

Model Criterion Recall Precision Accuracy

s T1-Criterion 75.0 80.4 72.0
A-Criterion 100.0 18.1 18.7
P-Criterion 61.9 87.1 58.9
T-Criterion 75.5 80.1 72.5
C-Criterion 77.6 78.0 74.9

i T1-Criterion 74.3 79.8 71.6
A-Criterion 100.0 18.1 18.7
P-Criterion 60.8 88.5 57.8
T-Criterion 75.0 79.5 72.3
C-Criterion 77.3 77.1 74.6

x T1-Criterion 75.7 81.4 72.9
A-Criterion 100.0 18.1 18.7
P-Criterion 64.4 87.0 63.5
T-Criterion 77.1 80.9 74.9
C-Criterion 79.0 79.2 76.7

result is a 49 × 2 × 3 = 294-dimension feature vector per
image.

We use a Support Vector Machine (SVM) [26] as a clas-
si"er. The software we used is SVMFu [34]. SVM clas-
si"ers have been shown to give better performance than
other classi"ers like Learning Vector Quantization (LVQ)
on similar problems [24,25]. We use a Gaussian kernel, cre-
ating an RBF-style classi"er. The sign of the output cor-
responds to the class and the magnitude corresponds to
the con"dence in classi"cation. As a baseline, we used the
one-vs-all approach [27]: for each class, an SVM is trained
to distinguish that class of images from the rest, test im-
ages are classi"ed using each SVM and then labeled with
the class corresponding to the SVM which gave the highest
score.

We then extended the SVM classi"er to multi-label scene
classi"cation using the training and testing methods de-
scribed in Section 3.

For training and testing, we used the set of images shown
in Table 1. These 2400 images consist of Corel stock photo
library and personal images. The images were originally
chosen so that each primary class (according to Model-s)
contained 400 images, i.e. equal priors. Our framework does
not currently incorporate prior probabilities.

Each class was split randomly into independent sets
of 200 training and 200 testing images. The images
were later re-labeled with multiple labels by three human
observers. After re-labeling, approximately 7.4% of the
images belonged to multiple classes. An artifact of this pro-
cess is that for some classes, there are substantially more
training than testing images and vice-versa.
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Table 6
Base-class (beach, sunset, foliage, "eld, mountain, and urban) recall and precision rates of Model-s, Model-i and Model-x under C-Criterion

Class Model-s Model-i Model-x

Recall Prec. Recall Prec. Recall Prec.

Beach 85.0 69.4 80.0 72.1 83.0 71.2
Sunset 89.4 92.7 90.5 91.4 89.4 93.2
Fall foliage 91.5 83.2 88.5 80.8 91.0 84.3
Field 77.6 86.4 79.3 85.8 80.2 89.2
Mountain 53.1 64.5 56.3 63.4 60.5 65.1
Urban 68.6 72.1 69.6 69.2 69.6 72.0

Table 7
�-Accuracy of Model-s, Model-i and Model-x for multi-label classi"cation for original and mirror data sets

Model Crit. Original set accuracy (�-value) Mirror set accuracy (�-value)

� = 0 � = 1:0 � = 2:0 � = ∞ � = 0 � = 1:0 � = 2:0 � = ∞
s T1 80.3 76.3 74.3 72.3 79.5 75.6 73.7 71.7

A 100.0 18.1 3.50 0 100 18.1 3.50 0
P 66.0 62.3 60.5 58.7 67.0 63.2 61.3 59.4
T 80.7 76.3 74.0 71.8 80.3 75.8 73.5 71.2
C 82.5 76.3 73.2 70.2 82.2 76.0 72.9 69.9

i T1 79.7 75.8 73.8 71.8 79.7 75.8 73.8 71.8
A 100.0 18.1 3.50 0 100.0 18.1 3.50 0
P 64.7 61.3 59.6 57.9 64.7 61.3 59.6 57.9
T 80.3 75.9 73.7 71.5 80.3 75.9 73.7 71.5
C 82.5 75.9 72.6 69.3 82.5 75.9 72.6 69.3

x T1 81.2 77.2 75.2 73.2 80.0 76.0 74.0 72.0
A 100.0 18.1 3.50 0 100 18.1 3.50 0
P 68.0 64.3 62.5 60.6 72.3 67.6 65.2 62.9
T 81.8 77.4 75.3 73.1 82.4 77.3 74.8 72.3
C 83.4 77.4 74.4 71.4 84.2 77.5 74.3 71.1

In the next section, we compare the classi"cation results
obtained by various training models. Speci"cally, we com-
pare the cross-training model Model-x with Model-s and
Model-i, obtained by training on data labeled by the (sub-
jectively) most obvious class and by ignoring the multi-label
data, respectively (Section 3.1).

In Section 3.2, we proposed three criteria to adjudicate the
scores output for each base class. We present classi"cation
results of the three models using each of the three criteria.
As a comparison, we will also give the results obtained by
applying a naive criterion, T1-Criterion, as a baseline. The
T1-criterion is to select only the top score as the class label
for an input testing image no matter how many SVM scores
are positive (the normal “one-vs-all” scheme in single-label
classi"cation). An additional naive criterion, A-Criterion,
that selects all possible classes as the class labels for every
testing image, would cause 100% recall and extremely low
precision and is not shown.

5.2. Results

Table 5 shows the average recall and precision rate of
the six base classes for Model-s, Model-i and Model-x un-
der the "ve testing criteria. Model-x, the model obtained by
cross-training, yields the best results regardless of the crite-
rion used.

We also see that the C-criterion favors higher recall and
the T-criterion favors higher precision. Otherwise, their per-
formance is similar and should be chosen based on the ap-
plication.

Table 6 contains the individual recall and precision rates
of base classes for Model-s, Model-i and Model-x under
C-Criterion. We see that the precision and recall are slightly
higher for Model-x in general.

Table 7 shows the �-accuracy of Model-s, Model-i and
Model-x, with the highest accuracy at each �-value given
in bold font. For all four � values, Model-x obtained the
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Table 8
Accuracy of Model-s, Model-i and Model-x on both single- and
multi-label test cases

Model Single-label Multi-label

� = 0 � = 1

s 78.3 76.3 80.7
i 77.6 75.9 80.3
x 79.5 77.4 81.8

For multi-label case, we use T -Criterion. See text for caveats in
comparing accuracy in single- to multi-label cases.

highest accuracy. In the most progressive situation, i.e. �=0,
C-Criterion obtains the highest accuracy, and for all other
cases, T-Criterion obtains the highest accuracy.

We also include the results on another dataset, the mirror
set. This set is obtained by augmenting the original training
set with mirror images of each multi-label image. Mirror-
ing an image in the horizontal direction (assuming correct
orientation) does not change the classi"cation of an image.
We also add multi-label mirror images on the testing set.
We assume that the mirror images are classi"ed indepen-
dently of the original images (which should be true, due
to lack of symmetry in the classi"er: most of the training
images are not mirrored). Of course, if the training and
testing multi-label images are correlated, this independence
assumption is violated.

This mirroring has the e5ect of arti"cially adding more
multi-label images: while the original set has 177 multi-label
and 2230 single-label images (7.4% multi-label images), the
new set has 354 multi-label and 2230 single-label images
(up to 13.7% multi-label images). We hypothesized that
the increases brought about by our method would be more
pronounced when a higher percentage of images contain
multiple labels.

Model-x outperforms the other models in a multi-label
classi"cation task. We see that Model-x obtains the highest
accuracy regardless of �. Model-x’s accuracy is statistically
signi"cantly higher than Model-s (P =0:0027) signi"cance
level) and than Model-i (P = 0:00047). These values of P
correspond to the 0.01 and 0.001 signi"cance levels, respec-
tively). Con"dence in the increase is measured by (1 − P).

The accuracy on the mirror set is very similar to that
on the original set. As expected, the accuracy increases on
forgiving values of � (where accuracy on multi-label data
is higher than that on single-label data) and decreases on
strict values of �, where the opposite is true. However, the
changes are not substantial.

Table 8 shows that for the single-label classi"cation task
(where test examples are labeled with the single most ob-
vious class), Model-x also outperforms the other models
using T-Criterion. This is expected because Model-x is a
richer training set with more exemplars per class. We note
that caution should be used when comparing the accuracy of

the single-label and the multi-label paradigms. Multi-label
classi"cation in general is a more diLcult problem, because
one is attempting to classify each of the classes of each
example correctly (as opposed to only the most obvious).
The results with �= 1 reTect this. With more forgiving val-
ues of �, multi-label classi"cation accuracy is higher than
single-label accuracy.

6. Discussions

As shown in Table 1, some combined classes contain very
few examples. The above experimental results show that
the increase in accuracy due to the cross-training model is
statistically signi"cant; furthermore, these good multi-label
results are produced even without an abundance of training
data.

We now analyze the results obtained by using C-criterion
and cross-training. 1 The images in Fig. 6 are correctly

Fig. 6. Some images whose prediction sets are completely
correct by using Model-x and C-Criterion: (a) real: Fall-
Fol.+Field, Predicted:FallFol.+Field; (b) real:Beach+Urban, Pre-
dicted:Beach+Urban.

1 For color images, see the electronic version or our techni-
cal report at http:\www.cs.rochester.edu\trs\robotics-
trs.html.

http://http:www.cs.rochester.edutrsrobotics-trs.html
http://http:www.cs.rochester.edutrsrobotics-trs.html
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Fig. 7. Some images whose prediction sets are subsets of their real class sets: (a) real:Beach+Mountain, Predicted:Beach; (b)
real:Field+Mountain, Predicted:Field; (c) real:Field+Mountain, Predicted:Field; (d) real:Field+Mountain, Predicted:Field.

labeled by the classi"ers. Among the SVM scores for
Fig. 6(a), the scores corresponding to the two real classes
are both positive and others are negative. For the image in
Fig. 6(b), all of the 6 SVM scores are negative:

−0:182 − 2:187 − 1:455 − 1:665 − 1:090 − 0:199:

However, because the two scores corresponding to the cor-
rect classes (1-beach and 6-urban) are the top two and are
very close in magnitude to each other, the C-criterion labels
the image correctly.

Other images are classi"ed somewhat correctly or com-
pletely incorrectly. We emphasize that we used color fea-
tures alone in our experiments, and the results should only
be interpreted in this feature space. Other features, such as
edge direction histograms, may discriminate some of the
classes better (e.g., mountain vs. urban) [18].

In Fig. 7, the predictions are subsets of the real class sets.
Although those images are not labeled fully correctly, the
SVM scores of those images show that the scores of the real
classes are the top ones. For instance, in the SVM scores for

the image in Fig. 7(a),

−0:350 − 1:34 − 0:913 − 1:355 − 0:523 − 1:212

the top two scores (1-beach and 5-mountain) are correct,
but their di5erence is above the threshold and the image is
considered to have one label. Due to weak coloring, we can
also see why the mountains in Fig. 7(b, c) were not detected.

In Fig. 8 are images whose predicted class sets are su-
persets of the true class sets. It is understandable why the
image on the right was classi"ed as a mountain (as well as
the true class, "eld).

In Fig. 9, the prediction is partially correct (mountain),
but also partially incorrect. The foliage is weakly colored,
causing it to miss that class. It is unclear why it was also
classi"ed as a beach.

In Fig. 10, the image is labeled completely incorrectly,
due to di5erences between the training and testing images.
The atypical beach+mountain image contains little water. In
addition, most of the mountain is covered in green foliage,
which the classi"er interpreted as a "eld. We emphasize that
the color features appear to be the limiting feature in the
classi"cation.
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Fig. 8. Some images whose real class sets are subsets of their prediction sets: (a) real:Beach, Predicted:Beach+Mountain; (b) real:Field,
Predicted:Field+Mountain; (c) real:Mtn., Predicted:Urban+Mtn.+Beach; (d) real:FallFol., Predicted:FallFol.+Field.

Fig. 9. An image whose prediction set is partly correct and partly in-
correct (real:Mountain+FallFoliage, Predicted:Mountain+Beach).

7. Conclusions and future work

In this paper, we have presented an extensive compar-
ative study of possible approaches to training and testing

Fig. 10. An image whose prediction set is completely incorrect
(real:Beach+Mountain, Predicted:Field).

in multi-label classi"cation. In particular, we contribute the
following:
• Cross-training, a new training strategy to build classi"ers.

Experimental results show that cross-training is more
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eLcient in using training data and more e5ective in
classifying multi-label data.

• C-Criterion using threshold selected by MAP principle is
e5ective for multi-label classi"cation. Other classi"cation
criteria were proposed as well which may be better suited
to di5erent tasks where higher precision is more important
than high recall.

• �-Evaluation, our novel generic evaluation metric, pro-
vides a way to evaluate multi-label classi"cation results
in a wide variety of settings. Another metric, base-class
evaluation, provides a valid comparison with standard
single-class recall and precision.

Advantages of our approach include simplicity and ef-
fective use of limited training data. Furthermore, these ap-
proaches seem to generalize to other problems and other
classi"ers, in particular, those that produce real-valued out-
put, such as neural networks (ANN) and radial basis func-
tions (RBF).

In the scene classi"cation experiment, our data is sparse
for some combined classes. We would like to apply our
methods to a task with a large amount of data for each single
and multiple class. We expect the increase in performance
to be much more pronounced.

Our techniques were demonstrated on the SVM classi"er,
but we are interested in generalizing our methods to other
classi"ers. For neural networks, one possible extension is to
allow the target vector to contain multiple +1s, correspond-
ing to the multiple classes to which the example belongs.
We are also investigating extensions to RBF classi"ers.
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