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Axiomatic Cost and Surplus-Sharing

Abstract

The equitable division of a joint cost (or a jointly produced output) among agents with

different shares or types of output (or input) commodities, is a central theme of the theory of

cooperative games with transferable utility. Ever since Shapley’s seminal contribution in 1953,

this question has generated some of the deepest axiomatic results of modern microeconomic

theory.

More recently, the simpler problem of rationing a single commodity according to a profile of

claims (reflecting individual needs, or demands, or liabilities) has been another fertile ground for

axiomatic analysis. This rationing model is often called the bankruptcy problem in the literature.

This Chapter reviews the normative literature on these two models, and emphasizes their

deep structural link via the Additivity axiom for cost sharing: individual cost shares depend

additively upon the cost function. Loosely speaking, an additive cost sharing method can be

written as the integral of a rationing method, and this representation defines a linear isomorphism

between additive cost sharing methods and rationing methods.

The simple proportionality rule in rationing thus corresponds to average cost pricing and to

the Aumann-Shapley pricing method (respectively in the case of homogeneous or heterogeneous

output commodities). The uniform rationing rule, equalizing individual shares subject to the

claim being an upperbound, corresponds to serial cost sharing. And random priority rationing

corresponds to the Shapley-Shubik method, applying the Shapley formula to the Stand Alone

costs.

Several open problems are included. The axiomatic discussion of non-additive methods to

share joint costs appears to be a promising direction for future research.

JEL : C71, D62, D63

Keywords: cost sharing, axiomatic, rationing, Shapley value, additivity
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Introduction

The oldest formal principle of distributive justice is, without a doubt, Aristotle's celebrated

maxim:

Equals should be treated equally, and unequals, unequally in proportion to relevant

similarities and differences

(in the modern rendition by the social psychology literature, see, e.g., Deutsch [1985])

Inspired by the axiomatic approach to the theory of cooperative games (initiated in 1953 by

Shapley's seminal contribution–Shapley [1953]), a considerable research effort explores the

logical limits of the old maxim, within a small number of simple models of fair division. All

such models stage a given production technology and a given set of users of the technology.

Individual users influence the production plan in different ways, either by demanding different

quantities of output, or contributing different quantities of input, or both. When individual

demands (or contributions) are homogeneous (total demand is simply the sum of individual

demands) and the technology has constant returns to scale, the fair distribution of inputs and

outputs among users can and should simply follow Aristotle's proportionality principle.  The

logical challenge is to deal with variable returns of the technology and heterogeneity of the

individual demands/contributions.

This survey of the theory of cooperative production is organized around three basic models,

to which most of the literature is devoted. First we discuss the rationing model (Part 1), where a

given amount of resources (e.g., money) must be divided among beneficiaries with unequal

claims on the resources. In this very bare model, the only available information about the

technology is a single point of the production set. Then we look at a one input - one output

technology (Part 2), where all users consume (possibly different amounts of) a homogeneous

output commodity, and contribute (possibly different amounts of) a homogeneous input

commodity: a typical problem specifies a list of individual demands of output (resp. input

contributions) and the entire production function (with variable returns) and asks to divide fairly

the corresponding input cost (resp. output produced).  In the third model we assume a technology

with a single homogeneous input and one heterogeneous output per agent, (resp. one

homogeneous output and one heterogeneous input per agent), and we speak of the heterogeneous

goods model (Part 3). The formal definition of the cooperative production problem is the same as
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in the homogeneous good models of Part 2: it consists of a list of heterogeneous demands and the

entire production function. The question is to divide fairly the corresponding total input cost

(resp. to divide the output produced, given the list of heterogeneous input contributions and the

technology).

One important feature in the model is whether the input or output commodities come in

indivisible units or are infinitely divisible: we speak of a discrete or real variable, respectively.

Both versions are meaningful and important in applications: the goods on demand may be cars

(discrete) or length of a runway (real); individual contributions may come in days on the job

(discrete) or cash (real) and so on.  Each one of the three models involves two kinds of variables:

the exogeneously given claims/demands (rationing model, Part 1), demands of output or

contributions of input (Parts 2 and 3) on the one hand, and the endogeneously determined shares

of the resources (Part 1) or cost shares or output shares (Parts 2 and 3) on the other hand.  Each

kind of variable can be either discrete (d) or real (r).  In the rationing model (Part 1) the main

model is of the "rr" type (the exogeneous and endogeneous variables are both real) but we also

discuss the dd-model (both kinds of variables are discrete).  In the cost and surplus sharing

models both the rr-model and the dr-model (exogeneous variable is discrete, endogeneous one is

real) play an important role; for instance the classical model of cooperative games is of type dr,

but the theory of Aumann-Shapley pricing happens in the rr-world.

Besides the issue of realism, the choice between a discrete or a real model involves a familiar

trade-off.  A discrete model is mathematically much simpler, as it typically involves no

topological difficulty.  For instance, in the dd-model the set of possible (rationing or cost

sharing) methods is essentially finite; in the dr model, a typical cost sharing method is a linear

operator on a finite dimensional space (see Part 3); in the rr method a cost sharing model is a

linear operator on a functional space.  On the other hand, in the discrete model even the basic

proportionality principle mentioned at the outset is hard to write, it can be approximated at best.

Some comments about the type of axioms we impose are in order.  A few of them convey a

simple idea of equity: of this type are Equal Treatment of Equals and the crucial Dummy axiom

in the heterogeneous goods model expressing some notion of reward. There are also some

incentive compatibility requirements, such as No Advantageous Reallocation in Parts 1 and 2 or

Demand Monotonicity in Part 3.  For the latter axiom, the equity and incentive compatibility

interpretations coexist and reinforce each other.
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Yet the main axiomatic tools throughout the survey are driven neither by equity nor

incentives.  They are properties of structural invariance expressing the commutativity of the

allocation method with respect to certain variations in the cost or surplus sharing problem under

scrutiny.  For instance Consistency, the leading axiom in Part 1, requires the method to commute

with a variation in the society of agents concerned.  Additivity, by far the most important axiom

in Parts 2 and 3, is commutativity of the cost sharing method with respect to the sum of cost

functions.  Scale Invariance and Unit Invariance (Part 3) are about changing the unit in which a

particular good is measured.  And so on.

The structural invariance axioms are the powertools of the mathematical analysis, the

backbone of the most interesting characterization results.  The most spectacular example is the

Additivity axiom in Parts 2 and 3.  The entire set �  of rationing methods studied in Part 1 is

shown to be linearly isomorphic to the set of additive cost sharing methods in the homogeneous

good model (Theorem 2.2) and isomorphic to the extreme points of the (convex) set of additive

cost sharing methods in the heterogeneous goods model (Theorems 3.1 and 3.3).  This double

isomorphism allows us to follow the "same" allocation method in the three different models: the

proportional rationing method (Part 1) becomes average cost sharing in Part 2 and the Aumann-

Shapley method in Part 3; the uniform gains method in Part 1 becomes serial cost sharing in

Parts 2, 3; priority rationing (Part 1) becomes incremental cost sharing in Parts 2,3.  New

methods emerge as well: uniform losses rationing suggests the dual serial cost sharing method.

The main lesson to be learned from this overview is that the powerful structural invariance

axioms are double-edged swords.  For instance Additivity with respect to cost functions implies

an isomorphism between cost sharing and rationing methods, but it also severely limits the

choices open to the mechanism designer.  When a structural invariance axiom such as Additivity

conflicts with a set of reasonable equity and/or incentives requirements, we feel that the

invariance axiom must be the first to go.  This opens up the question of finding a less restrictive

version of the invariance axiom, for which the impossibility result becomes a limited possibility

result.  A good example is the new and yet hardly explored space of nonadditive cost sharing

methods: Section 3.7.

Relation to other chapters in the Handbook

In the current chapter, we view the users of the technology as entirely passive: they have

inelastic demands of output, or input contributions, or claims. The axiomatic analysis is supposed
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to enlighten a benevolent dictator on the possible interpretations of fairness when dividing cost

or output, or whatever resources must be split among the participants. Another approach sees the

users as rational microeconomic agents, endowed with classical preferences and choosing

independently and strategically the amount of output they want to consume or of input they

choose to contribute. Any given division method (whether or not it is fair in the sense of this

chapter) yields a specific noncooperative demand game (resp. input contribution game) where a

user’s cost share depends on the entire profile of demands (resp. his output share depends on the

profile of contributions). In this view a division method is a decentralization device: each user

knows his own preferences but may be completely unaware of other users' preferences. The

general results of Chapter 5, Vol. 1 on mechanism design and of Chapter 23, Vol. 2 on

strategyproofness become then relevant.  In particular the incentives properties of the uniform

gains rationing method (and more generally of the fixed path methods: see Section 1.8) are

reinterpreted in Chapter 23, Vol. 2 in the context of the fair division problem with singlepeaked

preferences: there they mean that the direct revelation of preferences is a strategyproof

mechanism.  Similarly, serial cost sharing (and more generally the fixed path generated methods

in Part 3) gives rise to a strategyproof social choice function whenever the cost function is

supermodular.

The second important link is with Chapter 26, Vol. 2, on fair allocation and 20, Vol. 2, on

fair compensation.  A third way to look at the cooperative production problem is as a special

instance of the social choice problem in a particular economic environment. The social planner

takes into account the technology (production set) and the whole profile of individual

preferences, then selects a first best (Pareto efficient) allocation that he deems optimal. One way

to do so is by defining a full fledged social preference over the set of feasible allocations in the

economy: Chapter 16, Vol. 2, explains why this approach will lead, in most models, to a

conceptual dead-end in classical Arrowian fashion. An alternative route is to simply select one

(efficient) allocation by means of fairness axioms: this is the route taken in Chapter 26, Vol. 2,

for a general family of allocation problems that includes cooperative production; this is also the

approach taken in Chapter 20, Vol. 2, for a family of models very close to our homogeneous

goods problems.  The main difference is that in the first best approach the social choice function

selects the shares of output as well as the shares of input from the profile of individual

preferences: therefore the profile of cost shares, say, depends on more than the profile of
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demands and the cost function, and a formula such as the Shapley-Shubik method is generally

not relevant.

1. Rationing

1.1. The problem and some examples

A rationing problem is a triple ( , , )N t x  where N is a finite set of agents, the nonnegative real

number t represents the amount of resources to be divided, the vector x xi i N= ∈( )  specifies for

each agent i a claim xi , and these numbers are such that

0 0≤ ≤ ≤
∈
∑x i t xi i
i N

 for all ;

A solution to the rationing problem is a vector y yi i N= ∈( ) , specifying a share yi  for each

agent i and such that

0 ≤ ≤ =
∈
∑y x i y ti i i
i N

 for all ;

The crucial inequality i iy x≤  may not be meaningful if claims are subjective evaluations of

needs (or responsibility): an agent may underestimate his “objective” need (or responsibility),

prompting the social planner to violate the above inequality. Our model ignores this possibility:

thus it is the most convincing when the claims ix  are “objectively” measured, as in the case of a

contractual debt.

Several of the axiomatic properties of rationing methods pertain to variations in the

population (also called society) N of concerned agents.  See the merging properties in Section

1.2 and the consistency property playing the leading role from Section 1.3 onward.  Therefore

the formal model must specify the set �� of potential agents from which a certain subset N is

selected to generate an actual problem.  In general, �� could be finite or infinite, although the

“real” society N is always finite.  One exception is the discussion of symmetric and consistent

rationing methods in Section 1.4: there we must assume that the set ��  is infinite.

It is neither easy nor necessary at this stage to interpret a rationing problem directly as a

model of cooperative production. The link of the rationing model with cooperative production

will become apparent in Part 2, when we discuss the implications of the powerful Additivity

axiom in the homogeneous goods model of cost and surplus sharing: see Theorem 2.2.
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Inheritance problems provide the oldest example on record of the rationing problem (see

O'Neill [1982] and Rabinovich [1973] borrowing examples from the Babylonian Talmud): here t

is the liquidation value of the bankrupt firm and xi  is the debt owed to creditor i (see Aumann

and Maschler [1985]).

Taxation is another important example: now t is total tax to be levied and xi  is agent i's fiscal

liability (see Young [1988] [1990]). Note that in a taxation example, the resources to be divided

are a “bad,” whereas they are a “good” in a inheritance or bankruptcy story. A microeconomic

example similar to taxation is the cost sharing of an indivisible public good: t is the cost of the

good and xi  is the benefit to agent i.

Rationing occurs in markets where the price of a commodity is fixed (for instance, at zero): t

is the available supply and xi  is agent i's demand of good i (Benassy [1982] Drèze [1975]).

Medical triage is an example: t measures the available medical resources and xi  is the quantity

needed by agent i for full treatment (Winslow [1992]). Rationing food among refugees is similar:

xi  measures a nutritional need, and t the nutritional value of the available food. The supply chain

problem is a management example: the central supplier collects orders from its retailers and can

not meet all demands at once (Cachon and Larivière [1996]).

Often the resources to be divided come in indivisible units: organs for transplants, seats in

crowded airplanes or in popular sports events, visas to potential immigrants (Elster [1992]) as

well as cars allocated by General Motors to its car dealers. In this case xi  and t are integers, e.g.,

in the case of organs or visas xi  can only be 0 or 1. Important examples where xi  and t are

integers come from queuing and scheduling: a server can process one job per unit of time and

agent i requests xi  jobs; at any time t such that t xi≤∑ , the service protocol solves a rationing

problem.

A rationing method r associates to any rationing problem ( , , )N t x  a solution y r N t x= ( , , ) .

We study rationing methods with the axiomatic methodology. In the main model, that we call the

rr-model, all variables t x yi i, ,  vary over the nonnegative real line, and correspond to divisible

resources, claims, demands, etc. Sections 1.2 to 1.8 are devoted to the rr-model. In Section 1.9

we study the dd-model where t x yi i, ,  are all nonnegative integers.
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We denote by �  the set of rationing methods with a given potential population�� .  When

required for clarity, we indicate whether claims and shares are discrete or real variables, e.g.,

��
�  means that claims are integer valued and shares are real valued.

All rationing methods discussed below satisfy the following property

Resource Monotonicity (RM)

{ } { ( , , ) ( , , )}   , ,   t t r N t x r N t x for all N t t and x′ ′ ′≤ ⇒ ≤

This is a mild and compelling requirement: when resources (whether desirable or not)

increase, no one should see his share reduced.  In most of the results below, Resource

Monotonicity needs not be assumed and follows from the other axioms (e.g., Upper Composition

(1.4) implies RM); exceptions are Theorems 1.4 and 1.6.

With the exception of Section 1.7, all methods are equitable in the sense that they do not

discriminate a priori between the agents. This corresponds to the two familiar axioms:

Equal Treatment of Equals:

x x y y N x t i j Ni j i j= ⇒ = ∈ for all  and all , , ,

Symmetry:

y r N t x x i Ni= ∈( , , ) , is a symmetric function of the variables 

Note that Symmetry implies Equal Treatment of Equals.

An important operation is the duality operator transforming gains into losses. If r is a

rationing method, its dual method r* is defined as

r N t x x r N x t x N t xN
*( , , ) ( , , ) , ,= − −  for all 

(where we use the notation x xN i
i N

=
∈
∑ ).  Given x, the method r* allocates t units of “gains”

exactly as r allocates the corresponding losses ( )x tN − .

Overview of Part 1. The proportional rationing method is characterized in Section 1.2 by

the property that it treats claims as anonymous transferable “bonds”.  In Section 1.3 we discuss

two important methods equalizing respectively the gains and losses on individual claims and

introduce the Upper and Lower Composition axioms.  The celebrated Contested Garment

method inspired by a bargaining interpretation of the rationing model is the subject of Section

1.4.  The next two Sections focus on the structural invariance axiom called Consistency, leading

to the characterization of parametric methods in Section 1.5, and of the equal sacrifice methods
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in Section 1.6. Section 1.7 discusses the rich family of asymmetric methods meeting Consistency

Upper and Lower Composition. Fixed path methods, discussed in Section 1.8, are another family

of asymmetric methods, that play a crucial role in Part 3. The probabilistic rationing of

indivisible goods is the discrete variant of the rationing model: see Section 1.9. Finally, Section

1.10 discusses the variant of the rationing problem where the available resources may exceed the

sum of individual claims.

1.2. The proportional method

With the exception of Section 1.9, all variables t x yi i,  and  are real numbers: we are in the rr-

model.  The proportional rationing method is defined as follows:

 ( , , )   whenever 0N
N

t
y pr N t x x x

x
= = ⋅ >

(whenever xN = 0 , all rationing methods select y = 0 )

Several related characterizations of the proportional rationing method pertain to the

possibility of merging a subset of agents into a single agent with the combined demand, or,

conversely, to split one single agent into several smaller agents.  These results are all related to

the fact that proportional rationing “discounts” each unit of claim/demand by the same factor,

irrespective of who presents this unit of claim/demand (whether the agent has a large or small

global demand is irrelevant).  Hence the proportional method is compelling when claims are

transferable like anonymous bonds.  Any other method is vulnerable to manipulations by

transferring claims across agents or changing their identity by adding “artificial” agents.

For a given set N of agents and a subset S, S N⊆ , we denote by N S[ ]  the set with

(| | | | )N S− +1  agents where all agents in S have been “merged” into a single agent denoted S*.  For

instance:

[ ]{1,2,3,4,5} , {2,4,5} {1, *,3}SN S N S= = ⇒ =

For any x in R+
N  we denote x x xS i S

i S

= =
∈
∑ , [ ] projection of x on S

+R ; and x S S[ ] [ ]
∈R+

N  is

defined by x x i S x xi
S

i S
S

S
[ ]

*
[ ],= ∉ = if .  Now we consider four independence properties of

increasing notational complexity; yet, by Theorem 1 below, they are logically equivalent in � .
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No Advantageous Reallocation (NAR)

[ ] [ ]For all , ,  all  and all , : ( , , ) ( , , )S S
S SN S t x x x x r N t x r N t x′ ′ ′= ⇒ =  (1.1)

This says that by reallocating individual demands among the agents in S, the total share of

this coalition is unchanged, thus preventing such maneuver to be profitable.

Irrelevance of Reallocations (IR)

[ ] [ ]For all , ,  all  and all , : { ( , , ) ( , , ) for all \ }S S
j jN S t x x x x r N t x r N t x j N S′ ′ ′= ⇒ = ∈

Reallocations of demands do not affect agents outside the scope of the reallocation.

Independence of Merging and Splitting (IMS)

[ ] [ ] [ ]For all , ,  all  and all : ( , , ) ( , , )S S SN S t x r N t x r N t x=

The merging operation is the move from N to N S[ ] ; splitting is the converse transformation.

By repeated applications of Independence of Merging and Splitting we get the following

property.  Assume ( )Nk k M∈  is a partition of N and let x x→ * be the "merging" mapping from

R+
N  into M

+R  given by

x x k Mk Nk

* = ∈ for all 

Then ( , , ) ( , , *) for all 
kN kr N t x r M t x k M= ∈ .  The next property provides a more precise

decomposition of the rationing method by means of a partition.

Decomposition (DEC)

[ ] [ ]

For any  and any partition ( ) of ,  for all ,  all  and all :

( , , ) ( , , ) where ( , , *)
k k

k k M

N k k N k k

N N N t x k

r N t x r N t x t r M t x
′ ′∈

= =

We compute first the shares of the members ( )Nk  of the partition, and then allocate each

share within the relevant coalition.

Theorem 1.1. Assume N contains three agents or more.  The proportional method meets all

four properties NAR, IR, IMS, and DEC.  Conversely the proportional method is the only

rationing method meeting any one of the four above properties.

The characterizations gathered in Theorem 1.1 are inspired from similar results by Banker

[1981], O'Neill [1982], Moulin [1987] and Chun [1988].  See also Chun [1999] and de Frutos

[1999]. Remarkably, the symmetry properties (such as Equal Treatment of Equals) are not used.
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In Section 1.4, another characterization of the proportional rationing method is based on the

fact that it is self-dual ( *)r r= , that is to say it allocates gains and losses in exactly the same way

(Proposition 1.6).

1.3. Uniform Gains and Uniform Losses

This pair of rationing methods are as important and (almost) as simple as the proportional

method.  They aim at equalizing, respectively, the actual “gains” yi  and the net losses ( )x yi i−

across agents, under the feasibility constraints of a rationing method:

The Uniform Gains method ug:

y ug N t x x x ti i i i
N

= = =∑( , , ) min{ , } min{ , }λ λ λ where  is the solution of 

The Uniform Losses method ul:

y ul N t x x x ti i i i
N

= = − − =+ +∑( , , ) ( ) ( )µ µ µ where  is the solution of 

(where ( ) max{ ,0}).z z+ =  In the literature, these two methods are often called Constrained

Equal Awards, and Constrained Equal Losses.

For a given rationing problem ( , , )N t x , let us denote by Y the set of feasible solutions:

Y N t x y y xi i y ti

N

( , , ) { | }= ∈ ≤ ≤ =∑R+
N 0   and

One checks easily that ug N t x( , , )  is the unique solution maximizing over Y N t x( , , )  the

"leximin" ordering; that is, it lexicographically maximizes the smallest coordinate yi , then the

next smallest coordinate and so on.  Similarly, ul N t x( , , )  is the unique maximizer of the

"leximin" ordering applied to the vector of losses ( )x yi i− .

The pair { , }ug ul  is a dual pair: ul ug ug ul= =* * and .  This important fact allows a parallel

axiomatic treatment of these two methods.

Both methods ug, ul, as well as pr and all other symmetric methods discussed below, respect

the natural order of gains and losses.  That is, they meet the following two axioms

Ranking x x y yi j i j: ≤ ⇒ ≤ (1.2)

Ranking x x x y x yi j i i j j*: ( ) ( )≤ ⇒ − ≤ − (1.3)
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The two axioms above are dual, namely a rationing method r satisfies one axiom if and only

if the dual method r* satisfies the dual axiom.

Although both methods ug, ul agree on the ranking of absolute gains and losses, they differ

sharply in the ranking of relative gains and losses.  Consider the following two dual axioms:

Progressivity:

Regressivity:

0

0

< ≤ ⇒ ≤

< ≤ ⇒ ≤

x x
y

x

y

x

x x
y

x

y

x

i j
j

j

i

i

i j
i

i

j

j

Proposition 1.1. The uniform gains method is Progressive, but not Regressive.  It is the most

progressive method among those satisfying Ranking.

The uniform losses method is Regressive, but not Progressive.  It is the most regressive

method among those satisfying Ranking*.

(The precise definition of “the most progressive” is left to the reader.)

Our next pair of dual axioms plays a very important role throughout this Part. They are

structural invariance properties (see Introduction) allowing to decompose the computation of

shares when the available resources are estimated from above or from below:

Upper Composition (UC):

For all ,  and , : {0 } { ( , , ) ( , , ( , , ))}NN x t t t t x r N t x r N t r N t x′ ′ ′≤ ≤ ≤ ⇒ = (1.4)

Lower Composition (LC):

For all ,  and , :{0 } { ( , , ) ( , , ) ( , , ( , , ))NN x t t t t x r N t x r N t x r N t t x r N t x′ ′ ′ ′ ′≤ ≤ ≤ ⇒ = + − − (1.5)

If we allocate first the resources ′t , and later it appears that the available resources are

actually lower, namely t, Upper Composition allows to simply take the optimistic shares

r N t x( , , )′  as the initial demands from which to further ration until t.  We may forget about the

initial demands x once we know an upper bound of the actual resources.  Note that UC implies

Resource Monotonicity.

Dually, if we know a lower bound ′t  of the actual resources t, Lower Composition allows to

distribute the pessimistic shares r N t x( , , )′ , subtract these shares from the initial demands and

distribute the balance ( )t t− ′  according to the reduced claims x r N t x− ′( , , ) .

Proposition 1.2. The three methods pr, ug and ul meet the two axioms Upper Composition

and Lower Composition.
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The family of methods meeting UC and LC is large: in Section 1.7 we describe a rich set of

such methods, and we show � with the help of additional requirements � that our three basic

methods pr, ug and ul play a central role within this family: Corollary to Theorem 1.5.  For the

time being, we state two pairs of dual characterizations of ug and ul. They are technically simple,

but their interpretation is quite interesting. In the following statement, we omit the variable N

that plays no role.

Independence of Claim Truncation (ICT)

For all , , : ( , ) ( , ) where ( ) min{ , }i iN t x r t x r t x t x t x t= ∧ ∧ =

The part of one’s claim that is not feasible has no influence on the allocation of the resources:

Composition from Minimal Rights (CMR)

\For all , , : ( , ) ( , )  ( ( , ), ( , )),  where ( , ) ( )N i N iN t x r t x m t x r t m t x x m t x m t x t x += + − − = −

Agent i’s minimal claim ( , )im t x  is this part of the resources that he will receive, even in the

most pessimistic case where the claims of all other agents are met in full. CMR is the special

case of LC where ' ( , )Nt m t x= .

Proposition 1.3. (Dagan [1996], Herrero and Villar [2000]). The Uniform Gains method is

characterized by the two properties Lower Composition and Independence of Claim Truncation.

The Uniform Losses method is characterized by Upper Composition and Composition for

Minimal Rights.

A different approach uses a priori bounds on individual shares, namely bounds that do not

depend on the size of other agent’s claims. We denote by N n=  the cardinality of N.

Lower Bound: for all  and all N t x i y r N t x x
t

ni i i, , , : ( , , ) min{ , }= ≥

Upper Bound: for all  and all N t x i y r N t x
t

n
x

x

ni i i
N, , , : ( , , ) { ( )}= ≤ + − +

It is plain that ug meets the Lower but not the Upper Bound, whereas ul meets the Upper but

not the Lower Bound.  Lower Bound says that agent i is guaranteed a fair share of the resources

unless he demands no more than the fair share, in which case his demand is met in full.

Dually, Upper Bound states that agent i’s loss i ix y−  is not smaller than the average deficit

Nx t− , unless his claim is smaller than the average deficit, in which case he gets no resources.
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The Lower Bound has a lot of bite when t is small; if t n xi i≤ ⋅min { }, Lower Bound forces

equal gains: y t n ii = /  for all .  Similarly, if t is close enough to xN , Upper Bound forces equal

losses:

{ min { } } { , }x n x t x x y x y i jN i i N i i j j− ⋅ ≤ ≤ ⇒ − = −  all 

Note that for | |N = 2 , Lower Bound characterizes the ug method, and (by duality) Upper

Bound characterizes the ul method.  This simple fact does not extend to the case | |N ≥ 3 ;

however, we can still characterize the ug method if we bring Lower Composition to the rescue.

Consider the following very mild requirement:

Zero Consistency:

[ \ ] [ \ ]For all , ,  and all : { 0} { ( , , ) ( \ , , )}i N i N iN t x i x r N t x r N i t x= ⇒ =  (1.6)

It is hard to imagine under what circumstances the presence of a null demand agent (who

therefore receives nothing) could influence the allocation of resources among the other, active

agents.

Proposition 1.4. The Uniform Gains method is characterized by the following three

properties: Lower Bound, Lower Composition and Zero-Consistency.

The Uniform Losses method is characterized by the three properties, Upper Bound,

Upper Composition and Zero-Consistency.

1.4. The Contested Garment method and Self Duality

The contested garment method is a rationing method for two agents only, in the vein of the

familiar "split the difference" principle for two person bargaining.  The interpretation of xi  as the

verifiable claim of agent i (as opposed to a vague demand) is required for the application of the

cg method and its n-person extensions.  The method is inspired by the following two quotes from

the Babylonian Talmud (see O'Neill [1982], Aumann and Maschler [1985]): "R. Tahifa, the

Palestinian, recited in the presence of R. Abbahu: two [people] cling to a garment; [the decision

is that] one take as much as his grasp reaches and the other take as much as his grasp reaches and

the rest is divided equally between them.”  “Two hold a garment . . . if one of them says, 'It is all

mine' and the other says, 'Half of it is mine,' . . . the former then receives three quarters and the

latter receives one quarter.”
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Consider a two person rationing problem ( , , )t x x1 2 .  We can interpret agent i's "grasp"

optimistically as min{ , }x ti  (in case his own claim takes absolute priority over the other claim)

or pessimistically as ( )t x j− +  (if the other agent gets his full claim).  Then we split the

remaining deficit (case of optimistic claims) or surplus (case of pessimistic claims).  Both

computations yield the same method:

y x t t x t x t

t t x t x

1 1 1 2

1 2

1

2
1

2

= + − −

+ − − − −+ + +

min{ , } ( min{ , } min{ , })

) ( ( ) ( ) )

(optimistic grasp)

= (t - x (pessimistic grasp)2

A more transparent reading of this formula in the case 1 2x x≤  is:

if  

if  

if 

t x x y y t

x t x y
x

y t
x

x x t y t x x y t x x

≤ = =

≤ ≤ = = −

≤ = + − = + −

min{ , }:

: ;

max{ , } : ( ); ( )

1 2 1 2

1 2 1
1

2
1

1 2 1 1 2 2 2 1

1

2

2 2
1

2

1

2

(1.7)

The Contested Garment method is self-dual, *r r= , namely it allocates gains and losses in

exactly the same way. This property follows at once from the optimistic and pessimistic formulas

above:

1 1 2 1 1 1 2 2

1 1
*( , ) ( ( ) ( ) ) ( ( ) ( ) )

2 2Nr t x x x t x t x t t x t x x t x+ + + += − − − − + − = + + − − − −

and the identity ( ) min{ , }z z t z t++ − = .

The Contested Garment method is self-dual, *r r= , namely it allocates gains and losses in

exactly the same way. This property follows at once from the optimistic and pessimistic formulas

above:

1 1 2 1 1 1 2 2

1 1
*( , ) ( ( ) ( ) ( ( ) ( )

2 2Nr t x x x t x t x t t x t x x t x+ + + += − − − − + − = = + − − − −

and the identity ( ) min{ , }z z t z t++ − = .

On the other hand, the Contested Garment method fails Upper Composition and (by duality)

Lower Composition: property (1.4) fails for 1 210,  20,  15 and ' 18.x x t t= = = =
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Note that cg coincides with ug for small t, i.e., 1 2min{ , }t x x≤ , and with ul for large t, i.e.,

1 2max  { , } .x x t≤  More importantly, cg shares the two invariance properties used above to

capture ug and ul:

Proposition 1.5. (Dagan [1996])

The Contested Garment method is characterized by Self-Duality and Independence of Claim

Truncation; or by Self-Duality and Composition from Minimal Rights; or by Equal Treatment of

Equals, Independence of Claim Truncation, and Composition from Minimal Rights.

Compare this result, for two-person problems, with the following compact characterization of

the proportional method, for problems of arbitrary size.

Proposition 1.6. (Young [1988])

The proportional method is characterized by Self Duality and Upper Composition; or by Self

Duality and Lower Composition.

Two natural extensions of the cg method for an arbitrary number of agents have been

proposed.  The first one relies on the observation that for 2n = , the cg method is the average of

the two priority methods.  The 12-priority method is the rationing method (denoted prio(12)) that

gives absolute priority to agent 1 over agent 2, hence:

if  is such that 

if  is such that 

t t x y t

t x t x x y x t x

≤ =
≤ ≤ + = −

1

1 1 2 1 1

0: ( , )

: ( , )

Define symmetrically the 21-priority method prio(21) and notice that formula (1.7) defining

cg can be written as:

cg prio prio= +1

2
12

1

2
21( ) ( )

Hence the first generalization of cg as the Random Priority method, namely the arithmetic

average of the priority methods over all orderings of N.  Let σ  be an ordering of N as

( , , , )σ σ σ1 2 � n , namely σ1  is the highest priority agent and so on.  We define

y prio N t x= ( )( , , )σ  as follows:

if  is an integer such that: k x t x
i i

i

k

i

k

σ σ
= =

+

∑ ∑≤ ≤
1 1

1
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y x j k

y t x

y j k n

j j

k i

j

k

σ σ

σ σ

σ

= =

= −

= = +

+ ∑

 for 

 for 

1

0 2

1
1

, ,

( )

, ,

�

�

(1.8)

Random Priority method:

y
n

prio N t x N= ∑1

!
( )( , , )σ

σ
  where the sum bears on all orderings of (1.9)

The second natural extension of cg to any n uses an explicit mixture of the uniform gains and

uniform losses methods.  This is the Talmudic rationing method due to Aumann and Maschler

[1985] (who argue convincingly that its intuition was present already in the ancient Talmudic

literature)

Talmudic method:

y tal N t x ug N t
x x

ul N t
x xN N= = + − +( , , ) ( , min{ , }, ) ( ,( ) , )

2 2 2 2
(1.10)

The Talmudic method halves each claim and follows Uniform Gains until each half claim is

met.  It then applies the Uniform Losses method to the remaining half claims.  The Talmudic

method coincides with cg in the case of two agents – yet another equivalent formulation of cg.

Both the Talmudic and Random Priority methods are self-dual. Both coincide with Uniform

Gains whenever t xi i≤ min { }  and with Uniform Losses whenever t xi N i≥ max { }\ .

The next result shows a remarkable relation between the two methods, Random Priority and

Talmudic, and the two most important value solutions for cooperative games, namely the

Shapley value and the nucleolus.  These solutions are defined in Section 3.2 and 3.6 respectively.

Fix a rationing problem ( , , )N t x  and define two (dual) cooperative games, generalizing the

bargaining interpretation of the contested garment:

for all  (optimistic grasp)

 (pessimistic grasp)

S N v S x t

w S t x
S

N S

⊆ =
= − +

: ( ) min{ , }

( ) ( )\

Note that v N w N t( ) ( )= = .

Theorem 1.2. (O'Neill [1982], Aumann and Maschler [1985])

i) The Random Priority method allocates the resources according to the Shapley value of the

above games.
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ii) The Talmudic method allocates the resources according to the nucleolus of the above

games.

1.5. Consistent and symmetric methods

The axiom of Consistency has played a major role in the recent microeconomic literature on

distributive justice, see Chapter 26, Vol. 2.  See also the surveys by Thomson [1990] and

Maschler [1990].  Consistency in the rationing problem is both very natural and extremely

powerful, as demonstrated by the results of this and the next subParts.

Consistency (CSY):

[ \ ] [ \ ]For all , , ,  all ,  all : ( \ , ( , , ) , ) ( , , )S N S N SN S S N t x r N S t r N t x x r N t x⊆ − =  (1.11)

Equivalently, Consistency can be defined by looking at coalitions S with a single agent i:

r N i t r N t x x r N t xi N i N i( \ , ( , , ), ) ( , , )[ \ ] [ \ ]− =

The axiom says that upon removing one (or several) agent from the society N, and taking

away the resources allocated to this agent (or agents) within N, the allocation of shares within the

reduced society remains the same.  In other words, changing the status of an agent from "active

participant" to "passive expense of resources" does not alter the overall distribution; removing

one agent and his share of resources is of no consequence to other agents.  Thus Consistency is a

decomposition property with respect to changes in the set of relevant agents.

Note that Consistency is a self-dual axiom: a rationing method is consistent if and only if its

dual method is consistent as well.

In this Section we discuss symmetric methods only.  In this family a powerful

characterization result of (essentially) all consistent methods is available.

Our first result says that Consistency allows us to extend in at most one way a two person

symmetric rationing method.

Proposition 1.7. Let 1 2({1,2})( , ( , ))r t x x  be a rationing method defined for two person

problems only. Assume that ({1,2})r  is symmetric and resource monotonic. Then there is at

most one consistent rationing method r (defined for all finite societies N) that coincides with

r({1,2}) for all two- person problems. Moreover, r is symmetric and resource monotonic.
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The discussion of parametric methods below establishes that pr, ug, ul as well as the

Talmudic rationing method are consistent (of course this claim can be checked directly).

Therefore Proposition 1.6 has the following corollaries:

i) the Talmudic method is the only consistent extension of the contested garment method

(for two-person problems) to an arbitrary number of agents,

ii) the Uniform Gains method is the only consistent method satisfying Lower Bound

( min{ , })y x
t

i i≥
2

 for two agents problems, (and a dual statement holds for Uniform Losses by

Proposition 1.4).

Proposition 1.7 begs the question: what symmetric two person rationing methods can be

extended to a (symmetric) consistent method for an arbitrary number of agents?  A general

answer is given by Dagan and Volij [1997] and Kaminski [2000]: a certain binary relation

associated with the two person method must be transitive. Theorem 1.3 below gives a much

more transparent answer under one additional mild requirement:

Continuity

r N t x t x N( , , ) ( , ), is continuous in  for all (1.12)

We define now the family of parametric rationing methods.  They are the key to Theorem

1.3.  Let f z( , )λ  be a real valued function of two real variables, with 0 0≤ ≤ ≥λ Λ and z ; the

Upper Bound Λ  may be finite or infinite.  We assume:

(0, ) 0 ; ( ; ) ( , ) is nondecreasing and continuous in  over [0, ]f z f z z f zλ λ= Λ = Λ  (1.13)

To any such function f we associate a unique rationing method r as follows

For all , , : ( , , ) ( , ) where  is a solution of ( , )i i i
i N

N t x r N t x f x f x tλ λ λ
∈

= =∑

(this equation may have an interval of solutions λ  but they all give the same shares to every

agent). We call r the parametric method associated with f.  By construction a parametric method

is symmetric; clearly, it is consistent as well.

The three basic methods pr, ug and ul are parametric, for the following functions f:

Proportional: f z z( , ) .λ λ= = and Λ 1

Uniform Gains: f z z( , ) min{ , }λ λ= = +∞ and Λ

Uniform Losses: f z z( , ) ( )λ
λ

= − = +∞+
1

 and Λ
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Among the two extensions of cg discussed in Section 1.4, the Random Priority method is not

consistent, whereas the Talmudic method is consistent.  To check the former claim, take

N = { , , }1 2 3 , t x= =10 6 8 10, ( , , )  and compute the shares allocated under Random Priority:

y y y1 2 3
1

3
6

1

6
2 2

1

3

1

3
8

1

6
4 3

1

3

1

3
10

1

6
4

1

6
2 4

1

3
= ⋅ + = = + = = + + =; ;

Next remove agent 3 and his share 4 1
3 , which leaves us with the reduced problem:

N t x\ { }, , ( , )3 5 6 82
3′ = ′ = .  Now the shares under Random Priority are: ′ = ′ =y y1 2

5
62 .

To check the latter claim, we show that the Talmudic method is parametric.  Set Λ = 2  and

define f z( , )λ  as follows:

f z
z

z
z z

z

z

z

z
z

z

( , )λ λ
λ

λ

λ

λ
λ

λ

=
−

≤ ≤
+

=
+
≤ ≤ +

+

= − −
−

+
+
≤ ≤

1
0

2

2 2

4

2
2

1

4

2
2

for 

for 

for 

The next result establishes that parametric methods capture, essentially, all consistent and

symmetric rationing methods.

Theorem 1.3. (Young [1987])  A parametric method is a consistent and symmetric rationing

method.  Conversely, a rationing method satisfying Equal Treatment of Equals, Consistency and

Continuity can be represented as a parametric method where f z( , )λ  is continuous in both

variables.

Note that in the converse statement, it is enough to assume pairwise consistency, namely the

restriction of property (1.11) to subsets S containing two agents.  On the other hand, the converse

statement holds only if we assume that the size of the set N can be arbitrarily large, that is to say,

the set �  of potential agents must be infinite.  This is an important limitation of Theorem 1.3 as

well as of Theorem 1.4, in the next Section that does not apply to Theorem 1.5 in Section 1.7.

The class of parametric methods is very rich. Chun, Schummer and Thomson [1998], for

instance, discuss a method of egalitarian inspiration much different from any of the methods

discussed in this survey.
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1.6. Equal Sacrifice Methods

The equal sacrifice methods are an important subset of the parametric ones.  They appear

early on in the discussion of equitable taxation schedules (see Mill [1859] and the discussion in

Young [1990]).

Fix a real valued function u z( )  of the nonnegative real variable z, and suppose that u is

continuous and strictly increasing.  Think of u as a reference utility function.  Loosely speaking,

the equal sacrifice rationing method associated with u is defined by solving for all N t x, ,  the

following system of equations:

u x u y u x u y i j N y ti i j j i
i N

( ) ( ) ( ) ( ) ,− = − ∈ =
∈
∑ for all  and (1.14)

Because u is strictly increasing, the above system has at most one solution.  Assume for a

moment that such a solution exists.  Then at the allocation y, each and every agent contributes an

equal "sacrifice," namely the same net utility loss measured along the reference utility scale u.

This is especially appealing in the context of taxation.  Let xi  be agent i's taxable income, yi  be

his after tax income, and ( )x tN −  be the total tax to be levied.  Then the system (1.14)

distributes taxes so as to equalize the net sacrifice measured along the scale u.  Concavity of u –

decreasing marginal utility – means that a dollar taken from the rich translates into a lesser

sacrifice than a dollar taken from the poor.  Hence the choice of u allows the social planner to

adjust the progressivity of taxation while following the normatively transparent principle of

equal sacrifice.

Here is a precise definition of the equal sacrifice methods.

Proposition 1.8. Fix u, a continuous and strictly increasing real valued function defined on

the nonnegative real line.  For any rationing problem ( , , )N t x  the following system has a unique

solution y, and y is a solution to the rationing problem:

 and for all :{ 0  ( ) ( ) max { ( ) ( )}i i i i j j j
i N

y t i y u x u y u x u y
∈

= > ⇒ − = −∑ (1.15)

This rationing method satisfies Symmetry, Ranking, Consistency and Upper Composition.

All equal sacrifice methods are clearly consistent, but, in general an equal sacrifice method

fails Lower Composition.  The only exceptions are the Proportional and Uniform Losses

methods. Moreover, an equal sacrifice method meets Ranking* (1.3) if and only if the utility

function u is concave.
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We turn to some examples of equal sacrifice methods.  The simplest ones involve power

utility functions:

0

1

( )  yields the proportional method

( ) yields the Uniform Losses method

u z Log z

u z z

=

=

Interestingly, the Uniform Gains solution is not an equal sacrifice method, but it is the limit

of power methods.  Consider the family of utility functions up :

u z
z

pp p( ) = − < < +∞1
0where (1.16)

For p close to zero the corresponding method approaches the proportional method, whereas

for p arbitrarily large it approaches the Uniform Gains method.  Let us compute for instance the

method corresponding to u1 ; the system (1.14) always has a unique solution, and yields

explicitly the parametric representation:

1 1 1 1

y x y x
i j y

x

x
i

i i j j
i

i

i
− = − ⇔ = ⋅

+
 all  all ,

λ
λ

Next consider the family of utilities uq

u z z qq q( ) = < < +∞ where 0 (1.17)

For q close to zero, the corresponding method approaches pr, for q =1 it is the method ul,

and for q arbitrary large it approaches the "hyperregressive" method that gives full priority to the

agents with the largest xi .  In the case of two agents, this method is defined as

r t x x prio t x x x x

prio t x x x x

t t
x x

( , , ) ( )( , , )

( )( , , )

( , )

1 2 1 2 2 1

1 2 1 2

1 2

12

21

2 2

= <
= <

= =

if 

if 

if 

Note finally that for q uq≤1,  is concave and the corresponding method meets Ranking*.

We state next a partial converse of proposition 1.7.  It uses three additional axioms:

Strict Monotonicity: for all  for all  N t t x t t y y ii i, , , : { } { }′ < ′ ⇒ < ′

Strict Ranking: for all  and all N t x i j x x y yi j i j, , , : { } { }< ⇒ <

Scale Invariance: for all , ,  and 0 : ( , , ) ( , , )N t x r N t x r N t xα α α α≥ ⋅ ⋅ = ⋅
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Strict Monotonicity and Strict Ranking are demanding properties; for instance both ug and ul

(as well as cg) fail both requirements.  They are intuitively reasonable and yet they cut a subset

of rationing methods that is not topologically closed, an unpalatable feature.

Scale Invariance, on the other hand, is an impeccable invariance axiom insisting that the

choice of the unit to measure both the demands/claims/taxable income and the available

resources, should be of no consequence whatsoever.  It is satisfied by all rationing methods

discussed so far.

Theorem 1.4. Young [1988]

i) A rationing method satisfying Consistency, Upper Composition, Strict Monotonicity and

Strict Ranking must be an equal sacrifice method, defined by system (1.14).

ii) A rationing method satisfying Consistency, Upper Composition, Strict Monotonicity, Strict

Ranking and Scale Invariance, must be an equal sacrifice method derived from a power

function ,  0pu p< < ∞ , ((1.16)), or must be the proportional method.

An important open question.  Replace in statement i) Strict Monotonicity and Strict Ranking

by Monotonicity and Ranking: now all equal sacrifice methods (given by (1.15)) with a concave

utility, as well as Uniform Gains, are available.  Is this all?  Similarly, if in statement ii) we

weaken the same two axioms in the same way, all methods derived from the power functions up

((1.16)) as well as ((1.17)) for 1qu q ≤ , and ug meet these requirements.  Is this all?

Young [1990] offers an empirical “verification” of Theorem 1.4, by showing a number of

actual tax schedules that fit well within the family of equal sacrifice methods constructed from

the power functions up .

1.7. Asymmetric methods: combining the invariance axioms

When the recipients of the resources have different exogeneous rights, in addition to their

possibly different demands, the symmetry axiom must be abandoned.  In bankruptcies and

inheritances, creditors or heirs often have different status implying some priorities between their

claims, irrespective of their sizes.  For instance the federal government's claim on the assets of a

bankrupt firm has absolute priority over the claims of the trustees, who have priority over those

of the shareholders and so on.
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The most asymmetric rationing methods are the priority methods prio( )σ  ((1.8)).  In

order to define a consistent priority method we must introduce the set N  from which the agents

can be drawn.  This set can be finite or infinite.  Recall that in the previous Part about symmetric

methods, � was any countably infinite set.  In the current Part, by contrast, we can

accommodate the case of a finite set � .

We denote by σ  an ordering (complete, transitive, antisymmetric relation) of �  and for

any finite subset N of � , we also write σ  for the induced ordering on N.  Any finite set N is

ordered by σ  as N n= ( , , , )σ σ σ1 2 �  and for any rationing problem ( , , )N t x , we define the

allocation prio N t x( )( , , )σ  exactly as in (1.8).  Note that the dual of prio( )σ  is the priority

method with the opposite ordering of � .

The following fact is obvious: for any orderingσ , the priority method prio (σ ) meets

Consistency, Upper and Lower Composition, and Scale Invariance.

Thus our four powerful invariance axioms are met by the three basic symmetric methods pr,

ug and ul as well as by the most asymmetric ones, the priority methods.  Theorem 1.5 below

describes the relatively simple family of methods satisfying all four axioms: they "connect" the

three symmetric methods to the priority ones in interesting ways.

We define the composition of rationing methods.  Given are �  and a partition α= ∪� �

where the parameter α  varies in � .  For every α  we are also given a rationing method on α�

denoted rα ; moreover ~r  is a rationing method on � .  The composition of these methods is

denoted [ ,r rα α ∈� � ] r= .  For any problem ( , , )N t x , with a finite society N, N ⊆ � , we define

N Nα = ∩ α��  and A is the finite subset of �  containing α  if and only if Nα  is nonempty.

The shares y r N t x= ( , , )  are computed in two steps: first we split t among the subsets Nα  (i.e.,

among the “agents” of A) according to ~r , then the share zα  allocated to Nα  is divided among

the agents in Nα  according to rα :

z r A t x A y r N z x i NN i i Nα α
α

α α αβ α
α= ∈ = ∈~ ( , ,( )) ; ( , )[ ] for  for 

Thus, the operation of composition generates “two tiered” rationing methods that may apply

different equity principles for the aggregate problem (on � ) and for any of the decentralized
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problems (on Nα ).  Note that the Decentralization property (Section 1.2) says precisely that a

certain method is preserved by “self-composition”.

We say that the composition operation respects property Q if, whenever all methods

, ,r rα α ∈� � , meet Q , so does the method [ ,r rα α ∈� � ].

Proposition 1.9.

i) The composition of rationing methods respects the following properties: Resource

Monotonicity, Upper and Lower Composition, and Scale Invariance.

ii) The composition operation does not respect the Consistency property, or Equal Treatment

of Equals.

iii) If each method ,rα α ∈� , is consistent, and σ  is an ordering of � , the composition

( )[ ,prio rασ α ∈� ] is consistent as well.

Proposition 1.9 shows that the three invariance axioms UC, LC and SI, are met by a rich

family of rationing methods, obtained by composing such methods as pr, ug, ul (as well as their

asymmetric versions gw  and lw , to be defined shortly) in an arbitrary number of tiers.  There

are many more methods in this family, as discussed in Moulin and Shenker [1999].

When we impose CSY as well, the set of available methods becomes much simpler, although

it still allows a great deal of flexibility.  The following asymmetric versions of ug and ul play a

key role in the characterization result.

For any set of positive weights wi , one for each i∈�� , we define the weighted gains method

gw  as follows:

for all  where  solves min{
N

N t x y g N t x w x w x ti i
w

i i i i, , : ( , , ) min{ , } , }= = =∑λ λ λ

Its dual method is the weighted losses method lw :

for all  where  solves N t x y l N t x x w x w ti i
w

i i i i
N

, , : ( , , ) max{ , } max{ , }= = − − =∑µ µ µ0 0

The Uniform Gains and Uniform Losses methods are the two particular methods

corresponding to uniform weights ( )w ii =1 for all .  Note that when the weights of the different

agents are very unequal, the methods gw  and lw  become arbitrarily close to any priority
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method: it will be enough to guarantee that if agent i is higher than agent j in the priority

ordering, his weight becomes infinitely bigger than agent j's weight.

Clearly, the methods gw  and lw  meet all four invariance axioms CSY, UC, LC and SI.  In

view of Proposition 1.9, we can construct many rationing methods meeting the four invariance

axioms as follows.  Partition arbitrarily the set ��  in “priority classes” and order these classes.

In each priority class, use either the proportional, or a weighted gains, or a weighted losses

method.  An example is provided by the American bankruptcy law, which arranges the creditors

in priority classes and uses the proportional method within each class (Kaminski [2000]).

In order to state the last theorem in this Part, we need two more definitions.  We say that the

rationing method r gives priority to agent i over agent j if j does not get anything unless i's

demand is met in full: y y xj i i> ⇒ =0  (for all N t x, , ).  We say that a rationing method is

irreducible if for any pair i j, , r does not give priority to i over j.  For instance pr, g lw w and 

(for any w) are all irreducible (recall that we require positive weights wi ).

Theorem 1.5. (Moulin [2000])

i) Let r be a rationing method meeting Consistency, Upper and Lower Composition and

Scale Invariance.  Then there is a partition �� = ∪ α�� , an ordering σ  of � , and for each α

an irreducible method rα  meeting CSY, UC, LC and SI such that:

( )[ ,r prio rασ α= ∈� ]

ii) Let r be an irreducible method meeting Consistency, Upper and Lower Composition and

Scale Invariance.  If ��  contains at least three agents, then r is either the proportional method,

or a weighted gains method, or a weighted losses method.

In Moulin [2000], the somewhat involved family of irreducible methods for the case � 2=

is described in full.

Within the family uncovered in Theorem 1.5, our three basic rationing methods are the only

symmetric methods (except in the case � 2= ).

Corollary to Theorem 1.5. Assume ��  contains at least three agents.  Then there are

exactly three rationing methods satisfying Equal Treatment of Equals and the four invariance

axioms: they are the Proportional, Uniform Gains and Uniform Losses methods.
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A much needed next step in the theory of rationing methods is an asymmetric version of

Theorem 1.3: what is the set of methods consistent and continuous? Naumova [2000] offers an

asymmetric generalization of Theorem 1.4, where the utility functions measuring sacrifice are

personalized.

Another interesting open question (discussed in Moulin [2000]) is to generalize Theorem 1.5

(or its Corollary) by dropping one of the four invariance axioms. For instance a method meeting

Consistency, Scale Invariance and Upper Composition is priority to higher demands: given the

profile of demands x, this method gives priority to i over j if and only if x xi j> , and treats equal

demands equally (thus it is symmetric as well); it emerged in Section 1.5 as the limit as some

equal sacrifice methods (see the discussion of power methods (1.17)).  Its dual method, priority

to lower demands, meets all four axioms in Theorem 1.5 except Upper Composition.  The

characterization of all rationing methods meeting Consistency, Scale Invariance and one of the

composition axioms is wide open.

1.8. Fixed path methods

This important family of rationing methods contains asymmetric variants of the uniform

gains method as well as the priority methods. The fixed path methods play an important role in

Part 3 when we discuss Demand Monotonicity (Sections 3.4 and 3.6). They emerge also in the

model of fair division under single-peaked preferences (briefly discussed in Section 1.10), where

they are a key example of strategy-proof methods. In this Section we merely define these

methods and check their invariance properties.

It is necessary to place an exogeneous bound on individual demands.  This bound may be

finite or infinite.  We call it the capacity of agent i and write Xi  where Xi ≤ +∞  (real or

infinite).  A rationing problem ( , , )N t x  must now satisfy 0 ≤ ≤x Xi i  for all i.  We always

assume that xi  is finite for all i.

A fixed path method is defined from a family of monotone paths γ ( )N , one for each possible

society N.  The path γ ( )N  is a nondecreasing mapping from [ , ]0 XN  into [ , ][ ]0 X N  such that

 for all ,  for all 

 for all 

t t X N t t N t X i

N t X i

N i
N

i i

t X
i i

N

0 0≤ ≤ = ≤ ≤

=

∑

→

: ( , ) , ( , )

lim ( , )

γ γ

γ
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Note that γ  must be continuous in t.  If Xi  is finite for all i, the limit property holds true

because γ ( , ) [ ]N X XN N= .

The fixed path method rγ  is now defined as follows:

i
N

( , , ) min{ ( , ), } for all , where  is a solution of min{ ( , ), }i i i i ir N t x N s x i s N s x tγ γ γ= =∑  (1.19)

If we take x X=  ( x X N= [ ] ) in the above equation, we find

γ γ( , ) ( , , )N t r N t X= (1.20)

Examples of fixed path methods include the uniform gains method (for the path ug N t X( , , ) )

any weighted gains method, and any priority method prio( )σ .  Note that a priority method can

be represented as a fixed path method only if all capacities Xi  are finite (with the possible

exception of the capacity of the last agent in the priority ordering).  The path t prio N t X→ ( , , )

follows the edges of the cube [ , ]0 X  in the order specified by σ .

If X Xi j=  for all i j, , uniform gains is a symmetric fixed path method.  It is the only fixed

path method meeting Equal Treatment of Equals: indeed the path r N t X( , , )  must be diagonal by

ETE, so the claim follows from (1.20) and (1.19).

The set of fixed path methods is not stable by duality: for instance uniform losses is not

such a method.  It contains no self-dual method.

Proposition 1.10.

i) All fixed path methods meet Upper Composition.  They generally fail Lower Composition.

ii) A fixed path method is consistent if and only if the associated paths N N→γ ( )  commute

with the projection operator:

( )
[ ] [ ]for all , , : ( ) namely ( , ) ( , ( , )) for all N
S S SN S S N S N t S N t tγ γ γ γ γ⊆ = = (1.21)

Note that all the methods obtained by a priority composition of weighted gains methods (see

Proposition 1.9) are fixed path methods and satisfy Lower Composition.  I conjecture that there

is no other fixed path method meeting LC.

The property (1.21) in statement ii) is especially easy to read when the maximal set ��  of

potential agents is finite.  The single path (γ �� ) from 0 to X ����  generates the entire family of

paths γ ( )N  by simple projection on N.  In this case we can really speak of a one path method.
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1.9. Rationing indivisible goods

We modify the rationing model assuming that the commodity being distributed comes in

indivisible units.  Examples include cars, appliances, seats for a concert or in a plane, organs for

transplant, etc.

The formal model is identical, except that all the variables t x yi i, ,  are nonnegative integers.

The definitions of a rationing problem, a solution, and a rationing method are unchanged.  The

set of such methods is denoted 
��

� .  The duality operation is unchanged.

It is convenient to think of a rationing method as a scheduling algorithm.  Fix N and x and

restrict attention to resource monotonic rationing methods.  The path t r N t x→ ( , , )  is described

as a sequence { , , }i iK1 �  in N K x iN, where  and = 1  is the agent receiving the first unit

( ( , , )r N x1  gives the unit to i1), i2  is the agent receiving the second unit and so on.  In the

sequence { , , }i iK1 � , agent i appears exactly xi  times, for all i.

The definitions of Consistency, Upper and Lower Composition, are all unchanged.  Note that

Consistency has a particularly simple formulation in terms of the sequence { , , }i ik1 �  describing

the path t r N t x→ ( , , ) .  The axiom says that by simply dropping all occurrences of a certain

agent i in this sequence, we obtain the sequence describing the path t r N i t x N i→ ( \ , , )[ \ ] .

Symmetry is lost when we allocate indivisible goods, as long as the allocation is

deterministic. If we now think of the division of resources as a random variable, we can restore

this basic equity property, at least in the ex ante sense. It turns out that the probabilistic rationing

of indivisible goods arise naturally in the discussion of additive cost sharing methods in Part 3 –

an entirely deterministic model –.

A probabilistic rationing method associates to every deterministic rationing model

( , , ) N t x (where  and it x are integers) a random variable Y  such that, with probability one,

0 i iY x≤ ≤  for all i and NY t= . The three basic methods pr, ug and ul have a canonical

probabilistic analog.

To define the proportional method, fix the profile of claims ix  and throw ix  balls of color i

in an urn, for each i N∈ ; drawing from the urn t times, independently and without replacement

– and with uniform probability – generates the random variable ( , , )Y r N t x=  of the random

proportional method. Clearly, the expected value of iY  is agent i’s proportional share .( / )i Nt x x .
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The random proportional method meets Consistency, Upper and Lower Composition, as well

as Equal Treatment of Equals (ex ante). Conversely, the method is characterized by ETE, UC

and LC: Moulin [1999b].

The probabilistic analog of uniform gains is called Fair Queuing (Shenker [1995], Demers et

al. [1990]). Given a profile of claims ix , this method gives away one unit to each agent in round

robin fashion, selecting randomly and with uniform probability the ordering in which they

receive each unit; an agent drops out only when his claim is not met in full. The expected value

of agent i’s share after t units have been distributed is exactly his uniform gains share in the

deterministic problem ( , , )N t x .

The Fair Queuing method meets Consistency and Upper Composition, but fails Lower

Composition. Moulin and Stong [2000] show that this method is characterized by the

combination of CSY, UC, and a strong form of Equal Treatment of Equals: two agents with

identical claims have equal expected shares, and their actual (ex post) shares never differ by

more than one unit.

The dual method, Fair Queuing* allocates each unit with equal probability among the agents

with the highest remaining claim, i.e., their initial claim net of the units received in earlier

rounds.

The characterization results in the probabilistic model of rationing are generally sharper than

in the classical model. Moulin and Stong [2000] provide very complete descriptions of the set of

methods meeting UC and LC, or CSY and UC (or CSY and LC).

1.10. Two variants of the rationing model

a) Surplus sharing

In a surplus sharing problem ( , , )N t x , the resources t must be divided according to the

profile of claims x and we assume t xN≥ : the resources exceed the sum of individual claims.

One interpretation is that xi  is the amount of investment contributed by agent i to a joint venture,

and t is the total return, allowing a profit t xN− .  Alternatively, the resources being distributed

are undesirable (a tax, a workload) and agent i's claim xi  entitles him to receive no more than a

share xi  of the total liability.  These claims are not compatible.
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A solution y to the surplus sharing problem allocates a share yi  to agent i in such a way that

0 ≤ ≤x yi i  and y tN = .  A surplus sharing method d associates a solution y d N t x= ( , , )  to

every surplus sharing problem ( , , )N t x .

The Proportional surplus sharing method is given by the same formula as in the rationing

case. Uniform Gains is defined as follows:

N

( , , ) max  { , }   where  is the solution of max { , }i i i iy ug N t x x x tλ λ λ= = =∑
The counterpart of the Uniform Losses rationing method simply divides the surplus equally,

and for this reason we call it the egalitarian method:

1
( , , ) ( )i i i Ny eg N t x x t x

n
= = + −

In the surplus sharing model there is no duality operation, hence no analog to the Contested

Garment method.

Consistency and Scale Invariance have the same definition but there is only one Composition

axiom:

for all N t t x x t t d N t x d N t d N t xN, , , : ( , , ) ( , , ( , , ))′ ≤ ′ ≤ ⇒ = ′ (1.22)

Several axiomatic results about rationing have a direct counterpart in the surplus sharing

model, and several new results emerge as well. For instance, the proportional method is

characterized, as in Theorem 1.1, by Independence of Merging (or Splitting), or by

Decomposition. On the other hand, many surplus sharing methods meet No Advantageous

Reallocation, including the egalitarian method.

Theorems 1.3 about parametric methods and Theorems 1.4 about equal sacrifice methods are

readily adapted to the surplus sharing context: Young [1987], Moulin [1987].

The following result is the counterpart of Theorem 1.5 and its Corollary. The asymmetric

generalizations of the egalitarian method divide the surplus in proportion to a set of fixed shares

, 0i iw w ≥  for all i and 1Nw = :

( , , ) .( )w
i i i i Ny r N t x x w t x= = + −

The proportional method and the fixed share method wr meet No Advantageous Reallocation,

Consistency, Composition and Scale Invariance. Conversely, these four axioms characterize this

family of surplus sharing methods. If we add Equal Treatment of Equals to the list of

requirements, only the Proportional and the Egalitarian methods are left. See Moulin [1987].
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b) Fair division with single-peaked preferences

Think of a context where the size of agent i's claim/demand xi  is private information, so that

agent i may choose to misrepresent its actual value if this proves beneficial.  We make the

following assumption on individual preferences over shares: given that his (real) claim/demand

is xi , agent i strictly prefers y yi i to ′  if ′ < ≤y y xi i i  but strictly prefers ′ ≤ ′ <y y x y yi i i i i to  if .

This is the familiar assumption of singlepeakedness.  It is a realistic assumption in the rationing

problem if the resources being distributed are not freely disposable: think of food that must be

eaten in one day, or of a share in a risky venture.  For examples and discussion of this

assumption see Sprumont [1991] or Barbera, Jackson and Neme [1997].

A fair division method works as follows in this context. The mechanism elicits the peaks of

individual preferences (corresponding to the claims xi  in the rationing or surplus sharing

models) and each peak xi  can be anywhere in the fixed interval [ , ]0 Xi .  For a given amount of

resources t, the sum of individual claims xN  may be smaller or larger than t.  Thus the allocation

problem may be a rationing problem or a surplus sharing problem and an allocation method is a

pair of one rationing and one surplus sharing method.

Incentive compatibility of this mechanism is the strategy-proofness property: reporting one’s

true peak is optimal for every agent, irrespective of other agents’ reports.

The key observation is that Uniform Gains (used both for the rationing and the surplus

sharing cases) is a strategy-proof method, and so are all the fixed paths methods, where a

different path can be used for the rationing and for the surplus sharing cases. Conversely,

Uniform Gains is characterized by Strategy-proofness, Efficiency and Equal Treatment of

Equals: Sprumont [1991], see also Ching [1994]. Similarly, the consistent fixed path methods are

characterized by Strategy-proofness, Efficiency, Consistency and Resource Monotonicity:

Moulin [1999a], see also Barbera, Jackson and Neme [1997].

There is also a sizable literature looking at the fair division problem with singlepeaked

preferences from an equity angle, and where axioms such as No Envy or Population

Monotonicity play a big role: see Thomson [1994a, b], [1995], [1997], Schummer and Thomson

[1997] and references there.  Once again Uniform Gains stands out as the method of choice.
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2. Sharing variable returns

2.1. The problem and some examples

A (one-dimensional) cost sharing problem is a triple ( , , )N C x  where N is a finite set of

agents, C is a continuous nondecreasing cost function from R+  into R+  such that C( )0 0= , and

x xi i N= ∈( )  specifies for each agent i a demand x xi i, ≥ 0 .

A solution to the cost sharing problem ( , , )N C x  is a vector y yi i N= ∈( )  specifying a cost

share for every agent and such that

y i y C xi i i
i Ni N

≥ =
∈∈
∑∑0 for all , ; ( ) (2.1)

A surplus sharing problem is the same mathematical object as a cost sharing problem but its

interpretation is different: the given function is denoted F (to avoid confusion) and is now a

production function; if total input contribution is z, total output is F z( ) ; next xi  is agent i's input

contribution and yi  is agent i's share of the total output F xN( ) .  The whole axiomatic discussion

is unaffected by the choice of one or the other context, although certain axioms are not equally

natural in both contexts. With the exception of a few examples, we use the cost sharing

interpretation and terminology throughout Parts 2 and 3.

A cost sharing method (resp. a surplus sharing method) is a mapping ϕ  associating to any

cost sharing (resp. surplus sharing) problem a solution y N C x= ϕ( , , ) .  We denote by �  the set

of cost sharing methods thus defined.

Note that variable population axioms play no role in this Section (see comment b) in Section

2.5).  Therefore, omit N in the variables of ϕ : we write y C x= ϕ( , ) .

The question addressed in this Section is the equitable division of cost (or surplus) shares

when the returns of the technology vary.  In other words our initial postulate is that constant

returns pose no equity issue whatsoever: costs (or surplus) shares must simply be proportional to

individual demands of output (resp. contributions of input).  This corresponds to the following

axiom on the cost sharing method ϕ .

Constant Returns

{ ( ) . } { ( , , ) . } , ,C z z z N C x x N C x= ≥ ⇒ = ≥λ ϕ λ λ for all  for all  all  all  all 0 0 (2.2)
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A simple example of a cost sharing problem with increasing returns (decreasing average

cost) is discount pricing.  The agents in N are grouping their order of wine (there is only one

quality of wine).  Wine can be bought at the local store at price p1  or at a lower price p2  from a

discount retailer located far away.  In the latter case a fixed transportation cost c0  (independent

of the shipment size) must be added.  Hence the cost function:

C z p z c p z( ) min{ , }= ⋅ + ⋅1 0 2 (2.3)

If the total demand xN  justifies buying from the discount retailer (if x c p pN > −0 1 2/ ( ) )

how should total cost be split among the buyers?  With several suppliers, the cost function C

takes the form of a concave, increasing and piecewise linear function starting at C( )0 0= .

Our second example is a cost sharing problem with decreasing returns (increasing average

cost).  Think of N as encompassing all the consumers of a certain good (N is a monopsonist for

this good) competitively supplied.  Thus the demand z is met at price S z−1( ) , where the supply

function p S p→ ( )  is increasing; the resulting cost function C z z S z( ) ( )= ⋅ −1  has decreasing

returns.

In the surplus sharing context, we find symmetrical examples displaying increasing or

decreasing returns technologies.  For instance, the agent in N may be monopolizing the supply of

a certain good for which the demand is competitive.  The market absorbs z units of output at

price D z( )  where D is decreasing; hence the revenue function F z z D z( ) ( )= ⋅  has decreasing

returns.

A simple example with increasing returns involves fixed costs (as in example (2.3)).  The

agents can use a technology with constant returns r1  and no fixed input cost, or they can pay a

fixed input cost c0  and benefit from higher returns r2 :

F z r z r z c( ) max{ , ( )}= ⋅ ⋅ −1 2 0 (2.4)

A brief overview of Part 2 follows.  In Section 2.2, the average cost sharing method is

characterized in precisely the same way as proportional rationing in Section 1.2.  Serial cost

sharing is introduced in Section 2.3: together with average cost sharing, it plays the key role in

the current model.  In Section 2.4 the property of Additivity (of cost shares with respect to the

addition of cost functions) is defined and the main theorem derived: the set of rationing methods

is isomorphic to that of additive cost sharing methods; in particular serial cost sharing



37

corresponds to the uniform gains rationing method.  Some variants and open questions are

gathered in Section 2.5.

2.2. Average cost method

The simplest cost sharing method divides total cost in proportion to individual demands.  It is

denoted ac:

y ac C x
C x

x
xN

N
= = ⋅( , )

( )
(2.5)

(of course, if xN = 0  we must have y = 0 ).  The average cost method entirely ignores the

returns of the technology between 0 and the total demand xN .  From all the methods discussed

in this Section, it is the most informationally economical.  This is convenient from an

implementation viewpoint, but has no normative appeal per se.

A first type of axiomatic justification for this method mimics those of the proportional

rationing method in Section 1.2.  The axioms of No Advantageous Reallocations ( )NAR ,

Irrelevance of Reallocations (IR), and Independence of Merging and Splitting (IMS) are

transported word for word from that context to that of cost sharing methods by simply replacing

the resources t in rationing by the cost function C.  Theorem 1.1 has the following counterpart.

Theorem 2.1.  Assume N contains three agents or more.  The average cost method meets the

three properties NAR, IR and IMS, as well as the following property:

No Charge for Null Demand

{ } { ( , , ) } ,x y N C x C x ii i i= ⇒ = =0 0ϕ  for all  and all (2.6)

Conversely, the average cost method is the only cost sharing method charging nothing for a

null demand and meeting any one of NAR, IR or IMS.

The interpretation of (2.6) in the case of cost sharing is that no one should have to pay

anything for no output; in the case of output sharing, it is sometime referred to as “No Free

Lunch”: you don't receive any output if you did not participate in the production process by

contributing some money or some labor.  All methods discussed in Sections 2.2 to 2.4 satisfy

(2.6).  In Section 2.5 we give some arguments against this axiom and offer a method that violates

it.
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The interpretation of the three axioms NAR, IR and IMS is the same as in the case of

rationing: one does not need to monitor the "identity" of the various units of demands (whether a

certain unit comes from an agent with a large or small demand is irrelevant).  Any unit of

demand is treated anonymously and therefore there is no benefit in passing them around.

2.3. Serial cost sharing

The average cost (average returns) method entirely ignores the variation of the returns

between 0 and xN .  When those returns vary widely and when individual demands are of very

different size as well, this result in an unpalatable distribution of costs (or output).  Consider the

(decreasing returns) cost function

C z z a a( ) ( ) ( ) max{ , }= − =+ +10 0 where,  as usual,  (2.7)

The first 10 units are free, and additional demands cost 1 per unit.  Say N = { , , }1 2 3  and

consider the profile of demands x = ( , , )3 5 7 .  The average cost method gives y = ( , , )1 1 22
3

1
3 .

Is it fair that agent 1 pays anything, when he could argue that his fair share of the 10 free units is

3 1
3  and that he is not consuming that much?  The point is that agent 1 is charged the high

average cost that he did not cause in the first place: as C x( )3 01 = , if no one else asks more than

he does, no one has to pay; hence he should not be held responsible for costs that only arise

because other agents demand more than he does.

Notice that, viewed in the light of output sharing, the argument is less convincing: here

F z z( ) ( )= − +10  is a production function requiring a fixed cost of 10 before output can be

collected (a particular example of (2.4)).  Agent 1's contribution of 3 units of input is useful,

even if applied to pay the fixed cost; other agents should give him some share of the output.

Next we look at the (increasing returns) cost function (a special case of the discount pricing

example (2.3)):

C z z
z

( ) min{ , }= +9
10

(2.8)

with x = ( , , )3 5 7 .  Average cost yields y = ( . , . , . )21 35 4 9  so agent 1 ends up paying less than his

Stand Alone cost C x( )1 3= .  Note that the first 10 units cost 1 apiece, and that the price drops to

.1 for each additional unit.  This time, agents 2 and 3 protest that they were the ones responsible
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for reaching the low marginal cost, because 3 101x < , so agent 1 should not get any benefit from

that; his fair share of the cost is 3 because the returns are constant up to the level 3 1x .

Notice that the argument is even stronger in the output sharing context.  The production

function has a high return of 3 up to 10 units of input, after which the return drops to 1
10 .  Agent

1 is entitled to a fair share of the “good returns”: as his “demand” falls below this fair share 10/3,

he should receive 9 units of output, a far cry from what the average returns method offers him.

The above discussion suggests the following upper and lower bounds on cost shares,

depending on the variation of marginal costs/returns.  The set N is fixed and #( )N n= .

Increasing marginal costs bounds (IMC bounds)

if  is convex  for all  all C C x y C x
C nx

n
i xi i i

i: ( ) ( , )
( )

,≤ = ≤ϕ (2.9)

Decreasing marginal cost bounds (DMC bounds)

if  is concave:  for all  all C
C nx

n
y C x C x i xi

i i i
( )

( , ) ( ) ,≤ = ≤ϕ (2.10)

We let the reader check that each one of the announced bounds is compatible with budget

balance in the corresponding domain of cost functions.  For instance a convex cost function such

that C( )0 0=  is subadditive hence the left-hand inequality in the IMC bound is feasible.  And so

on.

Consider a convex cost function.  The Stand Alone lower bound y C xi i≥ ( )  says simply that

no agent can benefit from the presence of other users of the technology.  This is compelling

when marginal costs increase because the consumption of any user creates a negative externality

on that of any other user.  Indeed, most cost sharing methods discussed in Part 2 meet the Stand

Alone lower bound when C is convex, and the Stand Alone upper bound when C is concave

(case where any user creates a positive externality on any other user).  This is true for all additive

methods: Corollary 1 to Theorem 2.1.

By contrast, the two remaining inequalities in (2.9) (2.10) fail for the average cost method, as

shown by the numerical examples above.

Consider again a convex cost function and the Unanimity Upper Bound y C nx ni i≤ ( ) / .

This says that an agent's cost share cannot exceed her share when all agents demand the same

amount as she does (and are treated equally).  Given that marginal costs increase, this conveys

the idea that agent i is entitled to a fair share of the “good” marginal costs, namely those of the
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first nxi  units.  Think of the scheduling example: we are saying that all agents have an equal

right to the best (i.e., the earliest) slots in the queue.  If xi  is much smaller than the other

demands, this bound has a lot of bite.

A symmetrical interpretation holds for the Unanimity Lower Bound ( ( ) /y C nx ni i≥ ) when

C is concave: in the output sharing context, it says that agent i is entitled to a fair share of the

good marginal returns; in the cost sharing context, that she should accept her fair share of

responsibility for the “bad” marginal cost.  See Moulin [1992] for a general discussion of the

notion of unanimity bounds.

The serial cost sharing formula (Shenker [1995], Moulin and Shenker [1992]) is directly

inspired by the unanimity bounds.  Fix C and a profile of demands x.  We start by relabeling the

agents by increasing demands: x x xn1 2≤ ≤ ≤� .  First we split equally the cost of the first nx1

units among all agents.  Now agent 1 is served (and pays C nx n( ) /1 ) and we split equally the

cost of additional units between the remaining agents { , , , }2 3 � n , until agent 2 is served, and so

on.  Formally we define a sequence x i ni , , ,= 1�  as follows:

x nx x x n x x n i x x x xi
i j

n
N

j

i
1

1
2

1 2
1

1

1 1= = + − = − + + =
=

−

∑; ( ) ; ; ( ) ; ;� � (2.11)

Note that the sequence xi  is nondecreasing.  The serial cost shares are now:

y
C x

n
y y

C x C x

n
y y

C x C x

n ii i

i i

1

1

2 1

2 1

1

1

1 1
= = + −

−
= + −

− +−

−( )
;

( ) ( )
; ;

( ) ( )
;� � (2.12)

or equivalently:

y
C x

n
y

C x

n

C x

n n
y

C x

n i

C x

n j n ji

i j

j

i

1

1

2

2 1

1

1

1 1 1 1
= =

−
−

−
=
− +

−
− + −=

−

∑( )
;

( ) ( )

( )
; ;

( ) ( )

( )( )
� (2.13)

In the cases n n= =2 3 and  the general formulas (2.12), (2.13) are simple:

1 2 1 1 2 1 2 1

1 2 3 1 1 2 1 2 1

3 1 2 1

1 1
2, : (2 ) ; ( ) (2 )

2 2
1 1 1

3 ; : (3 ) ; ( 2 ) (3 ) ;
3 2 6

1 1
( ) ( 2 ) (3 )

2 6N

n x x y C x y C x x C x

n x x x y C x y C x x C x

y C x C x x C x

= ≤ = = + −

= ≤ ≤ = = + −

= − + −

For instance, in the numerical examples discussed above:
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{ ( ) ( ) , ( , , )} ( , . , . )

{ ( ) min{ , }, ( , , )} ( , . , . )

C z z x y

C z z
z

x y

= − = ⇒ =

= + = ⇒ =

+10 3 5 7 0 15 35

9
10

3 5 7 3 365 385

Recall from the discussion after (2.7), that the serial cost share 1 0y =  is plausible in the cost

sharing interpretation, less so in a surplus sharing story. Similarly in the case of the cost function

(2.8), the serial cost share 1 3y =  denies any cost saving to agent 1, despite the fact that his

presence increases the cost savings of the other two agents: this is clearly an extreme

interpretation of fairness in this example.

In the examples, the agent with the smallest demand prefers his serial cost share to his

average cost share in the example with increasing marginal cost and his preferences are reversed

in the example with decreasing marginal cost.  The preferences of the agent with the largest

demand are diametrically opposed.  This is a general fact.

Kolpin [1998] proposes further interpretations of the serial formula in terms of linear pricing.

We conclude Section 2.3 by generalizing the decentralized bounds (2.9), (2.10) for the serial

cost shares to a cost function with arbitrary returns.  That is, we give an upper and a lower bound

on y C xi i= ϕ ( , )  that only depend upon C, xi  and n, the number of users.  This is important for

an uninformed agent, who cannot assess the size of other agents' demands.

Proposition 2.1. The serial cost sharing method meets the Increasing Marginal Costs bounds

((2.9)) and the Decreasing Marginal Costs bounds ((2.10)).  Moreover, for any non decreasing

cost function C (such that C( )0 0= ), it satisfies the following Universal Bounds:

1

n
C x y C x C nxi i i i( ) ( , ) ( )≤ = ≤ϕ (2.14)

It is easy to check that the average cost method fails both universal bounds.  Take the cost

function (2.7) and x = ( , , )3 5 7 : the upper bound is violated for agent 1.  Take the cost function

(2.8) and x( , , )3 20 27 : the lower bound is violated for agent 1.

The universal bounds are deceptively mild: they eliminate many appealing cost sharing

methods.  Among the additive methods analyzed in Section 2.4, the universal lower bound is met

by many methods besides serial cost sharing.  For instance the Shapley-Shubik cost sharing

method (see Section 2.4) meets this bound, and so does any convex combination of serial and

Shapley-Shubik.  On the other hand the universal upper bound essentially characterizes serial

cost sharing: Theorem 2.3 below.
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2.4. Additive cost sharing

In the rationing problem, the requirement that the solution y depends linearly upon the

resources t is enough to single out the proportional rationing method: Chun [1988].  By contrast,

in the cost sharing problem with homogeneous goods, there is a rich family of cost sharing

methods where the solution y C x= ϕ( , )  depends additively upon the function C.  Theorem 2.2

below establishes a linear isomorphism between this family and the set of (resource monotonic)

rationing methods.  Thus Additivity leaves a lot of maneuvering room to the mechanism

designer.

With a slight abuse of notation we denote by �  the set of monotonic rationing methods

(note that all rationing methods discussed in Part 1 are monotonic). An element r of �  defines

for all Nx +∈R  a monotonic (hence continuous) path ( , )t r t x→ from 0 to x:

0 ( , ) ,  ( , )   for all ,0N Nr t x x r t x t t t x≤ ≤ = ≤ ≤

' ( , ) ( ', )  for all , ',0 ' Nt t r t x r t x t t t x≤ ⇒ ≤ ≤ ≤

The domain �  of cost functions consists of all the functions C that can be written as the

difference of two convex functions: this domain contains all the twice continuously differentiable

functions, as well as all the piecewise linear functions. Naturally, we also require each function C

in �  to be non decreasing and such that (0) 0C = .

We denote by �  the set of cost sharing methods: an element ϕ  of �  associates a solution

( , )C xϕ  to every cost sharing problem ( , )C x  where C∈�  and Nx +∈R . In addition to Constant

Returns (2.2), we consider the following powerful axiom:

( )Additivity ADD

1 2 1 2 1 2( ; ) ( ; ) ( ; )   for all ,  all C C x C x C x C C xϕ ϕ ϕ+ = + ∈�� (2.15)

This property allows to decompose the computation of cost shares whenever the cost

function itself can be additively decomposed. This commutativity brings a sharp representation

result: the additive cost sharing methods are isomorphic to rationing methods.

We denote by tΓ  the cost function ( ) min{ , }t z z tΓ =  (easier to interpret as a production

function: returns are one until the level t , then drop to zero). Finally we denote by

� ( , ,...)P Q the subset of cost sharing methods meeting the properties , ,...P Q
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Theorem 2.2. (Moulin and Shenker [1994]). Consider the following two mappings, from

� into �  (CR,ADD) and from �  (CR,ADD) into � :

0
:  ( , ) '( ) ( , ) for all ,all  

Nx
r C x C t dr t x C xϕ ϕ→ = ∈∫ �  (2.16)

:   ( , ) ( , )  for all ,tr r t x x t xϕ ϕ→ = Γ (2.17)

These two mappings define a linear isomorphism from � into �  (CR,ADD) and back.

Corollary to Theorem 2.2. All cost sharing methods in �  (CR, ADD) meet the following

properties:

i) No charge for null demand: 0 0i ix y= ⇒ =

ii) Stand Alone lower (upper) bound under increasing (decreasing) marginal costs:

 convex ( ) for all , ,  all S SC y C x C x S N⇒ ≥ ⊆

 concave ( ) for all , ,all S SC y C x C x S N⇒ ≤ ⊆

Theorem 2.2 establishes a precise isomorphism between monotonic rationing methods and

additive cost sharing methods. In particular, the key methods on both sides are matched, and

many of the normative requirements in one model have a counterpart in the other one. Below is a

list of rationing methods and cost sharing methods matched by the linear isomorphism.

a) proportional rationing ↔ average cost sharing

In � , the proportional method gives to every dollar of claim the same right to the resources t

; similarly in � , average cost sharing gives to every unit of demand the same responsibility in

total cost (every unit of input is entitled to the same output share).

b) uniform gains rationing ↔ serial cost sharing

Fix N and x, and label the agent so that 1 2 ... nx x x≤ ≤ ≤ . Agent i’s share ( , )i iy ug t x=  where

t varies in [0, ]Nx is easily computed, with the help of the sequence ix  given by (2.11):

1 1
if 0 : it x y t

n
≤ ≤ =

1 2 1
1

1
if : ( )

1
...

ix t x y x t x
n

≤ ≤ = + −
−

1 1
1

1
if : ( )

1

...

j j j
i jx t x y x t x

n j
− −

−≤ ≤ = + −
− +
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1 1
1

1
: ( )

1

          : 

i i i
i i

i
i i

x t x y x t x
n i

x t y x

− −
−≤ ≤ = + −

− +
≤ =

Therefore the cost sharing method associated with uniform gains by (2.16) is precisely given

by (2.12), as claimed.

In �  the uniform gains method gives an equal claim to all agents on the first units of

resources until their claim is met. Similarly, serial cost sharing makes all individual demands pay

an equal share of the first units produced until their demand is met.

c) priority rationing ↔ incremental cost sharing

To an ordering σ of the agents in N−  a mapping from {1,...., }n into N−  we associate the

following incremental cost sharing method:

1 1 2 1 2 1

1

1 1

( );  ( ) ( );...; ( ) ( )
i j j

i i

j j

y C x y C x x C x y C x C xσ σ σ σ σ σ σ σ σ

−

= =

= = + − = −∑ ∑ (2.18)

It corresponds to the priority rationing method ( )prio σ  (see formula (1.8)).

d) random priority ordering ↔ Shapley-Shubik cost sharing

The averaging operation is preserved by the linear isomorphism, therefore the Random

Priority rationing method ((1.9)) is associated with the arithmetic average of all incremental cost

sharing methods. This method, originally proposed by Shubik [1962], distributes costs according

to the Shapley value of the Stand Alone cost game:

0 1 \

!( 1)!
( ( ) ( ))

!i S i S
s n S N i

S s

s N s
y C x C x

n ∪
≤ ≤ − ⊆

=

− −= −∑ ∑ (2.19)

In the case of two agents, this gives the cost sharing method corresponding to the contested

garment rationing method:

1 2

1
{ ( ) ( ) ( )}  where { , } {1,2}

2i i jy C x x C x C x i j= + + − = (2.20)

The Shapley-Shubik method plays an important role in the model with heterogeneous goods

(Part 3); its characterization there (Corollary 1 to Theorem 3.4) is quite convincing. Contrast this

with the lack of normative arguments in favor of Random Priority rationing, or in favor of the

Shapley-Shubik method in the current model with one homogeneous good.

The isomorphism in Theorem 2.2 also suggests new cost sharing methods corresponding to

simple rationing methods. For instance Uniform Losses gives rise to a “dual” serial method,
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where all users pay an equal share of the last units produced (instead of the first units, in the case

of serial cost sharing) until the smallest demand is satisfied, after which the remaining users

share equally the cost of the next highest units, and so on. In the case of two agents with 1 2x x≤ ,

this gives the following cost shares:

1 1 2 2 1 2 1 2 2 1

1 1
( ( ) ( ));   ( ( ) ( ))

2 2
y C x x C x x y C x x C x x= + − − = + − −

The Talmudic rationing method (1.10) leads to a somewhat exotic method, except in the case

of two agents, where it coincides with the Shapley-Shubik method. For 3 n = and 1 2 3x x x≤ ≤ ,

the method associated with Talmudic rationing gives the following cost shares:

1 1
1 1 2 3 2 3

1 1 1 3
( ) ( ) ( )

3 3 2 3 2

x x
y C x x x C x x C= + + − + − +

1 1 1 1
2 1 2 3 2 3 2 3

1 1 1 3 1 1
( ) ( ) ( ) ( ) ( )

3 6 2 6 2 2 2 2 2

x x x x
y C x x x C x x C C x C x= + + − + − − + + − +

1 1 1 1
3 1 2 3 2 3 2 3

1 1 1 3 1 1
( ) ( ) ( ) ( ) ( )

3 6 2 6 2 2 2 2 2

x x x x
y C x x x C x x C C x C x= + + + + − − − + + +

We conclude this subSection by a characterization of serial cost sharing within the set

� ( , )CR ADD . All methods in this set meet the Stand Alone bounds when the cost function is

either convex or concave (Corollary to Theorem 2.2), but they typically fail the Universal

Bounds (2.14). The Shapley-Shubik method meets the lower bound (because in the sum (2.19)

the term with S = ∅  has weight 1/ n ) but fails the upper bound (even for 2n = ).

The universal upper bound is a key ingredient in the characterization of the serial method; yet

it is not sufficient to single out this method in� ( , )CR ADD .

Consider the counterpart of zero-consistency for rationing methods (property (1.6)):

[ ] [ ]\ \{ 0} { ( , , ) 0 and ( , , ) ( \ , , )} for all , , ,  i i N i N ix N C x N C x N i C x N C x iϕ ϕ ϕ= ⇒ = = (2.21)

Within � ( , )CR ADD  this property is isomorphic to the axiom (1.6). It is a very mild

requirement, met by all cost sharing methods discussed in Part 2 (with the exception of some

methods allowing for negative cost shares: see Section 2.5, point a).

In order to pin down the serial method, we strengthen Zero Consistency by allowing the

removal of a non paying agent, provided we make sure to serve his demand (that could be strictly

positive). Given a method in� , the property is stated as follows:
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[ \ ] [ \ ]{ ( , , ) 0} { ( , , ) ( \ , , )i N i N iN C x N C x N i C xϕ ϕ ϕ= ⇒ = �

where ( ) ( )}  for all , ,  and iC z C z x N C x i= +� (2.22)

(Note that C�  will have a jump at 0 if ( )iC x  is positive; but the universal lower bound

guarantees ( ) 0)iC x = .

The last ingredient is the unobjectionable equity requirement called Ranking:

i j i jx x y y≤ ⇒ ≤ . Note that the Ranking axiom (1.2) for rationing methods conveys the same

idea (is even written in the same way) but is not equivalent via the linear isomorphism. If the

rationing method r meets Ranking, the corresponding cost sharing method may not do so.

Theorem 2.3. (Moulin and Shenker [1994])

Serial cost sharing is characterized by the combination of the five axioms Constant Returns,

Additivity, Universal Bounds (2.14), Ranking, and property (2.22).

2.5. Variants of the model and further axioms

a) Distributivity (Moulin and Shenker [1999])

The Distributivity axiom expresses the commutativity of the computation of cost shares with

respect to the composition of cost functions:

( )Distributivity DIS

1 2 1 2 1 2( , ) ( , ( , )) for all , ,and all C C x C C x C C xϕ ϕ ϕ= ∈� �

The addition of cost (or production) functions corresponds to technologies operating in

parallel: a given demand of output (resp. a contribution of output) yields two types of costs, e.g.,

advertising costs and production costs, (resp. enters two production functions). Their

composition corresponds to technologies running sequentially: 2 1
2 1 2( ) ( ),x y C x y C y→ = → =

the input of 2C  is the output of 1C  (and a similar interpretation if 1 2,C C  represent production

functions). Both axioms, Additivity and Distributivity, allow us to decompose the computation

of cost shares if the cost or production function itself is decomposed.

One consequence of Distributivity (with no counterpart in the case of Additivity) is

reversibility of fairness:

1( , ) ( , ) for all ,y C x x C y x yϕ ϕ −= ⇔ =
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Given a pair (x, y) with one profile of outputs and one profile of inputs, we can either take the

profile of demands as given and check that y is the corresponding fair profile of costs shares for

the given cost function, or we can take the vector y as given and check that x is fair for the given

production function. These two tests are equivalent for a distributive method.

Distributive methods include average cost sharing, serial cost sharing, as well as any

incremental method. Yet the Shapley-Shubik method (2.19) is not distributive, and in fact a

proper convex combination (with fixed coefficients) of distributive methods is never distributive!

Moulin and Shenker [1999] characterize the rich family of additive and distributive methods

(meeting Constant Returns). In this family, average cost sharing is the only self-dual method (a

result related to Proposition 1.6), and serial cost sharing the only method meeting the universal

lower bound (or upperbound) (2.14).

b) Negative cost shares and the decreasing serial method

In some contexts it makes sense to allow negative cost shares ( 0)iy <  or to charge for a null

demand ( 0 and 0)i ix y= > .

Suppose marginal costs increase (as in the monopsonist example of Section 2.1). Then an

agent who demand little or nothing (who refrains from demanding much) is helping the agents

with a large demand, so we may want to compensate him by giving him some money (paid for

by other agents). Symmetrically, consider an output sharing problem and suppose marginal

returns decrease. Think of the “tragedy of the commons” story: input is fishing effort and output

is the total catch in the common property lake. Then an agent who refrains from adding more

input may argue that she deserves a share of total catch (and end up with 0 and 0).i ix y= >  Note

that the dual of the two stories above, where we switch from cost sharing to output sharing or

vice versa do not ring as plausible. To punish an agent who does not work if the production

function in convex ( 0 for  small)i iy x< , or to charge one who does not demand any output if the

cost function is concave, crosses the line of acceptable coercion by the mechanism designer!

The decreasing serial cost sharing method (De Frutos [1998], Suh [1997]) follows exactly the

formulas ((2.11), (2.12), (2.13)) except that individual demands are arranged in decreasing order:

1 2 ... nx x x≥ ≥ ≥  (so that the sequence ix  is decreasing, too). With two agents and 1 2x x≥ :
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1 1 2 1 2 1

1 1
(2 ); ( ) (2 )

2 2
y C x y C x x C x= = + −

If C is strictly concave, iy  is positive whenever ix  is zero and jx  is positive; on the other

hand, no agent receives a negative cost share (this is clear in the case 2n =  and can be checked

in general on (2.11), (2.12)). If C is strictly convex, iy  is negative whenever ix  is zero and jx  is

positive.

The decreasing serial cost sharing method fails both universal bounds (2.14) and has not

received an axiomatic characterization at the time of this writing.

Hougarth and Thorlund-Petersen [1998] proposes an interesting mixture of the increasing

and decreasing serial methods, arguing that we should keep the former if C is convex and the

latter if C is concave. Their method is not additive with respect to cost functions.

c) Consistency?

The Consistency axiom played a key role for the analysis of rationing methods, but it is

absent from that of cost sharing methods. Using the linear isomorphism between rationing and

cost sharing methods, one would like to characterize the subset of � ( , )CR ADD  associated

with consistent rationing methods. This may even suggest an appropriate definition of

Consistency for general cost sharing methods. A definition of Consistency is offered by Tijs and

Koster [1998]: it suffers from the same drawback as the definition discussed in Remark 3.1

below, namely it does not work in a domain of non decreasing cost functions.

A related and equally natural question is to characterize the subset of � ( , )CR ADD

associated with the (symmetric) parametric methods (Section 1.5). Both questions are wide open.

1 1 2 1 2 1

1 1
(2 ); ( ) (2 )

2 2
y C x y C x x C x= = + −

If C is strictly concave, iy  is positive whenever ix  is zero and jx  is positive; on the other

hand, no agent receives a negative cost share (this is clear in the case 2n =  and can be checked

in general on (2.11), (2.12)). If C is strictly convex, iy  is negative whenever ix  is zero and jx  is

positive.

The decreasing serial cost sharing method fails both universal bounds (2.14) and has not

received an axiomatic characterization at the time of this writing.
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Hougarth and Thorlund-Petersen [1998] proposes an interesting mixture of the increasing

and decreasing serial methods, arguing that we should keep the former if C is convex and the

latter if C is concave. Their method is not additive with respect to cost functions.

c) Consistency?

The Consistency axiom played a key role for the analysis of rationing methods, but it is

absent from that of cost sharing methods. Using the linear isomorphism between rationing and

cost sharing methods, one would like to characterize the subset of � ( , )CR ADD  associated

with consistent rationing methods. This may even suggest an appropriate definition of

Consistency for general cost sharing methods. A definition of Consistency is offered by Tijs and

Koster [1998]: it suffers from the same drawback as the definition discussed in Remark 3.1

below, namely it does not work in a domain of non decreasing cost functions.

A related and equally natural question is to characterize the subset of � ( , )CR ADD  associated

with the (symmetric) parametric methods (Section 1.5). Both questions are wide open.

3. Heterogeneous outputs or inputs

3.1. The problem

In the cost sharing version of the more general model now under scrutiny, each agent i

demands a different good, and the technology specifies the total cost C x x xn( , , , )1 2 � .  In the

output sharing version, each agent i contributes the amount xi  of an “input i” and total output

F x xn( , , )1 �  must be shared among the participants.  Thus we identify “good i” and “agent i”.

Examples of such cost sharing problems include sharing the cost of a network connecting

geographically dispersed users (so the heterogeneity of demand comes from the heterogeneity of

space, as in road networks), or of a telecommunication network in which the users need different

service (e.g., different bandwidth, or different degrees of reliability in service, or they use the

network at different times of the day).  Another example is the cost sharing of a large project

(dam, space station) between various beneficiaries (e.g., power company, farmers, tourism

industry, in the dam example: see Straffin and Heaney [1981]).

Examples of both cost sharing and output sharing are commonplace in the accounting

literature (see Thomas [1977]).  The various divisions of the firm contribute heterogeneous
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inputs to a common project, say the launching of a new product: how should the revenue of the

project be distributed among them?  The cost sharing issue arises when the divisions share a

common service, such as the central administration unit.

The main simplifying assumption of the current model is that each agent demands exactly

one output good (or contributes exactly one input). On the other hand, the domain of cost (or

production) functions is very general: C( )0 0=  and C nondecreasing in each xi , are the only

restriction we impose when the variables are discrete (Sections 3.2, 3.3); when xi  is a real

number, we add some regularity conditions.

The mathematical complexity of the models raises significantly above that in Parts 1 and 2.

We look first at the case of binary demands (each xi  is 0 or 1) in Sections 3.2, i.e., the classical

theory of values for cooperative games with transferable utility. We consider variable demands

of indivisible goods (each xi  is an integer) in Sections 3.3 and 3.4, and finally variable demands

of divisible goods in Sections 3.5 and 3.6.

In Sections 3.2 to 3.6, we look at additive methods only, as we did in most of Section 2.  We

extend the isomorphism between rationing methods and additive cost sharing methods (Theorem

2.2): in the case of heterogeneous goods, the set of rationing methods is identified with the

extreme points of the set of additive methods meeting the Dummy axiom (Theorems 3.1 and

3.3).

The Shapley-Shubik cost sharing method, and its asymmetric counterparts, the random order

values, emerge forcefully from the axiomatic discussion.  Shapley's characterization result in the

context of binary demands (Proposition 3.1) now has company in the variable demand model,

whether demands are integer valued or real valued (see Corollary 2 to Theorem 3.1 and

Corollaries 1 and 3 to Theorem 3.4).

The two other prominent methods are the Aumann-Shapley pricing method, extending

average cost sharing to the context of heterogeneous goods, and the additive extension of serial

cost sharing: they are discussed in Sections 3.3 to 3.6 and characterized in Section 3.6

(Corollaries 2 and 3 to Theorem 3.4).

Up to 1995, the literature on cost sharing with variable demands was unanimously arguing

for the Aumann-Shapley method.  The initial axiomatic characterization by Billera and Heath

[1982] and Mirman and Tauman [1982] (see also Billera, Heath and Raanan [1978]) was refined

in several ways (Tauman [1988] is a good survey).  One version of this result is in Corollary 2 to
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Theorem 3.4.  Moulin [1995a] spells out a critique of the Aumann-Shapley method based on the

properties of Demand Monotonicity and Ranking.  The former says that the cost share of an

agent should not decrease when his demand of output increases, ceteris paribus.  The latter says

that, when all goods enter symmetrically in the cost function, the ranking of individual cost

shares is the same as that of individual demands.

Both properties DM and RKG are compelling when each good is identified with a different

agent.  They are less compelling if the demand of good i aggregates many small individual

demands, which is the standard interpretation in the literature on the Aumann-Shapley method.

In this survey we stick to the first interpretation and emphasize the critique of the AS method.  In

turn this pushes the Shapley-Shubik and serial methods to the forefront.

Additivity of cost shares with respect to the cost function, the main assumption throughout

Parts 2 and 3, is a powerful mathematical tool, yet not a compelling normative requirement.

Additivity narrows down the set of cost sharing methods drastically, thus bringing a number of

impossibility statements when we require other properties with more normative appeal: an

example is the combination of Demand Monotonicity and Average Cost for Homogeneous

Goods (see Proposition 3.3 and Corollary 2 to Theorem 3.4).  When the impossibility hurts, the

first axiom to go should be Additivity.  The literature on nonadditive methods is reviewed in

Section 3.7: it contains very few papers but its potential for growth is huge.

3.2. Binary demands: the Shapley value

This is the model of the classical cooperative games with transferable utility where the only

restriction is our assumption that the cost function is nondecreasing.

A binary cost sharing problem is a triple ( , , )N C x  where N is a finite set of agents, C is a

nondecreasing function from { , }0 1 N  into R+  such that C( )0 0= , and x xi i N= ∈( )  is a profile of

demands, where each xi = 0 1 or .

For convenience, we denote the vector of demands x as a, possibly empty, subset S of N:

x iff i Si = ∈1 .  Thus the cost function C associates to each coalition S, S N⊆ , a number C S( ) ,

interpreted as the cost of serving all agents in S and only them.  Our assumptions on C are:

C S T C S C T S T N( ) ; ( ) ( ) ,∅ = ⊆ ⇒ ≤ ⊆0  for all 
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A solution to the binary cost sharing problem ( , , )N C S  is a profile of cost shares y yi i N= ∈( ) ,

where each yi  is a real number and:

y i y C Si i
i N

≥ =
∈
∑0 for all , ( )

A binary cost sharing method is a mapping ϕ  associating to any problem ( , , )N C S  a solution

y N C S= ϕ( , , ) .

The idea of sharing costs in proportion to demands reduces in this model to dividing equally

C S( )  among all agents in S (and charging nothing to those outside S).  However this method

violates the basic principle of reward, namely that cost shares should reflect responsibilities in

generating the costs.  A minimal requirement to that effect is that an agent who "obviously" is

not generating any cost should pay nothing.  The Dummy axiom conveys just that idea.

We use the notation ∂ = −iC S C S C S i( ) ( ) ( \ )  for the marginal cost (saving) of subtracting

agent i from coalition S.  Of course, ∂ = ∉iC S i S( ) 0 if .

Dummy (DUM)

{ ( ) } { ( , , ) } , ,∂ = ⊆ ⇒ = =i i iC T T N y N C S N S i C0 0 for all  for all  and ϕ (3.1)

An agent is called a dummy for the cost function C if it costs nothing to serve her, irrespective of

the number of other users being served. The egalitarian method ( ( )/#( )y C S S i Si = ∈ if , yi = 0

otherwise) charges a dummy agent as any other, therefore it violates Dummy.

Additivity (ADD)

ϕ ϕ ϕ( , , ) ( , , ) ( , , ) , ,N C C S N C S N C S N C Sk1 2 1 2+ = +  for all 

Note that Dummy and Additivity together imply a generalization of the Constant Returns

property (2.2).  If C is linear, C x c xi i( ) = ∑ , the method simply “separates” costs:

ϕ i i i i iN C S c x x i S x i S( , , ) ,= ⋅ = ∈ = ∉ where  if  if 1 0

We denote � ( , )DUM ADD  the family of cost sharing methods meeting Dummy and

Additivity.  These two axioms place no restriction on the method across different populations N

and ′N : therefore Proposition 3.1 describes this family in the fixed population context, where N

is fixed and S varies (note that most of the literature, only looks at the case S N= ).  Next we

introduce a mild consistency requirement linking the solutions across variable populations; in

turn, the corresponding methods take a natural structure: Theorem 3.1.
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Given N, an incremental cost sharing method specifies for each nonempty subset S of N

(including N itself) an ordering σ σ σ( ) ( , , ) #( )S s Ss= =1 �  where .  The cost shares

y N C S= ϕσ ( , , )  are computed as follows:

1 2 2( ) 1 ( ) ( ) 1 2 1 2 1

( ) ( ) 1

0 if 

({ ( )}); ({ ( ), ( )}) ({ ( ), ( )}) ({ ( )});

({ ( ), , ( )}) for all 1, ,
k k

i

S S S

S S k

y i S

y C S y C S S C S S C S

y C S S k s

σ σ σ

σ σ

σ σ σ σ σ σ
σ σ

= ∉
= = ∂ = −

= ∂ =

�

� �

(3.

2)

A random order value is a convex combination of incremental methods where the weights of the

combination are independent of C.  Denoting by � ( )S  the set of permutations of S, a random

order value is written as

( , , )y N C Sϕ= =
( ) ( )S Sσ ∈
∑
�

( )
( ) ( , , ) for all S
S N C S Sσ

σλ ϕ  (3.3)

Note that we can choose an arbitrary set of convex coefficients λσ ( )S  for each coalition S.  For

instance in S = { , , }1 2 3  we may choose the incremental method with ordering 2, 1, 3 and in

′ =S { , , }1 2 4  we may choose that with ordering 1, 2, 4.

Finally we need an equity property to state Shapley's original characterization.  If two agents

affect the cost function symmetrically, we require that they receive the same share

Equal Treatment of Equals (ETE)

{ ( ) ( ) for all  such that , }

{ ( , , ) ( , , ) for all , } for all , ,i j

C T i C T j T i j T

N C S N C S S S N C i jϕ ϕ
∪ = ∪ ∉ ⇒

= ⊆

Proposition 3.1. (Fixed population, Weber [1988])

The set of random order values coincides with the set � ( , )DUM ADD  of the cost sharing

methods meeting the Dummy and Additivity axioms.

Corollary to Proposition 3.1. (Shapley [1953])

The three axioms Dummy, Additivity and Equal Treatment of Equals characterize a single

method namely the Shapley value; that is, the set � ( , , )DUM ADD ETE  contains a single

method:
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ϕ

ϕ

i
t

s

i
T T S i

T t

j

N C S
t s t

s
C T i i S

N C S j S

( , , )
!( )!

!
( )

( , , )

: \
#( )

= − − ∂ ∪ ∈

= ∉

=

−

⊂
=

∑ ∑1

0

0

1

 for all 

 if 

(3.4)

Incremental methods ((3.2)) and random order values ((3.3)) defined in the fixed population

context, may allocate priorities (or weigh the various priority orderings) inconsistently when S

changes.  In order to avoid this unpalatable feature, we must switch to the variable population

context and impose a mild consistency requirement.  We denote by ��  the maximal set from

which agents can be drawn (a finite or infinite set) and by σ  a priority ordering of �� .  On each

finite set S, this ordering induces an ordering denoted σ ( )S , and the corresponding formula (3.2)

defines the σ -incremental cost sharing method.  Similarly, a consistent random order value is a

convex combination of the σ -incremental methods, where σ  varies over all orderings of N

and the coefficients are independent of N, C and S:

ϕ λ ϕσ
σ

σ
( , , ) ( , , ) , ,( )

( )

N C S N C S N C SS=
∈
∑  for all 
S N

(3.5)

The following axiom corresponds to the zero-consistency property for rationing methods

((1.6)): a dummy agent can be removed without affecting the distribution of costs among the rest

of the agents:

Dummy-Consistency (DCY)

{ ( ) } { ( , , ) ( \ , , \ ) } , ,[ \ ]∂ = ⊆ ⇒ =i N iC T T N N C S N i C S i S N i C0 for all  for all  for all  and ϕ ϕ

(where the restriction of C to N i\  is denoted C as well).

Proposition 3.2.  (Variable population)

The set of consistent random order values coincides with the set � ( , , )DUM DCY ADD  of

the cost sharing methods meeting Dummy, Dummy-Consistency and Additivity.

Several alternative characterizations of the Shapley value and the random order values have

been proposed in the literature.  They replace the Additivity axiom by another powerful

requirement; the two most striking results rely on the property of marginalism and the notion of

potential.  We describe these two results in the fixed population context.

In a random order value, the cost share of an agent only depends upon his marginal costs

∂iC T( )  for the various coalitions containing i.  This property, called Marginalism, is defined as:
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{ ( ) ( ) } { ( , , ) ( , , )} , ,∂ = ∂ ⊆ ⇒ =i i i i
kC T C T T S N C S N C S N C S i1 2 1 2 for all  for all  and ϕ ϕ        (3.6)

Loehman and Whinston [1974] and Young [1985a] show that the Shapley value is characterized

by Marginalism and Equal Treatment of Equals.  Khmelnitskaya [1999] shows that the

combination of Marginalism, Dummy, and an axiom called Monotonicity characterizes the

random order values when N contains three agents or more.  The monotonicity requirement is as

follows:

{ ( ) ( ) , ( ) ( )}

{ ( , , ) ( , , ) } , ,

C T C T T N T S C S C S

N C N N C N i S N C Si i
k

1 2 1 2

1 2

= ⊆ ≠ ≤

⇒ ≤ ∈

 for all  and 

 for all  for all  and ϕ ϕ

If we add Dummy-Consistency to this list of requirements, we characterize the family of

consistent random order values.

The second characterization result concerns the Shapley value alone.  Consider the following

potential function:

P N C
s n s

n
C S n N s S

S N

( , )
( )!( )!

!
( ) #( ), #( )= − − = =

⊆
∑ 1

where (3.7)

The Shapley value ((3.4)) can be equivalently written as:

ϕ i iN C S P S C P S C P S i C( , , ) ( , ) ( , ) ( \ , )= ∂ = − (3.8)

Thus agent i's share is simply the i-th derivative of the potential function.  As second derivatives

commute, this implies for all i j N,  in :

( , , ) ( , , ) ( , , ) ( , , \ ) ( , , ) ( , , \ )j i i j i i j jN C S N C S N C S N C S j N C S N C S iϕ ϕ ϕ ϕ ϕ ϕ∂ = ∂ ⇔ − = − (3

.9)

The effect on i's share of removing j is the same as that on j's share of removing i.

Hart and Mas Colell [1989] show that the Shapley value is fully characterized by the

existence of some potential function P of which derivatives deliver the individual cost shares as

in (3.8) and such that P C( , )∅ = 0 .  Equivalently, property (3.9) alone is enough to characterize

the Shapley value.

Remark 3.1. A third characterization (also due to Hart and Mas-Colell [1989]) of the Shapley

value follows from a Consistency axiom.  Consider a cost sharing method ϕ .  For any cost

function C and agent i, we define a new function as follows:

C T C T i N C T ii
i

, ( ) ( ) ( , , )ϕ ϕ= ∪ − ∪ (3.10)
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Note that this function depends on N as well, but under no charge for null demands this plays no

role.

The idea is that agent i wants "service" but is leaving the jurisdiction of the division problem;

he will pay whatever cost share is recommended by the method, whatever is the set of other

agents who want service as well.  The Consistency axiom says that this move should not affect

the allocation of cost shares among the remaining agents:

Consistency

ϕ ϕ ϕ( , , ) ( \ , , \ ) , ,[ \ ]
,N C S N i C S i N C S iN i

i=  for all  and 

The result is that if we choose the standard value (i.e., the Shapley value) for two person

problems, the Consistency axiom forces the Shapley value for every set N.

There are two problems with the above axiom.  First of all the definition of the reduced cost

function ,iC ϕ  does not preserve the monotonicity of costs: we may have

S T C S C Ti i⊂ > and , ,( ) ( )ϕ ϕ .  In fact this inequality does occur even if ϕ  is the Shapley value

itself.  For an example, take N = { , , }1 2 3  and the cost function

C N C C C C i i( ) ( ) ( ) ; ( ) ( ) , ,= = = = = =13 23 1 12 0 1 2 3 for 

Compute

C C C C C C3
3

3
31 13 13 1

1

2

1

2
12 123 123 1

2

3

1

3
, ,( ) ( ) ( ,{ }) ( ) ( ) ( ,{ })ϕ ϕϕ ϕ= − = − = = − = − = and 

Thus the only way to make sense of the axiom is to allow for decreasing cost functions.  But in

this enlarged domain, the very foundations of our model must be revised: allowing negative cost

shares is compelling (think of an agent whose presence eliminates all costs); the axioms of

Demand monotonicity, and the Upper and Lower Bounds below must be abandoned, and so on.

The second difficulty is the interpretation of the axiom.  It does not represent a clear-cut

reduction of the allocation problem to the subset N i\  of agents, because the agent i must still be

ready to pay a different share when the set of other agents who want service changes.  This is in

sharp contrast with the Consistency property in the rationing (or surplus sharing) problem; where

agent i puts his money on the table (or takes his share of the output) and departs without leaving

an address: the remaining division problem can be conducted entirely without him.

The above difficulty applies to all forms of Consistency for the binary model (the classical

cooperative game framework) such as the concept due to Davis and Maschler [1965] used to
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characterize the nucleolus by Sobolev [1975].  See Section 3.7.  It also applies to the Consistency

for general cost functions proposed by Friedman [1999].

3.3. Variable demands of indivisible goods: the dr-model

Each agent i demands a number xi  of units of the idiosyncratic good i, x Xi i∈{ , , , , }0 1 2 �

where Xi  is the capacity of this good.  For the main representation theorem below, we must

assume that Xi  is finite, although the model makes sense for Xi = +∞  as well.

A cost function C is now a mapping from [ , ][ ]0 X N  (the Cartesian product of the integer

intervals [ , ]0 Xi ) into R+  such that

C x x C x C x( ) ( ) ( )0 0= ≤ ′ ⇒ ≤ ′ and 

As in Section 2, the vector x is called the demand profile, x X N∈[ , ][ ]0 .  The definitions of a cost

sharing problem ( , , )N C x  is now complete.  A solution is a vector y in RN  such that

y y C xi
N

³ =å0 ( ) (3.11)

As usual a cost sharing method j  associates a solution to each problem. This model

generalizes the binary model of the previous subSection where we had X i = 1  for all i.

Our first task is to generalize Propositions 3.1 and 3.2 to the variable demand context.  As in

Section 3.2, we give first the fixed population version of the result, based on the two axioms

Dummy and Additivity: Theorem 3.1.  Next we give the variable population result, with the help

of the additional axiom Dummy-Consistency: corollary to Theorem 3.1.

Dummy (DUM)

where the notation , and , stands for the

marginal cost when i raises her demand from x xi i- 1  t o  .  The interpretation is as in Section 3.2:

the demand of a dummy agent, no matter how large, does not cause any extra cost, hence this

agent should never be charged.

Additivity (ADD)
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The incremental cost sharing methods of the binary model (Section 3.2) as well as of the

model with homogeneous goods (Section 2.4, see (2.18)) generalize.  We fix an ordering s  of N

(recall that N is fixed for the time being) and define the s -incremental method (or method with

priority ordering s )  as follows:

(3.12)

where ( , )[ ]x T 0  denotes the vector with the same projection as x on T, and zero on .

The incremental methods obviously meet DUM and ADD and so do their convex

combinations.  Yet there are many more methods in C ( , )D U M A D D .  We construct a family of

such methods, called the path-generated methods: these methods are the key to the

representation results below.

Pick a monotonic rationing method r for indivisible goods: their set is denoted ddR  and they

are discussed in Section 1.9.  The society N is fixed for the time being so we write  instead

of r N t x( , , ) , where .

Recall that the path t r t x® ( , )  is equivalently described by a sequence 

where agent i appears exactly x i  times.  To each rationing method r in ddR , or equivalently to

each family of sequences s x( )  (one for each x in [ , ][ ]0 X N ) we associate the following cost

sharing method :

(3.13)

where d r t x i ii t( , ) = =1  i f   is the t-th element of the sequence s x( ) , and d r t xi ( , ) = 0  otherwise.

The cost sharing method (3.13) is called path generated because for each x the cost shares

are computed along the path t r t x® ( , )  i.e., along the sequence s N x( , )  as follows: C r x( ( , ) )1  is

charged to agent i1 ,  is charged to agent i 2 , and so on.  The definition

(3.13) makes very clear that this method satisfies the two axioms ADD and DUM.  As convex
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combinations respect these three properties, we find that any convex combination of path

generated methods do, too.  In fact there are no other methods.

Theorem 3.1. (Fixed population) (Wang [1999])

Every cost sharing method meeting Dummy and Additivity is a convex combination of path

generated methods (where the coefficients may depend on N and x but not on C).  No other cost

sharing method meets these two properties.  Identifying a rationing method  with the

path-generated cost sharing method (3.13) we write this result as follows:

C  [ ddR ] (DUM, ADD)

(where denotes the set of extreme points of Z, and CO the convex hull)

We turn to the variable population framework of the result.  As in the binary model

(Section3.2) we require that dropping a dummy agent from the society be of no consequence.

Dummy Consistency (DCY)

The following fact is easy to prove: a path-generated method is dummy consistent if and only if

the corresponding rationing method is consistent.  It is easy to check that Consistency of r

amounts to the following property of the generating sequences s N x( , ) : the sequence

 obtains from s N x( , )  by removing all occurrences of i.  Thus we call a method

generated by consistent paths if it is derived from a consistent rationing method via (3.13).
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Corollary 1 to Theorem 3.1. (Variable population)

Every cost sharing method in C ( , , )D U M D C Y A D D  is a convex combination of methods

generated by consistent paths.  There are no other methods in C  (DUM, DCY, ADD):

C ddR ( ) ]C S Y Û ddR ( )C S Y = &&
C (DUM, DCY, ADD)

Note that a convex combination of paths can be interpreted as one of the probabilistic rationing

methods discussed in Section 1.9. This interpretation is especially useful for Examples 3.2 and

3.3 below.

We illustrate the results by three crucial symmetric cost sharing methods.

Example 3.1. The Shapley-Shubik method

The arithmetic average of all incremental methods is also called the Shapley-Shubik method

(Shubik [1962]) namely

(3.14)

This method is not path-generated; it is a proper convex combination of path-generated methods,

namely the incremental methods.  Contrast this with the Shapley-Shubik method for

homogeneous goods (2.19), that is path-generated (like all methods in M ( , )C R A D D : see the

discussion in Section 2.4).

Remarkably, the Shapley-Shubik method can be characterized by one single additional axiom

within C ( , )D U M A D D , namely a lower bound on individual cost shares that depends only on

N, C and x i :

Lower Bound

(3.15)

This bound generalizes to the heterogeneous goods context the universal lower bound (2.14)

of Part 2.  In the homogeneous good context, the Lower Bound is met by many costs sharing

methods, such as serial cost sharing, Shapley-Shubik and more.  Its impact in the current model

is much more dramatic.

Corollary 2 to Theorem 3.1.  The Shapley-Shubik method is the only method in

C ( , )D U M A D D  meeting the Lower bound axiom.
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Example 3.2. The Aumann-Shapley method (dr model) (Moulin [1995a], de Nouweland et

al. [1995])

This is the discrete version of the Aumann-Shapley cost sharing method for divisible goods

that plays a major role in the next subpart.

For a given problem ( , , )N C x , the method is the uniform average of all path-generated

methods, in other words it gives an equal weight to each path between 0 and x. Hence the

Aumann-Shapley method corresponds, in the representation (3.13), to the random proportional

rationing method described in Section 1.9.

Straightforward computations give the formulas of the AS cost shares.  For any vector t in

N
N , we use the notation

that is, the number of monotonic paths from 0 to t in [ , ]0 t .  Then we have

(3.16)

(with the convention l ( )0 0= )

An important feature of the AS method is to coincide with average cost sharing when the

goods are homogeneous, that is to say when C takes the form . Sprumont and

Wang [1998] argue that the AS method is the most natural extension of proportional cost sharing

to the context of heterogeneous goods.

Example 3.3. Serial cost sharing (dr model) (Moulin [1995a])

In the homogeneous good model (Part 2), serial cost sharing is associated with the uniform

gains rationing method via equation (2.16).  Similarly, in the case of heterogeneous goods serial

cost sharing is associated, via equation (3.13), with the Fair Queuing (probabilistic) method

described in Section 1.9. The corresponding cost shares are as follows in the case of two agents:
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3.4. Demand Monotonicity in the dr-model

Demand monotonicity

This Demand Monotonicity can be viewed as a mild incentive compatibility requirement.

Absent DM, the cost sharing method is vulnerable to "sabotage" when the output goods are

freely disposable: an agent can raise artificially her demand, throw away the excess good and

receive a smaller bill!

The fixed-path cost sharing methods are derived from the fixed path rationing methods

(Section1.8) via formula (3.13).  Recall that for a given society N and a capacity X i  for each

agent i, a fixed path rationing method is defined by a single path g ( )N  from 0 to :

The corresponding cost sharing method reads as follows, where the variable N is omitted in g

for simplicity:

This formula makes clear that a fixed path cost sharing method is demand monotonic: increasing

x i  to ¢x i  enlarges the set of indices t at which the marginal cost ¶ Ùi C t x( ( ) )g  is charged to

agent i, moreover  for all t in the initial set.

Because DM is preserved by convex combinations, every convex combination of fixed path

cost sharing methods (where the coefficients are independent of C and x) meets DM as well.

Examples include the Shapley-Shubik and serial methods.  Theorem 3.3 below states the

converse statement.  Before writing this important result, we note that the Aumann-Shapley

method (Example 3.2) is not demand monotonic.

Proposition 3.3.  (Moulin [1995a])

Let  be a cost sharing method in C ( , )D U M A D D  that coincides with average cost sharing

when the goods are homogeneous, i.e., when the cost function takes the form .

Then  is not demand monotonic.
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Theorem 3.2. (Fixed population)

i) A path-generated cost sharing method is demand monotonic if and only if it is a fixed path

method.

ii) A cost sharing method meets Dummy, Additivity and Demand Monotonicity if and only if it is

a convex combination of fixed path methods (where the coefficients depend on N but not on C or

x):

C [ ddR  ( f i x e d  p a t h s ) ]

In the variable population formulation of theorem 3.2, the extreme points of the relevant set of

methods are the consistent fixed path cost sharing methods, for which the rationing method

defined by the fixed paths N N® g ( )  is consistent.  As noticed in Part 1 (see (1.21)), this means

that g  commutes with the projection over subsets, namely

(3.17)

Corollary to Theorem 3.2. (Variable population)

Every cost sharing method in C   is a convex combination of

consistent fixed path methods.  No other method meets these four axioms:

C [ ddR

Remark 3.2. Two characterizations of the random order values

The random order values are the convex combinations of incremental cost sharing methods

(3.12).  They are an important subset of C ( , , )D U M A D D D M  because of their simplicity.  Two

characterizations of this subset within C ( , )D U M A D D  have been proposed in the dr-model.

The first one (Wang [2000]) uses one additional axiom, a dr-counterpart of the Unit Invariance

axiom of the rr-model described below in Section 3.6.  The second one (Sprumont [2000]) relies

on Demand Monotonicity and the property Informational Coherence.

Unit Invariance is defined below by equation (3.26), with the operator  given by (3.24)

and (3.25).  Because , the axiom is written equivalently as

In the dr-model, the domain of C is N
N , so if l  is an integer, the function  is well

defined over N
N  (see (3.25)).  The dr-version of Unit Invariance (that Sprumont calls
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Measurement Invariance) requires the above equality to hold for every N, C, x, i and every

integer l .

In order to define Informational Coherence, consider the following reformulation of Unit

Invariance in the rr-model.  For every vector , we write m Ä x  their coordinatewise

product: ( )m mÄ =x xi i i .

C x C x x
m

m( ) ( )Ä = f o r  a l l  (3.18)

(where m i  is positive for all i). Unit Invariance (3.26) is equivalent to the following property

(3.19)

In the dr-model, the rescaling vector m  is integer valued, hence for a given C and a given m ,

property (3.18) does not define a unique cost function : it only specifies its value on a subset

of N
N .  The axiom Informational Coherence requires that for all problems (N, C, x) and all

(integer valued) rescaling vector m , there exists at least one cost function  meeting

properties (3.18) and (3.19).

Ironically, the dr-version of the Aumann-Shapley method fails both Informational Coherence

and Unit Invariance (dr-version); by contrast in the rr-model, Unit Invariance is one of the keys

to the characterization of the Aumann-Shapley method (corollary 2 to Theorem 3.4). See

Sprumont [2000] for more comments and interpretations.

3.5. Variable demands of divisible goods: the rr-model

The only change from the model in the previous subpart is that the output goods are perfectly

divisible and the demand profile x is in R +
N .  The cost function C remains nonincreasing and

C ( )0 0= .  However we must now assume that C is sufficiently regular to apply the general

results about linear operators in functional spaces.

We assume throughout that the cost function C is twice continuously differentiable.  This is

not the only conceivable regularity assumption on C.

All the dr-axioms discussed in Sections 3.3, 3.4 (with the exception of Remark 3.2) are

defined in exactly the same way in the rr-model.  For instance agent i is a dummy in C iff the
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partial derivative ¶ i C  is identically zero, which amounts to saying that C is independent of the

variable x i , as in the dr-model.

Much of the theory in the rr-model parallels that in the dr-model: this is true for the

representation of the sets C ( , )D U M A D D and C  (Theorem 3.3) and for

the impact of DM in these two sets (Theorem 3.4).  The only new feature is the Unit Invariance

axiom that has no counterpart in the dr-model (see, however, Remark 3.2).  In this subpart we

state Theorem 3.3 and present the main examples.  The discussion of Demand Monotonicity and

Unit Invariance are the subject of Section 3.5.

As in the dr-model, the key to the representation of C ( , )D U M A D D  is the path-generated

methods.  We denote by rrR  the set of monotonic rationing methods (with divisible claims and

shares) studied in Sections 1.2 to 1.8.  Recall that a method r in this set is a mapping

y r N t x= ( , , )  where t x yi i, ,  vary in R + , where y tN =  and r i  is non decreasing in t.  These

assumptions imply that r i  is continuous in t as well.  The path-generated cost sharing method j

associated with rrR  is defined as follows:

(3.20)

where the integral is the Stieljes integral of a continuous function with respect to a monotonic

function, and d r i  represents the derivative of r t xi ( , )  with respect to t.  This definition

corresponds to (3.13) in the dr-model.

Theorem 3.3. (Fixed population), Friedman [1999], Haimanko [1998]

A cost sharing method satisfies Dummy and Additivity if and only if it is an (infinite) convex

combination of path-generated methods:

C [ rrR ] Û rrR
&&

C
¼
( , )D U M A D D

In the above statement, a convex combination may be infinite; in other words it is a positive

probability measure over the (infinite dimensional) set of monotonic rationing methods (see

Friedman [1999] for details).  By contrast, in the dr-model the set ddR  is finite.  This difference

notwithstanding, Theorem 3.3 is the exact counterpart of Theorem 3.1.
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In the variable population context, the extreme points of the relevant set of methods are the

methods generated by consistent paths: they are derived via formula (3.20) from a consistent

rationing method; equivalently, the paths g ( , )N x  commute with the projection operator

Hence the counterpart of Corollary 1 to Theorem 3.1.

Corollary 1 to Theorem 3.3.  (Variable population)

i) A path-generated cost sharing method is Dummy-Consistent if and only if it is generated by a

consistent path.

ii) A cost sharing method meets Dummy, Dummy-Consistency and Additivity if and only if it is an

(infinite) convex combination of methods generated by consistent paths.

We can now attach a cost sharing method to any rationing method discussed in Part 1.  For

instance, the contested garment method (Section 1.4) yields the following (path-generated) cost

sharing method among two agents:

(and a symmetrical formula if x x2 1£ ).

From the rich family of monotonic rationing methods, only three generate a cost sharing

method that has received some independent attention in the literature.  These are proportional

rationing, uniform gains rationing and priority rationing (and convex combinations of the latter).

We start by the family of random order values, and their symmetric member the Shapley-

Shubik method.  They are defined exactly as before: formulas (3.12) and (3.14) are unchanged.

So is the characterization of the Shapley-Shubik method by the Lower Bound axiom, Dummy

and Additivity: Corollary 2 to Theorem 3.1 remains true, word for word.

Next we turn to the method generated by proportional rationing.

Example 3.4. The Aumann-Shapley method (rr-model) (Aumann and Shapley [1974])

This method has been the subject of the most voluminous research and its characterization by

Billera and Heath [1982] and Mirman and Tauman [1982] initiated the literature on cost sharing

with variable demands.
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The AS method is path-generated: its path is the simplest path between 0 and x, namely the

straight line; equivalently, the AS method is derived from the proportional rationing method via

formula (3.20).  Thus it generalizes average cost sharing for homogeneous goods (Part 2) to the

heterogeneous goods model.  The method is written as follows:

(3.21)

It can be shown that the above AS method is the limit of the AS methods in the dr-model

(Example 3.2).  Given N and x, we approximate each interval  by a sequence of

increasingly fine discrete grids, and define a sequence of dr-cost sharing problems by simply

restricting the initial cost function to the profiles of the grid.  Then the AS cost shares (3.18) of

the discrete approximating problems converge to the cost shares (3.21).

Example 3.5. Serial cost sharing (rr-model) (Friedman and Moulin [1999])

As in the homogeneous goods model, serial cost sharing is generated by the uniform gains

rationing method.  Thus it is path-generated.  Using the notations  and

e = ( , , , )1 1 1K , the uniform gains method writes

Change the variable t in (3.13) to l : the latter varies from 0 to m a x i ix  when t varies from 0 to

x N ; moreover ¶ Ù =i C e x( )l 0  whenever .  Hence the integral formula for serial cost

sharing:

(3.22)

For instance, take N = { , }1 2  and x such that x x1 2£ :

The conscientious reader will check that (3.22) yields the cost sharing formula (2.13) if the cost

function C takes the form .

We look now at some examples of the cost function C for which our three methods are both

easy to compute and interestingly different.

Consider first a Cobb-Douglas cost function. Fix some positive numbers ia  and define:
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The Shapley-Shubik method splits total cost equally between all users; similarly, the

Aumann-Shapley method assigns the fraction /i Na a  to user i. Thus both methods disregard the

relative size of individual demands, which creates a strong “tragedy of the commons” effect. The

serial method yields a more appealing set of cost shares, notwithstanding the fact that it relies on

the interpersonal comparison of individual demands. For instance,

Consider next the cost function of an excludable public good: .  Note that

this function is not continuously differentiable, so we need to approximate the given function by

regular cost functions and take the limit.  This is straightforward.  Examples include the cost

sharing of a capacity, as in the celebrated airport landing game (Littlechild and Owen [1973])

where each user requests a certain length of runway suitable for his own airplanes.

The Shapley-Shubik and serial cost sharing methods coincide for his own airplanes.  Assume

x x x n1 2£ £ £K , then the cost shares are

(3.23)

These cost shares make good sense: they separate total cost  into n components

 and split the cost of each component between the agents who “use” this

component.

By contrast, the Aumann-Shapley method recommends an unpalatable division of costs:

The agent with the largest demand bears the full cost: this follows from (3.21) because on the

straight line [ , ]0 x  the only nonzero partial derivative is .  These cost shares change

discontinuously whenever the identity of the largest demander changes; they make it extremely

costly to raise one's demand by a very small amount.
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The next example of the function C is easier to interpret as a production function, i.e., in the

surplus sharing model, so we write it as .  The inputs of the various agents are

perfect complements in the production of the single output (as in several coordination games of a

macroeconomic inspiration; see, e.g., Bryant [1983]).  The Shapley-Shubik and serial cost shares

again coincide: they simply split total output equally  for all i.  This time the

Aumann-Shapley method gives the full surplus to the agents with the smallest input contribution!

Thus agent 1's share drops to zero when he raises his input contribution above the next smallest

contribution, in sharp contradiction of Demand Monotonicity.

The above two examples make a powerful point against the Aumann-Shapley cost sharing: it

makes little sense when the cost or production function exhibits strong complementarities. In

axiomatic form, this critique of the AS-method hinges on two axioms: Demand Monotonicity

and Ranking

Ranking

Ranking is a strengthening of Equal Treatment of Equals.  When all goods affect the cost

function symmetrically, their quantities are structurally comparable and Ranking is a compelling

equity requirement.

Serial cost sharing and the Shapley-Shubik methods both meet Ranking and Demand

Monotonicity. In the case of the function F xi i( m i n ) , the Aumann-Shapley method (strongly)

violates both axioms. Note that the dr-version of the Aumann-Shapley method (Example 3.2)

also violates Ranking.

3.6. Unit invariance and Demand Monotonicity in the rr-model

We explore the impact in the set C ( , )D U M A D D  (and in C ) of two

important requirements: Demand Monotonicity and the new axiom Unit Invariance.  Theorem

3.4 gives a complete answer to both questions, and leads to three characterization results of,

respectively, the Shapley-Shubik, Aumann-Shapley and serial methods.
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Given an agent i and a positive number l , we denote by  the l -rescaling of the i-th

coordinate:

(3.24)

Given a cost function C, the l -rescaling of x i  transforms C into :

t tl l
i i

C x C x x( ) ( ) ( ( ) )/= 1  f o r  a l l  (3.25)

Unit Invariance (UI)

(3.26)

Unit Invariance says that changing the unit in which a particular good is measured would not

affect cost shares: whether I measure a quantity of corn in kilos, pounds or bushels should not

matter.  This is compelling when the different goods entering the cost function are not only

different but also noncomparable (e.g., corn and fruits).  Less so if the goods are of the same

nature, but do not enter symmetrically in the cost function.  Even less so if the goods affect C

symmetrically.

Unit Invariance is violated by serial cost sharing, as its generating path (namely the uniform

gains path) along the diagonal is not invariant by rescaling.

As in the dr-model, it is enough to analyze the impact of the two axioms DM and UI on the

extreme points of the (convex) sets C ( , )D U M A D D  and C ( , , )D U M A D D D M , namely the

path-generated methods and the methods generated by fixed paths: Theorem 3.4 says that there

are no other extreme points in the relevant set of methods.

A path-generated method is demand monotonic if and only if it is a fixed path method,

namely a method derived via formula (3.20) from a fixed path rationing method (Section 1.8).

Recall that such a rationing method is constructed, via formula 1.19, from a family of paths

g ( )N  joining 0 to , where X i  is agent i's capacity, X i £ + ¥ . Hence the corresponding cost

sharing method is written as follows:

(3.27)
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Naturally, a fixed path cost sharing method is Dummy consistent if and only if the corresponding

fixed path rationing method is consistent, or equivalently if the fixed paths N N® g ( )  commute

with the projection operator: property (3.17).

A path-generated method is unit invariant if and only if the corresponding family of paths

 are such that:

or equivalently, the corresponding rationing method is such that

In this case we speak of a unit invariant path generated method.

Theorem 3.4. (Friedman [1999])

i) A cost sharing method satisfies Dummy, Additivity and Demand Monotonicity if and only if it

is an (infinite) convex combination of fixed path methods:

[  (fixed path)]

ii) A cost sharing method satisfies Dummy, Additivity and Unit Invariance if and only if it is an

(infinite) convex combination of unit invariant path methods.

C ( , , )D U M A D D S I [ (SI)]

iii) C  [ rrR  (consistent fixed path)]

iv) C [ rrR (CSY, SI)]

As in the dr-model, the random order values are the convex combinations of the incremental

cost sharing methods (3.12) (where the coefficients are independent of C and x).  They have a

very simple characterization.

Corollary 1 to Theorem 3.4. (Friedman and Moulin [1999])

A cost sharing method satisfies Dummy, Additivity, Demand Monotonicity

and Unit Invariance if and only if it is a random order value.

If we add Dummy-Consistency to the list of requirements, we characterize the set of

consistent random order values: these methods are described as in the binary model (see (3.5)).

Similarly, if we add Equal Treatment of Equals to the list of axioms in Corollary 1, we

characterize the Shapley-Shubik method.

Remark 3.2 in Section 3.4 describes two characterizations of the random order values in the

dr-model; they are the counterpart of Corollary 1 in the case of indivisible units of demand.
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Remark 3.3. Wang [2000] offers a characterization of the random order values and the Shapley-

Shubik method where the two axioms DM and UI are replaced by a single property called

ordinality.  The latter strengthens UI by requiring the invariance of cost shares when we change

the measurement of any one good in a nonlinear way.  Let l  denote an increasing (and

differentiable) one-to-one mapping of R +  into itself.  We generalize the definition of l -

rescaling ((3.24) (3.25)) as follows

(3.28)

The ordinality axiom is defined exactly as Unit Invariance, with l  now varying over all

increasing bijections of R + .

The set of random order values is characterized by the combination of Dummy, Additivity

and Ordinality.  Adding Equal Treatment of Equals singles out the Shapley-Shubik method.

We turn to the celebrated characterization of the Aumann-Shapley method.

Corollary 2 to Theorem 3.4. (Billera and Heath [1982], Mirman and Tauman [1982])

i) The Aumann-Shapley cost sharing method is characterized by the four properties Dummy,

Additivity, Unit Invariance and the following:

Average Cost for Homogeneous Good (ACH)

(3.29)

ii) There is no cost sharing method in C ( , )D U M A D D  meeting Average Cost for Homogeneous

Goods and either one of Demand Monotonicity or Ranking.

Note the tension between the axioms UI and ACH, the former bearing on the case of

heterogeneous, noncomparable goods, the latter on the case of identical goods.

Statement ii) in Corollary 2 includes the rr-version of Proposition 3.3.  In fact, the

incompatibility of ACH and RKG (in C ( , )D U M A D D ) holds true in the dr-model as well.  The

proof uses exactly the same numerical example as in the proof of Proposition 3.3.

Remark 3.4. Young [1985b] offers an alternative characterization of the Aumann-Shapley

method using neither Dummy nor Additivity.  Instead, he proposes the Strong Aggregation

Invariance (SAI) axiom that considerably strengthens ACH, and a Symmetric Monotonicity (SM)

axiom combining the intuition of Marginalism ((3.6)) with the interpersonal comparison of

marginal costs.
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Corollary 3 to Theorem 3.4

i) The serial cost sharing method is characterized by the four properties Dummy, Additivity,

Demand Monotonicity and Upper Bound.

Upper Bound (UB)

(3.30)

ii) The serial cost sharing method is characterized by the four properties Dummy, Additivity,

Demand Monotonicity and

Serial cost shares for Homogeneous Good (SCH)

(3.31)

iii) The Shapley-Shubik method is the only method in C ( , )D U M A D D  meeting Lower Bound

((3.15)).

Note that statement i) still holds if we weaken UB by restricting attention to homogeneous

cost functions (i.e., we only require the inequality when C takes the form ).  Statements

i) and iii) have direct counterparts in the dr-model (see, respectively, the discussion after the

corollary to Theorem 3.2 and Corollary 2 to Theorem 3.1).  Statement ii) can be adapted to that

model as well, by adding Equal Treatment of Equals to the requirements.

3.7. Nonadditive cost sharing methods

a) The Stand Alone core approach

In the theory of classical cooperative games (namely the model in Section 3.2) surplus

sharing methods that are not additive in the production (or cost) function have been proposed for

three decades (Schmeidler [1969]).  For simplicity we fix the population N throughout this

Section.

Consider the binary problem ( , , )N C N , denoted (N, C) for simplicity, and suppose that the

cost function C is subadditive, namely:

This property is plausible in every problem where “serving coalition S” is orthogonal to “serving

coalition T ”: the costs incurred by T (resp. S) are the same whether or not S (resp. T) is served.

Under subadditivity of costs, a natural equity requirement on the solution y to the problem

( , )N C  is the Stand Alone core property:
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(3.32)

If this property fails, the coalition of agents S has an objection to y: if S were standing alone it

would benefit from a reduced cost share, whereas the cost share of  would increase.

In view of budget-balance, y C NN = ( ) , the above system of inequalities is equivalent to

This is the No Subsidy principle: S should pay at least the incremental cost of service (if this

inequality fails, coalition  has a Stand Alone objection).

The following fact is well known: subadditivity of the cost function C is not sufficient to

guarantee the existence of a solution y in the Stand Alone core (i.e., meeting (3.32)).  The

characterization of those cost functions generating a nonempty core is one central theme of the

theory of cooperative games, and is well understood: see Owen [1982] or Moulin [1988],

[1995b] for textbook presentations.

The Stand Alone core property for a cost sharing method j  takes the following form (for a

given population N and demand N):

 (3.33)

An interesting result connects the Stand Alone core to the incremental cost shares 

(3.2): the Stand Alone core is contained in the convex hull  of all incremental cost

shares when s  varies over all permutations of N (Weber [1988]).  In other words any allocation

y in the Stand Alone core is achieved by at least one random order value. However, the choice of

a particular random order value (the choice of the convex coefficients over the methods j
s )

depends upon the particular cost function C.  If we pick the same random value j  for all cost

functions C, it must be the case that for some choices of the subadditive cost function C, the

Stand Alone core is nonempty and does not contain the solution  (this is an easy

consequence of Theorem 1 in Young [1985a]).  In view of Theorem 3.1, there is no additive cost

sharing method meeting the Stand Alone core property (3.33).
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Thus if we are committed to the Stand Alone core property, a nonadditive method must be

used.  The abundant literature on classical cooperative games has proposed a number of such

methods; the most prominent among these is the nucleolus (Schmeidler [1969]), selecting a

central point in the Stand Alone core by equalizing as much as possible the cost savings

C S y S( ) -  across all coalitions of N.  See Owen [1982] or Moulin [1988] for a textbook

presentation.

The Stand Alone core approach is easily adapted to the model with variable demands.  Given

a profile of demands x, the Stand Alone cost of coalition ; inequality (3.32)

becomes  and the subadditivity of the cost function C writes C x x( )+ ¢

£ + ¢C x C x( ) ( ) .

An important exception to the incompatibility of the Stand Alone core and Additivity is when

the cost function C is submodular, a considerably more demanding requirement than

subadditivity:

binary model:

variable demands model:

(where 

If C is submodular, the inclusion of the Stand Alone core in the range of the random order values

becomes an equality (Ichiishi [1981]):

(in the binary and variable demands model respectively).  In particular any random order value

meets the Stand Alone core property and the latter property is thus always true for additive cost

sharing methods in the binary model.  The same holds true in the variable demands model.  The

Stand Alone requirement comes for free in the world of additive methods.  An instance of this

general fact is statement ii, in the Corollary to Theorem 2.2: with a homogeneous good and

, submodularity of C is equivalent to the concavity of .

b) Extending homogeneous good methods

One of the natural requirements in the heterogeneous good model is that the cost sharing

method coincides with a given method whenever the goods are actually homogeneous.  In other

words, we wish to impose the solutions j ( , , )N C x  whenever C takes the form .
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The ACH axiom (3.29) and the SCH axiom (3.31) are the key to characterize respectively the

Aumann-Shapley and serial methods (Corollaries 2 and 3 to Theorem 3.4).  Note that in the case

of the AS method, we do not know of any characterization result that would dispense with ACH.

Among additive methods, the two properties ACH and SCH also lead to severe impossibility

results.  Within the set C ( , )D U M A D D  of additive methods, each one of the following pairs of

requirements are incompatible:

i) ACH and Demand Monotonicity

ii) ACH and Ranking

iii) SCH and Unit Invariance

iv) ACH and Serial for excludable public good, namely  for all x y} {Þ

given by (3.23)}

v) ACH and Ordinality (Remark 3.3)

vi) SCH and Ordinality

The first two incompatibilities are statement ii) in Corollary 2 to Theorem 3.4.  The next two are

also easy to derive from Theorem 3.4 and the last two follow Sprumont's result in Remark 3.3.

I regard each one of these impossibility results as a strong argument against the Additivity

requirement.  Each pair of axioms is normatively meaningful, whereas Additivity is only a

structural invariance property.

Sprumont [1998] proposes a handful of nonadditive methods for which the axioms listed

above are compatible.  For instance, in the two agents case he constructs a method satisfying

ACH, DM and Ordinality as follows.  We are given a problem ( , , )N C x , and assume that all

partial derivatives of C are strictly positive and bounded away from zero.  We say that two

problems  are ordinally equivalent if there are rescaling functions l i , one for

each , such that:

Given the problem ( , )C x  one shows that there exists a unique problem  such that

Then the ordinally proportional rule is defined as
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This definition has been generalized to an arbitrary number of agents: Wang and Zhu [2000] and

Wang [2001].  It is also limited by restrictive regularity conditions.  Nonetheless the combined

properties of ACH, DM and Ordinality are a remarkable achievement.

At least two ordinal extensions of serial cost sharing have been proposed.  We describe one

of them, called the Moulin-Shenker rule by Sprumont [1998] who was the first to analyze it

formally.  See also Koster [1988a], [1988b] and Koster, Tijs, and Borm [1998].  We are given a

problem ( , )C x  where we assume, again, that all partial derivatives are positive and bounded

away from zero.  The number of agents is arbitrary.  The following ordinary differential equation

has a unique solution t r t x® ( , ) , namely a monotonic rationing path from 0 to x.  This path

depends on the cost function C itself, but for simplicity we omit this from the notation:

(3.34)

By definition of the counting operation a t x( , )  we have

hence t r t x® ( , )  is indeed a rationing path.  Then we define the Moulin-Shenker cost sharing

method:

The intuition behind this method is simple: as long as his demand is not met, the “active” agent i

is served at a speed that equalizes the marginal cost of service among all active agents:

Sprumont [1998a] proposes another ordinal extension of serial cost sharing in the vein of the

ordinal extension of average cost sharing described above.  He gives axiomatic characterizations

for both extensions.  Koster [1998a] offers a related characterization of the Moulin-Shenker rule.
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c) More nonadditive methods and an open question

The study of nonadditive cost sharing methods has just begun and it shows great potential.

In the homogeneous good model, Hougaard and Thorlund-Petersen [2001] propose a nonadditive

method mixing the increasing and decreasing versions of serial cost sharing: see Section 2.5

point b).  In the same homogeneous good model, Tijs and Koster [1998] propose a very natural

nonadditive generalization of incremental cost sharing.  Fix an ordering , say

.  Denote by L the Lebesgue measure of a measurable set in R + .  The method in

question charges to agent 1 the cheapest marginal costs in [ , ]0 x N :

(3.35)

Finally, a largely unexplored model is the cost sharing problem where several outputs are

jointly produced and each agent demands some amount of every good.  Kolpin [1996] extends to

that context the incompatibility of Additivity, SCH and Unit Invariance; see also Téjédo and

Truchon [1999].  McLean and Sharkey [1996], [1998] adapt the Aumann-Shapley method to that

context and extend the classical characterization result (Corollary 2 to Theorem 3.4).
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