
R ESEARCH  ARTICLE

doi: 10.2306/scienceasia1513-1874.2013.39S.025

ScienceAsia 39S (2013): 25–30

Optimal pursuit time for a differential game in the
Hilbert space l2
Gafurjan Ibragimov

Department of Mathematics, Faculty of Science, & Institute for Mathematical Research,
Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia

e-mail: gafur@science.upm.edu.my
Received 7 Jan 2013
Accepted 5 Apr 2013

ABSTRACT: We consider a two-person zero-sum pursuit-evasion differential game in the Hilbert space l2. The control
functions of the players are subject to integral constraints. It is assumed that the control resource of the pursuer is greater
than that of the evader. The pursuer tries to force the state of the system towards the origin of the space l2, and the evader
tries to avoid this. We give a solution to the optimal pursuit problem for the differential game. More precisely, we obtain an
equation for the optimal pursuit time and construct optimal strategies for the players in an explicit form. To prove the main
result we solve a time-optimal control problem.
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INTRODUCTION

The study of two person zero-sum differential games
was initiated by Isaacs1. Since then much work with
various approaches has been done in developing the
theory of differential games described by ordinary
differential equations.

Control and differential game problems for sys-
tems described by partial differential equations are
also of increasing interest4–10. In Refs. 4–9, such
problems for the equations described by parabolic
and hyperbolic equations were studied. By using the
decomposition method these problems can be reduced
to ones described by infinite systems of ordinary
differential equations6, 8, 9

żk + λkzk = wk, k = 1, 2, . . . ,

where wk, k = 1, 2, . . . are control parameters, zk,
wk ∈ R1, and λk > 0 are eigenvalues of the elliptic
operator defined by

A = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj

)
.

Hence there is a significant relationship between
the control problems described by partial differential
equations and those described by an infinite system
of ODEs. The latter is of independent interest and
can be investigated within one theoretical framework.
Ref. 11 relates to such games described by an infinite
system of ODEs and an evasion differential game with
integral constraints was studied.

This paper is concerned with the so-called two-
person zero-sum pursuit-evasion differential game in
the Hilbert space l2 with integral constraints on the
control functions of players. We investigate the dif-
ferential game problem associated with the following
infinite system of differential equations

ẋk = −αkxk − βkyk + u1k − v1k,
ẏk = βkxk − αkyk + u2k − v2k,
xk(0) = xk0, yk(0) = yk0,

(1)

k = 1, 2, . . ., in l2, where αk, βk are real num-
bers, αk > 0, x0 = (x10, x20, . . .) ∈ l2, y0 =
(y10, y20, . . .) ∈ l2, u = (u11, u12, u21, u22, . . .) and
v = (v11, v12, v21, v22, . . .) are control parameters of
the pursuer and evader, respectively. The pursuer tries
to force the state towards the origin of the space l2
against any action of the evader who exactly tries to
avoid this. We give a solution to the optimal pursuit
problem for the differential game.

Note that if we substitute λk = αk − iβk, zk =
xk + iyk, uk = u1k + iu2k, vk = v1k + iv2k, k =
1, 2, . . ., into the system

żk + λkzk = uk − vk, k = 1, 2, . . . ,

then we obtain the system (1). Hence this work is a
complement to Refs. 8, 9.

STATEMENT OF THE PROBLEM

Let ρ0, ρ and σ be positive numbers.
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Definition 1 A function

w(·) = (w11(·), w21(·), w12(·), w22(·), . . .),
w : [0, T ]→ l2,

with measurable coordinates w1k(t), w2k(t), 0 6 t 6
T, k = 1, 2, . . ., subject to the condition

∞∑
k=1

∫ T

0

w2
1k(s) + w2

2k(s) ds 6 ρ2
0

is referred to as the admissible control, where T > 0
is a sufficiently large fixed number.

We denote the set of all admissible controls by S(ρ0).

Definition 2 A function u(·) ∈ S(ρ) (v(·) ∈ S(σ))
is referred to as the admissible control of the pursuer
(evader).

Definition 3 A function

u(t, v) = (u1(t, v), u2(t, v), . . .), u : [0, T ]×l2 → l2,

with 2-d coordinates uk = (u1k, u2k) of the form

uk(t, v) = vk(t) + ωk(t),
ωk = (ωk1, ωk2), vk = (v1k, v2k),
ω(·) = (ω1(·), ω2(·), . . .) ∈ S(ρ− σ),

subject to the condition (admissibility)
∞∑
k=1

∫ T

0

|uk(t, v(t))|2 dt 6 ρ2 for any v(·) ∈ S(σ),

is called a strategy of the pursuer.

Let

z(t) = (z1(t), z2(t), . . .)
= (x1(t), y1(t), x2(t), y2(t), . . .),

||z|| =

( ∞∑
k=1

(x2
k + y2

k)

)1/2

,

zk(t) = (xk(t), yk(t)), |zk| =
√
x2
k + y2

k,

z0 = (z10, z20, . . .) = (x10, y10, x20, y20, . . .),

||z0|| =

( ∞∑
k=1

(x2
k0 + y2

k0)

)1/2

.

Definition 4 If there exists a strategy u(·) of the
pursuer such that for any admissible control of the
evader the equality z(τ) = 0 occurs at some τ where
0 6 τ 6 ϑ, then we say that the differential game (1)
can be completed within the time ϑ.

Definition 5 A function v(t, u), v : [0, T ]× l2 → l2,
that satisfies the conditions
(i) v(t, u) = 0, 0 6 t 6 ε
(ii) v(t, u) = u(t− ε), ε < t 6 T ,
where ε is a positive number, is called a strategy of the
evader.

Definition 6 A number ϑ is called optimal pursuit
time if
(i) the differential game can be completed within the

time ϑ,
(ii) there exists a strategy v(·) of the evader such that

z(t) 6= 0, 0 6 t < ϑ, for any control u(·) of
the pursuer. In this case we say that evasion is
possible on [0, ϑ).

Problem. Find the optimal pursuit time in the
differential game (1).

For k = 1, 2, . . ., let

Ak(t) =
[

e−αkt cosβkt − e−αkt sinβkt
e−αkt sinβkt e−αkt cosβkt

]
. (2)

It is not difficult to show that the matrices Ak(t) have
the following properties:

Ak(t+ h) = Ak(t)Ak(h) = Ak(h)Ak(t),

|Ak(t)zk| = |A∗k(t)zk| = e−αkt|zk|,

where A∗ denotes the transpose of the matrix A.

TIME-OPTIMAL CONTROL PROBLEM

In this section, we find the minimum time required to
steer the system from some initial point to the origin.

Let C(0, T ; l2) be the space of continuous func-
tions z(·) such that z(t) ∈ l2 for each t, 0 6 t 6 T .
The following proposition is true10.

Proposition 1 If w(·) ∈ S(ρ0), and αk > 0, then
for any given T > 0 the following infinite system of
differential equations

ẋk = −αkxk − βkyk + w1k,

ẏk = βkxk − αkyk + w2k,

xk(0) = xk0, yk(0) = yk0,

(3)

k = 1, 2, . . ., has a unique solution z(t) =
(z1(t), z2(t), . . .), 0 6 t 6 T , in the space
C(0, T ; l2). Of course, for k = 1, 2, . . .,

zk(t) = Ak(t)zk0 +
∫ t

0

Ak(t− s)wk(s) ds.

It should be noted that this existence-uniqueness the-
orem for the system (3) was proved for any finite
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interval. Hence we consider the systems (1) and (3)
on [0, T ], with T being an arbitrary positive number.

For the system (3), first we consider the following
time-optimal control problem2:

z(0) = z0, z(ϑ) = 0, ϑ→ min
w
. (4)

Let

ϕk(t) =


e2αkt − 1

2αk , αk > 0,

t, αk = 0, t > 0.

Since 1/ϕk(t) → +∞ as t → 0+ for each k, the
left-hand side of the equation

∞∑
k=1

|zk0|2

ϕk(t)
= ρ2

0 (5)

approaches +∞ as t→ 0+. Moreover, the left part of
(5) is a decreasing function of t, t > 0, and

∞∑
k=1

|zk0|2

ϕk(t)
6

1
t

∞∑
k=1

|zk0|2 =
1
t
||z0||2 → 0, t→∞.

Hence (5) has a unique root t = ϑ.

Theorem 1 The number ϑ is the solution of the time-
optimal control problem (3)–(4).

Proof : A. Define the control

wk(t) = − 1
ϕk(ϑ)

A∗k(−t)zk0, 0 6 t 6 ϑ. (6)

Then by (2)

∞∑
k=1

∫ ϑ

0

|wk(t)|2 dt

=
∞∑
k=1

1
ϕ2
k(ϑ)

∫ ϑ

0

|A∗k(−t)zk0|2 dt

=
∞∑
k=1

|zk0|2

ϕ2
k(ϑ)

∫ ϑ

0

e2αkt dt =
∞∑
k=1

|zk0|2

ϕk(ϑ)
= ρ2

0.

Hence the control (6) is admissible.
B. Show that z(ϑ) = 0. Indeed,

ξk(ϑ) .= zk0 +
∫ ϑ

0

Ak(−s)wk(s) ds

= zk0 −
1

ϕk(ϑ)

∫ ϑ

0

Ak(−s)A∗k(−s)zk0 ds

= zk0 − zk0 = 0, k = 1, 2, . . . .

Therefore zk(ϑ) = Ak(ϑ)ξk(ϑ) = 0, k = 1, 2, . . ..
C. We now show that z(t) 6= 0, 0 6 t < ϑ, where

z(t) is the state of the system (3).
Assume the contrary. Then there exists an admis-

sible control w∗(·) and time τ , 0 6 τ < ϑ, such that
z(τ) = 0. Hence ξ(τ) = (ξ1(τ), ξ2(τ), . . .) = 0, i.e.,∫ τ

0

Ak(−s)w∗k(s) ds = −zk0. (7)

We use the following proposition (see, for example,
Ref. 12).

Proposition 2 Let B(t), 0 6 t 6 ϑ0, be a
continuous matrix-function of the order n, and its
determinant be not identically 0 on [0, ϑ0]. Then
among the measurable functions u(·), u : [0, ϑ0] →
Rn, satisfying the condition∫ ϑ0

0

B(s)u(s) ds = z0

the control defined at almost everywhere on [0, ϑ0] by
the formula

u(s) = B∗(s)F−1(ϑ0)z0, F (ϑ0) =
∫ ϑ0

0

B(s)B∗(s) ds,

gives the minimum to the functional∫ ϑ0

0

|u(s)|2 ds.

For the matrix

Fk(τ) =
∫ τ

0

Ak(−s)A∗k(−s) ds

we have F−1
k (τ) = (1/ϕk(τ))E2. Then by Proposi-

tion 2 the control

w0(t) = (w10(t), w20(t), . . .), (8)

wk0(t) = − 1
ϕk(τ)

A∗k(−t)zk0, k = 1, 2, . . . ,

satisfies (7) and gives the minimum to the functional

I(w(·)) =
∞∑
k=1

∫ τ

0

|wk(t)|2 dt.

Substituting (8) into the functional I gives

I(w∗(·)) > I(w0(·)) =
∞∑
k=1

|zk0|2

ϕk(τ)

>

∞∑
k=1

|zk0|2

ϕk(ϑ)
= ρ2

0.

This means the control (8) is not admissible. Then
w∗(·) is not admissible. Contradiction. This com-
pletes the proof. �
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DIFFERENTIAL GAME PROBLEM

We now consider the differential game (1). As shown
in the previous section, the equation

∞∑
k=1

|zk0|2

ϕk(t)
= (ρ− σ)2

has a unique solution t = ϑ1. We can assume, by
choosing T if necessary, that ϑ1 < T .

Theorem 2 ϑ1 is the optimal pursuit time in the game
(1).

Proof : 1. First we show that the differential game (1)
can be completed within the time ϑ1. To this end we
offer to the pursuer the following strategy

uk(t, v) = vk(t)−
1

ϕk(ϑ1)
A∗(−t)zk0, k = 1, 2, . . . .

(9)
Let v(·) be any admissible control of the evader.

Admissibility of the strategy (9) can be shown by
using the Minkowski inequality as follows:( ∞∑
k=1

∫ ϑ1

0

|uk(t, v(t))|2 dt

)1/2

=

( ∞∑
k=1

∫ ϑ1

0

|vk(t)−
1

ϕk(ϑ1)
A∗(−t)zk0|2 dt

)1/2

6

( ∞∑
k=1

∫ ϑ1

0

|vk(t)|2 dt

)1/2

+

( ∞∑
k=1

∫ ϑ1

0

1
ϕ2
k(ϑ1)

|A∗(−t)zk0|2 dt

)1/2

6 σ + ρ− σ = σ.

It is easy to show that zk(ϑ1) = 0, k = 1, 2, . . ..
2. We now show that evasion is possible on the

time interval [0, ϑ1). The evader’s strategy consists of
two parts. If ρ(t) > σ(t), where

ρ(t) =
(
ρ2 −

∫ t

0

||u(s)||2 ds
)1/2

,

σ(t) =
(
σ2 −

∫ t

0

||v(s)||2 ds
)1/2

,

||u||2 =
∞∑
k=1

|uk|2 =
∞∑
k=1

(u2
1k + u2

2k),

we set

vk(t) = − 1
ϕk(ϑ1)

σ

ρ− σ
A∗k(−t)zk0, k = 1, 2, . . . .

(10)

If ρ(t) = σ(t) at some t ∈ [0, ϑ1), then the evader
will use the second part of his strategy, which will be
constructed later.

A. Show that if the evader uses the control (10),
then z(t) 6= 0, t ∈ [0, ϑ1), while ρ(t) > σ(t). We
assume the contrary, the game is completed at some
time t = τ < ϑ1, that is,

zk(τ) = Ak(τ)ηk(τ) = 0, k = 1, 2, . . . ,

hence

ηk(τ)
.= zk0 −

∫ τ

0

Ak(−s)uk(s) ds

+
∫ τ

0

Ak(−s)vk(s) ds = 0, k = 1, 2, . . . ,

when
ρ(τ) > σ(τ). (11)

From (10) we obtain∫ τ

0

Ak(−s)uk(s) ds

= zk0 +
∫ τ

0

Ak(−s)vk(s) ds

= zk0 +
σ

ρ− σ
ϕk(τ)
ϕk(ϑ1)

zk0, k = 1, 2, . . . .

In accordance with Proposition 2 the minimum of the
functional ∫ τ

0

|uk(s)|2 ds

is attained at

uk(s) =
1

ϕk(τ)
A∗k(−s)zk0

(
1 +

σ

ρ− σ
ϕk(τ)
ϕk(ϑ1)

)
almost everywhere on [0, τ ]. So∫ τ

0

|uk(s)|2 ds

=
1

ϕk(τ)
|zk0|2

(
1+

σ

ρ− σ
ϕk(τ)
ϕk(ϑ1)

)2

, k = 1, 2, . . . .

According to (10)∫ τ

0

|vk(s)|2 ds =
σ2

(ρ− σ)2
ϕk(τ)
ϕ2
k(ϑ1)

|zk0|2, k = 1, 2, . . . .

Hence for k = 1, 2, . . .,∫ τ

0

|uk(s)|2 ds−
∫ τ

0

|vk(s)|2 ds

=
1

ϕk(τ)
|zk0|2 + 2

σ

ρ− σ
1

ϕk(ϑ1)
|zk0|2.
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Consequently,

∞∑
k=1

(∫ τ

0

|uk(s)|2 ds−
∫ τ

0

|vk(s)|2 ds
)

=
∞∑
k=1

1
ϕk(τ)

|zk0|2 +
2σ
ρ− σ

∞∑
k=1

1
ϕk(ϑ1)

|zk0|2.

(12)

As τ < ϑ1 and the function ϕk(t), t > 0, is
increasing, then in agreement with the definition of ϑ1

we have
∞∑
k=1

1
ϕ(τ)

|zk0|2 >
∞∑
k=1

1
ϕ(ϑ1)

|zk0|2 = (ρ− σ)2.

Hence by (12)

∞∑
k=1

(∫ τ

0

|uk(s)|2 ds−
∫ τ

0

|vk(s)|2 ds
)

> (ρ− σ)2 + 2(ρ− σ)2
σ

ρ− σ
= ρ2 − σ2.

Hence

σ2 −
∞∑
k=1

∫ τ

0

|vk(s)|2 ds > ρ2 −
∞∑
k=1

∫ τ

0

|uk(s)|2 ds,

that is, σ2(τ) > ρ2(τ), which contradicts the assump-
tion that ρ(τ) > σ(τ) (see, (11)).

Thus if the evader uses the control (10), then
z(t) 6= 0, t ∈ [0, ϑ1) whenever ρ(t) > σ(t).

B. If ρ(t1) < σ(t1) at some time t1 ∈ [0, ϑ1) then
by continuity of the functions ρ(t), σ(t), t > 0, and
the inequality ρ(0) > σ(0) there exists τ , 0 6 τ < t1
to hold the equality ρ(τ) = σ(τ). As proved in the
above that z(t) 6= 0, 0 6 t 6 τ , and hence z(τ) 6= 0.

In its turn the inequality z(τ) =
(z1(τ), z2(τ), . . .) 6= 0, implies that zk(τ) =
Ak(τ)ηk(τ) 6= 0 for some k. Hence ηk(τ) 6= 0.
Consider the following two-dimensional system

ηk(t) = ηk(τ)−
∫ t

τ

Ak(−s)(uk(s)−vk(s)) ds, t > τ,

associated with the number k. Construct a strategy
for the evader that ensures the inequality zk(t) 6= 0,
τ 6 t 6 T . Set

vk(s) =

{
0, τ 6 s 6 τ + ε,

uk(s− ε), τ + ε < s 6 T.

In the following the positive number ε will be chosen.
If τ 6 t 6 τ + ε, then

ηk(t) = ηk(τ)−
∫ t

τ

Ak(−s)uk(s) ds

and

|ηk(t)| > |ηk(τ)| −
∣∣∣∣∫ t

τ

Ak(−s)uk(s) ds
∣∣∣∣

> |ηk(τ)| −
∫ t

τ

|Ak(−s)uk(s)|ds

= |ηk(τ)| −
∫ t

τ

eαks|uk(s)|ds

> |ηk(τ)| −
(∫ τ+ε

τ

e2αks ds ·
∫ τ+ε

τ

|uk(s)|2 ds
)1/2

.

Since ∫ T

0

|uk(s)|2 ds 6 ρ2,

the right part of the last inequality approaches |ηk(τ)|
as ε→ 0.

If τ + ε < t 6 T , then we have

ηk(t) = ηk(τ)−
∫ t

τ

Ak(−s)uk(s) ds

+
∫ t

τ+ε

Ak(−s)uk(s− ε) ds

= ηk(τ)−
∫ t

τ

Ak(−s)uk(s) ds

+
∫ t−ε

τ

Ak(−s− ε)uk(s) ds

= ηk(τ) +
∫ t−ε

τ

[Ak(−s− ε)−A(−s)]uk(s) ds

+
∫ t

t−ε
Ak(−s)uk(s) ds.

Using the Cauchy-Schwartz inequality yields

|ηk(t)| > |ηk(τ)| − ak ·
(∫ t−ε

τ

|uk(s)|2 ds
)1/2

−
(∫ t

t−ε
e2αks ds ·

∫ t

t−ε
|uk(s)|2 ds

)1/2

,

where

ak =
(∫ t−ε

τ

||Ak(−s− ε)−Ak(−s)||2 ds
)1/2

.

It is clear that |ηk(τ)| > 0, and the second and the
third terms of the right part of the last inequality
approach 0 as ε→ 0.

Thus there exists ε0 > 0 such that ηk(t) >
|ηk(τ)|/2, t > τ , whenever 0 < ε < ε0. Hence
zk(t) 6= 0, τ 6 t 6 T . This implies z(t) 6= 0,
τ 6 t 6 T . The proof of the theorem is complete. �
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CONCLUSIONS

In the present paper, we have studied optimal pursuit
game problem for the infinite system of DE (1) in the
Hilbert space l2. Control functions are subjected to
integral constraints. The main results of the paper
are as follows. (i) We have solved a time optimal
control problem and found an equation to find the
optimal time, (5). Also we have constructed optimal
control. (ii) We have studied optimal pursuit problem
for the differential game with integral constraints. We
have constructed optimal strategies for the players and
given an equation to find optimal pursuit time.

Research on methods for solving control and/or
differential game problems for systems described by
infinite number of ODEs has very promising future
since many control and/or differential game problems
described by PDEs can be reduced to such systems
(see, for example, Refs. 4–9).

Control problems for infinite systems of differen-
tial equations require new methods. Many methods of
finite dimensional spaces don’t work even for infinite
systems of simple form. For example, consider the
following controlled system described by the first
order differential equations

żk = −λkzk+wk, zk(0) = zk0, k = 1, 2, . . ., (13)

where zk, zk0, wk ∈ R, z(t) = (z1(t), z2(t), . . .) ∈
l2, t > 0; wk, k = 1, 2, . . ., are control pa-
rameters, and λk, 0 < λ1 6 λ2 6 · · · →
∞. Admissible controls are defined as functions
w(t) = (w1(t), w2(t), . . .) with measurable compo-
nents wi(t) subjected to geometric constraint

∞∑
k=1

w2
k(t) 6 ρ

2, t > 0,

where ρ > 0 is a given number. Such a constraint is
obtained if we consider the constraint on the norm of
the form ||v(·, t)|| 6 ρ (see (5) in Ref. 8) instead of the
constraint (1.6) in Ref. 6. It is natural to investigate the
following time optimal control problem for the system
(13) in the Hilbert space l2:

zk(T ) = 0, k = 1, 2, . . ., T → min

which is an open problem. This problem can also
be extended to systems with arbitrary positive coef-
ficients λk. Another open problem for simple motion
differential games in the Hilbert space l2 was formu-
lated in the conclusion of Ref. 11.
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