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Abstract

This report describes a specification and verification framework for distributed interactive
systems. The framework encodes the untimed part of the formal methodology FOCUS
[BS01]in the proof assistant Isabelle [Pau90] using domain-theoretical concepts. The key
concept of FOCUS, the stream data type, together with the corresponding prefix-order, is
formalized as a pointed complete partial order. Furthermore, a high-level API is provided
to hide the explicit usage of domain theoretical concepts by the user in typical proofs.
Realizability constraints for modeling component networks with potential feedback loops
are implemented. Moreover, a set of commonly used functions on streams are defined as
least fixed points of the corresponding functionals and are proven to be prefix-continuous.

As a second key concept the stream processing function (SPF) is introduced describing
a statefull, deterministic behavior of a message-passing component. The denotational
semantics of components in this work is a defined set of stream processing functions,
each of which maps input streams to output streams.

Furthermore, an extension of the framework is presented by using an isomorphic trans-
formation of tuples of streams to model component interfaces and allowing composition.
The structures for modeling component networks are implemented by giving names to
channels and defining composition operators. This is motivated by the advantage that
a modular modeling of component networks offers, based on the correctness of compo-
nents of the decomposed system and using proper composition operators, the correct-
ness of the whole system is automatically derived by construction.

To facilitate automated reasoning, a set of theorems is proven covering the main prop-
erties of these structures. Moreover, essential proof methods such as stream-induction
are introduced and support these by further theorems. These examples demonstrate the
principle usability of the modeling concepts of FOCUS and the realized verification frame-
work for distributed systems with security and safety issues such as cars, airplanes, etc.
Finally, a running example extracted from a controller in a car is realized to demonstrate
and validate the framework.
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Chapter 1

Introduction

Distributed systems can be described as a physically or logically distributed collection of
components which may only communicate by exchanging messages over communication
channels, i.e, components do not share a global memory and their direct communication
might be limited by the absence of communication channels. Examples of distributed
systems can be found in telecommunication networks, cloud applications, control devices
in cars, high-performance computing etc.

The design of distributed systems [BS01; Cou+12; Lee16] has proven to be much more
error prone than that of sequential software. For this reason, formal methods, like CSP
[Hoa78; Hei+15], CCS [Mil89], Petri Nets [Pet66; Rei12], or the w-calculus [Mil99], are
often used for precise system specification and verification. The presence of a formal
specification has proven to lead to better implementations, as potential sources of error
are detected earlier [Hal90; Mao+17]. The method for system specification we use here
is called FOCUS [Rum96; BS01] and is based heavily on the data flow paradigm. Some
key works that influenced FOCUS are Petri Nets [Pet66], and Kahn networks [Kah74].
Other methodologies for modeling distributing systems usually differ from this approach
by depending on a global state and shared memory.

The core concept of FOCUS is the stream. A stream is a potentially infinite message
sequence from an alphabet and models a communication channel history starting at a

Component Name

AcéZvel

Channel | Stream value

: Add - v a 1110012
Vewrr 1233346 ...
Upref 01233346

Channel—

Prefix 0

Figure 1.1: Running Example: Cruise Control



certain point in time until infinity. This communication history is also often called an
observation. To make an analogy, one can picture a person sitting by a channel without
a watch and writing down the messages that pass by.

We consider a component in a distributed system as a unit of computation that processes
messages interactively. We will use the component network shown in Figure 1.1 as a run-
ning example of a component network throughout this document. It is extracted from a
cruise control system and demonstrates the stepwise increment of the velocity depending
on the acceleration. One component initializes the sequence by a 0. The other compo-
nent performs the addition and has a well-defined interface: input channels a and vp,e,
and output channel v, denoted by arrows in the figure below. We verify the correct
behavior in Appendix F.

Components can also be nondeterministic which means that they might have multiple
behaviors for the same input. Furthermore, they might also have multiple input and output
channels. We will define the semantics [HR04] of such a nondeterministic component
using sets of functions following [Rum96]. Alternative semantic definitions can also be
found in [BR0O7; BS01; RR11; Rin14].

Because streams model history, not every function f that maps streams to streams ac-
tually models a real-life interactive component. However, the subset of these functions f
is characterised by two properties that exactly resemble the possible behavior of real-life
interactive components. Both are well known from mathematics, namely monotonicity
and continuity. We now give an intuitive explanation of these requirements, and then in
the next chapter, we give a formal definition.

If a component has emitted a message, it cannot take it back. So any reaction that
happens in the future after message was emitted can only be the emission of further
messages. That means mathematically, that an enlargement of the input sequence of
the component can only lead to an enlargement of the output sequence of messages.
This property of stream processing functions is called monotonicity and is necessary,
because our functions can look at the whole history in its arguments and describe the
whole history of the output at the same time.

Second, to describe liveness and related properties, infinite streams need to be consid-
ered to describe full histories. However, each emitted message must actually be admitted
as a reaction of a finite sequence of input messages. It is illegal to look at the complete
input history to emit a message — which obviously then would be emitted after a finite
period of time. Technically this is ensured by enforcing f to be continuous, which allows
to define behavior, like f, by inductively looking at approximations of the input to produce
approximations of the output [Kle52].

Finally, stream processing functions are defined as functions from stream (tuples) to
stream (tuples) which are continuous [RR11].

Next we use sets of functions to be able to give a specification a semantics that actually
allows several different behaviors, based on possible nondeterminism of the components
implementation, or based on insufficient information available during development time.

One of the most important properties of FOCUS [Bro+92; BS01] is that it provides sound
and mighty composition operators. Composition of continuous functions is continuous
as well. So a computation unit can be hierarchically decomposed into a collection of
continuous stream processing functions.



There is a straightforward extension of composition to sets of functions, which then aso
allows us to decompose specifications (sets of behaviors).

The second fundamental property is that refinement of component specifications is se-
mantically reflected by the concept of set inclusion between function sets. And most
importantly:

Refinement of a component in a decomposed structure automatically leads to refinement
of the composition [BRO7].

This important property is actually the reason, why streams are such a helpful technique
to formalize behavior of distributed components. We can abstractly specify behavior,
decompose the specification (may be hierarchically as long as desired), refine each indi-
vidual sub-specification until an implementation component is reached, and then can be
sure that the composition of the implementations is correct by design. To our knowledge,
no other approach can do this so powerful as FOCUS.

In this work the above mentioned constructs have been encoded in the interactive proof
assistant Isabelle [Pau90; www18; PB10]. While streams and stream processing func-
tions heavily rely on inductive definition and therefore on fixpoint theory, we provide a
high-level API and hide specific usage of domain theoretical concepts from the user.
Therefore, proving theorems on streams very often does not have to deal with the do-
main theoretical induction concepts in the proof engine, but can deal with abstract high
level definitions and theorems. Domain-theory, on which this work relies, has already
been sufficiently formalized in Isabelle in [Reg94]. In [Huf12], a comprehensive intro-
duction to Isabelle/HOLCF as a theorem proving system focusing on the domain-theory
formalization is given, and the so-called domain package, which facilitates the work with
domain theoretical concepts, is introduced. Nevertheless, an optimal formalization of the
stream theory in Isabelle hasn’'t been achieved yet. A variant of a stream data type is
presented in HOLCF [Mil+99]. The works [GRO06], [Sti16], [Bur17], [Slo17], [Wia17],
[Kau17], [Zel17], [MUI18] present some ideas which form the foundation of the current
work.

Spichkova [Spi08] independently formalized parts of FOCUS in Isabelle/HOL. System
specifications can either be translated manually or developed directly in Isabelle/HOL.

The implementation covers timed streams and also proposes ways to handle time-synchronous
streams. Based on some results Trachtenhertz [Tra09] has formalized semantics for the
description techniques of AutoFOCUS in Isabelle/HOL. The framework focuses on tem-
poral specifications of functional properties. The work aims at supporting the develop-
ment process from design phase to an executable specification. As an industrial case
study, an adaptive cruise control system is formalized. The tool-chain AutoFOCUS [HF11]

uses this HOL-formalization of FOCUS to check properties of component networks.

In a different line of work relying on automated rather than interactive theorem proving,
Huber et al. [HSE97] report on automated verification of the refinement of AutoFOCUS
components described by state transition diagrams and a sequence diagram notation
using the model checkers SMV [Bur+92], and u-cke [Bie97] based on trace inclusion.
Similarly, [Rin14] shows a translation of components with nondeterministic automata im-
plementations to the theorem prover Mona [EKM98; www13].

Another related work to formalize model component networks is the Ptolemy Project
[Lee09] where the authors create a framework for actor-oriented design. The encod-
ing of possible infinite streams in a computer program is nontrivial. A methodology for the
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encoding of possibly endless sequence data structures in theorem provers is presented
in the work of Devillers, Griffioen and Muller [DGM97].

Compared with the works mentioned above, the benefit of our approach is that it offers a
comfortable environment for reasoning about component networks occurring in architec-
ture description languages, i.e., MontiArc [HRR12], or component-behavior implementa-
tion languages like MontiArcAutomaton [RRW14]. On top of that, it provides a semantic
[HRO04] domain for component-and-connector modeling languages.

1.1 Goals and Results

The key contributions of this work are:

» An optimized Isabelle realization of streams.

+ A group of over 100 useful functions on streams, bundles, stream processing func-
tions and their composition. The corresponding continuity proofs, which constitute
a vital part of this contribution, are found in the appendix.

« A collection of about 1000 theorems providing a high-level API for proofs on streams
and stream processing functions.

+ A formalization of realizability constraints for untimed modeling of components and
component networks with potential feedback loops.

» A formalization of the general composition operator for (sets of) stream processing
functions.

» An extension of the framework for tuples of streams to model component inter-
faces and allowing composition is implemented, as well as essential theorems about
these.

* An implementation of untimed stream processing functions.

* An evaluation on a case study used as a running example.
Further contributions are:

+ An Isabelle theory for natural numbers with the largest element co. (Section 4.3)

» An Isabelle theory for enhancing sets with the inclusion-order. (Section 4.2)

Figure 1.2 gives an overview of our theories, such as stream bundle (SB), stream-processing
function (SPF), and sets of functions denoted as stream processing specification (SPS).
Theory imports are represented as arrows in the figure.

We begin this work with a small introduction to domain theory in Chapter 2 to explain
the mathematical concepts that are required to understand the definition of streams and
stream processing functions.



SPS

SPF
SB
Stream Channel
Prelude SetPcpo LNat

Figure 1.2: Overview of the Theory Structure

In Chapter 3 we will introduce the basics of the proof assistant Isabelle [NPW02]. For a
more detailed introduction to domain theory and its formalization in theorem provers, we
recommend reading [Nip13], and [NPWO02]. Both works provide an in-depth introduction
to functional programming, higher-order logic, HOLCF (higher-order logic of continuous
functions) as well as the theorem prover Isabelle that we use for our FOCUS formaliza-
tion.

In Chapter 4 we will then discuss our extension theories for the HOLCF library. The
mathematical definition of streams in FOCUS as well as our formalization in Isabelle will
be presented in Chapter 5. After that, the concept of stream bundle [Rum96] that help to
improve the scalability of FOCUS models will be introduced. Furthermore, we will present
the corresponding implementation in Isabelle. Based on the concept of stream bundle
we will then describe stream-processing functions and their formalization in Chapter 7.
Finally, we will explain our formalization the general composition operator for (sets of)
Stream Processing Functions and their implementation in Chapter 8.

Acknowledgements We thank Peter Sommerhoff and Patricia Wessel for writing a first
draft of the foundations chapter of this work.



Chapter 2

Foundations of Domain Theory

The mathematical field of domain theory plays a major role in denotational semantics
which defines the meaning of programming language elements based on known math-
ematical structures [HR04; Bro13]. In particular, denotational semantics allows us to
define the meaning of possibly recursive functions which build the foundation for streams
and stream processing function. So to fully understand the concept of streams, we need
to understand the mathematics used to define them first, especially domains, functions,
and fixed-points.

2.1 Partial Orders

Ordered sets are one of the core concepts in domain theory. Since orders are special
relations, we have to define relations first.

Definition 2.1. A (binary) relation R over a set S is a subset of the Cartesian product
S xS.
We can now define partial orders as follows:
Definition 2.2. A partial order (po) over a set S is arelation R, denoted as C, that satisfies
the following [SK95]:

* Cisreflexive:Vx € S.x C x

» Cistransitive: Va,y,z€ S.2 CyAyC 2z = 2 C 2

* Cis antisymmetric: Vz,y € S CyAyLCz = z=y

Based on partial orders, we can now define the concept of chains and least upper bounds.

Definition 2.3. An (ascending) chain in a partially ordered set S is a sequence of ele-
ments [z1, 2, x3,...] suchthat x1 C 2o C 23 C .... [SK95]

Please note that a chain has at most countably many elements. For the following two
definitions let S, S’ be sets such that S’ C S. S need not be countable.
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Definition 2.4. An upper bound of S’ in S is an element b € S such that Vo € S’.x C b
holds. [SK95]

Definition 2.5. A least upper bound (lub) (denoted | | S) is an upper bound of S such that
for any upper bound ¥', b C ' holds. [SK95]

Since we have now defined the requirements of partial orders, we can give an example
of such an order.

Example 2.1. Let A be a set, then the subset relation C is a partial order on the power-
set p(A), as the subset relation satisfies the three properties a partial order must have.
Furthermore, there exists a least upper bound for every subset of p(A).

Depending on the use case, e.g. constructing the communication history on channels
recursively, the requirements for partial orders alone may not be strong enough to serve
as semantic domains. For example, an ordered set does not necessarily posses a least
element, which is useful as an initial approximation, and ordered sets might not have
least upper bounds, which are desirable as tight approximations. To overcome this issue,
we can define two, more restrictive types of partial orders.

Definition 2.6. A complete partial order (cpo) on a set S is a partial order C such that
every ascending chain in S has a least upper bound which is included in S. [SK95]

Definition 2.7. A pointed complete partial order (pcpo) on a set S is a cpo such that an
element L € S exists for which Vz € S. 1 C x holds. [SK95]

2.2 Domains

In our work, a domain is a pointed complete partial order (pcpo). One of the simplest do-
main types are the elementary or flat domains [SK95] which express results of programs
in denotational semantics and allow the precise specification of a program’s meaning. We
can convert any set S, e.g., Boolean values S = {0, 1} or Integer values S = Z, into such
an elementary domain by adding an artificial bottom element L and defining a discrete
partial order Cg, that satisfies the following:

V$,yES.I'EyC<1§>f($:y)V($:J_)
It should be noted, that for sets like the integers the partial order Cy is not equal to the
default ordering <z. For example, 1 <z 2 holds but 1 Tz, 2 not.

Based on multiple domains, we can construct more complex ones using domain con-
structors. The presumably most well-known constructor is the Cartesian product that can
be used to generate product domains.

Definition 2.8. The product domain X x Y with the ordering Cx «y of two pcpos X and
Y with the orderings Cx and Cy is defined as follows:

XxY :={(z,y)|lz € X, yeY}
def
(x1,11) Cxxy (22, y2) E 21 Cx 22 Ay Ty o

Lemma 2.1. The ordering Cxy is a pcpo on X x Y with least element (L, 1) [SK95].

7



2.3 Functions

Sets of functions with an appropriate order can also be a domain. Before we can show
how function domains can be constructed, we have to define the concept of partial and
total functions first.

Definition 2.9. A function f : X — Y is a total function if for every z € X the value
f(z) € Y is defined.
If fis nottotal, f is called partial.

It should be noted that we can transform every partial function f, : A — B into a total
function f;. This can for example be achieved by adding a new and distinct element | g
to the codomain and defining f; as follows:

fil) = {fp(@ if £,(x) is defined

1lg otherwise

In functional languages this lifting process can be realized by changing data type c of a
function f to ¢ option:

datatype 'a option = None | Some 'a

Here datatype is a keyword for creating data types, 'a denotes a type variable, and
None and some are constructors. Undefined inputs of a function are then mapped to None
whereas a defined value y is mapped to some y.

In the following, we will denote the signature of such lifted functions as A — C', where A is
an arbitrary type. As this lifting is always possible, we will from now on restrict ourselves
on total functions.

Function Domains

Since we have now characterized total and partial functions, we can define function do-
mains [SK95].

Definition 2.10. Let X and Y be pcpos with the orders C x and Cy. The function domain
Fun(X,Y) is defined as the set of all total functions with domain X and codomain Y. The
ordering on this set C is then defined such that the following holds:

Vf,ge Fun(X,Y). (Vze X. f(z)Cyg(x) & fCyg

Based on this definition we can deduce the following:

Lemma 2.2. The ordering Cpyy(x,y) is @ pcpo on Fun(X,Y') [SK95].

To make use of function domains in denotational semantics, we have to further restrict the
set Fun(X,Y) as it may contain functions that are not realizable. For example, Fun(N; —

N, ,B) includes a function H which delivers true if and only if the function f it is applied
to, always delivers a defined value, which is not computable.

The first restriction we can define for function domains is monotonicity.

8



Definition 2.11. A function f € Fun(X,Y") is monotonic if
\V/:El,ZEQ € X. 1 CExyg = f(.CEl) C f(l‘g)

holds.

The second restriction is the continuity.

Definition 2.12. A function f € Fun(X,Y') is continuous if for every chain A the following
holds:

f(UH{aill <i}) = [U{f(ai)[1 < i}
So a monotonic function preserves the ordering and a continuous function preserves
least upper bounds. The following two lemmas will be of particular importance later:
Lemma 2.3. The concatenation of two continuous functions is again continuous. [SK95]
Lemma 2.4. A continuous function is monotonic. [SK95]

Example 2.2. Let A := {a'|i € N} where N, := NU{oo}, and C 4 be the prefix ordering
on words e.g., a T4 aa. Then C 4 is a pcpo on A where 1. = a°.

Furthermore, let f1, fo, f3 € Fun(A, A) such thatvVx € {1,2,3} : Vi € N: f.(a') := a. The
mappings of the infinitely long a word are defined as shown below:

* fi(a>) =
s f2(a>®) :=aa
* f3(a™)=a
Note that there exists an ascending chainY := [a°, a',a?,...,] such that | |{y;|1 < i} =

a*, but for all x € {1,2,3} we have | |{f.(Y;)|1 < i} = a.

Then f, is neither monotonic nor continuous. The functions f, and fs are monotonic, but
only fs is continuous.

2.4 Fixed-Points

The semantics of recursive functions [Kle52], as well as the stream flowing in feedback
loops [Bro+92] will be described by so-called least fix point (Ifp).

Definition 2.13. The fixed-point of a function f : D — D is a d € D such that f(d) = d.

Thus, applying f to one its fixed points will return that fixed-point.

Example 2.3. A function may have no fixed-point, an unique fixed-point, or multiple fixed-
points:

* f:N—= N,z +— x+ 1 has no fixed-point.
* f: N — N,z — 2z has the unique fixed-point z = 0.

* f: N — N,z — x has infinitely many fixed-points, i.e. all x € N.

9



2.4.1 Motivation: Recursive Definitions

Recursion is a principle used not only in programming but also in mathematical defini-
tions. However, the meaning of such recursive definitions needs to be clearly defined.
Consider for example the following recursive function:

Example 2.4.

[:N—= Nz [ifr=0then42 else ifz =1 then f(x + 2) else f(x — 2)]

As we can see, the function f will return 42 for even numbers as input but is undefined
otherwise. For instance, f(4) = f(2) = f(0) = 42, whereas f(5) = f(3) = f(1) = f(3) =
f(y=....

To define the meaning of such recursively defined functions, we consider functionals. A
functional F' is a function which maps functions. They are often also called higher-order
functions. Here, the goal is to define the meaning of f, out of all the functions which
satisfy the recursive equation, as the least fixed-point of a corresponding functional F.
Due to this, we define F': (N — N) — (N — N) as follows:

Example 2.5.

F fx :=|[ifr=0then42 else ifv =1 then f(x + 2) else f(x — 2)]

We assume here that function application associates to the left, i.e. Ffx = (F(f))(x).
Now, any fixed-point of F fulfills the recursive function definition of f. However, notice that
the closed form of f is not uniquely defined. This comes back to the fact that a function
can have multiple fixed-points, as exemplified above.

Consider for example the function g : N — N with g(z) := 42 for all x € N which is a
fixed-point of F:

Example 2.6.

Fgx:=J[ifr=0then42 elseifr =1then42 else42] =42 =g«

In other words, F' g = g, which means that g is indeed a fixed-point of F'. However, we do
not want to accept this as the semantic of the original recursive function f because g is
over approximating f. More specifically, f is not defined for odd numbers, whereas g is
defined for every natural number.

There are two problems we have to solve to make this approach work:

1. Make sure that the functional has at least one fixed-point

2. If it has multiple fixed-points, choose the “best” fixed-point under some criteria

This will lead us to the usage of continuous functionals, which have at least one fixed-
point. Next, we will choose the least fixed-point with respect to C, which will be the “best”
fixed-point for our purposes.

10



2.4.2 Fixed-Point Theorems

Knaster-Tarski’s Fixed-Point Theorem [SK95] implies that any monotonic function f :
D — D on apcpo D has a unique least fixed-point.

Lemma 2.5. From Kleene’s Fixed-Point Theorem [Kle52], we can follow that any contin-
uous function f : D — D on a pcpo D has as a least fixed point fix(f) that satisfies the
following:

fix(f) = LH{/* (L) |42 0} = Upen /(1)

This means that the least fixed point is effectively computable by starting with | and
iteratively applying f.

Proof. First, we show that f has a fixed-point. Remember that continuity implies mono-
tonicity. With monotonicity, L = f(L) £ f(f(L)) C ... forms an ascending chain in D
which has an upper bound in D, say u := | [{f*(L) | i > 0}. Thus:

flu) = FLHF(L) [ = 0})

= L{r () i =0} (f continuous)
={f'(L)|i>0}
=u (f°(L) = L does not change least upper bound)

So the least upper bound u is a fixed-point of f.

Second, we show that u is indeed the least fixed-point. Assume we have another fixed-
point v € D. Then:

1Cw

= f(L)C flv) = f monotonic, v fixed-point
= f(LESf(v)=vVi>0 induction
= f(L)CouVi>0

=ulwv

With this, we have shown that a continuous function over domains has a unique least
fixed-point that can be iteratively approximated. O

Please note, however, that [Kle52] can only be applied to countable chains. For larger
domains, such as power sets of functions, where uncountable chains might be neccesary
to reach the least fixed point, Knaster-Tarski is appropriate. Here, we prefer the least fixed
point over other fixed points because in our semantic definitions it represents the least
amount of information necessary to be consistent with a specified behavior. Being able
to compute the least fixed-point suffices when dealing with issues of computability. For
streams and SPFs computability is of course an important concept. SPSs, however,
denote the semantics of a specification. Specifications describe potentially large sets of
computable SPFs and are therefore not bound to the least fixed point only. In particular
we will use monotonic, but non-continuous functionals to explain SPSs. For more detail
on how to construct continuous functionals, see [SK95].
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2.4.3 Relation Between Monotonic/Continuous Functions and Least Fixed-
Points

To better understand the relations between the concepts of monotonic functions, contin-
uous function, and least fixed-points, the illustration in Figure 2.1 along with examples for
each class in the Venn diagram helps. Let A be defined as in Example 2.2.

Fun(A, A): all complete functions

ULFP: unique least fixpoint exists

MONO: monotonic functions

CONT: continuous functions

Figure 2.1: Function classes in Fun(A, A)

To show that the classes are proper subsets of each other, we give an example function
f € Fun(A, A) for each class that is not included in the more restrictive classes. The
classification and examples are as follows:

1. Fun(A, A) portrays the set of all functions in the function domain. An example of a
function in Fun(A, A) but not in ULFP (because f has no fixed point at all) is:

f(z) = ifz = athen aa else a

2. ULFP is the set of all functions that have an unique least fixed-point (Ifp). As the
diagram implies, ULFP is a proper subset of Fun(A, A). An example of a function in
this class that is not included in MONO (follows by definition of monotonicity) is the
following:

f(z) = ifx =a™> then L else a

3. MONO is the set of all monotonic functions. A monotonic but non-continuous func-
tion can be defined as shown below (follows by definition of continuity):

f(x) = if z = a™ then aa else a

4. CONT is the set of all continuous functions. An example of such a continuous
function is a constant function as shown below:

f(z)=a

So monotonicity implies the existence of a unique least fixed-point (Ifp), and continuity
implies that the least fixed-point is equal to | |{f(_L)|i € N}. As already mentioned earlier,
this means that for continuous functions the Ifp can be iteratively approximated. Using
our examples we can now also conclude, that the implications do not necessarily hold in
the opposite direction, i.e., there are non-monotonic functions with a unique Ifp.
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2.4.4 Predicates and Admissibility
To make a statement about properties of elements, we use predicates. A predicate is a
function, which evaluates to the Boolean values true or false.

Definition 2.14. We call a predicate P : A — B admissible [Huf12] if it holds for the lub
of a chain in A whenever it holds for the elements of the chain:

adm(P) <= VC': (chain(C) = (Vz € C.P(z)) = P(JO))

Admissibility is helpful when the predicate shall be shown inductively over a chain.
Example 2.7. The list predicate P : [N] — B, P(s) — (length(s) >= 0) is admissible.
Example 2.8. The list predicate P : [N] — B, P(s) — (length(s) < o0) is not admissible.

If we regard predicates as function with target domain , where false C true, then admis-
sibility is identical to continuity.

2.4.5 Fixed-Point Induction
Statements about recursive functions can now be established by induction on the con-
struction of the least fixed-point.
Consider a predicate P that describes a property of a recursive function f. To show that
P holds for f, we show

1. P holds for all elements in the ascending chain {F*(_L) | i > 0} (using induction).

2. P is admissible

2.4.6 Construction of Admissible Predicates and Continuous Functions
As a remark, we note that admissible predicates and continuous functions can easily be
constructed from smaller ones, E.g. if P and @ are admissible, so are P A Q and PV Q.

If f and g are continuous, so is f o g. This leads to structural induction on definition of
functions and predicates. However, negation and quantification may violate this structural
induction.
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Chapter 3

Introduction to Isabelle/HOLCF

Throughout the remainder of this book, we will use the proof assistant Isabelle [NPWO02]
and its implementation language ML for our FOCUS formalization. We will now give
a brief overview of the tool and refer the interested reader to a more comprehensive
documentation on Isabelle in [www18].

Isabelle is an interactive proof assistant. The syntax of is similar to functional languages
like ML or Haskell. However in contrast to such pure functional programming languages,
we can proof properties directly in Isabelle. We formalize these proofs, data structures
as well as functions in so called theory files.

theory ExampleTheory
imports Main
begin
(» definitions and lemmas =)
end

In this example, the theory ExampleTheory imports just the Main theory which acts as
a facade of all predefined HOL theories. It should be noted, that in contrast to Java or
Python files, theory files are strictly read from the top to the bottom without the possibility
of forward referencing.

3.1 Isabelle/HOL

There are a variety of libraries available that extend Isabelle’s pretty small logical core and
simplify working with the tool. One of the most frequently used libraries is Isabelle/HOL
[NPWO02] that extends the logical core by the concept of higher order logic as well as data
structures like sets, and lists.

3.1.1 lIsabelle’s Type System

In Isabelle all variables are typed. Polymorphic types can be denoted via formal type
parameters like 'a or 'b. Although Isabelle can in most cases automatically determine
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the type of a variable or constant x, we can also fix the type to a specific one which is
denoted as (x: :<typename>).

The type of a total function with n input parameters of types r,...,r, and return type 7
isdenotedas m, = » = --- = 7, = 7. As usual, = associates to the right. For instance,
the type of the identity functionis 'a = 'a.

Isabelle/HOL also defines types like nat for the natural numbers and boo1 for Boolean
values. Furthermore, predefined type constructors, i.e., 1ist and set, can be used in
postfix syntax to create composite types, such as nat 1list Or bool set.

3.1.2 Defining Types
We can also create our own data types in Isabelle. A simple data type can be defined
using the syntax shown below:

datatype Operator = Plus | Minus

The statement above declares the new data type operator with exactly two constructors
separated by a | character: p1us and Minus. Both constructors are nullary, i.e., they do
not have any parameters. Thus, their type is () =Operator. Note that the operator
type viewed as a set consists of exactly two elements. However, a datatype based type
definition does not instantiate an order on the data type elements.

Data types can also be parameterized using formal type parameter as follows:

datatype 'a Box = EmptyBox | Wrap 'a

To use this Box data type, the formal type parameter 'a must be instantiated first. For
instance, wrap (Suc 0) is of type nat Box. Here, EmptyBox is a nullary constructor and
Wrap iS a unary constructor. Note that for a type = with n elements, the type r Box has
exactly n + 1 elements, i.e., bool Box has 3 elements.

Next, we can declare recursive data types by using the declared type on the right-hand
side of the type definition:

datatype 'a strictlist = Empty | Prepend "'a" "'a strictlist"

Again, this generates two constructors with the following types:

Empty :: () = 'a strictlist
Prepend :: 'a = 'a strictlist = 'a strictlist

To construct instances of custom data types more concisely, we can define constructor
abbreviations in the data type declaration:

datatype 'a strictlist = Empty ("[]1") |
Prepend "'a" "'a strictlist" (infixl "Q@")

This way, we can denote an empty list as [1 and write x @ xs instead of Prepend x xs.
Notice that infix1 declares @ as a left-associative infix operator, i.e.

15



T1 @ 29 @ ... @ xXs = ((r1 @ x9) Q@ ...) @ xs

Lastly, we can name formal constructor parameters such that Isabelle generates selectors
for them:

datatype 'a strictlist =
Empty ("[]1") |
Prepend (head :: "'a") (tail :: "'a strictlist") (infixl "@")

In this case Isabelle creates the following two selectors:

head :: 'a strictlist = 'a
tail :: 'a strictlist = 'a strictlist

So when xs is a non-empty list of type 'a strictlist, we can access the first list
element via head xs and the rest of the list with tail xs.

3.2 Function and Class Definitions

To define simple non-recursive functions in Isabelle, we can use the definition com-
mand. For instance, a generic identity function can be defined as shown below:

definition id :: "'a = 'a" where
"id = (Ax. x)"

Alternatively, if we just want to use such a definition to abbreviate a more complex formula,
we can use the abbreviation keyword. On the one hand, an abbreviation has the
advantage that it is automatically replaced by its definition and vice versa if necessary.
On the other hand, this automatic replacement might not always be desired since it can
negatively influence Isabelle’s proof strategies like the simplifier.

Recursive or pattern matching based functions can be defined using the fun or primrec
command. For instance, a function that delivers 1 if applied to 0 and otherwise behaves
like the identity function can be formalized as shown below:

fun succ_zero :: "nat = nat" where
"succ_zero 0 = 1" |
"succ_zero x = x"

As we can see, the syntax of such definitions is yet again similar to Haskell. The same
also holds true for class definitions. However, classes in Isabelle also allow us to specify
properties of functions. A class for types with an equality function can for example be
specified as follows:

class Eq =
fixes myEq :: "'a = 'a = bool"
assumes reflexivity: "myEq a a = True"
assumes symmetry: "myEg a b = eqg b a"

assumes transitivity: "myEg a b A eg b c—egq a c"

16



3.3 Domains in Isabelle

In the previous we saw how the datatype constructor can be used to define custom data
types. However, such data type definitions have some limitations, i.e., they only con-
sist of values that can be constructed with finitely many applications of the constructors.
Furthermore, the datatype command does not establish an order on the data type but
orders are necessary for inductive reasoning over the data type. In the following we will
present three ways to overcome these issues namely the lifting of data types, the domain
constructor and subtypes.

Lifting Datatypes to Domains

For any ordinary HOL type we can define a (trivial) complete partial order by giving it
a discrete ordering. In HOLCF this construction is formalized using the 'a discr type
[Huf12]:

datatype 'a discr = Discr "'a"
To still be able to access the elements of the lifted data type, an inverse of the piscr
constructor is defined as shown below:

definition undiscr :: "'a discr = 'a" where

"undiscr x = (case x of Discr y = y)"

The ordering on 'a discr is defined as a flat ordering, i.e., (x C y) = (z = y). Thus,
'a discr is aninstance of the discrete cpo class [Huf12].

It follows straightforwardly by the corresponding definitions that every function £ :: 'a
discr = 'biscontinuous and every predicate P :: 'a discr = bool is admissible.

Furthermore, we can also lift a given type with a complete partial ordering to a type with a
pointed cpo by adding a new bottom element. Let D be a cpo (which may or may not have
a least element), then the lifted pcpo D, consists of a bottom element | and wrapped
elements of the original type.

In HOLCF, the lifting of cpos to pcpos can be achieved by using the 'a u type which is
also often abbreviated as 'a:

datatype 'a u = lbottom | lup 'a

The order on this data type is defined such that the following holds:
aCb<s (a=1lbottom)V (Ix,y.a=1lup x Ab=1lup yAzLCy)

One can show that the type 'a, is a pcpo, if the type ' a is substituted with, has a partial
order.
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The Domain Type-Constructor

In Section 2.2 we already explained how domains can be constructed from simpler do-
mains using domain constructors. To achieve the same in Isabelle, we can use the do-
main package [Huf12] which produces data types that are instances of the pcpo class
and hence have a pcpo ordering. The syntax of such a data type definition is similar to a
type definition using the datatype keyword.

However, the domain package defines the data type constructors as strict continuous
functions and automatically adds a bottom element L. An example for such a domain
definition is the lazy list data type:

domain 'a list = Cons "'a discr u" (lazy "'a list")

The empty list is here implicitly defined as the bottom element (L) of the data type. The
lazy keyword makes the constructors non-strict in specific arguments. In this example
we defined cons to be non-strict in its second argument to allow the definition of infinitely
long lists.

To facilitate proofs that involve such domain types, Isabelle also adds several rewrite rules
to Isabelle’s simplifier (simp), and generates the necessary theorems and functions for
case distinctions and induction proofs. [Huf12] provides a good overview of all theorems
and functions that are automatically generated by the domain package.

CPOs on Subtypes

An even simpler way to create a cpo type is to define it as a subset of an existing cpo
type. Under certain conditions, a subtype can inherit the ordering structure from the
existing ordering it is based on which means that the subtype is again a member of the
cpo class. In Isabelle this process can be automated using the pcpodef and cpodef
commands [Huf12]. Both commands are based on the typedef command [NPW02] that
allows defining a new type as an isomorphic and nonempty subset of an existing type.
For example, we can define a new type zeroToFive that is isomorphic to the set of all
integers that are smaller or equal than 5:

typedef zeroToFive = "{x::int. 0 < A x < 5}"
by (auto)

The proof is necessary since we must prove that the newly created types is non-empty.

After showing the set on the right side of the definition is non-empty, the typedef pack-
age automatically creates useful theorems as well as the functions (Rep_zeroToFive,
Abs_zeroToFive) t0 convert elements of zeroToFive 10 elements of the int data type
and vice versa. We can then use those function to define new functions on zeroToFive
based on existing function on the int type:

definition zeroToFive_add:: "zeroToFive = zeroToFive = zeroToFive"

where "zeroToFive_add x y =
Abs_zeroToFive (Rep_zeroToFive x + Rep_zeroToFive y)"
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Type zeroToFive

Abs_zeroToFive

RepzeroToFive<

Figure 3.1: Graphical Representation of the t ypede £ Mechanism

The newly defined addition operator on the new type relies on (and hides) the primitive +
operator on integers. Later this principle helps to reach an important achievement of this
work; creating a high-level API to hide the low-level domain-theoretical concepts from the
user.

The lemmas generated by the typedef package can also be used to show properties like
the commutativity of this function.

The cpodef and pcpodef commands, that automatically construct an ordering on the
new subtype, have an identical syntax as typede£. If we want to use cpodef to define
the zeroToFive type, we additionally would have to show that predicate A x. x < 5is
admissible. In case we want to use pcpodef we additionally would have to show that the
subtype has a least element.

3.4 Continuous Functions and Fixed Points

As we already saw in Chapter 2, the concepts of mononicity and continuity play an im-
portant role in the field of function domains.

Continuous functions in HOLCF are formalized by using the cfun data type which is
instantiated using the cpode£ command:

definition "cfun = {f::'a => 'b. cont f}"
cpodef ('a, 'b) cfun ("(_—/ _)" [1, 0] 0) =
"cfun :: ('a => 'b) set"

unfolding cfun_def by (auto intro: cont_const adm_cont)

Thus, the type of continuous functions from A to B is denoted as o — B. To automat-
ically lift anonymous functions to their continuous counterparts, the small letter X in the
definition of such a function can be replaced by A. However, such a lifting is of course
only successful if the function that should be lifted is in fact continuous.

Based on the cfun type, functions like the £ix operator which calculates the Ifp [MUl+99]
can be defined:

primrec iterate :: "nat = ('a::cpo — 'a::pcpo) — ('a — 'a)" where
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"iterate 0 = (A F x. x)" |

"iterate (Suc n) = (A F x. F-(iterate n-F-x))"
definition fix :: "('a ::pcpo — 'a) — 'a" where
"fix = (A F. | i. iterate i-F-1)"

As we can see, this operator is directly based on the fixed point theorem by Kleene
(c.f. Lemma 2.5). It should also be noted, that the restriction of the type variable 'z to
members of the pcpo class is essential as otherwise the existence of the bottom element
that is required in the definition cannot be guaranteed.

3.5 Proofs in Isabelle

Isabelle allows us to formalize and prove mathematical statements (lemmas) about struc-
tures. Those proofs are then automatically checked by Isabelle. Furthermore, Isabelle
includes tools like s1edgehammer Or nitpick that can help to find proofs or counter ex-
amples. However, the power of these tools is limited.

To demonstrate how poofs in Isabelle work, we will now show that the function succ_zero
(Section 3.2) applied to a natural number z, returns a natural number that is always
greater or equal than 2 This can be formalized and proven as shown below:

fun succ_zero :: "nat = nat" where
"succ_zero 0 " |
"succ_zero x = X"

lemma succ_zero_le: "x < succ_zero x"
apply (case_tac x)
apply simp
by simp

The proof of the succ_zero_1le lemma is conducted by successively applying rules until
we have transformed the claim of the lemma into a tautology. This proof strategy is also
called backward chaining. After we have successfully conducted the proof of lemma, we
can also use it to prove other lemmas.

Assumptions that are necessary for the proof of a lemma can be formalized using the
assumes and shows keyword as follows:

lemma succ_zero_eq: assumes "1 < x"
shows "x = succ_zero x"
apply (case_tac x)
using assms apply auto[l]
by simp

Note, that the shows keyword is necessary to separate the actual claim from the as-
sumptions of the lemma. In the proof, assumptions can then be referenced using assms
keyword.

Alternatively we can also express the lemma above in a more concise manner:
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lemma succ_zero_eq:
"[1 < x]=x = succ_zero x"
<<proof>>

As we can see, such proofs are not easily readable, since intermediate steps are not
explicitly visible. Furthermore, the underlying proof principle of backward reasoning can
also make the proofs hard to understand. To overcome these issues, a new proof lan-
guage Isar [Wen02] was introduced that allows conducting proofs in a more human read-
able manner. For instance, the succ_zero_1le can be proven with Isar as shown below:

lemma succ_zero_ge: "x < succ_zero x"
proof (cases "x = 0")
case True
thus ?thesis
by simp
next
case False
thus ?thesis
by (metis False eg iff succ_zero.elims)
ged

As Isar provides means to efficiently prove and handle large proofs, we will use it exten-

sively in our theories. However, we will often abbreviate the proofs of fully verified lemmas
with <<proof>> for the sake of readability.
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Chapter 4

Extensions of HOLCF

During the creation of our framework, we proved a number of general theorems. To
simplify future reuse, we decided to outsource them in separate theories. In the following
we will present three of those theories namely pPrelude, setPcpo and LNat. For each
theory we will briefly explain the main results and leave the rest, as well as the proofs, to
be found in Appendix A for the interested reader. Based on the theories in this chapter,
we will then present the implementation of streams in the next chapter.lly valid lemmas.

4.1 Prelude

The prelude theory directly imports HOLCF’s [Reg94; Huf12] main theory facade and
decorates it with frequently used lemmas. In this section, we will present the most fre-
quently used functions, and explain some key theorems which will be needed later to
implement the streams. The full set of ca. 60 theorems in prelude and their proofs can
be found in the Appendix A.

Notation | Signature Functionality
rel2map: p(M x N) = (M — N) convert relation to function
literate: N = (M = M) = M = [M] create list by iterating

a.l Ircdups: [M] = [M] remove duplicates from a list
getinj: p(M) = N = p(N x M) enumerate elements of a set

My updis: M — M make an arbitrary type flat
upApply: (M = N) = (M, — N,) transfer function to flattend type
upApply2: (M = N = O) = (M, — N, — N,) | like upApply, with two inputs

Table 4.1: Functions defined in prelude; M, N, O are arbitrary types, | denotes flat
orders, — denotes partial functions

The first theorem we present simplifies continuity proofs and gives another intuition how
the concepts of admissibility, monotonicity and continuity are related with each other:

lemma adm2cont:

fixes f:: "'a::cpo = 'b::cpo"
assumes "monofun f" and "/\k. adm (AY. (£ Y) C k)"
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shows "cont f"
<<proof>>

For continuity proofs it has furthermore proven useful to add another continuity introduc-
tion lemma based on the cont1 lemma [Huf12]:

lemma contIZ2:
"[monofun (f::'a::cpo = 'b::cpo);
(VY. chain Y—f (Ji. ¥ i) C (Ji. £ (Y i)))]=cont £"
<<proof>>

4.2 Properties of Set Orderings

Some functions on streams return sets. To define them as continuous functions, we need
to show some properties of the inclusion order on countable sets. Due to the duality
of sets and predicates, it has also proven useful to define the implication-relation as an
order on Boolean values as well. In this section the primary results regarding the two
above-mentioned orders is to show that they are pcpo’s. The full set of ca. 15 theorems
in setPcpo and the corresponding proofs can be found in the Appendix A.2.

We first show that inclusion on sets is a partial order by instantiating the set type as a
member of the po class:

instantiation set :: (type) po
begin
definition less_set_def: "(op B) = (op O)"
instance
<<proof>>
end

Furthermore, we can also show that for a chain of sets the union of all chain elements is
the least upper bound of the set:

lemma Union_is_lub: "A <<| [J A"
<<proof>>

Another variant of the lemma above is to show that the 1ub and union operator on sets
are equal:

lemma lub_eqg Union: "lub = Union"
<<proof>>

Now we can show that the inclusion order on sets is complete:

instance set :: (type) cpo
<<proof>>

Sets are also pcpo’s, pointed with the empty set as the minimal element.

instance set :: (type) pcpo
<<proof>>
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For sets the bottom element is indeed equal to the empty set.
lemma UU_eqg_empty: "1 = {}"

<<proof>>

After we have now successfully shown that the inclusion order on sets is pcpo, we can
do the same for Boolean values.

As before we first prove that the order on Boolean values is a po:

instantiation bool :: po
begin
definition less_bool_def: "(op L) = (op—)"
instance
<<proof>>
end

Chains of Boolean values are always finite:

instance bool :: chfin
<<proof>>

So there always exists a chain element that is equal to the least upper bound of the chain
of Boolean values.

As a direct consequence we now know that every chain has a least element, since every
chain consists of at least one element. Thus, the ordering on the Boolean values also
forms a cpo:

instance bool :: cpo ..

Here, the two points . . show that the correctness is immediately recognized.

The order on Boolean values is also pointed with False acting as the minimal element.

instance bool :: pcpo
<<proof>>

This enables us to prove a set of useful theorems about admissible predicates, such as

lemma adm_in: "adm (MA. x € A)"
<<proof>>

4.3 Lazy Natural Numbers

To encode the length of possibly infinitely long streams, we must create a data type for
natural numbers with a top element (infinity). For that purpose, we extend the already
existing theory of lazy natural numbers (INats) in the Lxat theory. The full set of the
defined functions and approximately 100 theorems along with their proofs can be found
in the Appendix A.3.
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4.3.1 Definition

We can define the 1nat data type using the domain constructor:

domain lnat = lnsuc (lazy lnpred::lnat)

As mentioned earlier this also automatically adds a bottom element | to the data type
and establishes a pointed complete partial order C. Furthermore, the 1npred destructor
is defined which serves as an inverse function of the 1nsuc constructor function. We can
then show that the order on 1nat is total and has 0 as its least element by instantiating
Lnat as a member of the ord and zero class.

instantiation lnat :: "{ord, =zero}l"
begin
definition lnzero_def: " (0::1lnat) = 1"
definition lnless_def: "(m::1lnat) < n=mCn A m # n"
definition Inle_def: "(m::1lnat) < n=mCE n"
instance ..
end

We define 1ntake as an abbreviation for 1nat take, which is generated by the domain
package. To conveniently denote such natural numbers in our theories, we define two
helper functions 1nf' and Fin.

The function 1nf' (abbreviated with o) is a nullary function that returns the maximum of
all elements in the 1nat type.

definition Inf' H "lnat" ("od") where
"Inf' = fix-lnsuc"

As we can see it is defined as the fixed point over the continuous successor function
1nsuc. This is possible since infinity is the only, and hence also the least fix point of the
successor function.

For finite numbers we define the helper function rin that given a natural number n returns
the corresponding lazy natural number.

definition Fin - "nat = lnat" where
"Fin k = lntake k-od"

Another useful and frequently used function is 1nmin which determines the minimum of
the given two 1nat.

definition lnmin :: "lnat — lnat — lnat" where

"Ilnmin = fix- (A h. strictify- (A m. strictify- (A n.
Insuc:- (h: (lnpred-m) - (lnpred-n)))))"

4.3.2 Properties of the Data Type
Since we have now defined the basics of the 1nat type, we can evaluate its properties.
We begin with the fundamental property that the order corresponds to the order on the

nat type:
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lemma less2nat_lemma "Vk. (Fin n < Fin k) —(n < k)"
<<proof>>

Furthermore, we can prove some basic properties of the order like reflexivity and transi-
tivity:
lemma refl_1lnle: " (x::1lnat) < x"
<<proof>>

lemma trans_lnle: "[x < y; yv < z]= (x::1lnat) < z"
<<proof>>

Also for every element in an infinite 1nat chain, we can find a bigger element in the same
chain.

lemma inf chainl2:
"[chain Y; — finite_chain Y]=33. Yk C Y j A Y k #7Y j"
<<proof>>

To demonstrate the closure of the structure, we can show that the least upper bound of
any infinite 1nat chain is co.

lemma unique_inf_lub: "[chain Y; - finite_chain Y]=1Lub Y = o"
<<proof>>

Furthermore, and to prove the distinctness between maximum and minimum elements in
sets, we show that the order on the type is a linear order where for each two elements
and y either x < y or y < x holds.

instantiation lnat :: linorder
begin

instance

<<proof>>
end

We can also prove that the 1nat data type belongs to the wellorder class. This class
includes all types where every non-empty subset of that type possesses a least element.
To prove the membership we have to show that the order on the type is linear and satisfies
the following predicate:

lemma lnat_well:
assumes " (Ax. (A\y. vy < x=P y) =P x) =P a"
shows "P a"

<<proof>>

After proving some auxiliary lemmas, we can finally show:

instance lnat :: wellorder
<<proof>>

As we will see later, this property is of particular importance in our definition of SB lengths
(c.f. Section 6.5).
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Chapter 5

Streams

This chapter introduces the concept of streams in FOCUS [BS01] along with important
functions, properties, as well as proof methods in Isabelle. Furthermore, we will also give
an introduction to our stream formalization in Isabelle.

Streams are used to model communication channels of components in interactive and
distributed systems. Formalizing these as finite or infinite streams over a pcpo allows
formal verification of such components and their interaction behavior. We recall our view
of a component as a computation unit that nonstop processes messages. Such a com-
ponent then has a well-defined interface, consisting of input and output channels as well
as a behavior.

We come back to our running example. The addition component (add, or +) has two
input channels accepting natural numbers as well as one output channel. In a functional
language like Haskell the behavior of the addition component can then be described as
follows:

add :: [Nat] — [Nat] — [Nat]
add (x:xs) (y:ys) = (x + y) : add (xs) (ys)

It should be noted that in this example we used the built-in list data type instead of our

own stream data type to improve the understandability. However, as we will see in Sec-
tion 5.2.4 the list and our stream data type are closely related to each other.
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Figure 5.1: Running Example: Cruise Control

5.1 Mathematical Definition and Construction

Let M be a set of possible messages (e.g. M = N).

Definition 5.1. The set of all finite streams over this domain is denoted by:

M* = {e} U{(m1,mg,...,my) | Vj € [l,i]. m; € M}
Since we also want to model interactive systems as well as verify their behavior, we also
need to introduce infinite streams.

Definition 5.2. The set of all infinite streams over M is

M :={{my,ma,...) | m; € M}

Furthermore, we define M« := M* U M to be the set of all (untimed) streams. Please
note that M“ completes M* to a cpo with respect to prefixing.

To construct streams, the concatenation operator e with signature M = M¥ = M% is
defined. Based on the concatenation operator on streams, we can define an ordering C
on the set of streams.

Definition 5.3. The prefix ordering [Rum96] on streams L is defined such that the fol-
lowing holds:

Ve,ye M. 2 Cy<dse MY, zes=y

Then we can deduce the following.

Lemma 5.1. The prefix ordering C is a pcpo on the set of streams with the empty stream
as its least element, denoted by ¢ [Rum96].
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5.1.1 Properties of Streams

We will now discuss fundamental properties of streams and selected functions defined on
them. The next lemma allows us to reduce equality proofs for infinite streams to equality
proofs for finite streams and induction on the natural numbers.

Lemma 5.2 (Take lemma). Two streams are equal if their prefixes of arbitrary length are
equal:
(Vn.take n s; = take n s2) = s1 = s2

The take lemma will be useful for induction on streams. For induction on streams, many
concepts presented so far come together, more specifically the take lemma, admissibility,
domain theory, as well as properties of and functions on streams.

Lemma 5.3 (Induction on finite Streams). For finite streams we can formulate the induc-
tion rule for a predicate P as follows:

(PLANa,s.Ps=P(a:s))=YVreM".Px

Thus, if the predicate P holds for the bottom element, and we can prepend elements to a
stream without losing validity of P, then P also holds for all finite streams.

Lemma 5.4 (Induction on infinite Streams). For infinite streams, we must require admis-
sibility of the predicate P for the induction to work. This way, it is ensured that P remains
valid when taking the least upper bound of a chain of streams:

(adm(P)AP LA (Va,s.Ps=P(a:s))=Vre M Px

These induction rules rely on the take lemma and the properties of stream concatenation.
A more detailed discussion can be found in [GR06; Huf12].

5.2 Streams in Isabelle

The stream data type is defined using the domain constructor as shown below:

domain 'a stream = lsconc (lshd :: "'a discr u")
(lazy srt :: "'a stream") (infixr "&&" 6D5)

Please note an implementation detail: to make sure that the constructors and their inverse
functions are continuous (which means we can make use of a rich lemmata library for
automatic reasoning about continous functions), the alphabet of messages itself (thus
not just the data type of streams) is given a bottom element (which will not play any role
in the rest of this work) and also a flat ordering(since continuous functions are defined on
pcpo’s). Here, each stream element is of the type 'a discr u, where discr enhances
a type with a discrete ordering (making it a cpo) and u (indicating “up”) lifts the type to a
pcpo. Analogue to the previous section, we also define an infix abbreviation && for the
1sconc constructor. Furthermore, we specify the selectors 1shd and srt to access the
head and rest of a stream.
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As already mentioned in Section 3.3, the domain constructor automatically defines a
bottom element of the data type. To avoid confusion we will denote this bottom element,
which we also refer to as the empty stream, by e.

In the following Tables 5.1 and 5.2 about 40 of the most commonly used functions on
streams are listed. Furthermore, we also proved about 600 lemmas during the creation
of the stream theory. The most important ones will be introduced in this chapter without
proofs. The complete set of lemmas and all the proofs can be found in Appendix B. Some
of our implemented functions are the implementations of the signatures of [RR11], while
others were necessary during the verification of several case studies.

To improve the readability, we introduce type synonyms for continuous function from
streams to streams.

type_synonym ('a, 'b) spf = "('a stream — 'b stream)"
type_synonym 'm spfo = "('m, 'm) spf"

Further helpful functions, which do not belong directly to the API, are defined. They are
listed in table 5.2.

5.2.1 Running Example: The Addition-Component

To define the addition component from fig. 5.1 by construction from an elementary func-
tion, we introduce the following definitions. Similar to map on lists, we introduce a function
smap Which applies a function to all elements of a stream:

definition smap :: "('a= 'b) = ('a,'b) spf" where
"smap £ = fix- (A h s. (1(f (shd s)) e (h-(srt-s))))"

To simplify the definition of components with multiple input channels, we introduce szip,
which enables us to zip two streams into one:

definition szip :: "'a stream — 'b stream — ('a X 'b) stream" where
"szip = fix- (A h sl s2. 1 (shd sl, shd s2) e
(h- (srt-sl) - (srt-s2)))))"

We furthermore create the merge function, which takes as input a function £ and two
streams s1 and s2, and merges their elements according to £:

definition merge::"('a = 'b = 'c) = 'a stream
— 'b stream — 'c stream" where
"merge £ = A sl s2. smap (A s3. f (fst s3) (snd s3)) - (szip-sl-s2)"

Here snd is a selector that returns the second element of a stream.

Now we can easily define the add-function that essentially applied the elementary plus-
operation to two streams using the merge operator:

definition add:: "nat stream — nat stream — nat stream" where
"add = merge plus"
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Lets,s’ € MY, m € M,n € Ny, A C M. As before continuous function are denoted by
—, = denotes non continuous functions and — partial functions:

Notation Signature Functionality
€ sbot: M¥ empty stream
m:s Iscons: M x M¥ — M% append first element
sCs  below: MY x M¥ —» B prefix relation
T sup’: M = M¥ construct a stream by a single element
Sln stake: Noo = MY — M¥ retrieve the first n elements of a stream
ses’ sconc: MY = M“ — MY concatenation of streams
sValues: MY — o(M) the set of all messages in a stream
shd: M¥ = M first element of stream
srt: MY — MY stream without first element
#s slen: M*“ — Ny length of stream
sdrop: Ny = MY — MY remove first n elements
s.n snth: N= M“ = M n*" element of stream
s+ n sntimes: N, = M“ = M¥ stream iterated n times
S+ 00 sinftimes: M* = M¥ stream iterated oo times
smap: (I = 0) = I¥ = O¥ element-wise function application
siterate: (M = M) = M = M¥ infinite iteration of function
Aoes  Ssfiter: p(M) = MY —» M¥ filtering function
stakewhile: (M = B) = (M* — M%) prefix where predicate holds
sdropwhile: (M = B) = (MY — M%) drop prefix while predicate holds
szip: [Y — 0% — (I x O)¥ zip two streams into one stream
Q.s srcdups: M“ — MY remove consecutive duplicates

fup2map: (I = 0,) = (I — 0)
slookahd: I“ — (I = O0) — O

sfoot: M* = M

merge: (I = 0= M)= 1Y - 0¥ - M¥
sprojfst: (I x O)¥ — I¥

sprojsnd: (I x O)* — O%

stwbl: (M = B) = (MY — M%)

srtdw: (M = B) = (MY — M)

sscanl: (O=1=0)= 0= (I¥ - 0¥)
siterateBlock: (MY = M¥) = MY = MY

conversion of f. to partial f.

apply function to head of stream

last elem. of not empty, finite stream
merges streams acc. to the function
first stream of two zipped streams
second stream of two zipped streams
stakewhile + first violating element
dropwhile and then remove head
state-based specifications

alternative definition similar to siterate

Table 5.1: API: Operations on untimed streams

We check the correctness of the addition-function on streams by proving the following
lemma. The n-th element of the stream created by applying add to two streams s; and ss
is the same as adding up the n-th elements of s; and ss:

lemma add_snth:
snth n

(add-xs-ys) =
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Notation Signature Functionality

s2list: M“ = M* convert a stream to a list

slpf2spf: (I* = O*) = (I¥ — O¥) list-processing f. to stream-proc. f.

sislivespf: (I* — O%) = B liveness predicate for SPFs

sspf2lpf: (I¥ — O%) = (I* = O*) stream-processing f. to a list-proc. f.

add: N¥ — N« — N« element-wise addition function
<->  list2s: M* = M¥ convert list to stream

niterate: N = (M = M) = (M = M) helper function for siterate

Table 5.2: Further operations on untimed streams

<<proof>>

5.2.2 The Take-Functional and Induction on Streams

Since we used the domain constructor to define the st ream data type, a take function is
automatically created. For the stream definition above, the continuous function

stream_take :: nat = 'a stream — 'a stream

is generated, where stream_take n s returns a stream consisting of the first n elements
of the stream s. For instance, stream_take 0 s returnse, and stream_take 3 s eval-
uatestom; : ma : m3 : e

To increase the readability, we define an abbreviation for the take function on streams as
shown below:

abbreviation stake :: "nat = 'a spfo" where
"stake = stream_take"

A stream is then equal to the least upper bound of its prefixes.

lemma reach_stream: "( Ji. stake i-s) = s"
<<proof>>

Furthermore, the stake operator is monotonic in its first argument.

lemma stake_mono: assumes "i
shows "stake i-s L stake j
<<proof>>

< jn
.g"

This result is of particular importance in the proof of the induction over stream length rule.
lemma ind:

"[adm P; P €; Na s. P s =P (Ta e s)]=P x"
<<proof>>
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5.2.3 Concatenation of Streams

Another important function is the concatenation operator on streams:

definition sconc :: "'a stream = 'a stream — 'a stream" where
"sconc = fix- (A h. (X sl. A s2.
if s1 = € then s2 else (lshd-sl) && (h
(srt-sl)-s2)))"

We can show that the operator is continuous in its second argument but please note that
is is not continuous in its first argument.

lemma cont_sconc:
"Asl s2.
cont (Ah. if sl = € then s2 else (lshd-sl) && (h (srt-sl)-s2))"
<<proof>>

We abbreviate the concatenation operator with e and can show that the concatenation of
streams is associative:

lemma assoc_sconc: "(sles2)es3 = sle(s2es3)"
<<proof>>

If a stream is nonempty, the concatenation of its head and rest delivers a stream that is
equal to the original one:

lemma surj_scons: "x#e=—7(shd x) e (srt-x) = x"
<<proof>>

An operator that infinitely concatenates a stream with itself can be defined as shown
below:

definition sinftimes :: "'a stream = 'a stream" ("_od") where
"sinftimes = fix- (A h. (\s.
if s = € then € else (s e (h s))))"

As a result we can now easily define infinite streams consisting only of the message 1 as
follows:

definition s2 :: "nat stream" where
"s2 = <[1]>d"

5.2.4 Reusing List Theories

To simplify the instantiation of streams, we define a function 1ist2s, with brackets as an
abbreviation, that converts the built-in lists from Isabelle into streams. If the list is empty,
the empty stream is returned:

primrec list2s :: "'a list = 'a stream" where
list2s_0: "list2s [] = €e" |
list2s_Suc: "list2s (a#as) = updis a && (list2s as)"
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definition sl

"nat stream" where
"sl=<[1,2,31>"

Based on 1ist2s, we can also define a partial order on the 1ist data type using 1ist2s,
and the prefix ordering on streams:

instantiation list (countable) po

begin
definition sqg_le_list:
"s E t = (list2s s C list2s t)"
instance
<<proof>>

end

Concatenating streams corresponds to the concatenation of lists:

lemma listConcat:

"<11> e <12> =
<<proof>>

= <(11 @ 12)>"

To convert back from a stream to a list, we introduce another function s21ist. If a stream
has infinite length, the result is undefined:

definition s2list

"'a stream = 'a list"
"s2list s

where
if #s # oo then SOME 1. list2s 1

s else undefined"
Also, the function s211st is left-inverse to 1i st 2s, which means that converting a list into

a stream and afterwards re-converting this stream into a list results in the original list:

lemma "s2list (list2s 1)
<<proof>>

= 1"

To convert list-processing functions into stream-processing function, we define s1pf2spf:

definition slpf2spf ::"('in, 'out) 1lpf = ('in, 'out) spf" where
"slpf2spf £ =

if monofun f

then A s. (k. list2s (f (s2list

(stake k-s))))
else undefined"

A monotonic list-processing function induces a monotonic stream-processing function by
applying it to the £ messages long prefix of the stream.

lemma mono_slpf2spf:

"monofun f—monofun (As.

list2s (f (s2list
<<proof>>

(stake k-s))))"

Finally, an important result is also that s1pf2spf is continuous:

lemma slpf2spf_cont:
"monofun f=—
(A s. (k. list2s (f (s2list

s
= (k. list2s (f (s2list (stake k-s))))"
<<proof>>

(stake k-s)))))
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5.2.5 The Length Operator
Another typical operator on lists is the length-operator. For streams, it is defined as the
number of its elements/messages or oo for infinite streams:

definition slen :: "'a stream — lnat" where
"slen = fix- (A h. strictify- (A s. lnsuc- (h- (srt-s))))"

We can define the length operator even more elegantly as a composition of continuous
functions [Huf12] using the £ixrec keyword:

fixrec slen2 :: "'a stream — lnat" where
"slen2-1l = 1" |
"X#L:=>Slen2-(x&&xs) = lnsuc: (slen2-xs)"

As a result the function is automatically continuous: After proving some auxiliary lemmas,
we can show that both definitions are equivalent:

lemma slen_eq: "slen2 = slen"
<<proof>>

Since continuity implies montonicity, we can show that the length function for streams is
monotonic:

lemma mono_slen: "x C y=—=#x < #y"
<<proof>>

Besides these technical properties we can also evaluate that the length operator works
as expected. Appending a stream consisting of only one element increases the length by
1:

lemma slen_scons: "#(ftaeas) = lnsuc- (#as)"
<<proof>>

Finally, if the stream has infinite length, appending elements to the stream does not
change the stream.

lemma sconc_fst_inf: "#x= 00 = xey = x"
<<proof>>

5.2.6 The Domain Operator

To retrieve the set of all messages in a stream, we define the operator svalues using
the snth function which, as described in the table above, retrieves the n-th element of a
stream:

definition sValues :: "'a stream — 'a set" where
"sValues = A s. {snth n s | n. Fin n < #s}"

We can the show that the function is continuous:
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lemma "cont (As. {snth n s | n. Fin n < #s})"
<<proof>>

The message domain of the concatenation of streams is the union of the respective
message domains:

lemma svalues_sconc2un: "#x = Fin k=—sValues: (x ® y) = sValues-x U
sValues-y"
<<proof>>

5.2.7 Defining Functions with Explicitly Memorized State

To define state-based functions, we define sscan1 as the least upper bound of the cor-
responding primitive recursive function. This primrec function takes a natural number
(indicating the number of elements to scan), a reducing function, an initial element, and
an input stream. It then returns a stream consisting of the partial reductions of the input
stream:

primrec SSCANL :: "nat = ('o= 'i = '0o) = 'o = 'i stream = 'o
stream" where
"SSCANL 0 £ g s = €" |
"SSCANL (Suc n) £ g s =
(if s=¢
then €
else T(f g (shd s)) e (SSCANL n f (f g (shd s)) (srt-s)))"

We obtain the scanline function with its usual signature by taking the least upper bound
of the function above. It behaves similar to map, but also takes the previously generated
output element as additional input to the function. For the first computation, an initial
value is provided:

definition sscanl :: "('o= 'i = 'o) = 'o= ('i, 'o) spf" where
"sscanl f g = A s. [ Ji. SSCANL i £ g s"

So the first argument is the reducing function, which can be for example be +. The second
parameter is the initial value, and the third argument the input stream. We demonstrate
the definition by defining a helper function, which returns the n-th element of the output
of scanline:

primrec sscanl_nth :: "nat = ('a= 'a = 'a) = 'a = 'a stream =
'a" where

"sscanl_nth 0 £ g s = f g (shd s)" |

"sscanl_nth (Suc n) f g s = sscanl_nth n £ (f g (shd s)) (srt-s)"

We can now show that it corresponds to the output of the original sscan1 function:

lemma sscanl2sscanl_nth:
"Fin n<#s==snth n (sscanl f g-s) = sscanl_nth n f g s"
<<proof>>

After proving some auxiliary lemmas, we can then show the continuity of sscani:
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lemma cont_lub_SSCANL: "cont (As. |Ji. SSCANL i £ g s)"
<<proof>>

5.2.8 Map, Filter, Zip, Project, Merge and Removing Duplicates

The function smap on streams, which we defined while introducing our running example,
works similarly to the map-function for lists:

lemma smap2map: "smap g- (<ls>) = <(map g 1ls)>"
<<proof>>

Applying smap in two passes, first h is applied, afterwards g is equivalent to mapping goh
in a single pass.

lemma smaps2smap: "smap g- (smap h-xs) = smap (A x. g (h x)) -xs"
<<proof>>

The smap function is a homomorphism on streams with respect to concatenation:

lemma smap_split: "smap f-(a e b) = (smap f-a) e (smap f£-b)"
<<proof>>

For multiple specifications it has proven useful to introduce a function sfilter, which
can be used to filter elements from a stream. Given a set and a stream as input, the
functions removes all elements from the stream which are not contained in the set:

definition sfilter :: "'a set = 'a spfo" where
"sfilter M = fix- (A h s. slookahd-s- (A a.
(if (a € M) then Ta e (h-(srt-s)) else h:-(srt-s))))"

Applying the message filter function twice with M/ and S as message sets is equivalent
to applying it once with M N S as the message set:

lemma int_sfilterll: "sfilter S: (sfilter M-s) = sfilter (S N M) -s"
<<proof>>

We also introduce sprojfst which returns the first stream of two zipped streams:

definition sprojfst :: "(('a X 'b),'a) spf" where
"sprojfst = A x. smap fst-x"

If the stream has infinite length, sprojfst applied to the two zipped streams returns the
first stream:

lemma sprojfst_szipll:

"Wx. #x = oco—rsprojfst: (szip-i-x) = i"
<<proof>>

Particularly in telecommunication applications it has been proven useful to introduce the
function srcdups, which removes successive duplicates from a stream:
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definition srcdups :: "'a spfo" where
"srcdups = fix- (A h s. slookahd-s- ()X a.
1a e h- (sdropwhile (A z. z = a)-(srt-s))))"

For example:

srcdups ([1,2,2,31) = ([1,2,31)

The n-th element of two merged streams after applying a function f is the same as
applying f to the n-th elements of the two single streams.

lemma merge_snth:

"Fin n <#xs==Fin n < #ys

=—snth n (merge f-xs-ys) = f (snth n xs) (snth n ys)"
<<proof>>

The duplicate removing function srcdups is idempotent:

lemma srcdups2srcdups: "srcdups:- (srcdups-s) = srcdups-s"
<<proof>>

Finally, we can prove the following equality concerning srcdups and smap:

lemma srcdups_smap_com:

"srcdups:- (smap f- (srcdups-s)) = smap f: (srcdups-s)
= srcdups: (smap f-s)= smap f- (srcdups-s)"
<<proof>>

5.2.9 Infinite Streams and Kleene Theorem

The following key lemma rek2sinftimes is based on the Kleene-Theorem:

lemma rek2sinftimes: assumes "xs = x o xs" and "xFe"
shows "xs = sinftimes x"
<<proof>>

The infinite repetition of a stream =z is the least fixed point of As. x e s:

lemma fix2sinf: "fix- (A s. x @ 5) = x "
<<proof>>

5.3 Further Kinds of Streams

Some examples of special types of dataflow networks could be [RR11]:

+ sensors, control units, and actuators in automobiles exchanging data values and
control signals,

* real-time software controlling actions of actuators depending on sensors’ data,
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* interaction between objects via message passing in object oriented software sys-
tems or

* messages transmitted between web services in cloud computing applications.

For some systems, an airbag system, timing is an important requirement. To model time-
sensitive systems we thus need a notion of time. In this paragraph we will describe briefly
three variants of streams for time-sensitive modeling.

Variant 1: A possible formalization of time-sensitive systems is by extending the message
alphabet with a dummy element tick (denoted as /) [Rum96]. The blocks between each
two ticks are equidistant time intervals, where the duration of an interval can be chosen
depending on the modelled system. One variant of this timed model is to allow a finite
sequence of messages in each time slice. The messages on each time slice are still
ordered, but the time distance between each two consecutive messages on the same
time slice is not specified.

Variant 2: Another model (time synchronous) allows at most one message per block. This
is not appropriate for all forms of timed specifications, because the number of messages
per time slice in version 1 is not bounded and thus the number of micro-steps in variant
2, needed to appropriately refine the steps in version 1, is unknown. Second, each fine
grained micro-time slice enforces a very fine grained use of /’s in timed specifications.
Delay, e.g. is then much more often to be taken into account and a fair merge is very
complex. However, if the time model is appropriate, it can also be represented by an-
other (isomorphic) model: by extending the message alphabet by a dummy element eps
(denoted as ~), instead of tick. In this interpretation we again assume a discrete global
clock, but each element of the stream is either a message arriving during one time frame,
or an ~ (interpreted here as “no message has arrived, having also the length of one time
frame). Variant 2 can technically also be used to model synchronous, permanent signals
that change at most every time step. These are e.g. occurring in chips with synchronous
clocks.

Variant 3: If a signal is permanently available then the special element ~ never occurs.
Each stream then is of type M“, with the special interpretation that each message repre-
sents one time step.

A further variant of timed stream are superdense streams by using R, as time axis
[Lee16].

We will focus in this work on untimed streams and explain in depth functions manipulating
untimed (bundles of) streams.
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Chapter 6

Stream Bundles

We are interested in modular and compositional modeling of component networks. Mod-
ularity means that we can define the behavior and check the correctness of components
in isolation. Compositionality means that the use of proper composition operators guar-
antees the correctness of the whole system when constructed from correct components.

To facilitate composition, we enhance our modeling of component networks by naming
channels and defining composition operators which connect channels of the same name
and type.

The user can then define the type of a channel via a function which for each channel
returns a set of allowed messages, i.e., the domain of the channel type. To model the
input (or output) streams of a component, we work with an isomorphic transformation
of the tuples of streams (instead of just working on tuples): namely with mappings from
channel names to streams. Such a mapping is then called stream bundle [Rum96] if
the messages of the streams mapped to the channels are allowed to flow on it. Thus,
we can compose components and define generalized composition operators connecting
same-named/same-typed channels without worrying about setting preconditions for the
interface compatibility.

6.1 Mathematical Definition

There are multiple ways to formalize stream bundles (SBs). One approach is to define
them as total functions from a specific channel set to streams as shown below.

Definition 6.1 (Stream Bundle). Let C be a set of channel names, M. the set of allowed
messages for a channel ¢ € C and M = |J M.. The stream bundle type is then defined

ceC
as [Rum96]:
C:={secC— M"“|VceC. s(c) e M*}
Hence, stream bundles are functions that map channel names to streams. We further-
more restrict which types of messages can flow on a channel.

To perform induction over SBs similar to streams, we define a bundle datatype with exactly
one message element on each channel.
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Definition 6.2 (Stream Bundle Element). Let C be a set of channel names, M, the set

of allowed messages for a channel ¢ € C and M = |J M.. The stream bundle element
ceC
type is then defined as:

CVi={seC— M|VeceC.s(c)e M)}

6.2 System specific Datatypes

Components might have different channels and types, even user-defined types like an
enum are possible. Hence, there is no general type definition assigning a message type
to every possible channel. Thus, the datatypes have to be specific to the system under
consideration. A possible simple example system is shown in fig. 6.1. It consists of a
temperature sensor component and a guarding sensor that might cause an alarm depending
on the temperature. The temperature sensor has no input channels, it depends completely
on events outside of our modeled system. It outputs the temperature as an int-value.
The output channel of the sensor is the input channel of the guard component, it then
checks if a temperature threshold is exceeded to then raises an alarm.

The following section introduces two placeholder datatypes that will be used for defining
SBs, SPFs and SPSs. The datatypes in this theory are only placeholder types. In concrete
system development the placeholder will be refined with concrete definitions. Still, we need
an instantiation of these types to define the main parts of the general framework.

CNC"

cTemp cAlarm

Guard

Sensor

Figure 6.1: Example component network

6.2.1 Channel Datatype

The channel datatype is fixed for every system. The temperature alarm system fig. 6.1
would have the channel type cempty | cTemp | cAlarm. This datatype contains every
used channel and at least one dummy ”channel” for defining components with no input
or no output channels. The cempty element in the channel datatype is a technical work-
around since there are no empty types in Isabelle. Thus, even the type of an empty channel
set has to contain an element.

For now the channel datatype is defined as only one element:

datatype channel = DummyChannel

41



To ensure that the dummy channel type is never used for proving anything not holding
over every channel type, the constructor is immediately hidden.

hide_const DummyChannel

6.2.2 Message Datatype

Analogous to the channel datatype, the message datatype contains the messages that
channels can transmit. Hence, every kind of message has to be described here. The
messages for our sensor system would be defined as Z int | B bool. This message type
contains all messages transmittable in a system.

datatype M = DummyMessage

To ensure that the dummy message type is never used for proving anything not holding
for a different message type, the constructor is also immediately hidden.

hide_const DummyMessage

Since the stream type is used for defining stream bundles and any message type of a stream
has to be countable, the globale message datatype has to be instantiated as countable.

instance M :: countable

In addition, each channel is typed and therefore, can be restricted to allow only a subset
of messages from M on its stream. Thus, each channel can be mapped to a set of messages
from datatype M.

definition ctype :: "channel = M set”

Such a mapping is described by the ctype function. Only messages included in the ctype
are allowed to be transmitted on the respective channel. For the sensor system, channel
cl would be allowed to transmit all Z int and c2 all B bool messages. The cempty
channel can never transmit any message, hence, ctype of cempty would be empty.

We do assume, that there always exists at least one channel, on which no message can
flow. Hence, every case-study also has to fulfill this assumption.

theorem ctypeempty_ex: "dc. ctype c = {}"

Only with such an assumption we can define an ”empty” stream bundle. The possibility to
have an empty stream bundle is important for various reasons. Beside being able to define
”sensors” and ”sinks” as SPFs, also the general composition of components may result in
components without in or output channels. Thus, we restrict the user to channel types,
that contain a never transmitting channel. A sensor example would be the temperature
sensor, a logging component might be described as a sink, because it has no output into
the system itself.

6.2.3 Domain Classes

In this section we restrict the possible domains of components through the usage of classes.
The main idea is to never construct a component which has channels with an empty
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ctype and channels with non-empty ctype simultaneously fig. 6.2. The domain of such a
component would be equivalent to all its channels with non-empty ctype. This restriction
is easily achievable by introducing a class which only allows specific subsets of the global
channel type. Furthermore, all types for this class will have a domain which excludes all
channels with an empty ctype.

cin
. R LN
cin cempty

cempty

v v x

Figure 6.2: Allowed Components

Preliminaries for Domain Classes
For understandable assumptions in our classes we first define the channel set, that
contains all channels with an empty ctype.

definition cEmpty :: "channel set" where
"cEmpty = {c. ctype c = {}}"

cEmpty contains all channels on which no message is allowed to be transmitted.

Classes

The first class introduced ensures that a mapping to the global channel type exists.
Such a mapping can then be further restricted to limit the possible types exactly to
desired types.

class rep =

fixes Rep :: "'a = channel"
begin

abbreviation "Abs = inv Rep"
end

The following class restricts the mapping from the rep class to be injective and to also
comply with our main idea. Through its injectivity, the type is isomorphic to a subset of
our channel type.

class chan = rep +
assumes chan_botsingle:
"range Rep C cEmpty V
range Rep N cEmpty = {}"
assumes chan_inj[simp]:"inj Rep"
begin
theorem abs_rep_id[simp]:"Abs (Rep c) = c"
end
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With Rep we require a representation function, that maps a type of chan to the channel
type. The first class assumption ensures our channel separation and the second the in-
jectivity. Furthermore, our abstraction function aAbs is the inverse of Rep. A type of the
class chan can be viewed as a subset of channel

Class Functions

We will now define a function for types of chan. It returns the Domain of the type. As
a result of our class assumptions and of interpreting empty channels as non existing, our
domain is empty, if and only if the input type contains channel(s) from cEmpty. A type
can be defined as the input of a function by using itself type in the signature. Then,
input chDom TYPE (’cs) results in the domain of ’cs.

definition chDom::"’cs::chan itself = channel set" where
"chDom a = range (Rep::’cs = channel) - cEmpty"

The following abbreviation checks, if a type of chan is empty.

abbreviation chDomEmpty ::"’cs::chan itself = bool" where
"chDomEmpty c¢cs = chDom cs = {}"

As mentioned before, types of chan can be interpreted as a subset of channels, where on
every channel either no message can be transmitted, or on every channel some message
is allowed to be transmitted. The properties provided by the framework do use domain
assumptions for some properties. The chan class can also be divided in two sub classes
that automatically fulfill domain assumptions. Then, many properties of the framework
hold immediately without proofing assumptions. This is useful for case-studies because
the automatic prover tools can find and use applicable properties easier. Thus, two classes
dividing the chan class are defined.

Class somechan
Types of somechan can transmit at least one message on every channel.

class somechan = rep +

assumes chan_notempty: " (range Rep) N cEmpty = {}"
and chan_inj[simp]:"inj Rep"
begin end

The class somechan is a subclass of class chan.

subclass (in somechan) chan

Hence, we know chDom TYPE (’c) # {} and chDom TYPE(’'c) = range Rep.

Class emptychan
Types of emptychan can not transmit any message on any channel.
class emptychan = rep +
assumes chan_empty:" (range Rep) C cEmpty"
and chan_inj[simp]:"inj Rep"
begin end
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Analogous to class somechan, also class emptychan is a subclass of class chan.

subclass (in emptychan) chan

Hence, the Domain is empty.

theorem emptychanempty[simp]:"chDomEmpty TYPE (’cs::emptychan)”

In the following chapters, a ”domain” is defined by chDom of a type and domain types are
types of class chan, because each type of class chan corresponds to a specific domain.

6.2.4 Interconnecting Domain Types

There are three interesting interconnections between domains. Intuitively, the union op-
erator takes all channels from both domains and the minus operator only channels that
are in the first, but not the second domain. Since we also have to check for channels from
cEmpty, its not that trivial. This would not be necessary, if the type-system of Isabelle
would allow empty types.

Furthermore, the type-system of Isabelle has no dependent types which would allow types
to be based on their value [Mou+15]. This also effects this framework, because a type ’ cs1
U ’cs2 is always different from type ' cs2 U ’csl, without assuming anything about the
definition of U. This also makes evaluating types harder. Even type "cs U ’cs is not
directly reducible to type ’ cs by evaluating U. Of course the same holds for the - type.

Union Type

The union of two domains should contain every channel of each domain. So the union of
two empty domains should also be empty. But because the type itself can never be empty,
we again have to use channels in cEmpty to define the union.

typedef (’csl,’cs2) union (infixr "U" 20) =
"if chDomEmpty TYPE (’csl) A chDomEmpty TYPE (’cs2)
then cEmpty
else chDom TYPE ('csl) U chDom TYPE (’'cs2)"

Because channels in cEmpty are interpreted as no real channels, the union of two empty
domains is defined as the channel set cEmpty. The next step is to instantiate the union of
two members of class chan as a member of class chan. This is rather easy, because either
the union results in cEmpty, so there are no channels where a message can be transmitted,
or it results in the union of the domains without channels from cEmpty. Hence, the
representation function Rep is defined as the representation function Rep_union generated
from the typedef-keyword. The output type union type of two input chan types is always
a member of chan as shown in following instantiation.

instantiation union :: (chan, chan) chan
begin
definition "Rep == Rep_union"
instance
end
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After the instantiation, class definition like the chDom function can be used. To verify the
correctness of our definition we obtain the domain of the union type and prove, that it is
indeed the union of the two sub domains.

theorem chdom_union[simp]:"chDom TYPE('csl U ’cs2) =
chDom TYPE (’csl) U chDom TYPE(’cs2)"

Minus Type

Subtracting one domain from another results in the empty domain. But analogous to
the union, our resulting type always contains channels. Subtracting a set from one of its
subsets would result in an empty type. Hence, our result for this case is again cEmpty.

typedef (’csl1,’cs2) minus (infixr "-" 20) =
"if chDom TYPE(’csl) C chDom TYPE (’cs2)
then cEmpty
else chDom TYPE (’csl) - chDom TYPE(’cs2)"

The result from the subtraction of two chan types is also in the class. The proof is, like
above, straightforward.

instantiation minus :: (chan, chan) chan
begin
definition "Rep == Rep_minus"
instance
end

For verifying the minus operator we again take a look at the resulting domain in the
following theorem.

theorem chdom_minus[simp]:"chDom TYPE(’csl - ’'cs2) =
chDom TYPE (’csl) - chDom TYPE(’cs2)"

If we subtract domain ’cs2 from domain ’cs1 the resulting domain should contain no
channels from ’ cs2.We also verify this correctness property.

theorem [simp]:"chDom TYPE(’csl - ’c¢s2) N chDom TYPE (’cs2) = {}"

6.3 Stream Bundle Elements

Before we define the stream bundle (SB) datatype, we define a type for stream bundle
elements. The difference between both types is, that SBs map channels to streams but a
stream bundle element maps channels to a single message.

A stream bundle element is a function from a chan type to a message M in ctype and
quite useful in our later theories. But how can we define a non partial function, if the
domain of our type is empty? Then the function can never map to any message and would
be partial. To still retain the totality property in all possible cases, we define a stream
bundle element as some total function, if the domain is not empty, and as nothing (None)
if the domain is empty. The totality leads to shorter proofs because less cases have to be
checked.

fun sbElem_well :: "('cs = M) option = bool" where
"sbElem_well None = chDomEmpty TYPE ('cs)" |
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"sbElem_well (Some sbe) = (Vc. sbe ¢ € ctype(Rep c))"

Predicate sbElem_well exactly describes our requirements. The option type in our
predicate allows us to have the (None) function, iff the domain of our channel type is
empty. For all non-empty domains, a total function is a sbElem, iff it only maps to
messages in the ctype of the channel. With those preparations we now define the sbElem

type:

typedef ’cs sbElem ("(_V)") =
"{f::('cs = M) option. sbElem well f}"

The suffix (V) abbreviates ' cs sbElem to ’csV.

The order of sbElems then has to be a discrete one. Else its order would be inconsistent
to our prefix order on streams and also the resulting SB order.

instantiation sbElem:: (chan) discrete_cpo

begin
definition below_sbElem::"’csY = ’csVY = bool" where
"below_sbElem sbel sbe2 = sbel = sbe2"
instance

end

The following three theorems describe the behaviour of the sbElem type for empty and
non-empty domains. Hence, they verify the desired properties of our type.

theorem sbtypeepmpty_sbenone[simp]:
fixes sbe::"’csV"
assumes "chDomEmpty TYPE (‘cs)"
shows "sbe = Abs_sbElem None"

In case of the empty domain, any sbElem is None. Hence, we now have to look at the
behaviour for non-empty domains.

theorem sbtypefull_none[simp]:
fixes sbe::"’csV"
assumes "—-chDomEmpty TYPE (‘cs)"
shows "Rep_sbElem sbe # None"

First we show that a sbElem with a non-empty domain never is None. Thus, it is easy to
show that there always exists a total function, that is an sbElem, if the domain is empty.
It follows directly from the non-emptiness of a type.

theorem sbtypenotempty_somesbe:
assumes "—-chDomEmpty TYPE ('cs)"
shows "Jf::’cs = M. sbElem_well (Some f)"

6.4 Stream Bundles Datatype

Streams are the backbone of this verification framework and stream bundles are used
to model components with multiple input and output streams. Any stream in a stream
bundle is identifiable through its channel. Hence, a SB is a function from channels to
streams. Since the allowed messages on a channel may be restricted, the streams of a
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SB only contain streams of elements from the type of their channel (ctype). Similar to
sbElems, we formulate a predicate to describe the properties of a SB.

definition sb_well :: "(’c::chan = M stream) = bool" where
"sb_well f = Vc. sValues-(f ¢c) C ctype (Rep c)"

This definition uses svalues function defined for streams in section 5.2.6 to obtain a
set, which contains every element occurring in a stream. If the values of each stream
are a subset of the allowed messages on their corresponding channels, the function is a
SB. Unlike our sbElem predicate, a differentiation for the empty domain is not necessary,
because every non-empty stream for bundles with an empty domain would lead to a
contradiction with the sb_well predicate.

Since we define SBs as total functions from channels to streams, the type can be instan-
tiated as a pcpo. This provides additional general properties and allows the usage of the
fix point operator. The resulting prefix order for SBs follows directly from the order of
streams. A SB is prefix of another SB, if each of its streams is prefix of the corresponding
streams of the other SB.
pcpodef ’c::chan sb (" (_ym

= "{f::(c::chan = M stream). sb_well f}"

SB Type Properties
The L element of our SB type is a mapping to empty streams.

theorem bot_sb: "L = Abs_sb (Ac. &)"

In case of an empty domain, no stream should be in a SB. Hence, every SB with an empty
domain should be L. This is proven in the following theorem.

theorem sbtypeepmpty_sbbot [simp]:
fixes sb::"’cshr
assumes "chDomEmpty TYPE (’cs)"
shows "sb = 1"

6.5 Functions for Stream Bundles

This section defines and explains the most commonly used functions for SB. Also, the
main properties of important functions will be discussed.

Converter from sbElem to SB

First we construct a converter from sbElems to SB. This is rather straight forward, since
we either have a function from channels to messages, which we can easily convert to a
function from channels to streams. This consists only of streams with the exact message
from the sbElem. In the case of an empty domain, we map None to the L element of SB.

lift_definition sbe2sb::""cV = ’c@" is
"\ sbe. case (Rep_sbElem sbe) of Some f = Ac. T(f c)
| None = L "
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Through the usage of keyword 11 ft_definition instead of definition we automatically
have to proof that the output is indeed a SB.

Extracting a single stream

The direct access to a stream on a specific channel is one of the most important functions
in the framework and also often used for verifying properties. Intuitively, the signature of
such a function should be "cs = ’cs® — M stream, but we use a slightly more general
signature. Two domain types could contain exactly the same channels, but we could not
obtain the streams of a SB with the intuitive signature, when the type of the SB is different
(see section 6.2.4). To avoid this, we can use the Rep and Abs functions of our domain
types to convert between the them by representation and abstraction via the global channel
type. This also facilitates later function definitions and reduces the total framework size
by using abbreviations of one general function that only restrict the signature.

lift_definition sbGetCh :: "’csl = 'cs2® — M stream" is
"Ac sb. if Rep c€&chDom TYPE (’cs2)

then Rep_sb sb (Abs(Rep c))

else "

Our general signature allows the input of any channel from the channel type. If the chan-
nel is in the domain of the input SB, we obtain the corresponding channel by converting
the channel to an element of our domain type with the nesting of Abs and Rep. Is the
channel not in the domain, the empty stream ¢ is returned. The continuity of this function
is also immediately proven.

The next abbreviations are defined to differentiate between the intuitive and the expanded
signature of sbGetCh. The first abbreviation is an abbreviation for the general signature,
the second restricts to the intuitive signature.

abbreviation sbgetch_magic_abbr :: "’cs1® = ’cs2 = M stream"
(infix " », " 65) where "sb », ¢ = sbGetCh c-sb"

All properties proven for the general signature automatically hold for the restricted signa-
ture. In general one could also add additional abbreviations with different signatures at a
later time and immediately use properties of less restricted signatures.

abbreviation sbgetch_abbr :: "'cs® = ’‘cs = M stream"
(infix " » " 65) where "sb » ¢ = sbGetCh c-sb"

Obtaining a sbElem from a SB is not always possible. If the domain of a bundle is not
empty but there is an empty stream on a channel, the resulting sbElem could not map
that channel to a message from the stream. Hence, no slice of such a SB can be translated
to a sbElem. The following predicate states, that the first slice of an SB with a non-empty
domain can be transformed to a sbElem, because it checks, if all streams in the bundle
are not empty.

definition sbHdElemWell::"’c® = bool" where
"sbHdElemWell = A sb. (Vc. sb » c # )"

abbreviation sbIsLeast::"’cs®® = bool" where
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"sbIsLeast sb = —-sbHdElemWell sb"

The negation of this property is called sbIsLeast, because these SB do not contain any
complete slices.

When using the intuitive variant of sbGetCh, it obtains a stream from a channel. It should
never be able to do anything else. This behavior is verified by the following theorem.
Obtaining a stream from its SB is the same as obtaining the output from the function
realizing the SB.

theorem sbgetch_insert2:"sb » ¢ = (Rep_sb sb) c"

If a SB sb1 is prefix of another SB sb2, the order also holds for each streams on every
channel.

theorem sbgetch_sbelow[simp]:"sbl C sb2 = sbl » ¢ C sb2 » c"

Now we can show the equality and order property of two SB though the relation of their
respective streams. In both cases we only have to check channels from the domain, hence
the properties automatically hold for SB with an empty domain.

theorem sb_belowI:
fixes sbl sb2::"’csfn
assumes "/ c. Rep c€chDom TYPE(’cs) = sbl » ¢ C sb2 » c"
shows "sbl C sb2"

If all respectively chosen streams of one bundle are prefix of the streams of another bundle,
the prefix relation holds for the bundles as well.

theorem sb_eqI:
fixes sbl sb2::"’csin
assumes "/\c. Rep c&€chDom TYPE('cs) = sbl » ¢ = sb2 » c"
shows "sbl = sb2"

If all respectively chosen streams of one bundle are equal to the streams of another bundle,
these bundles are the same.

Lastly, the conversion from a sbElem to a SB should never result in a SB which maps its
domain to e.

theorem sbgetch_sbe2sb_nempty:
fixes sbe::""csV"
assumes "—-chDomEmpty TYPE (‘cs)"
shows "sbe2sb sbe » ¢ # e"

Bundle Equality
Checking the equality of bundles with same domains is wanted, even if the types are
different. The following operator checks the equality of bundles.

definition sbEQ::""cs1®? = 7cs2®? = bool" where
"SbEQ sbl sb2 = chDom TYPE(’csl) = chDom TYPE(’cs2) A
(Vc. sbl » ¢ = sb2 », c)"
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The operator checks the domain equality of both bundles and then the equality of its
streams. For easier use, an infix abbreviation £ is defined.

abbreviation sbeq_abbr :: "'csl1®? = 7cs2®% = bool"
(infixr "£" 70) where "sbl £ sb2 = sbEQ sbl sb2"

Concatenation

Concatenating two SB is equivalent to concatenating their streams whilst minding the
channels. The output is also a SB, because the values of both streams are in ctype,
therefore, the same holds for the union. The compatibility of the input bundles is ensured
by the signature of the function.

lift_definition sbConc:: ""cs®? = 7cs? — rcs9r s
"Asbl sb2. Abs_sb(Ac. (sbl » c) e (sb2 » c))"

For easier usability, we introduce a concatenation abbreviation.

abbreviation sbConc_abbr :: "'cs® = rcs? = gl

(infixr "e®¥" 70) where "sbl e sb2 = sbConc sbl-sb2"

After concatenating two SB, the resulting SB has to contain the streams from both SB in
the correct order. Hence, obtaining a stream by its channel from the concatenation of two
SB is equivalent to obtaining the stream by the same channel from the input SB and then
concatenating the streams from the first input bundle with the stream from the second
input bundle.

theorem sbconc_getch [simp]:
shows " (sbl 2 sb2) » c = (sbl » c) e (sb2 » c)"

It follows, that concatenating a SB with the I bundle in any order, results in the same
SB.

theorem sbconc_bot_r[simp]: "sb 2 1 = sb"
theorem sbconc_bot_1[simp]: "L % sb = sb"

Length of SBs

We define the length of a SB as follows:

* A SB with an empty domain is infinitely long

* A SB with an non-empty domain is as long as its shortest stream

The definition for the empty domain was designed with the timed case in mind. This
definition can be used to define causality.

definition sblen::"’cs® = lnat"where
"sbLen sb = if chDomEmpty TYPE (’‘cs) then oo
else LEAST n . ne{#(sb » ¢c) | c. True}"

Our sbLen function works exactly as described. It returns co, if the domain is empty.
Else it chooses the minimal length of all the bundles streams.

51



Since the length of a bundle is used for defining causality in the framework, the desired
behaviour is verified by many lemmas. We will introduce a few important properties as
theorems.

The abbreviation # is a shortcut for sbLen.

The length of two concatenated bundles is greater or equal to the added length of both
bundles. If both bundles have a minimal stream on the same channel, the resulting length
would be equal.

theorem sblen_sbconc: "#sbl + #sb2 < #(sbl 2 sbh2)"

This rule captures all necessary assumptions to obtain the exact length of a SB with a
non-empty domain:

» All streams must be at least equally long to the length of the SB

* There exists a stream with length equal to the length of the SB

theorem sblen_rule:
fixes sb::"’csfn
assumes "-—-chDomEmpty TYPE ('cs)"
and "/\C. k < #(sb » )"
and "dc. #(sb » c) = k"
shows "#sb = k"

If two SB are in an order and also infinitely long, they have to be equal. This holds because
either the domain is empty or every stream of the bundles is infinitely long.
theorem sblen_sbeql:

fixes sbl sb2::"’csn

assumes "sblCsb2" and "#sbl =oco"
shows "sbl = sb2"

We can also show that the length of any SB that has a non-empty domain is equal to the
length of one of its streams.
theorem sblen2slen:

assumes "-—-chDomEmpty TYPE (‘cs)"
shows "Jc. #(sb :: 'cs%) = #(sb » )"

The length of a sbElem is 1, if the domain is not empty

theorem sbelen_one[simp]:
fixes sbe::" csV"
assumes "—-chDomEmpty TYPE ('cs)"
shows " # (sbe2sb sbe) = 1"

Dropping Elements

Through dropping a number of SB elements, it is possible to access any element in the SB
or to get a later part. Dropping the first n Elements of a SB means dropping the first n
elements of every stream in the SB.
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lift_definition sbDrop::"nat = ’cs® — 7cs%ris

"X\ n sb. Abs_sb (Ac. sdrop n-(sb » c))"

A special case of sbDrop is to drop only the first element of the SB. It is the rest operator
on SB.

abbreviation sbrRt :: "'cs® — 7cs®" where
"sbRt = sbDrop 1"

Taking Elements

Through taking the first n elements of a SB, it is possible to reduce any SB to a finite
part of itself. The output is always a prefix of the input.

lift_definition sbTake::"nat = ’'cs® — ’csf"is
"\ n sb. Abs_sb (Ac. stake n-(sb » c))"

A special case of sbTake is to take only the first element of the SB.

abbreviation sbHd :: "’cs? — 7cs®r where
"sbHd = sbTake 1"

Obtaining some stream form a SB after applying sbTake, is the same as applying stake
after obtaining the stream from the SB.

theorem sbtake_getch[simp]:"sbTake n-sb » ¢ = stake n-(sb » c)"

The output of sbTake is always (E) the input.

theorem sbtake_below[simp]: "sbTake i-sb C sb"

Concatenating the first n elements of a SB to the SB without the first n elements results
in the same SB.

theorem sbconctakedrop[simp]:"sbConc (sbTake n-sb)-(sbDrop n-sb) = sb"

Concatenating sbElems with SBs

Given a sbElem and a SB, we can append the sbElemto the SB. Of course we also have
to consider the domain when appending the bundle:

* If the domain is empty, the output SB is L
* If the domain is not empty, the output SB has the input sbElem as its first element.
Using only this operator allows us to construct all SBs where every stream has the same

length. But since there is no restriction for the input bundle, we can map to any SB with
a length greater 0.

definition sbECons::"’ csVY = 7cs® — 7cs®" where
"sbECons sbe = sbConc (sbe2sb sbe)"
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Because we already constructed a converter from sbElems to SBs in section 6.5 and the
concatenation in section 6.5, the definition of sbECons is straight forward. We also add
another abbreviation for this function.

abbreviation sbECons_abbr::"’csVY = ’cs® = ’cs" (infixr "eV" 100)
where "sbe oV sb = sbECons sbe-sb"

The concatenation results in | when the domain is empty.

theorem sbtypeempty_sbecons_bot:
fixes sbe::""csV"
assumes "chDomEmpty TYPE (‘cs)"
shows "sbe oV sb = L"

It also holds, that the rest operator (section 6.5) of a with sbECons constructed SB is a
destructor.

theorem sbrt_sbecons: "sbRt:(sbe oV sb) = sb"

Obtaining the head of a SB constructed this way results in the first element converted to
SB.

theorem sbh_sbecons: "sbHd- (sbe oV sb) = sbe2sb sbe"

Constructing a SB with sbECons increases its length by exactly 1. This also holds for
empty domains, because we interpret the length of those SB as oc.

theorem sbecons_len:
shows "# (sbe oV sb) = lnsuc-(# sb)"

SB induction and case rules

This framework also offers proof methods using the sbElem constructor, that offer an
easy proof process when applied correctly. The first method is a case distinction for SBs.
It differentiates between the short SBs where an empty stream exists and all other SBs.
The configuration of the lemma splits the goal into the cases least and sbeCons. It also
causes the automatic usage of this case tactic for variables of type SB.

theorem sb_cases [case_names least sbeCons, cases type: sbl:
assumes "sbIsLeast (sb’::’csﬂ) — pP"

and "Asbe sb. sb’ = sbe oV sb =—> —chDomEmpty TYPE (’cs)
= p"
shows "p"

The second showcased proof method is the induction for SBs. Beside the admissibility of
the predicate, the inductions subgoals are also divided into the cases 1east and sbeCons.
theorem sb_ind[case_names adm least sbeCons, induct type: sb]:

fixes x::" cglin
assumes "adm P"

and "Asb. sbIsLeast sb = P sb"

and "Asbe sb. P sb = —chDomEmpty TYPE (’cs)
— P (sbe oV shb)"

shows "P ox"

Here we show a small example proof for our SB cases rule. First the ISAR proof is
started by applying the proof tactic to the theorem. This automatically generates the
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proof structure with the two cases and their variables. These two generated cases match
with our theorem assumptions from sb_cases. Our theorems statement then follows then
directly by proving both generated cases.

theorem sbecons_eq:
assumes "# sb # 0"
shows "sbHdElem sb eV sbRt:sb = sb"
proof (cases sb)
assume "sbIsLeast sb"
thus "sbHdElem sb eV sbRt.sb = sb"
using assms by (simp only: assms sbECons_def sbHdElem sbcons)
next
fix sbe and sb’
assume "sb = sbe oV sb’"
thus " (sbHdElem sb) eV sbRt-sb = sb"
using assms by (simp only: assms sbhdelem_ sbecons sbrt_sbecons)

qed

The first subgoals assumption after applying the case tactic is sbIsLeast sb and proving
this case and the sbeCons case is often simpler than proving the theorem without case
distinction.

The second subgoals assumes sb = sbe oV sb’. This alows splitting the SB in two parts,
where the first part is a sbElem. This helps if a function works element wise on its input.

The next theorem is an example for the induction rule. Similar to the cases rule there
are automatically generated cases that correspond to the assumptions of sb_ind. Our
theorem is proven after showing the three generated goals.

theorem shows "sbTake n-sb C sb "
proof (induction sb)
case adm
then show 2case
by simp
next
case (least sb)
then show "sbIsLeast sb =— sbTake n:sb C sb"
by simp
next
case (sbeCons sbe sb)
then show "sbTake n-sb C sb =—> sbTake n-(sbe eV sb) C sbe eV sb"
by simp
qed

Converting Domains of SBs

Two SBs with a different type are not comparable, since only SBs with the same type
have an order. This holds even if the domain of both types is the same. To make them
comparable we introduce a type caster that converts the type of a SB. This casting makes
two SB of different type comparable. Since it does change the type, it can also restrict or
expand the domain of a SB. Newly added channels map to «.

lift_definition sbTypeCast::"" cs1®? — rcs2%"is
"(\ sb. Abs_sb (Ac. sb », c ))"
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Because restricting the domain of a SB is an important feature of this framework, we offer
explicit abbreviations for such cases.

abbreviation sbTypeCast_abbr :: "’csl® = 7cs28n
( "_%" 200) where "sbx = sbTypeCast-sb"

Without the general signature of sbTypeCast, the following abbreviations would need
own definitions and could not share properties dirctly among themselves.

abbreviation sbrestrict_abbr fst :: "(‘csl U "cs2)®? = 7cs19rn
( "_x1" 200) where "sbx; = sbTypeCast:-sb"

abbreviation sbrestrict_abbr_snd :: "('cslU’cs2)® = rcs2fn
( "_*o" 200) where "sbxy; = sbTypeCast-sb"

abbreviation sbTypeCast_abbr_fixed :: "’csl1® = ’cs3 itself = ’cs39"
( "_|_" 201) where "sb | _ = sbTypeCast:-sb"

A SB with domain (csl U "cs2) —’cs3 can be restricted to domain (/csl - ’cs3)
by using sb | TYPE (’‘csl - ’'cs3).

Obtaining a stream from a converted SB is the same as not converting it but using the
general sbGetCh operator to convert the channels type. Thus, converting the domain of
a bundle is equivalent to converting the type of all its channels.

theorem sbtypecast_getch [simp]: "sbx » ¢ = sb », c"

Union of SBs

The union operator for streams merges two SB together. The output domain is equal to
the union of its input domains. But again we use a slightly different signature for the
general definition. It is equal to applying the converter after building the exact union of
both bundles. If the input SBs share a channel, the output SBs stream on that channel is
the stream from the first input SB.

definition sbUnion::"’csl® — 7cs2®% — (csl U "cs2)9" where
"sbUnion = A sbl sb2. Abs_sb (A c.

if Rep ¢ € chDom TYPE(’csl)

then sbl », c

else sb2 », c)"

The first abbreviation has the intuitive signature of the bundle union operator.

abbreviation sbUnion_abbr :: "’csl® = 7cs2% = (’csl U "cs2)9r
(infixr "w" 100) where "sbl W sb2 = sbUnion-sbl-sb2"

The following abbreviations restrict the input and output domains of sbUnion to specific
cases. These are displayed by its signature. Abbreviation W, is the composed function of
sbUnion and sbTypeCast, thus, it converts the output domain.

abbreviation sbUnion_magic_abbr :: ""csl® = 7cs2? = 7cs39r
(infixr "w," 100) where "sbl W, sb2 = (sbl W sb2)x"
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The third abbreviation only fills in the stream its missing in its domain ’cs1. It does not
use stream on channels that are in domain cs2 but not cs1.

abbreviation sbUnion_minus_abbr :: "(‘csl — "cs2)9? = 7cs29? = rcs18n
(infixr "w_" 500) where "sbl W_ sb2 = sbl W, sb2"

sbUnion Properties
Here we show how the union operator and its abbreviations works.

The union operator is commutative, if the domains of its input are disjoint.

theorem ubunion_commu:

fixes sbl ::"’cslén

and sb2 ::"/cs28n

assumes "chDom TYPE (’csl) N chDom TYPE ('cs2) = {}"
shows "sbl W, sb2 = sb2 W, sbl"

The union of two SBs maps each channel in the domain of the first input SB to the
corresponding stream of the first SB.

theorem sbunion_getchl[simp]:

fixes sbl ::""cs19n

and sb2 ::"cs28n

assumes "Rep c¢ € chDom TYPE (’csl)"
shows "(sbl W sb2) », ¢ = sbl », c"

This also holds for the second input SB, if the domains of both SBs are disjoint.

theorem sbunion_getchr[simp]:

fixes sbl ::"’cslén

and sb2 ::"f g2

assumes "Rep c ¢ chDom TYPE (’csl)"
shows "(sbl W sb2) », ¢ = sb2 », c"

Restricting the unions domain to the first inputs domain is equal to the first input.

theorem sbunion_fst: "(sbl W sb2)x = sbl"

Analogous this also holds for the second input, if the input domains are disjoint.

theorem sbunion_snd[simp]:

fixes sbl ::"’cs1én

and sb2 ::" g2

assumes "chDom TYPE (’csl) M chDom TYPE (’cs2) = {}"
shows "(sbl W sb2)%y = sb2"

Renaming of Channels

Renaming the channels of a SB is possible if the allowed transmitted messages on the
original channel are a subset of the allowed messages on the new channel. The following
function renames arbitrary many channels by giving a channel name mapping function. If
any of the renamed channels allow less messages, the renamed SB is not defined.
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lift_definition sbRenameCh::" (‘csl = ’'cs2) = ’'cs2% — 7cs19" s
"Af sb. if (Vc. ctype (Rep (f c)) C ctype (Rep c))

then Abs_sb (Ac. sb » (f c))

else undefined"

If the renaming is possible, no stream is changed.

theorem sbrenamech_getch[simp]:
assumes "/\c. ctype (Rep (f c)) C ctype (Rep c)"
shows " (sbRenameCh f:-sb) » ¢ = sb » (f c)"

In some cases only certain channels should be modified, while keeping all other channels.
For this case we define an alternative version of sbRename. It takes an partial function as
argument. Only the channels in the domain of the function are renamed.

definition sbRename_part::" (‘csl — ’cs2) = 'cs2® — 7cs1®r where
"sbRename_part f = sbRenameCh (Acsl. case (f csl) of Some cs2 = cs2
| None = Abs (Rep csl))"

The getch lemmata is seperated into two cases. The first case is when the channel is
part of the mapping. This first assumption is directly taken from the normal sbRename
definition. The second assumption ensures that unmodified channels also exist in the
output bundle.

theorem sbrenamepart_getch_in[simp]:
fixes £ :: "('csl — ’cs2)"
assumes "/\c. cedom f = ctype (Rep (the (f c))) C ctype (Rep c)"
and "Ac. c¢dom f = (Rep c) € chDom TYPE (’cs2)"
and "c&dom f"
shows " (sbRename_part f:sb) » ¢ = sb » the (f c)"

When the channel is not part of the mapping the rename-function is not used:

theorem sbrenamepart_getch_out [simp]:
fixes £ :: "('csl — ’cs2)"
assumes "/\c. cedom f = ctype (Rep (the (f c¢))) C ctype (Rep c)"
and "Ac. c¢dom f = (Rep c) € chDom TYPE (’cs2)"
and "cé¢dom f"
shows " (sbRename_part f-sb) » ¢ = sb », c"

Lifting from Stream to Bundle

This section provides a bijective mapping from ’a to SB. Type " a could for example be a
nat stream X bool stream. A locale [Bal06] can be used to lift functions over streams
to bundles. The number of channels is not fixed, it can be an arbitrary large number.

A locale is a special environment within Isabelle. In the beginning of the locale are
multiple assumptions. Within the locale these can be freely used. To use the locale the
user has to proof these assumptions later. After that all definitions and theorems in the
locale are accessible. The locale can be used multiple times.

The definition 1Constructor maps the ” a element to a corresponding SB. The constructor
has to be injective and maps precisely to all possible functions, that can be lifted to stream
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bundles. Since the setter and getter in this locale are always bijective, all SBs can be
constructed.

The continuity of the setter is given by assuming the continuity of the constructor. Thus
continuity of the getter follows from assuming that the constructor maintains non-prefix
orders and from the continuity and surjectivity of the setter. Furthermore, assumptions
over the length (#) exist.

locale sbGen =

fixes 1Constructor::" ’a::{pcpo,len} = ’cs::{chan} = M stream"
assumes c_type: "Aa c. sValues:(lConstructor a c) C ctype (Rep c)"
and c_inj: "inj lConstructor"
and c_surj: "Af. sb_well f — f€range lConstructor"
and c_cont: "cont lConstructor"

and c_nbelow: "Ax y. -(x C y) =

—(1lConstructor x L 1lConstructor y)"
and c_len:"A a c. —chDomEmpty TYPE(’cs)=— #a < # (lConstructor a c)"
and c_lenex:"A\ a. —chDomEmpty TYPE(’cs)=— dc.#a = #(lConstructor a c)"

The lifting of the setter and getter function to a continuous function is a short proof.

lift_definition setter::""a — ’cs@n
is "Abs_sb o l1lConstructor"

lift_definition getter::" cs®? — ra"

is " (inv lConstructor) o Rep_sb"

Finally, the composed execution of setter and getter results in the identity.

theorem get_set[simp]: "getter-(setter-a) = a"
theorem set_get[simp]: "setter-(getter-sb) = sb"
The length of the resulting bundle is connected to the length of the user-supplied datatype
"a:
theorem setter_len: assumes "chDom TYPE (‘cs) # {}"
shows "# (setter-a) = #a"

Overview of all functions

In table 6.1 are all function over the SB datatype depicted.
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Def Abbrev Signature Description
Abs_sb ("cs = MY) = ’csY Lift a function to a SB (3.3)
Rep_sb res? = res = MW Inverse Function of Abs_sb
bottom 1 rcs® Least stream bundle
chDom 'cs itself = channel Domain of the bundle (6.2.3)
set
sbe2sb resV = res? conversion of sbElems to SB (6.5)
sbGetCh (> ) | "csl = 7cs2% = M Get the stream on a channel
(») | "cs = 7cs® = Mm@ (6.5)
sbIsLeast rcs? = B True iff an empty stream exists
SbEQ (2) res1®? = 7es2? = bool Equality of bundles (section 6.5)
sbConc (o%) res? = res? o st Concatenation of bundles (6.5)
sbECons (V) resV = res? — res? Concatenation with sbElem (6.5)
sbDrop N = 7cs? = 7cs? drops the first n elements (6.5)
SbRt res? o rces? drops the first element
sbTake N = "cs® — 7cs? takes the first n elements (6.5)
sbHd res? = rcs? takes the first element
sbHdElem |sb rcs? = resV first element as a sbElem
sbTypeCast sbx res1? = res2f Type Conversion
sbxq ("csl U "cs2)® — 7es1® (6.5)
Sbxg ("csl U 'cs2)® — 72t
("csl U "cs2)¥
sh*x_ — ('cs2 U ’csl)Q
shx_ rcs1® — ("csl - ’cs2)Q
sb | _|’cs1® = "cs3 itself =
1 cs3®
rcs1® o rcs2®
sbUnion (W) — ("csl U "cs2)% merges two SB together
(W) rcs1® = 1cs29 = 1 cs39 (6.5)
(W_) ("csl-"cs2)? — res2f® —
rcs19
sbRenameCh ("csl = ’cs2) = 'cs2% renaming channels of a SB (6.5)
— rcs1®
sbRename_part ("csl — ’cs2) = ’cs2% renaming channels of a SB (6.5)
— ’cs1®
sbSetCh rcs = MY = 'cs? o Overwrite channel
’ CSQ
SbNTimes N = 7cs? = 7cs? lterate each stream n-times
sbInfTimes res? = rcs? lterate each stream oo-times
sbFilter M set = ’'cs — 7cs? Apply filter to each stream
sbTakeWhile (M = bool) = ’cs? — Prefix while predicate holds
’ CSQ
sbDropWhile (M = bool) = ’cs? — Drop while predicate holds
’ CSQ
sbRcdups res? o res? Remove successive duplicates

Table 6.1: Functions for SBs
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Chapter 7

Stream Processing Functions

A deterministic component is modeled by a stream (bundle) processing function (the type
denoted as SPF), which is a continuous function mapping bundles to bundles. We will
focus in section 7.3 on deterministic components. In chapter 8 we will also consider
nondeterministic components, modeled as sets of stream processing functions. Most of
their properties can be straightforwardly lifted. The full set of the definitions and lemmas
can found in the appendix D.

7.1 Mathematical Definition

We define a stream processing function £ as a continuous bundle to bundle function
with fixed input and output channels [Rum96]. Monotonicity of the function implies that
a component can not take back an already produced output. Continuity ensures that a
component behaves the same on an infinite input as it would on its finite prefixes.

Stream Processing Functions for Bundles

Definition 7.1 (SPF based on total function). Let C' be the set of all possible channels
and 1,0 C C. We can define the SPF type SPFj o that includes all (continuous) SPFs
with input channels I and output channels O as shown below:

SPFro:={f eI®— 0%

Based on that definition, we can then define the generic SPF type SPFj;4; as follows:

SPFya = |J SPF0
1,0eC

Stream-Processing Functions with direct Channels

For completeness, we also add the definition of the pure channel-based stream process-
ing functions (C-SPF).
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For system modeling, we are only interested in realizable (well-behaved) functions over
streams. Continuity is our corresponding concept for being well-behaved. Continuous
functions are defined over pcpo’s. This justifies the definition of our data type as a pcpo.

The semantics of our component is a stream-processing function. Later, we will general-
ize this understanding to sets of stream-processing function.

Definition 7.2. A stream-processing function is a continuous function where the domain
is the set of all streams over a set of input messages M;,, and the range is the set of all
streams over a set of output messages M,,;:

Mg — Mg,
Viewing a function as behavior definition of a component, monotonicity intuitively means
that a component cannot take back any already made output. Continuity means that
we can approximate the output of a component on an infinite input using the outputs on
finite prefixes of that infinite input. Thus, both of these coincide with our intuitive view
of software component behaviors. We recall that the continuity of stream-processing
function implies monotonicity (c.f. Lemma 2.4).

7.2 Composition of SPFs

We recall that our form of modular modeling the network has the advantage that, after
checking the correctness of individual components of the decomposed system and after
composing them correctly, the desired properties of the whole system can be derived by
construction.

It is one of the key benefits of using FOCUS that in contrast to other similar known for-
malisms refinement is fully compatible with composition [RR11]. We formalized various
composition operators, which can be categorized into special operators and a general
operator [RR11; BRO7]. The special operators are the sequential, parallel and feedback
operator. The general operator subsumes all special operators [Bro+92] as well as any
network construction. They fulfill a set of properties such as commutativity, and under
some easy to ensure preconditions also associativity which allows to flexibly compose
large networks of components in a hierarchical way.

Special Composition Operators

The three specific operators in FOCUS can be applied to either one or two SPFs.

Sequential Composition Operator

To compose two SPFs sequentially, the output channels of one component have to match
the input channels of the other component exactly. They cannot share any other chan-
nels. Only if this requirement is met, we can compose the SPFs as displayed in figure
7.1.
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C1 2 > Cy
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Y

Figure 7.1: Sequential composition example

Parallel Composition Operator

The parallel composition of two SPFs is well-defined as long as the output channels of
both functions are disjoint. However, no feedback occurs. In fig. 7.2 is an example of a
simple parallel composition where neither the input nor the output channels are joint.

(&) C3
—_ f —
C2 Cy4
—_— g —

Figure 7.2: Parallel composition example

Feedback Composition Operator

The feedback composition operator i connects shared input and output channels. Hence,
it is appropriate for a SPF f :: I — O if there is at least one channel in the set
(INO) = S. An example component with a feedback channel can be examined in
Figure 7.3. In the following we denote by I — S the set of elements in I that are notin S.

C1
—_— C2

Figure 7.3: Feedback composition example

General Composition Operator

In the previous section, we already saw how to use composition operators of FOCUS
to create a network. Each of those operators performs a specific type of composition
and connects the involved channels differently. So a user has to explicitly think about
which composition operator is the correct one to chose. On top of that, such operators
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allow an implicit overwriting of channels which can decrease the understandability of the
composed system for someone that was not directly involved in the specification process.

These two disadvantages of a classical composition can be resolved by using a general
composition operator that connects channels with the same name [RR11]. Internally such
an operator can be realized using a special kind of parallel composition operator that
also considers streams on feedback channels. In contrast to the classical composition
operators introduced earlier, the operator is not only capable of performing pure classical
compositions forms like the feedback, parallel, or sequential composition but can also
perform a mixture of them as shown in Figure 7.4.

L 3
C1 >

C —>C4
0 f -
” 5
Ce
Co o
C2 g ——
> Cg

i il

Figure 7.4: Complex Composition Scenario

7.3 Stream Processing Functions in Isabelle

For SPFs no new datatype is created. Instead we use the existing type for glscont functions
from HOLCF. That way many definitions and lemmata are already available.

A SPF is written as (1% — r0%). It is an continuous function from the input bundle
(" 1) to an output bundle (’0%?). The signature of the component is directly visible
from the type-signatur of the SPF:

definition spfType ::" (' I% — 70%) itself =
(channel set X channel set)" where
"spfType _ = (chDom TYPE (’'I), chDom TYPE ('0O))"
definition spfDom ::" (' 1% — 70%) itself = channel set" where

"spfDom = fst o spfType"

definition spfRan ::" (' I% — 70%) itself = channel set" where
"spfRan = snd o spfType"

The input output behaviour of a SPF is defined as a set of tuples of bundles where the
first tuples element represents the input bundle and the second element the output bundle
of an spf.

definition spfro::" (111% — r019) = ('119 x '019) set" where
"spfIO spf = {(sb, spf:-sb) | sb. True}"

64



SPF Equality
Evaluate the equality of bundle functions with same input and output domains disre-
garding different types is possible by reusing the bundle equality £ operator.
definition spfEq::" (119 — 701%) = (129 — 702%) = bool" where
"spfEgq f1 f2 = chDom TYPE(’'Il1) = chDom TYPE('I2) A

chDom TYPE (' 01) chDom TYPE ("02) A
(Vsbl sb2. sbl sb2 —» fl-sbl £ f2-sb2)"

:é
The operator checks the domain equality of input and output domains and then the bundle
equality of its possible output bundles. For easier use, a infix abbreviation £; is defined.

abbreviation sbeq_abbr :: "('11% — r01%) = (1129 — r029) = bool"
(infixr "£;" 101) where "f1 £; f2 = spfEq f1 f2"

7.4 General Composition Operators

The compositions output is completely determined by a fixed point. In essence, the com-
posed SPF uses its input and previous output to compute the next output which is equiv-
alent to its sub SPFs output. This is done until a fixed point is reached.

Our general composition operator is capable of all possible compositions. It is defined over
the SPF type to allow the fix point calculation.
fixrec spfComp::" (' 11% — 701%) — (1129 — 7029
— (((FI1 U "12) - (‘01 U '02))® — (*0o1 U '02)%) " where
"spfComp-spfl-spf2-sbIn = spfl-((sbIn W_ spfComp-spfl-spf2-sbIn)x*)

W spf2-((sbIn W_ spfComp-spfl-spf2-sbIn)xy)"

The standard abbreviation of the composition operator is ®.

abbreviation spfComp_abbr::

"(r11? — 01 = (1129 — 1029

= ((("I1 U "I2) - (Y01 U 702))% — ("01 U r02)%n
(infixr "®" 70) where "spfl ® spf2 = spfComp-spfl-spf2"

The compositions output domain is equal to output domain union of both input functions.
Thus, the composition operator does not hide any internal channels in the output. This
can still be achieved by using the sbTypeCast operator to restrict the output domain. A
abbreviation for applying sbTypeCast to the composition operator is provided. It can be
used for hiding channels.

abbreviation spfCompm_abbr (infixr "®," 70) where
"spfl ®s spf2 = sbTypeCast oo (spfComp-spfl-spf2) oo sbTypeCast"

The continuity of the composition operator holds by construction, because it only uses
continuous functions.

The older version of this framework also provided a continuous composition operator, but
its definition and continuity proof using the old SPF type was complicated and long. One
of the consequences of the old SPF type was the necessity of a fix point operator over cpo
that had to be defined for the composition operator.

Its commutativity is shown in the following theorem:
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theorem spfcompcommu:
fixes £::" £fIn® — 7 fout®"
and g::""gIn®? — ’gout9"
assumes "chDom TYPE (' fOut) M chDom TYPE ('gOut) = {}"
shows " (f ® g) £ (g ® £)"

The commutativity theorem needs a disjoint output domain assumption, because the
sbUnion operator is only commutative for disjoint domains (see section 6.5). Further-
more, the commutativity is proven using the special equality for SPFs (£;). Otherwise
a type error would occur, because the output type (/fout U ’gout)® is different to
("gout U ’fout)®

The composition definition returns the smallest fixpoint:

theorem spfcomp_belowI:
fixes f ::"fIn? — rfout
and g ::"'gIn® — "gout®r
assumes "f-(sb W_ outx;) T (outx)"
and "g-(sb W_ outxy) T (out*y)"
shows "(f®g)-sb L out"

To show equality further assumptions are required:.

theorem spfcomp_eql:

fixes £ " fIn® — 7 foutén

and g ::"'gIn®? — ’gout®"

and out::" (’ fout U ’gOut) "

assumes "chDom TYPE (’fOut) M chDom TYPE (’gOut) = {}"

and "f.(sb W_ outxy) =(outky)"

and "g-(sb W_ outkxy) = (outxy)"

and "Az. £-(sb W, z) = (z%1) A g-(sb W, z) = (zk2) = out C z"
shows "((f®g)-sb) = out"

Sequential and feedback compositions are a special cases of the general composition
spfComp. They are useful to reduce the complexity since they work without computing the
fixpoint. If the domains of two functions fulfill the sequential composition assumptions,
following theorem can be used for an easier output evaluation.

theorem spfcomp_serial2:
fixes f£::"" fIn® — 7 fout®"
and g::""gIn® — ’gout®"
assumes "chDom TYPE (’'gIn) C chDom TYPE (’/fOut)"
and "chDom TYPE (’/fOut) N chDom TYPE (’gOut) = {}"

and "chDom TYPE (' gOut) N chbDom TYPE ("gIn) = {}"
and "chDom TYPE (' fOut) N chDom TYPE ('’ fIn) = {}"
and "chDom TYPE (’gOut) N chDom TYPE (' fIn) = {}"

shows " (f ® g)-sb = f-(sbx) W g-(f-(sbx)*)"

To ease the use of this important case, there is an explicit definition of the sequential
composition:

definition spfCompSeq::" (In® — ’Intern®) — (’Intern® — ’out?)
— ("1n®? — 7out®)" where
"spfCompSeq = A spfl spf2 sb. spf2-(spfl-sb)"
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In the sequential case the general composition spfComp is equivalent to spfCompSeq. The
output of the general composition is restricted to ’ out, because the general composition
also returns the internal channels.

theorem spfcomp_to_sequential:
fixes £::""In® — ’Intern®"
and g::"’Intern®? — ’oOut®"

assumes "chDom TYPE (’In) N chDom TYPE (’Intern) = {}"
and "chDom TYPE(’In) N chDom TYPE(’Out) = {}"
and "chDom TYPE (' Intern) N chDom TYPE (‘Out) = {}"
shows " (f ® g)-(sb%) | TYPE(’Out) = spfCompSeq-f-g-sb"

The same holds for parallel compositions, the output of parallel composed functions is
independent from the other functions output.

theorem spfcomp_parallel:
fixes £::"7 £fIn® — 7 fout®"
and g::"’gIn® — ’gout®r
assumes "chbDom TYPE (’fOut) N chDom TYPE ("gOut) = {}"
and "chDom TYPE (’/fOut) N chDom TYPE (’gIn) = {}"
and "chDom TYPE (’fOut) N chDom TYPE (’fIn) = {}"
and "chDom TYPE (’gOut) N chDom TYPE (’gIn) = {}"
and "chDom TYPE (’gOut) N chDom TYPE (' fIn) = {}"
shows " (f ® g)-sb = f-(sbx) W g-(sbx)"

Similar to the sequential composition, we add a definition for the parallel case:

definition spfCompPar:: " (' Inl® — ’outl®?) — ('In2% — 'out2®) —
("Inl U 'In2)® — (‘outl U 'out2)®" where
"spfCompPar = A spfl spf2 sb. spfl-(sbx;) W spf2-(sbxy)"

The two components may share input channels, otherwise all ports are disjunct. There is
no communication between the components:

theorem spfcomp_to_parallel:
fixes £::"" £fIn® — 7 fout®"
and g::""gIn® — ’gout®"
assumes "chDom TYPE (’fOut) N chDom TYPE (
and "chDom TYPE (’fOut) N chDom TYPE (’gIn
and "chDom TYPE ('’ fOut) N chDom TYPE (’f
and "chDom TYPE (' gOut) N chDom TYPE (' gIn
and "chDom TYPE (' gOut) N chDom TYPE (’ fIn
shows " (f ® g)-(sb%) | TYPE('fOut U ’'gOut) = spfCompPar-f-g-sb"

In
)
)

|
—~—
-

The feedback composition is different to the previous cases because there is only one
component instead of two. It is also more complicated since a fixpoint is computed:

definition spfCompFeed ::" (' In®? — ’out®) — (‘In-'out)®? — rout®" where
"spfCompFeed = A spf sb. p sbOut. spf-(sb W_ sbOut)"

Since the general composition takes two components instead of one like the feedback
definition, one component is "removed” by assuming the output is empty. That way it
does not contribute to any behaviour.

theorem spfcomp_to_feedback:
fixes f::"/ fIn® — 7 foutfr
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and g::""gIn® — ’gout"
assumes "chbDom TYPE (’gOut) = {}"
shows " (f ® g)-(sb%) | TYPE(’fOut) = spfCompFeed-f-sb"

7.5 Overview of SPF Functions

In table 7.1 the functions over SPFs are shown. Notice that these are not all functions.
Many functions from table 6.1 are also SPFs. Take for example sbrt. It is an continuous
function from input bundle to output bundle. Hence it can be used as a component,
especially in combination with the sequential composition operator.
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Def Abbrev Signature Description
spfType ("1% = 709 itself = Signature of Component (7.3)
(channel setXchannel set)
spfDom ("19 = 70%) itself = Input Channels (7.3)
channel set
spfRan ("19% — 70%) itself = Output Channels (7.3)
channel set
spfI0 ("11% = r01?) = (r119 x Input/Output behaviour (7.3)
’OlQ) set
spfEq (£p | (112 - 7019 = (1129 — Equality of SPF (7.3)
702%) = bool
spfConvert (raft = rpfy oy rg@ Type Conversion
(" 119 01Y) — (" 1297 02%)
— (("I1U"I2)-(’01U’02))¢
spfComp (®) — (101U’ 02) ¢ General Composition (7.4)
(I Il!l N 101&2)
= (r12% = 029 Composition with Typecast
(®s) | = ("13% = 7039 (7.4)
spfCompSeq (" In®—’" Intern®) — Sequential Composition (7.4)
(’Intern94$’0utﬂ) — (’InQ
— rout?)
spfCompPar (" In1%—’0ut1®) — Parallel Composition
(" In2%—=7out2®%) — (Inl U
'In2)® — (‘outl U ’'out2)®
spfCompFeed ("In?—= out?) — (“In-'out)? | Feedback Composition

— 7out

Table 7.1: Functions for SPFs

69




Chapter 8

Stream Processing Specification

In this chapter we extend out mathematical model to include two rather interesting as-
pects of software development, namely underspecification and refinement. From a devel-
opers point of view, it is irrelevant, whether a system is underspecified (further refinement
steps during the development process can make specifications more precise), or devel-
opers allow the implementation to make non-deterministic decisions at runtime.

A single deterministic SPF is not sufficient to describe all possible component behaviors,
and instead a set of stream processing function is used to model the component behavior
properly [RR11]. The mathematical theory of sets has the phenomenal property that set
inclusion corresponds to property implication and thus refinement as development step.
Only the signature, i.e. the input and output channels of components are fixed, thus all
SPFs in such a set must have the same input and output channels.

8.1 Mathematical Definition

We define a stream processing specification as a set of stream processing functions with
fixed input and output channels [Rum96].

Definition 8.1 (SPS). Let C be the set of all possible channels and 7,0 C C. We define
the SPS type SPSt o with input channels I and output channels O as shown below:

SPS; o :=P(I? = 0%)

8.2 General Composition of SPSs

With our general composition operator for SPFs we can also define the general composition
operator for SPSs. It composes every combination of SPFs possible from both input SPSs.
definition spsComp::
(7112 — 701%) set = (1129 — 029 set =

((("I1 U '12) - "0l U '02)® — ('01 U '02)%) set" (infixr "@" 70)
where "spsComp F G = {f ® g | £ g. fEF A g€G "
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Refinement of a component in a decomposed structure automatically leads to refinement
of the composition [BRO7].

This is proven in the following theorem:

theorem spscomp_refinement:

fixes F::" (" 119 — r01%) set"
and G::" (" 129 — 702%) set"
and F_ref::" (119 — 701%) set™
and G_ref::" (' 129 — 7029) set"

assumes "F_ref C F"
and "G_ref C G"
shows " (F_ref @ G_ref) C (F QR G "

This important property enables independent modification of the modules while preserving
properties of the overall system. As long as the modification is a refinement, it does not
influence the other components. The resulting component F_ref can simply replace F in
the composed system. Since the result is a refinement, the correctness is still proven.

That way the focus is on the development of each component and not on the integration
into the overall system.

Properties of the original system S directly hold for the refined version s’:

theorem assumes "Vfecs. P £" and "s’ C s"
shows "Vf’es’. p £'"

We call a SPS consistent if it is not the empty set. Because the empty set contains no
possible behaviour there is no implementation of such a component. Therefore such an
SPS can not be used in a real system.

definition spsIsConsistent :: "('I1% — 701%) set = bool" where
"spsIsConsistent sps = (sps # {})"

If two SPSs are consistent then the composition of these is also consistent.

theorem spscomp_consistent:
fixes F::" (119 — 7019) set™
and G::" ("12% — r02%) set"
assumes "spsIsConsistent F"
and "spsIsConsistent G"
shows "spsIsConsistent (F @ G)"

Composing two SPS that fulfill different input output behaviour predicates results in a
subset of all possible SPF's that fulfill both behaviour predicates.

theorem spscomp_subpred:
fixes P::" 119 = 019 = bool"
and H::"" 129 = 029 = Dbool"
assumes "chDom TYPE (’0Ol) N chDom TYPE ('02) = {}"
and "Vspfesl. Vsb. P sb (spf-sb)"
and "Vspfes2. Vsb. H sb (spf-sb)"
shows "s1 & s2 C
{g. Vsb.
let all = sb W g-sb in
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P (allx) (allx) A H (allx) (allx)
}"

8.3 Special Composition of SPSs

Next we lift the sequential composition (spfCompSeq) to compose two SPSs.

definition spsCompSeq :: " ("In® — ’Intern®) set = (’Intern® — ’out®) set
= ("In® — rout®?) set" where
"spsCompSeq spsl sps2 = {spfCompSeqg-spfl-spf2 | spfl spf2.
spfl € spsl A spf2 € sps2}i"

After applying this operator the resulting set contains the sequential composition of every
combination of SPFs from both SPSs.

theorem spscfcomp_set:
assumes "spfl € spsl"
and "spf2 € sps2"
shows "spfCompSeq-spfl-spf2 € spsCompSeq spsl sps2"

If we compose two consistent SPSs then the result is again consistent.

theorem spscfcomp_consistent:
assumes "spsIsConsistent spsl”
and "spsIsConsistent sps2"
shows "spsIsConsistent (spsCompSeq spsl sps2)"

The sequential composition is monotonic. The sequential composition of two refined com-
ponents has as an result again a refinement:

theorem spscfcomp_mono: assumes "spsl_ref C spsl"
and "sps2_ref C sps2"
shows " (spsCompSeq spsl_ref sps2_ref) C (spsCompSeq spsl sps2)"

The parallel and feedback composition is lifted to SPS the same way. Definition and
lemmata are shown in the appendix.

8.4 SPS Completion

SPS s consists of a set of functions, which each describe deterministic behaviour of a
component. Upon a concrete execution, i.e. input stream i the externally visible behaviour
is £ (i) for an fes.

It may happen that for streams i1, i, we have f1 (i1) = o; and £ (i2) = o9, but that no
7joint” fes exists, where £ (i1) = o; and f (iz) = oz. We then speak of an incomplete
specification s. From an observational point, S and SU{f} cannot be distinguished, but
when refinement is used to specialize s, this may become a deficit.

We therefore introduce the completion operator spsComplete to include all possible func-
tions of a component such that the black-box behaviour of the component does not change.
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definition spsComplete ::" ('11% — 7019) set = ('I11% — 701%) set"
where "spsComplete sps = {spf. Vsb. dspfl2€sps. spf:sb = spf2-sb}"

By definition, the SPSs behaviour will not be changed.

We give a small example for the completion of two components on the datatype containg
just a and b.

* spsConst = {[a — a, b — a], [a — b, b~ b]}

®* spsID = {[a — a, b = b], [a = b, b= al}

The first component contains two constant functions which have the output a or b re-
gardless of the input. The second component contains the identity function as well as a
function that reverses a and b. Therefore spsConst and spsID are different components.
However they can not be distinguished by their black-box behaviour: spsI0 spsConst
= {(a,a), (a,b), (b,a), (b,b)} = spsID spsConst. If we complete both sets then
both components are equal: spsComplete spsConst = spsComplete spsID = {[a
a, b+—al, [a+—= b, b—= Dbl], [a— a b+~ Db], [a—= b, b all.

Completion is often used to show that a completed component S2 is the extension of
another component S1. By definition this holds if for every function in s1 and possible
input there is a function in $2 with the same output behaviour.

theorem spscomplete_belowI:
assumes "/\spf sb. spfeSl = dspf2 € S2. spf:sb = spf2-sb"
shows "s1 C spsComplete S2"

With this we can show that completion just adds new SPFs to the SPS and does not
remove any.

theorem spscomplete_below: "sps C spsComplete sps"

After applying the spsComplete function the SPS is indeed complete. Applying the func-
tion a second time does not change the component anymore. Completion is idempotent.

theorem spscomplete_complete [simp]:
"spsComplete (spsComplete sps) = spsComplete sps"

We call a SPS complete if it is the same after completion.

definition spsIsComplete :: " ('I11% — '019?) set = bool" where

"spsIsComplete sps = (spsComplete sps) = sps"

There are certain sets that are not changed by completion. For example the empty set is
complete.

theorem spscomplete_empty[simp]: "spsIsComplete {}"

Completing a set consisting of a single SPF does not change the set.

theorem spscomplete_one[simp]: "spsIsComplete {f}"
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This also holds for the set of all possible functions. Hence, the set of all functions is the
same after completion.

theorem spscomplete_univ([simp]: "spsIsComplete UNIV"

The spsComplete function is monotonic. Therefore if a component sps1 refines a second
component sps2 then this also holds after completion.

theorem spscomplete_mono: assumes "spsl C sps2"
shows "spsComplete spsl C spsComplete sps2"

But completeness is not ensured after refinement

8.5 Overview of SPS Functions

In table 8.1 the functions over SPSs are shown. The first rows are general functions over
sets. Then the SPSs specific definitions follow.
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Notation Abbrev Signature Description
empty {} "a set Empty Component
UNIV "a set Greatest Component
member € "a = 'a set = B check if SPF is member
union U 'a set = ’'a set = ’a Union over Sets
set
inter n 'a set = 'a set = ’a Intersection over Sets
set
image N ("a = 'b) = 'a set = Apply function to every ele-
'b set ment
spsIO ("11% — 701%9) set = Behaviour Relation
("119 x r019) set
spsIOtoSet ("119 x '01%) set = Get complete SPS from 1/O
(119 x r01%) set behaviour
spsComplete ("a® — b)) set = (ra% | Greatest SPS with same be-
— b)) set haviour (8.4)
General Composition
spsComp (%) ("119 — 701%) set = (8.2)
(129 — 7029) set =
((("I1U"I2)-('01U’02))%
— (701U’ 02)9) set
spsCompSeq ("In® — ’Intern®) set Sequential Composition (8.3)
= (’InternQ — ’Oth)
set = (’InQ — ’Oth)
set
spsCompPar ("In1® — routl®)set Parallel Composition
= (’InZQ — ’OutZQ)Set
= (('Inl U "In2)% —
("outl U 'out2)®) set
spsCompFeed ("In? — rout?)set Feedback Composition
= (("In-'out)? —
rout®) set
spsIsConsistent ('119 — r01%) set = B | Setis not empty
spsIsComplete (119 — r01%) set = B | Componentis complete (8.4)

Table 8.1: Functions for SPSs
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Chapter 9

Case Study: Cruise Control

We demonstrate the datatype and function definition from the previous chapters on a
case study. Especially interesting is the specification of a single component and the com-
position of multiple components. All different kinds of composition (parallel, sequential
and feedback) are used in this case study.

The case study is part of a cruise control system. The input is the current acceleration. In-
ternally the system adds the acceleration to the last known speed and returns the current
speed. The initial speed is set to zero.

We evaluate the stream bundle (SB) and stream-processing function (SPF) structures
by proving that the bundle-based specification is equal to the analogue stream-based
specification.

CNC
Component Name
v
Acc2vel
: Add
VCUH’ VCU”
Vprev
Channel //
Prefix O

Figure 9.1: Case Study Overview

The component network shown in fig. 9.1 depicts the high level components for the case
study. One component initializes the sequence by a 0. The other component performs the
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addition and has a well-defined interface: input channels a and v,,., and output channel
veyr denoted by arrows in the figure.

Channel and Message Datatypes The case-study consists of three channels. They are
named cA cVcurr and cVprev.

datatype channel = cA | cVcurr | cVprev | cempty

Furthermore, the channel cempty is added to the datatype, because there must always be
a channel on which nothing can be transmitted (see section 6.2).

The messages are all natural numbers. Hence M does not have to be a new datatype,
instead it is set to nat.

type_synonym M = nat

Channel cempty may not contain a message. For every other channel every nat-message
can be sent. The definition UNIV is the set containing all nat-values.

fun ctype :: "channel = M set" where
"ctype cempty = {}" |
"ctype _ = UNIV"

As always, a theorem that confirms the existence of an empty channel has to be provided
for the framework theories.

theorem ctypeempty_ex: "dc. ctype ¢ = {}"

Now we are going to define the signature of the components. The Add component has
the signature {ca, cvprev}® — {cVcurr}®. The Prefix0 component has the signa-
ture {cveurr}®? — {cvprev}. For each of theses sets we create a new type. Since
{cVcurr}® is both the output of Add and the input of Prefix0 there are only three
definitions.

typedef addIn = "{cVprev, cA}"
typedef addout = "{cVcurr}" — also prefixIn
typedef prefixOut = "{cVprev}"

To use the datatypes to define bundles, they have to be instantiated in the chan class:

instantiation addin::chan
begin

definition Rep_addIn_def: "Rep = Rep_addIn"
end

As mentioned in section 6.2, each of the types need a representation function Rep.

instantiation addout::chan
begin

definition Rep_addOut_def: "Rep = Rep_addOut"
end

By using typedef to define the domain types over channels, a representation function is
provided and can be used.
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instantiation prefixOut::chan
begin

definition Rep_prefixOut_def: "Rep = Rep_prefixOut"
end

Prefix component The prefix component is essentially a identity component with an ad-
ditional initial output. The identity component with the signature addout® — prefixout®
is definable by renaming the channel of the input SB (cvcurr) to the channel the output
SB (cvprev).

definition prefixRename :: "addout®? — prefixout®" where

"prefixRename = sbRename_part [Abs cVcurr — Abs cVprev]"

Correct behavior is proven in the following theorem, the output stream is equal to the
input stream.

theorem prefrename_getch:
"prefixRename-sb » (Abs cVprev) = sb » (Abs cVcurr)"

Because one initial output element is needed for the prefix component, the initial output
can be represented by a stream bundle element (sbElem). Thus, a lifting function from
natural numbers to an output sbElem is defined.

lift_definition initOutput:: "nat = prefixoOutV" is
"Ainit. Some (A_. init)"

By appending the initial output sbElem to an output SB of the identity component, the
complete output of the prefix component can be defined.

definition prefixPrefix:: "M = prefixout®? — prefixout®" where
"prefixPrefix init = sbECons (initOutput init)"

Therefore, the prefix component is defined by a sequential composition of the identity
component prefixRename and the appending component prefixPrefix with an inital
output.

definition prefixComp’ ::"nat = addout? — prefixout?" where

"prefixComp’ init = spfCompSeq prefixRename: (prefixPrefix init)"

The same prefix component can also be defined in a more direct manner by outputting
a stream that starts with an initial output and then outputs the input stream from the
input SB.

lift_definition prefixComp::"nat = addout® — prefixout®" is
"Ainit sb. Abs_sb (A_. Tinit e sb » (Abs cVcurr))"

Both definitions model the same component. This is proven in the following theorem:

theorem "prefixComp init = prefixComp’ init"

In the following, prefixComp is used to define the complete system.
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Add component The add component is defined by using an element-wise add function
for streams and applying it to both input streams.

lift_definition addComp::"addIn® — addout®" is
"Asb. Abs_sb (A add- (sb » Abs cA)-(sb » Abs cVprev))"

The output on channel cvcurr follows directly:

theorem addcomp_getch:
"addComp-sb » (Abs cVcurr) = add-(sb » Abs cA)-(sb » Abs cVprev)"

The length of the output is the minimal length of the two input streams.
theorem add_len:"# (addComp-sb) = min (# (sb » Abs cA)) (#(sb » Abs cVprev))"

Since the lenght over bundles is defined as the minimum, the property can be simplified:

theorem "# (addComp-sb) = #sb"

Acc2vel component The composed components behavior is definable by outputting the
addition of the input element and the previous output element (or 0 for the initial input
element).

definition streamSum::"nat stream — nat stream" where

"streamSum = sscanl (+) 0"

Unfolding the definition once leads to the following recursive equation:

theorem "streamSum's = add-s- (10 e streamSum-s)"

For the composed system unfolding leads to a similar result:

theorem comp_unfold: " ((addComp ® (prefixComp init))-sb) » Abs cVcurr
= add-(sb » Abs cA)-
(tinit e (addComp ® prefixComp init)-sb » Abs cVcurr)"

While the recursive equations are nearly identical, equality does not directly follow from
it since there might be multiple fixpoints which fulfill the recursive equation.

Hence we prove that there is only one fixpoint for the equation. In the lemma rek2sscanl
the variable z is an arbitrary fixpoint. The lemma shows that z is the only fixpoint and
equivalent to sscanl.
theorem rek2sscanl:
assumes "Ainput init. z init-input = add-input-(finit e z init-input)"
shows "z init's = sscanl (+) init-s"

Following from this statement, the composition of the add and prefix component can be
evaluated.

theorem " (addComp ® (prefixComp init))-sb » Abs cVcurr
= sscanl (+) init-(sb » Abs cA)"

The composition can also be tested over input streams.

theorem
" (addComp ® prefixComp 0)-(Abs_sb (Ac. <[1,1,1,0,0,21>)) » Abs cVcurr
= <[1,2,3,3,3,5]>"
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Non-Deterministic Component Now we define a non-deterministic component. In this
example the component randomly modifies the output. This is used to model impreciseness
of the actuator. The actuator is unable to exactly follow the control-command from
the Acc2val component, instead there exists a delta. This is modeled in the following
definition:

definition realBehaviour::"nat = nat set" where
"realBehaviour n = if n<50 then {n} else {n-5 .. n+5}"

The actuator can perfectly execute the control command for small values (n<50). There
is only one reaction: {n}. But for greater input, there may exist an error. Here it is a
delta of at most 5, resulting in the possible outputs {n-5 .. n+5}.

Now the realBehaviour has to be applied to every element in the stream. For this we
create a general helper-function, similar to the deterministic smap.
definition ndetsmap::"(’a = ’'b set)
= (‘a stream — ’'b stream) set" where
"ndetsmap T = gfp (AH. {f | f. (f-e=¢)
A (Vm s. dx g. (f-(Tmes) = Tx e gs) A x€(T m) A g€H)})"

The component is a set of stream processing functions. Each function returns ¢ on the
input e. When the input starts with a message m the output one of the possible val-
ues described in T. The gfp operator returns the greatest fixpoint fulfilling the recursive
equation.

The two functions are combined to create the final component:

definition errorActuator::" (nat stream — nat stream) set" where
"errorActuator = ndetsmap realBehaviour"

The component is consistent, there exists a function which is in the description. For
example the identity function (ID).

theorem "ID € errorActuator"

The length is not modified by errorActuator:

theorem error_len:
assumes "spf € errorActuator"
shows "# (spf:s) = #s"

If the input consists only of values less than 50 there is no error. The actuator perfectly
follows the commands.
theorem assumes "An. neésvalues-s = n<50"

and "spf € errorActuator"
shows "spf:s = s"

If the input is larger than 50, errors can occur. Here an example for the input with an
infinite repetition of n. The output is non-deterministic. But the values must lie between
{n-5 .. n+5}.

theorem assumes "50 < n"

and "spf € errorActuator"
shows "sValues: (spf:(sinftimes (ftn))) C {n-5 .. n+5}"
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Glossary

admissible A predicate is admissible if it holds for the lub of a chain in whenever it holds
for the elements of the chain. 13, 24

bottom Least element in a complete partial order. 19, 23

chain Totally ordered set with minimal element. 6, 24

complete partial order (cpo) A partial order in which every chain has a least upper
bound. 7, 18, 24, 28, 65

continuous The least upper bound is preserved after application of the function. 9, 19,
23, 33-35, 62

discrete partial order A partial order on =. 7

feedback Special kind of composition. Output channels are used as input of the same
component. 62—64, 76

general Most general composition, can describe every system. 62, 64
isar A proof language in Isabelle. Designed to be similar to handwritten proofs. 20, 21

lazy natural number (INat) Natural numbers extended with an infinity-element. 24, 25

least fix point (Ifp) Used to define the semantic of recursive definitions. 9, 19, 25
monotonic The order is preserved after application of the function. 9

parallel Special kind of composition. The two components do not share channels. 62—
64,76

partial order (po) A reflexive, transitive and antisymmetric relation. 6, 23, 24, 33

pointed complete partial order (pcpo) A complete partial order with a bottom element.
7, 8,19, 23, 24, 28, 48, 62

sequential Special kind of composition. The output of the first component is the input of
the second component. 62, 64, 76

stream bundle (SB) Combination of multiple streams. 4, 5, 26, 40, 41, 46-60, 76, 78
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stream bundle element (sbElem) Combination of multiple elements. 78

stream processing specification (SPS) Set of stream-processing functions, used to
described non-deterministic behaviour. 4, 41, 70-75

stream-processing function (SPF) Continuous function from bundle to bundle. 4, 5,
34, 41, 42, 61-66, 68-73, 76
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Appendix A

Extensions of HOLCF Theories

A.1 Prelude

section (Prelude)

theory Prelude

imports HOLCF psl.PSL

begin

default_sort type

(» allows to use lift_definition for continuous functions x)

setup_lifting type_definition_cfun

sledgehammer_params [smt_proofs=false]

lemma trivial[simp]: "(Not o Not) = id"
by auto

text (Convert a relation to a map (function with (option)al result).)

definition rel2map :: "('e » 'm) set = ('c — 'm)"
where rel2map.def: "rel2map r = Ax. (if x € Domain r then Some (SOME a. (x,a) € r) else None)"

lemma [simp]: "Map.dom (rel2map r) = Domain r"
by (simp add: rel2map._def Map.dom_def)

text (Unwrapping an ('a option) value. Result for (None) is undefined.)

definition unsome :: "'a option = 'a" where
"unsome x = (case x of Some y =y | None = undefined)"
lemma [simp]: "unsome (Some x) = x"

by (simp add: unsome_def)

text (For natural numbers j and k with @{term "j < k"}, @{term "k - j"} is natural as well)
lemma natl1: "(j::nat) < k=3i. j + i = k"

apply (simp add: atomize_imp)

apply (rule_tac x="j" in spec)

apply (induct_tac k, auto)

by (case-tac "x", auto)

lemma natl2: "(i::nat) + k = k + i"
by auto
primrec Ircdups :: "'a list = 'a list"
where
"lrcdups [] = [1" |
"lrcdups (x#xs) =
(if xs = []
then [x]
else

(if x = List.hd xs
then lrcdups xs
else (x#(lrcdups xs))))"

primrec Iscanl :: "('b='a= 'b) = 'b=-'a list = 'b list" where
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"lscanl f e [] =[] " |
"lscanl f e (x#xs) =f e x#(lscanl f (f e x) xs)"

primrec IscanlAg::
"('s=>'a= ('s X'b)) =
's = 'a list = (('s X 'b) list)" where
"lscanlAg £ s [] = []1" |
"lscanlAg f s (x#xs) =
(f s x)#(lscanlAg £ (fst (f s x)) xs)"

definition stateSemlList:: "('state = 'a = 'state X 'b) ='state = 'a list = 'b list" where
"stateSemList f state xs = map snd (lscanlAg f state xs)"

(e %)
section (Some auxiliary HOLCF lemmas)
(e *)

subsection (cfun)

text (Introduction of continuity of (f) using monotonicity and lub on chains:)
lemma contl2:

"[monofun (f::'a::cpo = 'b::cpo);

(VY. chain Y—f (Ji. Y i) E (Ji. £ (Y i)))]=cont £"

apply (rule contl)
apply (rule is-lubl)
apply (rule ub_.rangel)
apply (rule monofunE [of f], assumption)
apply (rule is_ub_thelub, assumption)
apply (erule_tac x="y" in allE, drule mp, assumption)
apply (rule_tac y="Ji. £ (¥ i)" in below_trans, assumption)
apply (rule is_lub_thelub)
by (rule ch2ch_monofun [of f], assumption+)

lemma [simp]: "cont (A £. £ x)"
apply (rule contl)

apply (subst lub_fun, assumption)
apply (rule thelubE)

apply (rule ch2ch_fun, assumption)
by (rule refl)

lemma chain_tord: "chain s=s kC s 3 v s jCs k"
apply (insert linear [of "3" "k"])

apply (erule disjE)

apply (rule disjl2)

apply (rule chain.mono,simp+)

apply (rule disjl1)

by (rule chain_mono,simp+)

lemma neq.emptyD: "s # {}==3x. x € s"
by auto

(* below lemmata x)

lemma cont_pref_eqil: assumes "(a C b)"
shows "f.a C £-b"
by (simp add: assms monofun.cfun_arg)

lemma cont_pref_eq2l: assumes "(a C b)"
shows "f.-x-a C £-x-b"
by (simp add: assms monofun.cfun_.arg)

(» equality lemmata =)

lemma cfun_arg.eql: assumes "(a = b)"
shows "f.a = f-b"
by (simp add: assms)

(% ——————————— e ——— %)
section (More functions)
(* —— %)

lemma less_lubl1:
"[chain (Y::nat = 'a::cpo); X C (k. ¥ (k + 3))]=XC (k. Y k)"
by (subst lub_range.shift [THEN sym, of "vy" "j"], simp+)

lemma less_lubl2:
"[chain (Y::nat = 'a::cpo); chain f; Ax. (k. £ k'x) = x; An. £ n-x C (£ n- (Lub Y))]=x C Lub Y"
by (insert lub.mono [of "An. £ n-x" "An. £ n-(Lub Y)"], simp)

lemma Suc2plus: "Suc n = Suc 0 + n"
by simp

lemma Suc_def2: "Suc i = i + Suc 0"
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by simp

lemma max_in_chainl3: "[chain (Y::nat='a::cpo); Y i = Lub Y]=max_in_chain i Y"
apply (simp add: max.in_chain._def)

apply (rule alll, rule impl)

apply (rule po_eq.conv [THEN iffD2])

apply (rule conjl)

apply (drule sym, simp)

apply (rule chain.mono, assumption+)

by (rule is_ub_thelub)

lemma finite_chainl: "[chain Y; max_in_chain i Y]==-finite_chain Y"
by (auto simp add: finite.chain_def)

lemma lub_prod2: "[chain (X::nat = 'a::cpo); chain (Y::nat = 'b::cpo)]|=
(k. (X k,¥ k)) = (Lub X, Lub Y)"
by (subst lub_prod, simp+)

lemma lub_range_shift2: "chain y=-(Ji. ¥ i) = (. ¥ (i+§))"
apply (simp add: lub_def)
using is_-lub_range_shift lub_def by fastforce

lemma 142: "chain S=—>finite_chain s=3t. (] j. s j) = s t"
using lub_eql lub_finch2 by auto

lemma finite_chain_lub: fixes Y :: "nat = 'a ::cpo"
assumes "finite_chain Y" and "chain Y" and "monofun f"
shows "f (f. v i) = (Ji. £ (Y i))"
proof -
obtain nn :: "(nat = 'a) = nat" where
f1: "Lub Y = Y (nn Y)"
by (meson assms(1) assms(2) 142)
then have "vn. £ (Y n) £ £ (Y (nn Y))"
by (metis (no_-types) assms(2) assms(3) is_ub_thelub monofun_def)
then show ?thesis
using f1 by (simp add: lub_chain_maxelem)
qed

(» If you like admissibility proofs you will love this one. Never again "contI" ! x)
(» Dieses Lemma wurde nach langer suche von Sebastian entdeckt. Mége er ewig leben x)
lemma adm2cont:
fixes f:: "'a::cpo = 'b::cpo"
assumes "monofun f" and "Ak. adm (AY. (f Y)Ck)"
shows "cont f"
apply(rule contl2)
apply(auto simp add: assms)
proof —
fix Y:: "nat = 'a"
assume "chain Y"
obtain k where k.def: "k=(Ji. (£ (Y i)))" by simp
(x komischer zwischenschritt, aber anders schafft sledgi das nicht x)
have "Aj. £ (v 3) C (Ji. (£ (Y 1)))"
using (chain Y) assms(1) below_lub ch2ch_monofun by blast
hence "Aj. £ (Y j) C k" by(simp add: k_def)
hence "t (Jj. v j) C k"
by (metis (no_types, lifting) (chain Y) adm_def assms(2))
thus "£ (Ji. v i) C (Ji. £ (v 1)) "
using k.def by blast
qed

text (Creating a list from iteration a function (f)
(n)-times on a start value (s).)

primrec literate :: "nat = ('a=-'a) = 'a='a list"
where
literate_.0: "literate 0 £ s = []1"

literate_Suc:"literate (Suc n) f s = s#(literate n £ (£ s))"

lemma literate_-Suc2:

"set (literate (Suc n) f s) = {s} U set (literate n f (f s))"
by auto
lemma natl3: "{i. x < i A1 < Sucn + x} = {x} U {i. Suc x < i A i < Suc n + x}"
by auto

lemma literatell [simp]:
"set (literate n Suc k) = {i. k< i A1 < (n + k)}"
apply (rule_tac x="kx" in spec)
apply (induct_tac n, simp)
apply (subst literate_-Suc2)
apply (rule alll)
apply (erule_tac x="suc x" in allE)
by (subst natl3, simp)
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lemma card_set_list_.le_.length: "card (set x) < length x"
apply (induct_-tac x, simp+)
by (simp add: card_insert.if)

lemma [simp]: "length (literate n f k) = n"
apply (rule_tac x="kx" in spec)
by (induct_-tac n, simp+)

lemma [simp]: "map snd (map (Pair k) a) = a"
by (induct-tac a, simp+)

lemma from_set_-to_nth: "xa € set x=—=3k. x!k = xa A k < length x"
apply (simp add: atomize.imp)

apply (induct_tac x, simp+)

apply (rule conjl, rule impl)

apply (rule_tac x="0" in exl, simp)

apply (rule impl, simp)

apply (erule exE)

by (rule_tac x="suc k" in exl, simp)

lemma filterl4: "[Ax. Q x=>P x; filter P x = []]=filter Q0 x = []"
by (simp add: atomize_.imp, induct-tac x, auto)

lemma list_rinduct_-lemma: "Vy. length y = k A (P [] A (Vx xs. P xs—P (xs @ [x])))—P y"
apply (induct-tac k, simp)

apply (rule alll)

apply (rule impl)

apply (erule conjE)+

apply (erule_tac x="butlast y" in allE, auto)

apply (erule_tac x="last y" in allE)

apply (erule_tac x="butlast y" in allE, auto)

by (case_tac "y = []", auto)

(* - - - -= %)
section (Some more lemmas about sets)
(* *)

lemma finite_subsetl: "finite Y= (VX. X C Y——finite X)"
by (simp add: finite_subset)

lemma ex_new_if_finitel1:
"[finite Y; — finite X]==3a. a € X A a ¢ Y"
apply (rule ccontr, auto)
apply (subgoal_-tac "x C y")
by (frule_tac Y="y" in finite_.subset1 , auto)

text (Create a finite set with (n) distinct continuously
numbered entries from set (A).)

primrec
getinj:: "'a set = nat = (nat X 'a) set"
where
"getinj A 0 = {(0,SOME x. x € A)}" |
"getinj A (Suc n) = {(Suc n, SOME x. x € A A x € (snd ~ (getinj A n)))} U getinj A n"

lemma finite_getinjs[simp]: "finite (getinj A n)"
by (induct-tac n, simp+)

lemma finite.snd_getinjs[simp]: "finite (snd ~ (getinj A n))"
by (induct_tac n, simp+)

lemma finite_fst_getinjs[simp]: "finite (fst °~ (getinj A n))"
by (induct_-tac n, simp+)

lemma getinjs_I1: "Vk. n < k—>(k, x) ¢ getinj A n"
by (induct_-tac n, simp+)

lemma [simp]: "(Suc n,x) ¢ getinj A n"
by (insert getinjs_I1 [of n x A], auto)

lemma card_getinj_lemma[simp]: "- finite A=—card (snd ~ (getinj A n)) = card (getinj A n)"
apply (induct-tac n, simp+)

apply (rule somel2_ex)

apply (rule ex_new_if_finitel1)

by (rule finite_snd_getinjs , simp+)

lemma inj_on_getinj: "- finite A=—inj_on snd (getinj A n)"
by (rule eqg._card.imp_inj_on, simp+)

lemma getinj_ex[simp]: "3Ja. (n,a) € getinj X n"
by (induct_-tac n, simp+)
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lemma getinj_chain:
"[— finite 2; (3, x) € getinj A j; j < k]=(3, x) € getinj A k"
apply (simp add: atomize_imp)
apply (induct_-tac k, auto)
by (case_tac "j = suc n", auto)

lemma inter_union_id:"(x U y) N x = x"
by blast

(* *)
section (updis)
(* -

abbreviation

updis :: "'a= 'a discr u"
where "updis = (Aa. up- (Discr a))"
definition upApply :: "('a= 'b) = 'a discr u— 'b discr u" where

"upApply £ = A a. (if a=l then 1 else updis (f (THE b. a = updis b)))"

definition upApply2 :: "('a= 'b= 'c) = 'a discr\<"sub>L — 'b discr\<“sub>lL — 'c discr\<“sub>l" where
"upApply2 £f = A a b. (if a=lVb=l then | else updis (f (THE x. a = updis x) (THE x. b = updis x)))"

(» updis lemma =)

lemma updis_exists: assumes "xAL"
obtains n where "updis n = x"
by (metis Discr_undiscr Exh_Up assms)

(» upApply *)

lemma upapply-mono [simp]: "monofun (A a. (if a=Ll then | else updis (f (THE b. a = updis b))))"
apply (rule monofunl, auto)

by (metis (full_types , hide_lams) discrete_.cpo upE up-below)

lemma upapply-lub: assumes "chain Y"
shows " ((XA a. (if a=L then 1 else updis (f (THE b. a = updis b)))) (Ji. ¥ 1))
=(Ji. (A a. (if a=l then | else updis (f (THE b. a = updis b)))) (Y i))"
apply (rule finite_.chain_lub)
by (simp-.all add: assms chfin2finch)

lemma upapply-cont [simp]: "cont (A a. (if a=Ll then L else updis (f (THE b. a = updis b))))"
using chfindom_monofun2cont upapply-mono by blast

lemma upapply-rep-eq [simp]: "upRpply f- (updis a) = updis (f a)"
by (simp add: upApply-def)

lemma upapply-insert: "upApply f-a = (if a=l then | else updis (f (THE b. a = updis b)))"
by (simp add: upApply_def)

lemma upapply-strict [simp]: "upApply f-1L = 1"
by (simp add: upApply_def)

lemma upapply-nbot [simp]: "xAl=—upApply f-xAL"
by (simp add: upApply_def)

lemma upapply-up [simp]: assumes "x#L" obtains a where "up-a = upApply f-x"
by (simp add: upApply_-def assms)

lemma chain_nbot: assumes "chain Y" and " (Ji. Y i) #L"
obtains n::nat where "(Ai. ((Y (i+n)) #L))"
by (metis assms(1) assms(2) bottoml le_add2 lub_-eq-bottom_iff po_class.chain_-mono)

lemma upapply2_mono [simp]:

"monofun (A b. (if a=lVb=l then | else updis (f (THE x. a = updis x) (THE x. b = updis x))))"
apply (rule monofunl, auto)
by (metis discrete_.cpo upE up_below)

lemma upapply2_cont [simp]:
"cont (Ab. if a = L Vb = L then | else updis (f (THE x. a = updis x) (THE x. b = updis x)))"
by (simp add: chfindom_monofun2cont)

lemma upapply2-mono2 [simp]:
"monofun (Aa. A b. if a = L V b = 1 then | else updis (f (THE x. a = updis x) (THE x. b = updis x)))"
apply (rule monofunl)
apply (subst cfun_belowl, auto)
by (metis discrete_.cpo upE up_below)

lemma upapply2_-cont2 [simp]:
"cont (Aa. A b. if a = LV b = L then | else updis (f (THE x. a = updis x) (THE x. b = updis x)))"
by (simp add: chfindom_monofun2cont)

lemma upapply2_rep.eq [simp]: "upApply2 f- (updis a) - (updis b) = updis (f a b)"
by (simp add: upApply2_def)
lemma upapply2._insert:
"upApply2 f-a-b = (if a=1Vb=l then | else updis (f (THE x. a = updis x) (THE x. b = updis x)))"
by (simp add: upApply2_def)

lemma upapply2_strict [simp]: "upApply2 f£.-L = L"
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by (simp add: upApply2_def)

lemma upapply2_nbot [simp]: "xAl=—>y7#l—=—=upApply2 f x-yAL"
by (simp add: upApply2_def)

lemma upapply2_up [simp]: assumes "xzL" and "y#£L" obtains a where "up-a = upApply2 f-x-y"
by(simp add: upApply2_def assms)

lemma cont2lub_lub_eq: assumes cont: "Ai. cont (Ax. F i x)"
shows "chain ¥— (Ji. F i (f. ¥ 1)) = (Ji ia. F i (Y ia))"
proof —
{ assume "Ja. (. Fa (Yn)) #F a (Lub Y)"
have ?thesis
by (simp add: cont cont2contlubE) }
thus ?thesis
by force
qed

lemma[simp]: "x C y=—(A ya. f-x-ya) C (A ya. f-y-ya)"
by (simp add: cont_pref_eqll eta_cfun)

lemma[simp]:"VY. chain Y—> (A y. £ (J. ¥ 1)y) T (. Ay. £-(Y 1)-y)"
apply (simp add: contlub_cfun_fun contlub_cfun_.arg ,auto)
apply (subst contlub_lambda , auto)
by (simp add: cfun.lub_cfun cont_pref_eqil)

lemma cont_.lam2cont[simp]:"cont (Ax. A y. f-x-y)"
by(rule contl2, rule monofunl, simp+)

section (add lemmas to cont2cont)

(* The original-Lemma "cont_if" is not general enough x)

declare Cont.cont_if [cont2cont del]

lemma cont_if2 [simp, cont2cont]: " (b=cont f)=—=(-b=>cont g)=cont (Ax. if b then f x else g x)"
by (induct b) simp_all

lemma cont2cont_.lambda [cont2cont]:
assumes f: "Ay. cont (Ax. f x y)"
shows "cont £"
by (simp add: f)

lemma comp_cont: («Not usable for cont2contx)
assumes"cont f1"
and "cont f2"
shows "cont (f1 o f2)"
by (simp add: comp.def cont.compose assms)

lemma [cont2cont]:"cont f=—=-f€ cfun"
by (simp add: cfun_def)

lemma discr-cont: "monofun f—pcont (Ax. g ((f x)::'a:: discrete_cpo))"
apply (rule Cont.contl2)
apply(rule monofunl, insert monofunE[of f],auto)
by (metis is_ub_thelub)

lemma discr_.cont2: "cont f=cont (Ax. g ((f x)::'a:: discrete_cpo))" (#Not cont2cont, problem with domain
definitions, i.e. lnatx)
by (simp add: cont2mono discr.cont)

(¥xmonofun f should be enoughx)
lemma discr_cont3: "cont h—cont f—cont (Ax. ((h x)) ((f x)::'a:: discrete_cpo))"
by (simp add: cont2cont_fun cont_apply)

lemma cont.compose_snd [cont2cont]: "cont f=>cont (Ax. f (snd x))"
by (simp add: cont.compose)

lemma cont_.compose_fst [cont2cont]: "cont f=>cont (Ax. f (fst x))"
by (simp add: cont_compose)

section (Monotony and continuity of inverse functions)

lemma monofun_inv:
assumes"surj f"
and"monofun f"
and "Ax y. ~(x C y)==—(f x C f y)" (xOther assumption combinations possible, is this the weakest?«)
shows"monofun (inv f£)"
using assms
proof(subst monofunl;simp_all)
fix x y::'a
assume below:"x C y"
assume bij: "surj £"
assume mono: "monofun f"
from bij obtain a b where x: "x = £ a" and y: "y = £ b"
by(fastforce simp: bij_.def surj_def)
show "inv £ x C inv £ y"
proof (cases "a C b")
case True
then show ?thesis
apply(simp add: x y)
using assms(3) below bij surj_f_inv_f x y by fastforce
next
case False
then show ?thesis
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apply(cases "b C a",auto)
using below below_antisym mono monofunE x y apply fastforce
apply(simp add: x y)
using assms(3) below x y by blast
qed
qed

lemma cont.inv[cont2cont]:

assumes"surj f"
and"cont f" (xMaybe other assumption?x)
and "/\x y. 7(x E y)=—(f x C £ y)" (xOther assumption combinations possible, is this the weakest?x)
shows"cont (inv f)"

apply(rule Cont.contl2)

apply(rule monofun.inv,simp_all add: assms cont2mono)

using assms(1) assms(2) assms(3) cont2contlubE surj_-f_inv_f

by fastforce

section (Timing information V3)

datatype timeType = TUntimed | TTimed | TTsyn
end
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A.2 Set Orderings

chapter (Set and bool as a pointed cpo.)

theory SetPcpo
imports HOLCF LNat
begin

text (PCPO on sets and bools. The (C) operator of the order is defined as the (C) operator on sets
and as {— on booleans.

)

(% *)
section (Order on sets.)
(* *)

text ({text "C"} operator as the (C) operator on sets —> partial order.)

instantiation set :: (type) po
begin

definition less_set_def: "(©) = Q"
instance

apply intro_classes

apply (simp add: less_set_def)
apply (simp add: less_set_def)
apply (simp add: less_set_def)
done

end

text (The least upper bound on sets corresponds to the (Union) operator.)
lemma Union_is_lub: "a <<| A"

apply (simp add: is_lub_def)

apply (simp add: is_ub.def)

apply (simp add: less_set_def Union_upper)

apply (simp add: Sup-least)

done

lemma lub_eq-Union: "lub = Union"
apply (rule ext)

apply (rule lub_eql [OF Union_is_lub])
done

instance set :: (type) cpo
apply intro_classes

using Union_is_lub

apply auto

done

text (Sets are also pcpo's, pointed with ({}) as minimal element.)
instance set :: (type) pcpo

apply intro_classes

apply (rule-tac x= "{}" in exl)

apply (simp add: less.set_def)

done

lemma UU_eq_empty: "L = {}"
apply (simp add: less_set_def bottoml)
done

lemmas set_cpo.simps = less_set.def lub_eq_-Union UU_eqg-empty
(

*
section (Order on booleans.)
(% *)

text (If one defines the (C) operator as the 4— operator on booleans,
one obtains a partial order.)

instantiation bool :: po
begin

definition less_bool_def: "({©) = +—»"
instance

apply intro_classes

apply (simp add: less_bool_def)
apply (simp add: less_bool_def)
apply (simp add: less_bool_def)
apply (simp add: less_bool_def)
apply auto

done

end

instance bool :: chfin
proof
fix S:: "nat = bool"
assume S: "chain S"
then have "finite (range S)"
apply simp
done
from S and this
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have "finite_chain S"
apply (rule finite_range_imp_finch)
done
thus "3 n. max_in_chain n S"
apply (unfold finite_chain_def, simp)
done

qed

instance bool :: cpo

text (Bools are also pointed with (False) as minimal element.)
instance bool :: pcpo
proof

have "Vy::bool. False C y"

unfolding less_bool_def

apply simp

done

thus "Jx::bool. Vy. x C y"
qed
(* - - ————— *)
section (Properties)
(* *)
(* *)
subsection (Admissibility of set predicates)
(* *)

text (The predicate "Xa. 3x. x € A" is admissible.)
lemma adm_nonempty: "adm (AA. Ix. x € A)"

apply (rule adml)

apply (simp add: lub_eq-Union)

apply force

done

text (The predicate "Aa. x € A" is admissible.)
lemma adm.in: "adm (AA. x € A)"

apply (rule adml)

apply (simp add: lub_eqg-Union)

done

text (The predicate "AaA. x ¢ A" is admissible.)
lemma adm_not.in: "adm (MAA. x & A)"

apply (rule adml)

apply (simp add: lub_eq-Union)

done

text (If for all x the predicate "Aa. p A x" is admissible, then so is "Aa. Vxea. p A x".)
lemma adm_Ball: "(Ax. adm (MAA. P A x))==adm (MA. Vx€A. P A x)"

apply (simp add: Ball_def)

apply (simp add: adm_not.in)

done

text (The predicate "Aa. Bex A P", which means "Aa. 3x. x € A A P x" is admissible.)
lemma adm_Bex: "adm (MAA. Bex A P)"

apply (rule adml)

apply (simp add: lub_eqg-Union)

done

text (The predicate "Aa. a C B" is admissible.)
lemma adm_subset: "adm (Aa. A C B)"

apply (rule adml)

apply (simp add: lub_eq-Union)

apply auto

done

text (The predicate "Xa. B C A" is admissible.)
lemma adm_superset: "adm (Aa. B C A)"

apply (rule adml)

apply (simp add: lub_eq_Union)

apply auto

done

lemmas adm_set.-lemmas = adm_nonempty adm.in adm_.not.in adm_Bex adm_Ball adm_subset adm_superset

(* *)
subsection (Compactness)
(% *)

lemma compact.empty: "compact {}"
apply (fold UU_eq-empty)

apply simp

done

lemma compact.insert: "compact A=—-compact (insert x A)"
apply (simp add: compact.-def)

apply (simp add: set.cpo_simps)

apply (simp add: adm_set_lemmas)

done
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lemma finite_imp_compact: "finite A=—-compact A"
apply (induct A set: finite)

apply (rule compact_empty)

apply (erule compact.insert)

done

lemma union_cont:"cont (AS2. union S1 S2)"
apply(rule contl)
unfolding SetPcpo.less_set.-def
unfolding lub_eg-Union
by (metis (no-types, lifting) UN.simps(3) Union.is_lub empty_not-UNIV lub_eq lub_eql)

section (setify)
definition setify_on::"'m set = ('m::type = ('n::type set)) = ('m=- 'n) set" where
"setify_on Dom = A f. {g. VmEDom. g m € (f m)}"

definition setify::"('m::type = ('n::type set)) = ('m= 'n) set" where
"setify =X f. {g. Vm. gm € (£ m)}"

subsection (setify_on)
thm setify_def
lemma setify_on_mono[simp]: "A Dom. monofun (X f. {g. VmEDom. g m € (f m)})"
proof (rule monofunl, simp add: less_set-def, rule)
fix X y::"'m::type = ('n::type set)"
fix Dom:"'m set"
fix xa:: "'m= 'n"
assume al:"x C y"
assume a2: "xa € {g. Vm€Dom. g m € x m}"
have fO: "Am. x mC y m"
by (simp add: al fun_belowD)
have f1: "An. m € Dom—=xa m € x m"
using a2 by blast
have f2: "An. m € Dom——=xa m € y m"
by (metis SetPcpo.less_set.def fO f1 subsetCE)
show "xa € {g. VmEDom. g m € y m}"
using f2 by blast
qed

lemma setify_on_empty:"A Dom. sbe € Dom==f sbe = {}=—>setify_on Dom f = {}"
apply (simp add: setify_on_def)
by (metis empty_iff)

lemma setify_on_notempty_ex:"setify_on Dom f # {}==3g.(Vm € Dom. g m € (£ m))"
by (metis (no-types, lifting) Collect.empty_eq setify_on_def)

lemma setify_on_notempty:assumes "Vm € Dom. f m # {}" shows" setify_on Dom f # {}"
proof(simp add: setify_on_def)
have "Vm € Dom. (Ix. xE€((f m)))"
by (metis all_not_.in_.conv assms)
have "Vm € Dom. (Xe. SOME x. x€ (f e)) m € (f m)"
by (metis assms some.in_eq)
then show "3x::'a= 'b. Vm::'a € Dom. x m € (f m)"
by(rule_tac x="(Ae. SOME x. x€ (f e))" in exl, auto)
qed

lemma setify_on_final:assumes "Vm € Dom. f m # {}" and "x € (f m)"
shows"3ge ((setify_on Dom f)). g m = x"
proof(simp add: setify_on_def)
have "3g.(Vm € Dom. gm € (f m))"
by(simp add: setify_.on_notempty setify-on_notempty_ex assms(1))
then obtain g where g_def:"(Vm € Dom. g m € (f m))"
by auto
have g2_def:"Vn € Dom. (Ae. if e = m then x else g e) n € (f n)"
by (simp add: assms(2) g.def)
then show "Jg::'a= 'b. (Vm::'a € Dom. gm € (fm)) Agm=x
by(rule_.tac x="(Ae. if e = m then x else g e)" in exl, auto)
qed

subsection (setify)

lemma setify_mono[simp]:"monofun (Af. {g. Vm. g m € (f m)})"
apply(rule monofunl)
by (smt Collect-mono SetPcpo.less_set-def below_fun_def subsetCE)

lemma setify_empty:"f m = {}=setify £ = {}"
apply (simp add: setify_def)
by (metis empty.iff)

lemma setify_notempty:assumes "Vm. f m # {}" shows" setify f # {}"
proof(simp add: setify_def)
have "Vm. 3x. x€((f m))"
by (metis all_not_.in_.conv assms)
have "Vm. (Ae. SOME x. x€ (f e)) m € (f m)"
by (metis assms some.in_eq)
then show "3x::'a= 'b. Vm::'a. x m € (£ m)"
by(rule_tac x="(Ae. SOME x. x€ (f e))" in exl, auto)
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qed

lemma setify_notempty_ex:"setify £ # {}==3g.(Vm. g m € (£ m))"
by(simp add: setify_def)

lemma setify_final:assumes "Vm. £ m # {}" and "x € (£ m)" shows"3gE€((setify £)). g m = x"
proof(simp add: setify_def)
have "Jg. (Vm. g m € (f m))"
by(simp add: setify_notempty setify_notempty_ex assms(1))
then obtain g where g_def:"(Vm. gm € (£ m))"
by auto
have g2.def:"Vn. (Ae. if e = m then x else g e) n € (f n)"
by (simp add: assms(2) g-def)
then show "Jg::'a= 'b. (Vm::'a. gm€ (fm)) Agm-= x"
by(rule_tac x="(Ae. if e = m then x else g e)" in exl|, auto)

qed
inductive setSize_helper :: "'a set = nat = bool"
where
"setSize_helper {} 0"
| "setSize_helper A X A a ¢ A—>setSize_helper (insert a A) (Suc X)"
definition setSize :: "'a set = lnat"
where

"setSize X = if (finite X) then Fin (THE Y. setSize_helper X Y) else od'

lemma setSizeEx: assumes "finite X" shows "3 Y. setSize_helper X Y"
apply (rule finite_induct)
apply (simp add: assms)
using setSize_helper.intros (1) apply auto[1]
by (metis setSize_helper.simps)

lemma setSize_.remove: "y € F A setSize_helper (F - {y}) A—>setSize_helper F (Suc A)"
by (metis Diff_insert_.absorb Set.set.insert setSize_helper.intros(2))

lemma setSizeBack_helper:
assumes "V (F::'a set) x::'a. (finite F A setSize_helper (insert x F) (Suc A) A x ¢ F)—>setSize_helper F A"
shows "V(F::'a set) x::'a. (finite F A setSize_helper (insert x F) (Suc (Suc A)) A x € F)——setSize_helper F

(Suc A)"
proof —
have b0: "Aa::nat. V(F::'a set) x::'a. ((setSize_helper (insert x F) (Suc (Suc A)) A x &€ F)
— (3 y. y € (insert x F) A setSize_helper ((insert x F) - {y}) (Suc A)))"

by (metis Diff_.insert_absorb add_diff_.cancel_left' insertl1 insert_.not.empty plus.-1.eq-Suc
setSize_helper.simps)
have b1: "V(F::'a set) (x::'a) y::'a. ((finite F A setSize_helper (insert x (F - {y})) (Suc A) A x ¢ F)
——setSize_helper (F - {y}) A)"
using assms by auto
have b2: "V(F::'a set) x::'a. (setSize_helper (insert x F) (Suc (Suc A)) A x & F)
—((F y. (y#%x Ay € F A setSize_helper (insert x (F - {y})) (Suc A))) V setSize_helper F (Suc A))"
by (metis Diff_.insert_absorb b0 empty_iff insert_Diff_if insert_iff)
have b3: "V(F::'a set) x::'a. (setSize_helper (insert x F) (Suc (Suc A)) A x € F A finite F)
—((F y. (y#&X ANy € F A setSize_helper (F - {y}) A)) V setSize_helper F (Suc A))"
by (meson b1 b2)
show "V (F::'a set) x::'a. (finite F A setSize_helper (insert x F) (Suc (Suc A)) A x &€ F)——setSize_helper F (Suc
A"
by (meson b3 setSize_remove)
qed

lemma setSizeBack: "A F x. (finite F A setSize_helper (insert x F) (Suc A) A x ¢ F)=—>setSize_helper F A"
apply (induction A)
apply (metis Suc-inject empty.iff insertl1 insert_eq-iff nat.distinct(1) setSize_helper.simps)
using setSizeBack-helper by blast

lemma setSizeonlyOne: assumes "finite X" shows "3! Y. setSize_helper X Y"
apply (rule finite_induct)
apply (simp add: assms)
apply (metis empty_not.insert setSize_helper.simps)
by (metis insert_-not_.empty setSizeBack setSize_helper.intros(2) setSize_helper.simps)

lemma setSizeSuc: assumes "finite X" and "z ¢ X" shows "setSize (insert z X) = lnsuc- (setSize X)"
apply (simp add: setSize_def)
using assms setSizeonlyOne
by (metis (mono_tags, lifting) Diff_insert_absorb finite.insertl insertl1 setSize.remove thel_unique)

lemma setSizeEmpty: "setSize {} = Fin 0"
by (metis finite.emptyl setSize_.def setSize_helper.intros (1) setSizeonlyOne thel_unique)

lemma setSizeSingleton: "setSize {x} = lnsuc- (Fin 0)"
by (simp add: setSizeEmpty setSizeSuc)

lemma setsize_union_helper1:
assumes "finite F"

and "x ¢ F"
and "x ¢ X"
shows "setSize (X U F) + setSize (X N F) = setSize X + setSize F=—>
setSize (X U insert x F) + setSize (X M insert x F) = setSize X + setSize (insert x F)"
proof —
assume a0: "setSize (X U F) + setSize (X N F) = setSize X + setSize F"
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have b0: "X U insert x F = insert x (X U F)"
by simp
have b1: "setSize (X U insert x F) = lnsuc- (setSize (X U F))"
by (metis Un_iff Un_infinite assms(1) assms(2) assms(3) b0 finite_.Unl fold_inf setSizeSuc setSize_def
sup-commute)

have b2: "setSize (X N insert x F) = setSize (X N F)"
by (simp add: assms(3))
show "setSize (X U insert x F) + setSize (X M insert x F) = setSize X + setSize (insert x F)"
by (metis (no-types, lifting) a0 ab._semigroup-add.class.add_ac(1) add.commute assms(1) assms(2)

b1 b2 Inat.-plus-suc setSizeSuc)
qed

lemma setsize_union_helper2:
assumes "finite F"
and "x ¢ F"
and "x € X"
shows "setSize (X U F) + setSize (X N F) = setSize X + setSize F—
setSize (X U insert x F) + setSize (X N insert x F) = setSize X + setSize (insert x F)"
proof —
assume a0: "setSize (X U F) + setSize (X N F) = setSize X + setSize F"
have b0: "setSize (X U insert x F) = setSize (X U F)"
by (metis Un_Diff_.cancel assms(3) insert_Diff1)
have b1: "setSize (X N insert x F) = 1lnsuc- (setSize (X N F))"
by (simp add: assms(1) assms(2) assms(3) setSizeSuc)
show "setSize (X U insert x F) + setSize (X M insert x F) = setSize X + setSize (insert x F)"
by (metis a0 ab_semigroup-add_class.add_ac(1) assms(1) assms(2) b0 b1 Inat_plus_suc setSizeSuc)
qed

lemma setsize_union_helper3: assumes "finite X" and "finite Y"
shows "setSize (X U Y) + setSize (X N Y) = setSize X + setSize Y"
apply (rule finite_induct)
apply (simp add: assms)
apply simp
by (meson setsize_union_helper1 setsize_union_helper2)

lemma setsize_union_helper4: assumes "infinite X V infinite Y"
shows "setSize (X U Y) + setSize (X M Y) = setSize X + setSize Y"
proof —
have b0: "setSize (X U Y) =od
by (metis (full_-types) assms infinite_Un setSize_def)
have b1: "setSize X =ocoV setSize Y =od'
by (meson assms setSize_def)
show ?thesis
using b0 b1 plus_Inatinf_r by auto
qed
lemma setsize_union: "setSize (X U Y) + setSize (X N Y) =
by (meson setsize_union_helper3 setsize_union_helper4)

setSize X + setSize Y"

lemma setsize_union_disjoint: assumes "X N Y = {}"
shows "setSize (X U Y) = setSize X + setSize Y"
by (metis Fin_02bot add.left_neutral assms bot_is_0 Inat_plus_.commu setSizeEmpty setsize_union)

lemma setsize_subset_union: assumes "x C y"
shows "setSize (X U Y) = setSize Y"
by (simp add: assms sup.absorb2)

lemma set_union_ins: "A F G x. setSize (F U G) < setSize (F U (insert x G))"

by (metis Fin_.Suc Fin_leq-Suc_leq Un.insert_.right finite_insert insert_.absorb Inat.po-eq-conv
setSizeSuc setSize_def)

lemma setsize_-mono_union_helperi:
assumes "finite F" and "finite G"
shows "setSize F < setSize (F U G)"
proof -
have b0: "Ap. P = (XG. setSize F < setSize (F U G))==P G"
by (metis assms(2) finite.induct order.refl set_union.ins sup-bot.right_-neutral trans.Inle)
have b1: " (A\G. setsize F < setSize (F U G)) G"
using b0 by auto
show "setsize F < setSize (F U G)"
by (simp add: b1)
qed

lemma setsize_mono_union_helper2:
assumes "infinite F V infinite G"
shows "setSize F < setSize (F U G)"
proof —
have b0: "setSize (F U G) =od'
by (meson assms infinite_Un setSize_def)
show ?thesis
by (simp add: b0)
qed

lemma setsize_.mono.union: "setSize F < setSize (F U G)"
by (meson setsize_.mono_union_helper1 setsize_mono.union_helper2)

lemma setsize_mono:
assumes "F C G"
shows "setSize F < setSize G"
by (metis Un_absorb1 assms setsize.mono_union)
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subsection (setflat)

definition setflat :: "'a set set — 'a set" where

"setflat = (A S. {K | 2 K. KEZ A Z €S} )"

lemma setflat-mono: "monofun (A S. {K | Z K. KEZ A Z €S} )"
apply(rule monofunl)
apply auto

apply (simp add: less._set_def)
apply (rule subsetl)
by auto

lemma setflat.cont: "cont (A S. {K | 2 K. KEZ A Z €S} )"
apply(rule contl2)
using setflat_mono apply simp
apply auto
unfolding SetPcpo.less_set_def
unfolding lub_eqg_Union

by blast

lemma setflat.insert: "setflat:-s = {K | Z K. KEZ A Z €S}"
unfolding setflat_def
by (metis (mono-tags, lifting) Abs_cfun.inverse2 setflat.cont)

lemma setflat_empty:" (setflat-S = {})«—>(VxES. x = {})"
by(simp add: setflat.insert, auto)

lemma setflat_not_empty:" (setflat-s # {})«—(3xES. x # {})"
by (simp add: setflat_.empty)

lemma setflat_.obtain: assumes "f € setflat-S"
shows "3 z € s. £ € z"
proof -
have "f € {a. 3A aa. a = aa A aa €EA AAE S}"
by (metis assms setflat_insert)
then show ?thesis
by blast
qed

lemma setflat_union: "setflat-s = [J"
apply (simp add: setflat_.insert)
apply (subst Union_.eq)
by auto

lemma setflatten_.mono2: assumes "Ab. b€Sl=—¢ 3c. c€52 A b C c)"
shows "setflat-S1 C setflat- S2"
by (smt Abs_cfun.inverse2 setflat.def setflat_.cont assms mem_Collect-eq subsetCE subsetl)

lemma setfilter_easy: "Set.filter (Af. True) X = X"
using member_filter by auto

lemma setfilter_cont: "cont (Set.filter P)"
by (simp add: Prelude.contl2 SetPcpo.less_set.def lub_eq-Union monofun.def subset.eq)

end
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A.3 Lazy Naturals

section (The Datatype of Lazy Natural Numbers)

theory LNat
imports Prelude
begin

(h ——— %)

text (
Defined using the 'domain' command. Generates a bottom element ((L)) and an order ((C)),
which are used to define zero and ().

domain Inat = Insuc (lazy Inpred::lnat)
instantiation Inat :: "{ord, zero}"
begin
definition Inzero.def: "(0::1nat) = 1"
definition Inless_def: "(m::lnat) < n=mLCn Am% n"
definition Inle_def: "(m::lnat) < n=m0C n"
instance
end

text (define @{term Intake} as an abbreviation for @{term Inat_take},
which is generated by the (domain) command)
abbreviation
Intake :: "nat = lnat — lnat"
where "lntake = lnat_take"

lemma Intake_more[simp]:
"lntake (Suc n)- (lnsuc-k) = lnsuc- (lntake n-k)"
by (induct-tac n, auto)

( *)
section (Definitions)

(% - - - ——= %)
text (o is the maximum of all @{term Inat}s)

definition Inf' :: "lnat" ("od") where

"Inf' = fix-lnsuc"

definition Fin :I  "nat = lnat" where

"Fin k = lntake k-od'

definition Inmin :: "lnat — lnat — lnat" where
"lnmin = fix. (A h. strictify- (A m. strictify-: (A n.
Insuc- (h- (lnpred-m) - (lnpred-n)))))"

abbreviation InatGreater :: "lnat = lnat = bool" (infix ">"1" 65) where
" >N m= n > lnsuc-m"

abbreviation InatLess :: "lnat = lnat = bool" (infix "< 1" 65) where
"n <M m= lnsuc-n < m"

instantiation Inat :: plus

begin

definition plus_Inat:: "lnat = lnat = lnat" where
"plus_lnat 1nl 1In2 = if (1nl =ocoV 1ln2=o9 thenooelse Fin ((inv Fin) 1nl + (inv Fin) 1n2)"

instance

by(intro.classes)
end
( *)
section (Some basic lemmas)
(* - - - - ¥)
(e %)
subsection

(Brief characterization of
(Fin), 9, (<) and (<)

(* — — — —

lemma less_Insuc[simp]: "x < lnsuc-x"
apply (subst Inle_def)
by (rule Inat.induct [of _ x], auto)

text (o is a fix point of @{term Insuc})
lemma fold_inf[simp]: "lnsuc-co =od"
by (unfold Inf'_def, subst fix.eq2 [THEN sym], simp+)

text (x is smaller then oco.)

lemma inf_ub[simp]: "x <od'
apply (subst Inle_def)
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apply (rule Inat.induct [of _ x], auto)
apply (subst fold_.inf [THEN sym])
by (rule monofun_cfun.arg)

lemma Fin_02bot: "Fin 0 = 1"
by (simp add: Fin_def)

text ((<) on Inats is antisymmetric)
lemma Inat_po.eq-conv:

"(x <y Ay <x) = ((x::lnat) = y)"
apply (auto simp add: Inle_def)
by (rule po.eq-conv [THEN iffD2], simp)

lemma Insuc-neq-0[simp]: "lnsuc-x # 0"
by (simp add: Inzero.def)

lemma Insuc_neq_0O_rev[simp]: "0 # lnsuc-x"
by (simp add: Inzero_def)

text (0 is not equal co.)

lemma Inf'_neq.0[simp]: "0 #od'
apply (subst fold_inf [THEN sym])
by (rule notl, simp del: fold.inf)

lemma Inf'_neq-0_rev[simp]: "so# 0"
by (rule notl, drule sym, simp)

lemma inject_-Insuc[simp]: "(lnsuc-x = lnsuc-y) = (x = y)"
by (rule Inat.injects)

lemma [simp]: "lntake (Suc k) o = lnsuc- (lntake ko9 "
apply (subst fold_inf [THEN sym])
by (simp only: Intake_more)

lemma Fin_Suc[simp]: "lnsuc- (Fin k) = Fin (Suc k)"
by (simp add: Fin_def)

lemma Fin_0[simp]: "(Fin k = 0) = (k = 0)"
apply (induct-tac k, auto simp add: Inzero_def)
by (simp add: Fin_def)+

lemma inject-Fin[simp]: "(Fin n = Fin k) = (n = k)"
apply (rule spec [of _ k], induct_tac n, auto)
by (case_tac x, auto simp add: Fin_def)+

text (If a Inat cannot be reached by @{term "lnat_take"}, it behaves like ()
lemma nreach_lnat_-lemma:
"Wx. (Vj. lnat_take j-x # x)——lnat_take k-x = lnat_take k-od'
apply (induct-tac k, auto)
apply (rule_tac y=x in Inat.exhaust, auto simp add: Inzero._def)
apply (erule_tac x="lnat" in allE, auto)
by (erule_tac x="suc j" in allE, auto)

text (If a Inat cannot be reached by @{term "lnat_take"}, it
is ©9.)

lemma nreach_Inat:
"(Vj. lntake j-x # x)=>x =od'

apply (rule Inat.take_-lemma)

by (rule nreach_.lnat.lemma [rule_format],simp)

lemma nreach_lnat_rev:

"x #oc=—>3n. lntake n-x = x"
apply (rule ccontr, auto)
by (drule nreach_lnat, simp)

lemma exFin_take:
"Vx. lntake j-x = x—>(Jk. x = Fin k)"
apply (induct_tac j, auto)
apply (rule_tac x="0" in exl|,simp add: Fin_def)
apply (rule-tac y=x in Inat.exhaust, auto)
by (rule_-tac x="0" in exl, simp add: Fin_def)

text (If a predicate holds for both finite Inats and for (9,
it holds for every Inat)

lemma Incases:
"Ax P. [x =oc=P; Ak. x = Fin k==P]=—P"

apply (case_tac "x =od', auto)

apply (drule nreach_lnat.rev, auto)

by (drule exFin_take [rule_format],auto)

text (Only (<) is greater or equal to (o)

lemma inf_less_eq[simp]: "o< x) = (x ="
apply (auto, rule Inat_.po_eq.conv [THEN iffD1])
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by (rule conjl, auto)

lemma bot_is_0: "(L::1nat) = 0"
by (simp add: Inzero_def)

text (Fin k < 0 holds only for k = 0.)
lemma Inle_Fin_0[simp]: "(Fin k < 0) = (k = 0)"
apply (simp add: Inzero.def Inle_def)

by (subst bot.is_0, simp)

text ((<) on Inats is antisymmetric)
lemma less2eq: "[x <y; v < x]=(x :: lnat) = y"
by (rule Inat.po-eq-conv [THEN iffD1], simp)

lemma Fin_leq_Suc_leq: "Fin (Suc n) < i=Fin n < i"
apply (simp add: Inle_def)

apply (rule below_trans, auto)

apply (simp only: Fin_def)

apply (rule monofun_cfun_fun)

by (rule chainE,simp)

text ((<) on Inats and on nats)

lemma less2nat_-lemma: "Vk. (Fin n < Fin k)—(n < k)"
apply (induct.-tac n, auto)

apply (case-tac "n=k", simp)

apply (subgoal_-tac "Fin k < Fin (Suc k)")
apply (drule less2eq, auto)

apply (subst Inle_def)

apply (rule chainE)

apply (simp add: Fin_def)

apply (erule_-tac x="k" in allE ,auto)

by (drule Fin_leq.Suc_leq, simp)

text (If Fin n < Fin k then n < k.)

lemma less2nat[simp]: "(Fin n < Fin k) = (n < k)"
apply (rule iffl)

apply (rule less2nat_.lemma [rule_format], assumption)
apply (simp add: Inle_def)

apply (rule chain_mono)

by (simp add: Fin_def,auto)

text (Insuc x is oo iff x is ca.)

lemma [simp]: "(lnsuc-x =09 = (x =o9"
apply (rule iffl)

by (rule Inat.injects [THEN iffD1], simp+)

text (A finite number is not occ.)

lemma Fin_neq.inf[simp]: "Fin k #od'

apply (induct-tac k, auto)

apply (simp add: Fin_def bot.is_0)

by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text (If Insuc x < Insuc y then x <y.)

lemma Insuc_lnle_.emb[simp]: " (lnsuc-x < lnsuc-y) = (x <y)"

apply (rule_tac x=x in Incases, simp)
by (rule_tac x=y in Incases, auto)

lemma [simp]: "0 < (x::lnat)"
by (simp add: Inzero.def Inle.def)

text (If n <0 then n=0.)
lemma [simp]: "((n::1lnat) < 0) = (n = 0)"
by (rule iffl , rule_tac x=n in Incases, auto)

text (If x Cy then x <y.)
lemma Inle_conv[simp]: "((x::1lnat) Cy) = (x < y)"
by (subst Inle_def,simp)

text (transitivity of (<))
lemma trans_.Inle:
"[x <vyi vy < z]=(x::lnat) < z"

by (subst Inle_def, rule_tac y =y in below_trans, simp+)

text (reflexivity of (<))
lemma refl_Inle[simp]: "(x::1lnat) < x"
by (subst Inle_def , rule below_refl)

text (0 <oc.)
lemma Zero-Inless_infty [simp]: "0 <od'
by (auto simp add: Inless_def)

lemma gr_0[simp]: "(0 < j) = (Jk. j = lnsuc-k)"
apply (auto simp add: Inless_def)

apply (rule_tac y=j in Inat.exhaust)

by (simp add: Inzero.def, auto)

(x===%)
section (Some basic lemmas on (<))
(x===%)
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text (0 < Insuc-k)
lemma [simp]: "0 < lnsuc-k"
by (auto simp add: Inless_def)

text (0 < Fin (Suc k))
lemma [simp]: "0 < Fin (Suc k)"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text (Fin k <oco
lemma [simp]: "Fin k < od'
by (auto simp add: Inless_def)

text (If Fin k < Fin n then k< n.)
lemma [simp]: "(Fin k < Fin n) = (k < n)"
by (auto simp add: Inless_def)

lemma trans_Inless:
"[x < y; y < z]=>(x::1lnat) < z"
apply (auto simp add: Inless_def)
apply (rule trans_Inle, auto)
by (simp add: Inat_po.eq.conv [THEN iffD1])

text (If Insuc-n < Insuc-k then n < k)
lemma [simp]: "(lnsuc-n < lnsuc-k) = (n < k)"
by (auto simp add: Inless_def)

lemma [simp]: "= lnsuc-k < 0"
by (simp add: Inless_def)

text (o is not smaller then anything.)
lemma [simp]: "—oco< i"
by (auto simp add: Inless_def)

(k===*)
section (Relationship between Fin and (<))
(k===x*)

lemma ninf2Fin: "x #oc=>3k. x = Fin k"
by (rule_-tac x=x in Incases, auto)

lemma assumes "ln = lnsuc-1ln"
shows "ln =od'
using assms ninf2Fin by force

lemma infl: "Vk. x # Fin k=>x =od'
by (rule Incases [of x], auto)

lemma below_fin_imp_ninf: "x C Fin k==x #od'
by (rule Incases [of "x"], simp_.all)

text (@ is not finite)
lemma [simp]: oz Fin k"
by (rule notl, drule sym, simp)

text (o is strictly greater than all finite Inats)
lemma [simp]: "= o< Fin k)"
by (rule notl, auto)

lemma inf_belowl: "Vk. Fin k C x==x = od'
proof (rule Incases [of x], simp)
fix k assume "x = Fin k" and "Vk. Fin k C x"
hence "Fin (Suc k) C Fin k" by simp
thus ?thesis by simp

qed

(F %)
subsection (Induction rules)

(% —— —— e *)

lemma Inat.ind: "AP x. [adm P; P 0; AlL. P 1=>P (lnsuc-1l)]=>P x"
apply (rule Inat.induct, simp)
by (simp add: Inzero.def, auto)

(*
subsection (Basic lemmas on @{term Imin})
(* - - S *)

text (Inmin-0-n = 0)

lemma strict_Inmin_fst[simp]: "lnmin-0-n = 0"
apply (subst Inmin_def [THEN fix_eq2])

by (simp add: Inzero_def)

text (Inmin-m-0 = 0)

lemma strict_-Inmin_snd[simp]: "lnmin-m-0 = 0"
apply (subst Inmin_def [THEN fix_eq2], auto)
apply (rule Inat.induct [of _ m], simp)

by (simp add: Inzero_.def)+
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lemma Inmin_Insuc[simp]: "lnmin- (lnsuc-m)- (lnsuc-n) = lnsuc- (lnmin-m-n)"
by (subst Inmin_def [THEN fix_eq2], simp)

text (Inminoon = n)

lemma Inmin_fst_inf[simp]: "lnminocon = n"
apply (rule Inat.ind [of _ n], auto)
apply (subst fold-inf [THEN sym])

by (simp del: fold-inf)

text (Inmin-moo = m)

lemma Inmin_snd_inf[simp]: "lnmin-moco= m"
apply (rule Inat.ind [of _ m], auto)
apply (subst fold-inf [THEN sym])

by (simp del: fold.inf)

lemma [simp]: "Fin 0 = O"
by simp

text (Inmin.(Fin j)-(Fin k) = Fin (min j k)")

lemma lnmin_fin[simp]: "Inmin-(Fin j)-(Fin k) = Fin (min j k)"
apply (rule_tac x=k in spec)

apply (induct_tac j, auto)

apply (case_tac x, auto)

by (simp add: Fin_def lnzero_def)

lemma lub_mono2: "[chain (X::nat=lnat); chain (Y::natslnat); Ai. X i <Y i]
=Ui. X i) < Qi.yYir"

using lnle_conv lub_mono by blast

lemma inf_chainl2:

"[chain Y; — finite_.chain Y[=3j. YKCY jAYk#Y j"
apply (auto simp add: finite_chain_def max_in_chain_def)
apply (erule_tac x="k" in allE, auto)
apply (frule_tac i=k and j=j in chain_mono, assumption)
by (rule_tac x="j" in exI, simp)

lemma max_in_chainI2: "[chain Y; Vi. Y i = k]=max.in_chain 0 Y"
by (rule max_in_chainI, simp)

lemma finite_chainll: "[chain Y; — finite_.chain Y]=—— max.in_chain k Y"
apply (rule notI)
by (simp add: finite_chain_def)

lemma inf_chainl3:
"[chain Y; — finite_.chain Y]==3j. (Fin k) CY j A Fin k#Y j"
apply (induct_tac k, simp+)
apply (case_tac "Vi. Y i =1")
apply (frule_tac k="1" in max_in_chainI2, assumption)
apply (drule_tac k="0" in finite_chainll, assumption, clarify)
apply (simp, erule exE)
apply (rule_tac x="i" in exI)
apply (simp add: lnzero_def)
apply (erule exE, erule conjE)
apply (frule_tac k="j" in finite_chainll, assumption)
apply (simp add: max_in_chain_def)
apply (erule exE, erule conjE)
apply (rule_tac x="ja" in exI)
apply (rule_tac x="Y |" in lncases, simp+)
apply (drule_tac i="j" and j="ja" in chain_mono, assumption, simp+)
apply (rule_tac x="Y ja" in lncases, simp+)
by (drule_tac i="j" and j="ja" in chain_mono, assumption, simp+)

text (The least upper bound of an infinite lnat chain is ()
lemma unique_inf_ lub: "[chain Y; — finite_chain Y]=Lub Y =od
apply (rule ccontr, drule ninf2Fin, erule exE)

apply (frule_tac k="k" in inf chainl3, assumption)

apply (erule exE, simp)

apply (erule conjE)

apply (drule_tac x " in is_ub_thelub, simp)

by (rule_tac x="Y j" in lncases, simp+)

lemma compact_Fin: "compact (Fin k)"

apply (rule compactI)

apply (rule admI)

apply (case_tac "finite_chain Y")

apply (simp add: finite_chain_def)

apply (erule exE)

apply (drule lub_finchl [THEN lub_eqI], simp, simp)
apply (frule unique_inf_lub, assumption)

apply (subgoal_tac "range Y <| Fin k")

apply (drule_tac x="Fin k" in is_lub_thelub, simp+)
apply (rule ub_rangeI, simp)

apply (erule_tac iI" in allEk)

by (rule_tac x="Y in lncases, simp+)

text (If the outputs of a continuous function for finite inputs are
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bounded, the output for (o9 has the same bound)
lemma lnat_admll([simp]: "adm (Ax. f-x < Fin n)"
apply (subst 1lnle_def)
apply (rule admI)
apply (subst contlub_cfun_arg, assumption)
apply (rule is_lub_thelub, rule chain_monofun, assumption)
by (rule ub_rangeI, simp)

text (If a continuous function returns (< for all finite
inputs, it also returns (o9 for input ()

lemma lnat_adnl2([simp]: "adm (Ax. f-x =o"

apply (rule admI)

apply (subst contlub_cfun_arg, assumption)

apply (rule po_eq_conv [THEN iffD2])

apply (rule conjI)

apply (rule is_lub_thelub, rule chain_monofun, assumption)

apply (rule ub_rangeI, simp)

apply (erule_tac x="SOME x. True" in allE)

apply (drule sym, erule ssubst)

by (rule is_ub_thelub, rule chain_monofun)

text (1 < Fin k=1 #o9
lemma notinfI3: "| < Fin k== #od'
by (rule_tac x="I|" in lncases, simp+)

definition lnsucu ::"Inat u— Inat u" where
"Insucu = strictify-(A n. up-(fup-Insuc-n))"

definition upinf ::"Inat u" (x ('®A\<"isub>u") *) where
"upinf = upod'

text (lnsucu-Ll = 1)
lemma [simp]l: "lnsucu-Ll = 1"
by (simp add: lnsucu_def)

text (lnsucu- (up- (Fin n)) = up- (Fin (Suc n)))
lemma [simp]: "Insucu-(up-(Fin n)) = up-(Fin (Suc n))"
by (simp add: lnsucu_def)

text (lnsucu- (upinf) = upinf)
lemma [simp]: "Insucu- (upinf) = upinf"
by (simp add: lnsucu_def upinf_def)

lemma lnatu_cases:

"An P. [n = upinf=P; Ak. n = up-(Fin k)==P; n = I="P]=P"
apply (erule upE, auto simp add: upinf_def)
by (rule_tac x="X" in lncases, auto)

text (up- (Fin k) 7 upinf)
lemma [simp]: "up-(Fin k) # upinf"
by (simp add: upinf_def)

text (up- (Fin k) # 1)
lemma [simp]: "up-(Fin k) # 1"
by simp

text (upinf # 1)
lemma [simp]: "upinf # 1"
by (simp add: upinf_def)

text (lnsucu-lu # up-0)

lemma [simp]: "Insucu-lu # up-0"
apply (rule_tac n="Ilu" in lnatu_cases)
apply (auto simp add: upinf_def)

by (simp add: lnsucu_def)

text ((lnsucu-l = up-(Fin (Suc n))) = (1 = up-(Fin n)))
lemma [simp]: "(Insucu-l = up-(Fin (Suc n))) = (I = up-(Fin n))"
apply (rule_tac n="I|" in lnatu_cases)

apply (simp add: upinf_def)
by (auto simp add: lnsucu_def)

text ((lnsuc-n = Fin (Suc k)) = (n = Fin k))

lemma [simp]: "(Insuc-n = Fin (Suc k)) = (n = Fin k)"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text ((lnsuc-n < Fin (Suc k)) = (n < Fin k))

lemma [simp]: "(Insuc-n < Fin (Suc k)) = (n < Fin k)"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text ((lnsuc-n < Fin (Suc k)) = (n < Fin k))

lemma [simp]: "(Insuc-n < Fin (Suc k)) = (n < Fin k)"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text ((Fin (Suc n) < lnsuc-1l) = (Fin n < 1))

lemma [simp]: "(Fin (Suc n) < Insuc-l) = (Fin n < )"

by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text ((Fin (Suc n) < lnsuc-1) = (Fin n < 1))
lemma [simp]: "(Fin (Suc n) < Insuc-l) = (Fin n< I)"
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by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text (- Fin (Suc n) < 0)
lemma [simp]: "= Fin (Suc n) < O"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text (- Fin (Suc n) < 0)
lemma [simp]: "= Fin (Suc n) < O"
by (simp add: Fin_Suc [THEN sym] del: Fin_Suc)

text (3x. Fin x < 0=—>False)
lemma [simp]: "3Ix. Fin x < 0=-False"
by (simp add: lnless_def

text (1 # 0==Fin (Suc 0) < 1)
lemma neqg02Suclnle: "| # 0==-Fin (Suc 0
by (rule_tac x="|" in lncases, simp+)

<

text ((Fin k) < y==Fin (Suc k) <vy)
lemma less2lnleD: "(Fin k) < y=Fin (Suc k) < y"
by (rule_tac x="y" in lncases, simp+)

(* *)
subsection (Basic lemmas on @{term lmin})
(* *)
instantiation lnat :: linorder
begin

instance

apply (intro_classes)
using lnat_po_eq _conv lnle_def lnless_def apply blast
apply simp
using trans_lnle apply blast
using lnat_po_eq_conv apply blast
by (metis inf_ub less2nat linear ninf2Fin)
end

lemma 1ln_less[simp]: assumes "In<od'
shows "In < Insuc-In"

proof -
have "In < Insuc-In" by simp
obtain n where "Fin n = In" by (metis assms dual_order.strict_implies_not_eq infI)

have "Fin n < Fin (Suc n)" by force
thus ?thesis using (Fin n = 1ln) by auto
ged

lemma lnle2le: "m < Insuc-n=m < n"
apply (case_tac "meod', auto)
by (metis Fin_Suc less2lnleD lncases lnsuc_lnle_emb)

lemma le2lnle: "m < oc=—=-Insuc-m < n=m< n"
by (metis dual_order.strict_iff order dual_order.trans leD ln_less)

(xfew lemmas to simp minx)
text (0o is greater than or equal to any lazy natural number)
lemma [simp]: fixes 1n :: lnat
shows "minoco In = In"
by (simp add: min_def)

lemma [simp]: fixes 1ln :: lnat
shows "min Inoco= In"
by (simp add: min_def)

lemma [simp]: fixes 1ln :: lnat
shows "min In 0 = 0"
by (simp add: min_def)

lemma [simp]: fixes 1ln :: lnat
shows "min 0 In = O"
by (simp add: min_def)

lemma min_rek: assumes "z = min x (Insuc-z)"
shows "z = X"
apply (rule ccontr, cases "X < z")
apply (metis assms dual_order.irrefl min_less_iff_conj)
by (metis assms inf_ub 1ln_less lnle_def lnless_def min_def

lemma lnat_well_hl:
"[| n< Fin m; Ak. n = Fin k=k < m=P |] => P"
by (metis less2nat less_le lncases notinfI3

lemma lnat_well_h2:
"[| n<oo Ak. n = Fin k=P [] => P~
using lncases by auto

lemma lnat_well:
assumes prem: "An. Vm:lnat. m < n—P m=-P n" shows "P n"
proof -
have P_lnat: "Ak. P (Fin k)"
apply (rule nat_less_induct)
apply (rule prem, clarify)
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apply (erule lnat_well_hl, simp)
done

show ?thesis

proof (induct n)
next show "adm P" by (metis P_lnat adm_upward inf_ub lnat_well h2 less_le_trans prem)
next show "P 1" by (metis Fin_02bot P_lnat)
then show "An. P n==P (Insuc-n)" by (metis Fin_Suc P_lnat lncases

ged

ged

instance lnat :: wellorder

proof
fix P and n
assume hyp: "(An::lnat. (Am:lnat. m< n=>Pm) => P n)"
show "P n" by (blast intro: lnat_well hyp)

ged

(e *)
subsection (Basic lemmas on @{term lnat_plus})

(% -— -— e *)
lemma lnat_plus_fin [simp]: "(Fin n) + (Fin m) = Fin (n + m)"

apply (simp add: plus_lnat_def)
by (metis UNIV_I f_inv_into_f image_eql inject_Fin)

lemma plus_lnat0_0:"Fin 0 + Fin 0 = Fin O"
apply (simp add: plus_lnat_def)
apply (simp add: Fin_def inv_def)
apply (rule_tac somel_ex)
using Fin_def lnle_Fin_0 by auto

lemma plus_lnatO_r[simp]l:"(0::lnat) + n = n"
apply (simp add: plus_lnat_def)
by (metis Fin_0 Inf'_neq 0O_rev add_cancel_right_left plus_lnat_def lnat_plus_fin ninf2Fin)

lemma plus_lnatO_l:"m + (0::lnat) =m"
apply (simp add: plus_lnat_def)
by (metis (mono_tags, lifting) Fin_0 UNIV_I add.right_neutral f_inv_into_f image_eqI plus_lnat_def plus_lnatO_r)

text (m + o0 =o0a)
lemma plus_lnatInf_1[simp]:"M + oo = od"
by (simp add: plus_lnat_def)

text (co+ n =oa)
lemma plus_lnatInf_r:'so+ N =od'
by (simp add: plus_lnat_def)

lemma lnat_plus_commu:"(In1::lnat) + In2 = In2 + In1"
by (simp add: plus_lnat_def)

instance lnat:: semigroup_add
apply (intro_classes
apply (simp add: plus_lnat_def)
by (smt add.left_commute f_inv_into_f inject_Fin natl2 rangel)

instance lnat:: ab_semigroup_add
apply (intro_classes)
by (simp add: lnat_plus_commu)

instance lnat:: monoid_add
apply (intro_classes)
apply (simp)
by (simp add: plus_lnat0_1)

instantiation lnat :: one
begin
definition one_lnat:: "Inat" where

"one_lnat = Fin 1"
instance

end

lemma one_def: "1 = Insuc-0"
by (metis Fin_02bot Fin_Suc One_nat_def lnzero_def one_lnat_def)

lemma lnat_1_inf [simpl: "1 <od
unfolding one_lnat_def
by simp
lemma lnat_plus_suc: "In1 + 1 = Insuc-In1"

apply (simp add: plus_lnat_def)
by (metis Fin_Suc Inf'_neqg 0_rev One_nat_def Suc_def2 f_inv_into_f fold_inf inf_ub inject_Fin inject_lnsuc
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less_le lnat_well _h2 one_def one_lnat_def rangeI)

lemma lnat_plus_lnsuc: "In1 + (Insuc-In2) = (Insuc-In1) + In2"
apply (simp add: plus_lnat_def)
proof -

have f1: "Af n. f (inv f (f (n::nat)::lnat)) = f n"
by (simp add: f_inv_into_f)

have "Al. Fin (inv Fin I) = | Voo=I"
by (metis (no_types) f_inv_into_f ninf2Fin rangelI)

then have £2: "Al. inv Fin (Insuc-1) = Suc (inv Fin |) Voo= I"
using fl by (metis (no_types) Fin_Suc inject_Fin)

then have "An |. n + inv Fin (Ilnsuc-l) = inv Fin | + Suc n Voo= |"
by simp
then show "In1 #Zoo A In2 #Zoo—inv Fin In1 + inv Fin (Insuc-In2) = inv Fin (Insuc-In1) + inv Fin
using f2 by (metis (no_types) natl2)
ged

lemma min_adm[simp]: fixes y::lnat
shows "adm (Ax. min y (g-x) C h.-x)"
proof (rule admI)
fix Y
assume Y_ch: "chain Y" and as: "Vi. min y (
have hl:"finite_.chain Y=min y (g-(Ji. Y i)
using Y_ch as 142 by force
have "—finite_chain Y=min y (g-(Ji. Y i)) Ch-(Ji. Y i)"
proof (cases "g-(Ji. Y i) Cy")
case True
hence "Ai. g-(Y i) Cy"
using Y_ch is_ub_thelub monofun_cfun_arg rev_below_trans by blast
then show ?thesis
by (metis (no_types, lifting) Y_ch as ch2ch_Rep_cfunR contlub_cfun_arg lnle_conv lub_below_iff
min_absorb2)
next
case False
then show ?thesis

In2"

lub_mono

by (metis Y _ch as below_lub ch2ch_Rep_cfunR contlub_cfun_arg lnle_conv lub_below min.commute min_def)

qged
thus "min y (g-(i. Y i)) Th-(i. Y i)
using hl by blast
qged

lemma min_adm2[simp]: fixes y::lnat
shows "adm (Ax. min (g-x) y C h-x)"
apply (subst min.commute)
using min_adm by blast

lemma lub_sml_eq:"[chain (Y::nat=dnat); Ai. x <Y i]J=x < (Ji. Y i)"
using 142 unique_inf_lub by force

lemma min_lub:" chain Y= (Ji::nat. min (x::lnat) (Y i)) = min (x) (i::nat. (Y i))"
apply (case_tac "X=od', simp_all)
apply (case_tac "finite_chain Y™)
proof -
assume al: "chain Y"
assume a2: "finite_chain Y"
then have "monofun (min x)"
by (metis (mono_tags, lifting) lnle_conv min.idem min.semilattice_order_axioms monofunI
semilattice_order.mono semilattice_order.orderI)
then show ?thesis
using a2 al by (metis (no_types) finite_chain_lub)
next
assume a0:"chain Y"
assume al:"— finite_chain Y"
assume a2:"X #od'
have ho:"Vi. 3j>i. Y i CVY j"
by blast
then have" (L Ji. min x (Y i)) = x"
proof -
have f1: "An. min x (Y n) C x"
by (metis (lifting) 1lnle_def min.bounded_iff order_refl)
then have £f2: "An. min x (Y n) = xVvYnCx"
by (metis (lifting) min_def)
have £3: 'so \<notsqsubseteq> x"
by (metis (lifting) a2 inf_less_eq lnle_def)
have "Lub Y =od'
by (meson a0 al unique_inf_1lub)
then obtain nn :: "(nat= Inat) = Inat = nat" where
f4: "min x (Y (nn'Y x)) = x Voo x"
using f2 by (metis (no_types) a0 lub_below_iff
have "Vf n. 3na. (f (na::nat)::lnat) \<notsqsubseteq> f n v Lub f = f n"
by (metis lub_chain_maxelem)
then show ?thesis
using f4 f3 fl by (metis (full_types))
ged
then show ?thesis
by (simp add: a0 al unique_inf_lub)
qged

lemma min_lub_rev:"chain Y= min (x) (lJi::nat. (Y i)) = (Ji::nat. min (x::Inat) (Y i)) "
using min_lub by auto
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text (< relation between two chains in a minimum is as well preserved by their lubs.)
lemma lub_min_mono: "[chain (X::nat=lnat); chain (Y::natslnat); Ai. min x (X i) <Y i]
=min x (Ji. X i) < (i.Y i)
by (metis dual_order.trans is_ub_thelub lnle_def lub_mono2 min_le_iff_ disj)

text (Twisted version of lub_min_mono: < rel. between two chains in minimum is preserved by lubs.)
lemma lub_min_mono2: "[chain ( nat=inat); chain (Y::natsinat); Ai. min (X i) y <Y i]
=min (Ji. X i)y Ui.VYi)r"

by (metis dual_order.trans is_ub_thelub 1lnle_def lub_mono2 min_le_iff_disj)

lemma lessequal_addition: assumes "a < b" and "c < d" shows "a + ¢ < b + (d :: Inat)"
proof -
have "b =oc=—a + ¢ < b + d"
by (simp add: plus_lnatInf_r)
moreover
have "d =oc=—a + ¢ < b + d"
by (simp add: plus_lnatInf_r)
moreover
have "a =oc=—a + ¢ < b + d"
using assms (1) plus_lnatInf_r by auto
moreover
have "C =oc=—a + ¢ < b + d"
using assms (2) plus_lnatInf_r by auto
moreover
have "a #ooc=—=b #oc=—=C Foc=—=d #oc=—>a + ¢ < b + d"
proof -
assume "a #od'
then obtain m where m_def: "Fin m = a"
using infI by force
assume "b #od'
then obtain n where n_def: "Fin
using infI by force
assume "C F#od'
then obtain x where x_def: "Fin x = ¢"
using infI by force
assume "d #od'
then obtain y where y_def: "Fin y
using infI by force
show ?thesis
using assms m_def n_def x_def y_def by auto
ged
then show "a + ¢ < b + d"
using calculation by blast
ged

>
I
o

n
o

lemma lnmin_egasmthmin: assumes "a = b" and "a < c¢" shows "a = Inmin-b-c"
proof -
have "a =oc=>a = Inmin-b-c"
using assms by auto
moreover
have "b =oc=a = Inmin-b-c"
using assms by auto

moreover

have "C =oc=a = Inmin.b-c"
using assms by auto

moreover

have "a #ooc=b #oe=C #oe=> a = Inmin-b-c"
by (metis assms less2nat lncases lnmin_fin min.order_iff

then show ?thesis
using calculation by blast
ged

lemma lnmin_asso: "Inmin-x-y = Inmin-y-x"
proof -
have "X =oc=Inmin-x-y = Inmin-y-x"
by simp
moreover
have "y =oc=Inmin-x-y = Inmin.y.x"
by simp
moreover
have "X #oo=Yy #oc=>Inmin-x-y = Inmin.y.x"
by (metis (full_types) lncases lnmin_fin min.commute)
then show ?thesis
using calculation by blast
ged

lemma lnmin_smaller_addition: "Inmin-x-y < x + y"
proof -
have "X =oc=Inmin-x-y < x + y"
by (simp add: plus_lnatInf_r)
moreover
have "y =oc=Inmin-x-y < x + y"
by simp
moreover
have "X #oc=—=-y F#oc—>Inmin-x-y < x + y"
by (metis bot_is_0 lessequal_addition linear lnle_def lnmin_asso lnmin_egasmthmin minimal plus_lnatO_1)
then show ?thesis
using calculation by blast
qged

lemma lnat_no_chain: fixes Y:: " nat = Inat"
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assumes "range Y = UNIV"
shows "—chain Y"
proof (rule ccontr
assume "-—chain Y"
obtain i where "Y i =od'
by (metis assms surj_def
hence "max.in_chain i Y"
by (metis (——chain Y) inf_less_eq is_ub_thelub lnle_conv max_in_chainI3
hence "finite (range Y)"
using Prelude.finite_chainI <ﬂ — chain Y) finch_imp_finite_range by blast
thus False
by (metis (mono_tags, hide_lams) Fin_neqg_inf assms ex_new_if_ finite finite_imageI infinite_UNIV_nat
inject_Fin lncases rangel)
ged

text (If the left summand is smaller then {@termoc}, then the right summand is ungiuely
determined by the result of {@term +})
lemma plus_unique_r:

fixes "|"
assumes "M < od'
and "(l::lnat) =m + n"

and "(l::lnat) =m + p"
shows "n = p"
using assms apply (induction 1, simp_all
apply (smt add_left_imp_eq fold_inf inject_Fin less_lnsuc lnat.sel_rews(2) lnat_plus_suc neq_iff notinfI3
plus_lnat_def triv_admI)
using assms apply (induction m, simp_all
apply (simp_all add: bot_is_0)
apply (smt add.left_commute lnat_plus_commu plus_lnat0O_1 triv_admI)
apply (metis add.left_commute plus_lnat0_1)
apply (case_tac "| =od")
apply simp_all
proof -
fix la :: lnat
assume al: "M + n #od'
assume a2: "M+ p =m + n"
have £3: "n =0 + n"
by auto
have f4: "Vl la. if | =coV la =ocothen | + la =occelse | + la = Fin (inv Fin | + inv Fin la)"
using plus_lnat_def by presburger
have £5: "0 #ooA n #od'
using al by force
have f6: "M #oco A p #od'
using f4 a2 al by metis
then have £7: "Fin (inv Fin m + inv Fin p) =m + n"
using f4 a2 by simp
have "M #oco A N #od'
using f4 al by fastforce
then have "inv Fin p = inv Fin n"
using f7 f4 by simp
then have "n = 0 + p"
using f6 f5 f4 f3 by presburger
then show ?thesis
by auto
qged

text (If the right summand is smaller then {@termoc}, then the left summand is ungiuely
determined by the result of {@term +})
lemma plus_unique_1:
fixes "|"
assumes "m < od'
and "(l::lnat) = n +m"
and "(l::lnat) = p +m"
shows "n = p"
using assms plus_unique_r
by (metis lnat_plus_commu)

text(Declares Fin and {Q@term oo} as constructors for lnat. This is useful for patterns that use constructors)
setup (Sign.mandatory_path "LNat")
old_rep_datatype Fin Inf'
apply (metis ninf2Fin)
by simp+
setup (Sign.parent_path)

(x» Allows to directly write "11" instead of "Fin 11" x)
instance lnat::numeral
by (intro_classes)

lemma lnat_num2fin[simp]: "numeral n = Fin (numeral n)"
apply (induction n, auto)
apply (simp add: one_lnat_def)
apply (metis lnat_plus_fin numeral_BitO)
apply (simp add: numeral_Bitl)
by (metis lnat_plus_fin numeral_One numeral_plus_numeral one_lnat_def

class len = pcpo +

fixes len :: "'a::pcpo = Inat"

assumes len_mono: "monofun len™
begin
abbreviation len_abbr :: "'a = Inat" ("#." [1000] 999) where
"#s = len s"

lemma mono_len: "X C y=—=#x < #y"
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using len_mono lnle_def monofun_def by blast

lemma mono_len2: "x L y==#x C #y"
using local.len_mono monofunE by blast

end

instantiation prod :: (len, len) len

begin

definition len_prod::"('a::lenx'b::len) = Inat" where
"len_prod tp = min (#(fst tp)) (#(snd tp))"

instance

apply (intro_classes)

unfolding len_prod_def monofun_def

apply (auto simp add: below_prod_def min_def)

by (meson le_cases len_mono lnle_conv monofun_def trans_lnle)+
end

lemma len_prod_min: "#(a,b) < #a" and "#(a,b) < #b"
by (auto simp add: len_prod_def

instantiation unit::len

begin

definition len_unit::"unit = Inat" where
"len_unit un =od'

instance

apply (intro_classes)

apply (rule monofunI)

by (simp add: len_unit_def)
end
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Appendix B

Stream Theories

B.1 Streams

(* :maxLineLen=68:x)
section (Lazy Streams)

theory Stream
imports inc.LNat inc.SetPcpo
begin

section (The Datatype of Lazy Streams)
default_sort countable

(* deletes the Rule "1 = Suc 0" x)
declare One_nat.def[simp del]

(+ declare [[show_types]] =*)
text ((discr u) lifts an arbitrary type ('a) to the
discrete (pcpo) and the usual rest operator (rt) on streams.)

section (Streams)

text(The stream domain in Isabelle is defined with the (domain)
command provided by the (HOLCF) package. This automatically
instantiates our type as a \gls{pcpo}.)

domain
‘a stream = Iscons (Ishd::"'a discr u") (lazy srt::"'a stream")
(infixr "s&" 65)

subsection (Stream Functions)

text(\Cref{tab:streamfun} gives an overview

about the main functions defined for @{type stream}s. Some of them

are introduced in detail for their later usage in the Isabelle

framework. The type (N\<'sub>»c) representing the natural numbers inclusive
(o is defined as \gls{Inat}. An introduction is in \cite{GR07}.)

(e *)
section (Signatures of Stream Processing Functions)

(* - - - == %)
type.synonym ('in, 'out) spf = "('in stream — 'out stream)"

type_synonym 'm spfo = "('m, 'm) spf"

type_synonym ('in, 'out) gspf = "('in stream = 'out stream)"

type_.synonym ‘'m gspfo = "('m, 'm) gspf"

type_synonym ('in, 'out) Ipf = "('in list = 'out list)"
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type_synonym 'm lIpfo = "('m, 'm) lpf"

(% —mmm - B

subsection (Some abbreviations)

(*

text (The empty stream is denoted as (¢).)
abbreviation
sbot :: "'a stream" ("e")
where "sbot = 1"

text (@{term stake}: This operator is generated by the (domain)

command. It retrieves the first (n) elements of a stream
(or less, if the stream is shorter).)
abbreviation
stake :: "nat = 'a spfo"
where "stake = stream_take"

(%
section (Common functions on streams)

( - -

definition fup2map :: "('a= 'b::cpo u) = ('a — 'b)" where

"fup2map f a = if (f a = 1) then None else Some (SOME x. up-x = £ a)"

definition sup' il "'a= 'a stream" ("f_" [1000] 999) where

"sup' a = updis a && €"

definition sconc i1 "'a stream=- 'a spfo" where
"sconc = fix- (A h. (X sl. A s2.
if s1 = € then s2 else (lshd-sl) &&

abbreviation sconc.abbr :: "'a stream=- 'a stream = 'a stream" ("(_ ®

where "sl1 e s2 = sconc sl-s2"

text (@{term shd}: Retrieve the first element of a stream.
For (e), the result is not defined.)

definition shd i "'a stream= 'a" where

"shd s = THE a. lshd-s = updis a"

text (@{term slookahd}: Apply function to head of stream.
If the stream is empty, (L) is returned.

(srt-sl)-s2)))"

[66,65] 65)

This function is especially useful for defining own stream-processing

functions.)

definition slookahd i1 "'a stream— ('a=-'b) — ('b::pcpo)" where

"slookahd = A s f. if s = € then | else f (shd s)"

(e

subsection (Conversion of lists to streams and induced order on lists)

(% —mmm - B

primrec list2s :: "'a list = 'a stream"
where
list2s.0: "list2s [] = €" |
list2s_Suc: "list2s (a#as) = updis a && (list2s as)"
abbreviation stream_abbrev :: "'a list = 'a stream" ("<_>" [1000] 999)
where "<1> == list2s 1"

text (The data type (list) is a partial order with the operator

(C) derived from streams:)
instantiation list :: (countable) po
begin

definition sq_le_list:
"s C t = (list2s s C list2s t)"

(» list2s is a bljectlon *)

lemma list2s_inj[simp]: "(list2s 1 = list2s 1') = (1 = 1")"

apply (rule iffl)

apply (simp add: atomize.imp)
apply (rule- tac x="1'" in spec)
apply (induct |, simp)

apply (rule alll)

apply (induct-tac x, simp+)

apply (rule alll)
by (induct_-tac x, simp+)

instance

apply (intro.classes)

apply (simp add: sq.-le_list)+

apply (rule_tac y="list2s y" in below_.trans ,hassumption+)
apply (simp add: sq-le_list)

apply (rule list2s_inj [THEN iffD1])

by (rule po_eqg_conv [THEN iffD2],rule conjl,assumption+)
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subsubsection(Length of Streams)

text (@{term slen}: Retrieve the length of a stream. It is defined
as the number of its elements or (> for infinite streams.)

definition slen:: "'a stream — lnat" where
"slen = fix- (A h. strictify- (A s. lnsuc- (h-(srt-s))))"

text (\isacommand{theorem} slen\_eq::("x C y==#x = #y=—=x = y"))

text(Abbreviation (#) is used for obtaining the length of a
stream.)

instantiation stream :: (countable) len

begin

definition len_stream::"'a stream = lnat" where
"len_stream s = slen-s"

instance

apply(intro_classes)
apply (auto simp add: monofun_def below_prod_-def min_def)
by (metis (mono-tags) cont.-pref_.eqll len_stream_def Inle_conv)

end

lemma slen_zero [simp]: "#e = 0"
apply (simp add:len_stream_def)
by(subst slen_def [THEN fix_eq2], simp add: Inzero_def)

text (@{term sdrop}: Remove the first (n) elements
of the stream.)

definition sdrop I "nat = 'a spfo" where

"sdrop n = Fix.iterate n-srt"

subsubsection (Stream elements)

text(The element of a stream at position (n) can be accessed by
dropping the first (n) elements of the stream. We start counting
positions at 0.)

definition snth :: "nat = 'a stream = 'a" where
"snth k s = shd (sdrop k-s)"

definition sfoot ii "'a stream= 'a" where
"sfoot s = snth (THE a. lnsuc- (Fin a) = #s) s"

subsubsection (Streams Values)

text (The values of a stream are a set of messages of type ('a) that
occur at any position in the stream.)

definition sValues :: "'a stream — 'a set" where
"sValues = A s. {snthn s | n. Fin n < #s}"

text (@{term sntimes}: Repeat the given stream (n) times.)
text ((Only listed as a constant below for reference;

Use (sntimes) with same signature instead).)
(* consts sntimes_ :: "nat = 'a stream = 'a stream" )

definition sinftimes :: "'a stream= 'a stream" ("_/bJ') where
"sinftimes = fix- (A h. (As.
if s = € then € else (s ® (h s))))"

subsubsection (Applying functions element-wise)

definition smap:: "('a=-'b) = 'a stream — 'b stream" where
"smap f = fix- (A h s. slookahd-s- (X a.
T(f a) @ (h-(srt-s))))"

text( The (n)th element of
the output stream is equal to applying the mapping function to the
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(n)th element of the input stream.)

text (\isacommand{theorem} smap\_snth :: ("snth n (smap f-s) = £ (snth n s)"))

definition sfilter i1 "'a set = 'a spfo" where
"sfilter M = fix- (A h s. slookahd-s- (X a.
(if (a € M) then Ta e (h-(srt-s)) else h-(srt-s))))"

text (@{term stakewhile}: Take the first elements of a stream as
long as the given function evaluates to (true).)
definition stakewhile :: "('a = bool) = 'a spfo" where
"stakewhile f = fix- (A h s. slookahd-s- (X a. if (f a) then Ta e h:(srt-s) else €))"

text (@{term sdropwhile}: Drop the first elements of a stream as
long as the given function evaluates to (true).)
definition sdropwhile :: "('a = bool) = 'a spfo" where
"sdropwhile f = fix- (A h s. slookahd-s- (X a.
if (f a) then h- (srt:-s) else s))"

definition szip i1 "'a stream — 'b stream — ('a X 'b) stream" where
"szip = fix- (A h sl s2. slookahd-sl-(\ a. slookahd-s2- (X b.
1(a,b) ® (h-(srt-sl)-(srt-s2)))))"

definition merge:: "('a = 'b= 'c) = 'a stream — 'b stream — 'c stream" where
"merge £f = A sl s2 . smap (A s3. f (fst s3) (snd s3))-(szip-sl-s2)"
definition sprojfst I "(('a X 'b),'a) spf" where

"sprojfst = A x. smap fst-x"

definition sprojsnd 1 "(('a X 'b),'b) spf" where
"sprojsnd = A x. smap snd-x"

definition stwbl i1 "('a=bool) = 'a spfo" where
"stwbl f = fix- (A h s. slookahd-s- (X a.
if (f a) then Ta @ h-:(srt-s) else ta))"

text (@{term srtdw}: Rest ((srt)) of stream after dropwhile.)
definition srtdw il "('a=bool) = 'a spfo" where
"srtdw £ = A x. srt- (sdropwhile f-x)"

definition srcdups 11 "'a spfo" where
"srcdups = fix- (A h s. slookahd-s- (X a.
ta e h-(sdropwhile (A z. z = a)-(srt-s))))"

(» Takes a nat indicating the number of elements to scan, a reducing
function, an initial initial element, and an input stream. Returns
a stream consisting of the partial reductions of the input stream.x)
primrec SSCANL::
"nat = ('o=> 'i = 'o0) = 'o = 'i stream => 'o stream" Where

SSCANL_zero_def: "SSCANL 0 £ g s = €" |

"SSCANL (Suc n) f g s = (if s=e then €

else T(f g (shd s)) e
(SSCANL n £ (f g (shd s)) (srt-s)))"

text (@{term sscanl}: Apply a function elementwise to the input
stream. Behaves like (map), but also takes the previously generated
output element as additional input to the function. For the first
computation, an initial value is provided.)

definition sscanl :: "('o= 'i= 'o) = 'o= ('i, 'o) spf" where
"sscanl £ g =A s. | Ji. SSCANL i f g s"

(* scanline Advanced :D *)

(x+ or stateful ... =)
(» The user has more control. Instead of the last output ('b) a
state ('s) is used as next input x*)

definition sscanlA
"('s='a= ('b X's)) = 's = 'a stream — 'b stream" where
"sscanlA f sO = A s. sprojfst- (sscanl (A(_,b). f b) (undefined, s0)-s)"

subsubsection (Applying stateful functions element-wise)

text(One can also apply a state dependent function, like the
transition function of a deterministic automaton, to process the
streams elements. The ((n+1))th output element then depends on the
(n)th ouput state, because the stateful function may act
differently depending on its state. Hence, we also need an initial
state to start computing the output.)
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definition sscanlAg
"('s=>'a= ('s X'b)) = 's = 'a stream — ('sX'b) stream" where
"sscanlAg f s0 = A s. (sscanl (A(b,_). £ b) (s0, undefined)-s)"

definition %invisible sscanlAfst
"('s =>'a=> ('sX'b)) = 's = 'a stream — 's stream" Where
"sscanlAfst f sO = A s. sprojfst- (sscanlAg f s0-s)"

definition sscanlAsnd
"('s=>'a= ('s X'b)) = 's = 'a stream — 'b stream" where
"sscanlAsnd f sO = A s. sprojsnd- (sscanlAg f s0-s)"

text (@{term siterate}: Create a stream by repeated application of
a function to an element. The generated stream starts with (a),
(f(a)), (f(f(a))), and so on.)

definition siterate I "('a= 'a) = 'a= 'a stream" where
"siterate f (a::'a) = Ta e sscanl (Aa (b::'a). f a) a-(SOME x. #x =o9"
definition siterateBlock:: "('a stream= 'a stream) = 'a stream = 'a stream" where

"siterateBlock f = fix - (A h. (As. s @ (h (f s))))"

(% *)

(% —— —— - —— %)

text ((Only listed as a constant below for reference;
Use (list2s) with same signature instead).)
(* consts list2s_ :: "'a list = 'a stream" x)

definition s2list i1 "'a stream = 'a list" where
"s2list s = if #s Foothen SOME 1. list2s 1 = s else undefined"

definition slpf2spf 1" ('in, 'out) 1lpf = ('in, 'out) spf" where
"slpf2spf f =
if monofun f
then A s. (k. list2s (f (s2list (stake k-s))))
else undefined"

definition sislivespf ::"('in,'out) spf = bool" where

"sislivespf f = (Vx. #(f-x) =oco—x =09 "

definition sspf2lpf 1" ('in, 'out) spf = ('in, 'out) lpf" where

"sspf2lpf f = if sislivespf f then (Ax. s2list (f:(list2s x))) else undefined"

(* *)
subsection (Syntactic sugar and helpers)

(* *)
abbreviation sfilter_abbr :: "'a set = 'a stream= 'a stream" ("(_ & _)" [66,65] 65)

where "F © s = sfilter F-s"

(e %)
subsection (Definition of stream manipulating functions)
(e —— %)

(» concatenates a stream to itself n times =)

primrec sntimes :: "nat = 'a stream = 'a stream" where
"sntimes 0 s = €" |
"sntimes (Suc n) s = (sconc s)- (sntimes n s)"

(*» Abbreviation for sntimes =)

abbreviation sntimes_abbr :: "nat = 'a stream = 'a stream" ("_x_" [60,80] 90)
where "(n x s) == (sntimes n s)"

(% ——— ——— ——— —— %)
section (Stream - basics)

(x -— - %)
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subsection (Fundamental properties of @{term stake})

[ _— ———————— *)
lemmas scases' = stream.exhaust

lemmas sinjects' = stream.injects

lemmas sinverts' = stream.inverts

lemma reach_stream: " (Ji. stake i-s) = s"

apply (rule stream.take_-lemma [OF spec [where x=s]])

apply (induct-tac n, simp, rule alll)

apply (rule_-tac y=x in scases', simp)

apply (subst lub_range_shift [where j="suc 0", THEN sym],simp+)
by (subst contlub_cfun_arg [THEN sym], auto)

(» if two streams xs and ys are identical for any prefix that is a multiple of y long, then the two
streams are identical for any prefix x)
lemma gstake2stake: assumes "Vi. stake (ixy)-xs = stake (ixy)-ys" and "y#0"
shows "Vi. stake i-xs = stake i-ys"
proof
fix i
obtain k where "31. k = yx1" and "k>i" by (metis One.nat.def Suc_le_.eq assms(2) grOl mult.commute mult.-le_mono2
nat-mult_1_right)
thus "stake i-xs = stake i-ys" by (metis assms(1) min_def mult.commute stream.take_take)
qed

(x» stake is monotone )
lemma stake_-mono: assumes "i<j"
shows "stake i-s C stake j-s"
by (metis assms min_def stream.take_below stream.take_take)

(e %)
subsection (Construction by concatenation and more)
(e %)

text (Basic properties of (ft.) constructor)

(«+ shd composed with 1 is the identity. =)
lemma [simp]: "shd (ta) = a"
by (simp add: shd.def sup'-def)

lemma [simp]: "<[a]> = ta"
by(simp add: sup'.def)

(» the singleton stream is never equal to the empty stream x)
lemma [simp]: "ta # €"
by (simp add: sup'-def)

(+ the rest of the singleton stream is empty =)
lemma [simp]: "srt-(fta) = €"
by (simp add: sup'.def)

lemma reduce.seq: (+never simpx)
assumes "sl = s2"
shows "s e s1 = s e s2"
by (simp add: assms)

(» the empty stream is the identity element with respect to concatenation x)
lemma sconc_fst.empty[simp]:"c e s = s"

apply (subst sconc.-def [THEN fix_-eq2])

by (simp add: cont2cont.LAM)

(» the lazy stream constructor and concatenation are associative =)
lemma sconc.scons': "(updis a && as) e s = updis a && (as e s)"
apply (subst sconc_def [THEN fix_eq2])

by (simp add: cont2cont_.LAM)

(» the lazy stream constructor is equivalent to concatenation with a singleton stream =)
lemma Iscons_conv: "updis a && s = Ta e s"

apply (subst sconc.def [THEN fix_eq2])

apply (simp add: sup'.def)

by (simp add: cont2cont_.LAM)

(» concatenation with respect to singleton streams is associative x)
lemma sconc.scons[simp]: "(ta @ as) @ s = ta ® (as e s)"

apply (subst sconc.-def [THEN fix_-eq2])

by (simp add: sconc_scons' sup'-def cont2cont.LAM)

lemma scases [case_names bottom scons]: "Ax P. [x = e==P; Aa s. x = Ta ® s=P]=pP"
apply (rule_tac y=x in scases', simp+)

apply (rule_tac p=u in upE, simp+)

apply (case_tac "xa")

by (auto simp add: sup'.def sconc.scons')

(» Single element streams commute with the stake operation. x)
lemma stake_Suc[simp]: "stake (Suc n)-(Ta e as) = Ta e stake n-as"
by (simp add: sconc_scons' sup'.-def)

(» see also sconc_fst_empty *)
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lemma sconc_snd_empty[simp]: "s e ¢ = s"

apply (rule stream.take_lemma [OF spec [where x = "s"]])
apply (induct_-tac n, simp)

apply (rule alll, simp)

by (rule_tac x=x in scases, simp+)

(» shd is the inverse of prepending a singleton =)
lemma shd1[simp]: "shd (ta e s) = a"
by (simp add: sconc_scons' shd.def sup'.-def)

(» prepending an element a to a stream and extracting it with lshd is equivalent to imposing the
discrete order on a )

lemma Ishd_updis [simp]: "lshd-(ta e s) = updis a"

by (metis Iscons_conv stream.sel_-rews(4))

(» srt is the inverse of appending to a singleton =x)
lemma [simp]: "srt- (faeas) = as"
by (simp add: sconc_scons' sup'.def)

(» appending to a singleton is monotone x)

lemma [simp]: "ta C Ta e s"

apply (subst sconc_snd_empty [of "fta", THEN sym])
by (rule monofun_cfun_arg, simp)

(» updis is a bijection «x)

lemma updis_eq: "(updis a = updis b) = (a = b)"

by simp

(» the discrete order only considers equal elements to be ordered =)
lemma updis-eq2: " (updis a C updis b) = (a = b)"

by simp

lemma inject.scons: "Ta e s1 = b @ s2=>a = b A sl = s2"
apply (subst updis_.eq [THEN sym])

apply (rule sinjects' [THEN iffD1], simp)

by (simp add: sconc_scons' sup'.-def)

text ((€) applied to head and rest)

lemma less_all_sconsD: "ta e as C tb @ bs=>a = b A as C bs"
apply (subst updis_.eq2 [THEN sym])

apply (rule sinverts' [THEN iffD1], simp)

by (simp add: sconc_scons' sup'-def)

(» appending to a singleton stream can never yield the empty stream x)
lemma [simp]: "e # ta e as"

apply (rule ccontr, simp)

apply (drule po.eq-conv [THEN iffD1])

apply (erule conjE)

by (simp add: sconc_scons' sup'.-def)

(» appending to a singleton stream can never yield the empty stream x)
lemma [simp]: "ta e as # €"
by (rule notl, drule sym, simp)

text (Characterizations of equality with (C), head and rest)

(» singleton streams are only in an ordered relation if the two elements are equal x)
lemma [simp]: "(fa C tb) = (a = b)"

apply (rule iffl)

by (insert less_all_sconsD [of a € b €], simp+)

(» length of a stream is smaller than length of this stream concatenated with another stream «)
lemma [simp]: "#as C #(as ® ys)"
by (metis minimal monofun.cfun_arg sconc.snd_empty len_stream.def)

(» uparrow is a bijection x)

lemma [simp]: "(Ta = Tb) = (a = b)"

apply (rule iffl)

by (insert inject_scons [of a € b €], simp+)

(» appending a stream x to a singleton stream and producing another singleton stream implies that
the two singleton streams are equal and x was empty x)

lemma [simp]: "(Ta @ x = T¢c) = (a =c Ax = ¢€)"

by (rule iffl , insert inject.scons [of a x ¢ €], simp+)

(» of course we can also swap the expressions to the left and right of the equality sign x)
lemma [simp]: "(fc = ta e x) = (a =c Ax = €)"
by (rule iffl , insert inject.scons [of ¢ e a x], simp+)

(» 1f an appended stream x to a singleton stream is in relation with another singleton stream, this implies that
a and b are equal and x was empty x*)

lemma [simp]: "(Ta e x C 1th) = (a =b A x = ¢€)"

by (rule iffl , insert less_all_sconsD [of a x b €], simp+)

(» if a singleton stream is the prefix of another stream then the heads of the two streams must match x)
lemma [simp]: "(Ta C b e x) = (a = b)"

by (rule iffl , insert less_all_sconsD [of a € b x], simp+)

(» if x isn't empty then concatenating head and rest leaves the stream unchanged =)
lemma surj_scons: "x#e=>1(shd x) e (srt-x) = x"
by (rule_tac x=x in scases, simp+)
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(» the head of ordered streams are equal x)
lemma below_shd: "x C y A x # e=-shd x = shd y"
by (metis below_bottom_iff less_all_sconsD surj_scons)

(» the head of ordered streams are equal x)
lemma below_shd_alt: "x C y A x # e=>shd y = shd x"
using below_shd by fastforce

text (Characterizations of (C) with head and rest)

(» any nonempty prefix of a stream y is still a prefix when ignoring the first element x)
lemma less_fst_.sconsD: "ta e as C y=—=3ry. vy = Ta ® ry A as C ry"

apply (rule-tac x=y in scases, simp+)

apply (rule-tac x="s" in exl)

by (drule less_all_sconsD, simp)

(» the prefix of any non-empty stream is either empty or shares the same first element x)
lemma less_snd_sconsD:
"x C taeas=—>(x = €) V (Jrx. x = Taerx A rx L as)"
apply (rule_tac x=x in scases, simp+)
apply (rule_tac x="s" in exl)
by (drule less_all_sconsD, simp)

(» semantically equivalent to less_fst_sconsD x)
lemma lessD:
"x Cy=(x =€) V (J3a gw. x = Taeg Ay = Taew A g C w)"
apply (rule-tac x=x in scases, simp+)
apply (rule-tac x="a" in exl)
apply (rule-tac x="s" in exl, simp)
by (drule less_fst.sconsD, simp)

(» 1f ts is a prefix of xs and ts is not bottom, then lshd-ts is equal to lshd-xs *)
lemma Ishd_eq: "tsCxs=-ts#l=—>1shd-ts = lshd-xs"
using lessD by fastforce

(e *)
subsection @{term slen})
(% —_— —_— ——————————— *)

(» the length of the empty stream is zero =)
lemma strict_slen[simp]:"#e = 0"
by simp

(» prepending a singleton stream increases the length by 1 x)
lemma slen_scons[simp]: "#(faeas) = lnsuc- (#as)"

unfolding len_stream_def
by (subst slen_def [THEN fix_.eq2], simp add: Inle_def)

(» the singleton stream has length 1 )

lemma [simp]: "#(fa) = Fin (Suc 0)"

apply (subst sconc_snd_empty [of "fta", THEN sym])
by (subst slen_scons, simp+)

lemma inf_scase:"#s =oc——=3Ja as. s = ta @ as A #as =od'
by (rule_tac x=s in scases, auto)

(» only the empty stream has length 0 =)
lemma slen_empty_eq[simp]: "(#x = 0) = (x = €)"
by (rule_-tac x=x in scases, auto)

text (Appending to an inifite stream does not change its (n)th element)
lemma sconc_fst.inf_lemma: "Vx. #x=oc—>sstake n- (xey) = stake n-x"
apply (induct-tac n, auto)

by (rule_-tac x=x in scases, auto)

lemma sconc_fst_inf[simp]: "#x-oc—-xey = x"
apply (rule stream.take_lemma)
by (rule sconc_fst.inf_-lemma [rule_format])

lemma slen_sconc_.all_finite:

"Wx y n. #x = Fin k A #y = Fin n—# (xey) = Fin (k+n)"
apply (induct-tac k, auto)
by (rule_-tac x=x in scases, auto)

lemma mono_fst.infD: "[#x =og x C y]=#(y::'a stream) =oco"
unfolding len_stream_def

apply (drule monofun_cfun.arg [of . _ slen])

by (rule Inat_po-eq-conv [THEN iffD1], simp)

text (For @{term "s C t"} with @{term s} and @{term t} of
equal length, all finite prefixes are identical)

lemma stake_eq-slen_eqg.and_less:
"Ws t. #s = #t A s C t—stake n-s = stake n-t"

apply (induct_-tac n, auto)

apply (rule_tac x=s in scases, auto)

apply (rule_tac x=t in scases, auto)

by (drule less_all_sconsD, auto)

text (For @{term "s C t"} with @{term s} and @{term t} of
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equal length, @{term s} and @{term t} are identical)
lemma eq_slen_eq_-and_less: "[#s = #t; s C t]J=>(s::'a stream) = t"
apply (rule stream.take_lemma)
by (rule stake_eq.slen_eq-and._less [rule_format], rule conjl)

lemma eq.less_and_fst_inf: "[s1 C s2; #sl1 =od=>(sl::'a stream) = s2"
apply (rule eq-slen_eq-and_less, simp)

apply (rule sym)

by (rule mono.fst.infD [of "s1" "s2"])

(» 1f Fin n is smaller than the length of as, then Fin n is also smaller than lnsuc- (#as) x)
lemma [simp]: "Fin n < #as=Fin n < lnsuc- (#as)"
by (smt below_antisym below_trans less_Insuc Inle_def Inless.def)

text (For infinite streams, (stake n) returns (n) elements)
lemma slen_stake_fst_inf[rule_format]:
"Vx. #x = oc—# (stake n-x) = Fin n"
apply (induct.tac n, auto)
by (rule_tac x=x in scases, auto)

(» mapping a stream to its length is a monotone function =)
lemma mono_slen: "x C y==-#x < #y"
using len_.mono Inle_def monofun_def by blast

text (A stream is shorter than (n+1) iff its rest is shorter than (n))
lemma slen_rt_ile_eq: "(#x < Fin (Suc n)) = (#(srt-x) < Fin n)"
by (rule_-tac x=x in scases, auto)

text (If (#x < #y), this also applies to the streams' rests (for nonempty, finite x))
lemma smono_slen_rt_.lemma:
"#x = Fin k A x # € A #x < #y—# (srt-x) < #(srt-y)"
apply (induct-tac k, auto)
apply (rule_tac x=x in scases, auto)
by (rule_tac x=y in scases, auto)

text (If (#x < #y), this also applies to the streams' rests (for finite x))
lemma smono_slen_rt: "[x # €; #x < #y]=#(srt-x) < #(srt-y)"

apply (rule_tac x="#x" in Incases, auto)

by (rule smono_slen_rt_.lemma [rule_format], simp)

lemma inf2max: "[chain Y; #(Y k) =od=Y k = ((Ji. Y i)::'a stream)"
apply (subgoal_tac "y k C (Ji. v i)")

apply (drule eq-less_and_fst_.inf, assumption+)

by (rule is_ub_thelub)

text ((stake n) returns at most (n) elements)
lemma ub_slen_stake[simp]: "#(stake n-x) < Fin n"
apply (rule spec [where x = x])

apply (induct-tac n, auto)

by (rule_tac x=x in scases, auto)

text ((stake) always returns finite streams)

lemma [simp]: "#(stake n-x) Fod'

proof (rule notl)
assume inf: "#(stake n-x) =od
have "#(stake n-x) < Fin n" by (rule ub_slen_stake)
thus False using inf by simp

qed

text ((stake)ing at least (#x) elements returns (x) again)
lemma fin2stake_lemma: "Vx k. #x = Fin k A k<i—stake i-x = x"
apply (induct-tac i, auto)

apply (rule_-tac x=x in scases, auto)

by (case-tac "k", auto)

text ((stake)ing (#x) elements returns (x) again)
lemma fin2stake:"#x = Fin n—>stake n-x = x"
by (rule fin2stake_lemma [rule_format, of "x" "n" "n"], simp)

text ((stake)ing only on element from an empty stream is the same as the stream consisting of
(shd) of the stream)
lemma stake2shd:"s#e—-stake (Suc 0)-s = T(shd s)"
by(rule scases[of s],simp_all add: Nat.One_nat.def)

lemma stake2shd2:"s#e=—>stake 1-s = T(shd s)"
by(simp add: Nat.One_nat.def stake2shd)

(» 1f the stream is not empty, it holds that its length is lnsuc- (#(srt-s)) =x)
lemma srt_.decrements_length : "s # e=#s = lnsuc- (#(srt-s))" by (metis slen_scons surj_scons)

(» the empty stream is the shortest x)
lemma empty._is_shortest : "Fin n < #s=s # €" by (metis Fin_.0 less_le Inle_Fin_0 strict.slen)

(+» if Fin (Suc n) is smaller than length of s, then also Fin n is smaller than length of s x)
lemma convert.inductive_asm : "Fin (Suc n) < #s=—Fin n < #s" by (metis Fin_leq.Suc_leq less_le not_le)

(x» only the empty stream has length zero x)

lemma only_empty_has_length_0 : "#s # 0=s # " by simp

(* - %)

section (Basic induction rules)
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lemma stakeind:
"Wx. (P € AN (Va s. P s—P (Ta e s)))—P (stake n-
by (induct_-tac n, auto, rule_-tac x=x in scases, auto)

lemma finind:

"[#x =

Fin n; P €; A\a s. P s=P (Ta ® s)]|=—=P x"

apply (drule fin2stake)

apply (drule sym, erule ssubst)
apply (rule stakeind [rule_-format])
apply (rule conjl, assumption)
apply (rule alll)+

by (rule

impl, simp)

lemma ind:

"[adm P; P €; Aa s. P s =P (Ta ® s)]=P x"
apply (unfold adm_def)
apply (erule_tac x="Ai. stake i-x" in allE, auto)
apply (simp add: stakeind)

by (simp

lemma finind2:

proof —
assume

case
then
by
next
case
then
by
then
by
qed
qed

add: reach_stream)

)"

"fs = Fin k=P e==> (At a. #t <oc=>P t==P (Ta e t))=—P s"

"#s = Fin k" and "p e" and "At a. #t <oc=>P t=P (Ta e t)"
then show "p s"
proof (induction k arbitrary: s)

0
show ?case
auto

(Suc k)
obtain a t where "s = Ta e t" and "#t = Fin

(metis Fin_Suc bot.is_.0 Inat.con_.rews Inat.sel_-rews(2) slen_empty_eq srt.decrements_length

show ?case
(simp add: Suc.IH Suc.prems(2) Suc.prems(3))

e

lemma finind3: "#s <oc=P e= (At a. #t <oc=—=P t==P (fa e t))=—P s"
by (metis finind2 less_le ninf2Fin)

(

*
subsection (Other properties of @{term stake})

(*

text (composition of (stake))

lemma stakeostake[simp]: "stake k- (stake n-x) = stake
apply (rule_tac x="n" in spec)

apply (rule_tac x="kx" in spec)

apply (rule ind [of _ x], simp+)

apply (rule alll)+

apply (case_-tac "xa", simp+)

by (case.tac "x", simp+)

(min k n) -x"

(» stake always returns a prefix of the input stream x)

lemma ub_

by (rule

stake[simp]: "stake n-x C x"
stream . take_below)

(« definition of stake )
lemma stake_suc: "stake (Suc n)-s = (stake 1l-s) e sta

by (metis (no-types,

stream.take_-0 stream.take.strict surj.scons)

(%

lifting) One.nat-def Rep-cfun_strictl

ke n-(srt-s)"

(+ dropping n-€ is the empty stream =)
lemma strict.sdrop[simp]: "sdrop n-e = €"

by (simp

add: sdrop.def, induct-tac n, auto)

(» dropping 0:s returns s x)
lemma sdrop-0[simp]: "sdrop 0-s = s"

by (simp

add: sdrop-def)

(» dropping an additional element is equivalent to calling srt x)
lemma sdrop-back.rt: "sdrop (Suc n)-s = srt-(sdrop n-

by (simp

(+ dropping an additional element is equivalent to sdrop with srt as part of the stream x)

add: sdrop-def)

lemma sdrop_forw_rt: "sdrop (Suc n)-s = sdrop n- (srt-
apply (simp add: sdrop.def)
by (subst iterate_.Suc2 [THEN sym], simp)

s)"

s)y"

surj_scons)

sconc.snd_empty stake.-Suc stream.sel-rews(2)

(» dropping n + 1 elements from a non-empty stream is equivalent to dropping n items from the rest «)
lemma sdrop-scons[simp]: "sdrop (Suc n)-(fTa e as) = sdrop n-as"

by (simp

add: sdrop_forw_rt)
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(» if dropping n items produces the empty stream then the stream contains n elements or less x)
lemma sdrop_stakell: "Vs. sdrop n:s = e—stake n:s = s"

apply (induct.-tac n, auto)

by (rule_tac x=s in scases, auto)

(» dropping k+x elements is equivalent to dropping x elements first and then k elements x)
lemma sdrop.plus: "sdrop (k+x)-xs = sdrop k- (sdrop x-xs)"
by (simp add: iterate_iterate sdrop-def)

lemma fair_sdrop[rule_-format]:

"Vx. #x = oc—># (sdrop n-x) =od'
apply (induct-tac n, simp, clarify)
by (rule_-tac x=x in scases, auto)

lemma split_streaml1[simp]:
"stake n-s e sdrop n-s = s"

apply (rule spec [where x = s])

apply (induct.-tac n, auto)

by (rule_tac x=x in scases, auto)

lemma fair_sdrop.rev:
"# (sdrop k-x) =oo=—#x =od'
apply (simp add: atomize.imp)
apply (rule_tac x="x" in spec)
apply (induct-tac k, simp)
apply (rule alll, rule impl)
apply (rule_tac x="x" in scases, simp)
by (erule_tac x="s" in allE, simp)

text (construct @{term "sdrop j"} from @{term "sdrop k"} (with @{term "j < k"}))
lemma sdropl5:
"j < k==sdrop j- (stake k-x) e sdrop k-x = sdrop j-x"
apply (simp add: atomize.imp)
apply (rule_tac x="j" in spec)
apply (rule_tac x="x" in spec)
apply (induct.-tac k, auto)
apply (rule_tac x="x" in scases, auto)
by (case.tac "xa", auto)

lemma sdropl6:

"$x = Fin k=sdrop k- (x e y) = y"
apply (simp add: atomize.imp)
apply (rule_tac x="x" in spec)
apply (rule-tac x="y" in spec)
apply (induct-tac k, auto)
by (rule-tac x="xa" in scases, auto)

(» relation between srt and drop x*)
lemma srt.drop : "srt- (sdrop n-s) = sdrop (Suc n)-s" by (simp add: sdrop.back.rt)

(» sdrop n-s should not result in the empty stream =)
lemma drop_not.all : "Fin n < #s=>sdrop n-s # €"
proof (induct n)
show "Fin 0 < #s==-sdrop 0-s # €" by auto
have "A n. Fin n < #s=># (sdrop n-s) = lnsuc- (#(srt- (sdrop n-s)))" by (metis not_.le sdrop._stakell
srt.decrements_length ub_slen_stake)
hence "A n. Fin n < #s=sdrop n-s # €" using only_empty_has_length_0 by fastforce
thus "A n. (Fin n < #s=—>sdrop n-s # €)=>Fin (Suc n) < #s=—sdrop (Suc n)-s # €" by simp
qed

(F ——— %)
subsection @{term snth})
(F %)

(» the element k + 1 of the stream s is identical to the element k of the rest of s )
lemma snth_rt: "snth (Suc k) s = snth k (srt-s)"

apply (simp add: snth_def)

by (subst sdrop_forw.rt,rule refl)

(» semantically equivalent to snth_rt =x)
lemma snth_scons[simp]: "snth (Suc k) (Ta @ s) = snth k s"
by (simp add: snth_rt)

(» indexing starts at 0, so the 0'th element is equal to the head x)
lemma snth_shd[simp]: "snth 0 s = shd s"
by (simp add: snth_def)

lemma snths_eq.lemma [rule_format]:
"Wx y. #x = #y A (Vn. Fin n < #x—>snth n x = snth n y)
—>stake k-x = stake k-y"
apply (induct.-tac k, auto)
apply (rule_tac x=x in scases, auto)
apply (rule_tac x=y in scases, auto)
apply (erule_tac x="s" in allE)
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apply (erule_tac x="sa" in allE, auto)
apply (erule_tac x="suc na" in allE, simp)
by (erule_tac x="0" in allE, auto)

lemma snths_eq:

"[#x = #y; Vn. Fin n < #x—>snth n x = snth n y]=—x = y"
apply (rule stream.take_lemma)
by (rule snths_eq.-lemma, auto)

(» easy to use rule to show equality on infinite streams x)
(» 1f two finite streams x, s are identical at every position then x and s are identical x)
lemma sinf_snt2eq: assumes "#s=d' and "#x=od' and "Ai. (snth i s = snth i x)"
shows "s=x"
by (simp add: assms snths_eq)

lemma snthp_shd: assumes"An. P (snth n s)"
shows"p (shd s)"
by (metis assms snth_shd)

lemma snthp_shd2: assumes"An. P(snth n (Tm e s))"
shows"p (m) "
by (metis assms shd1 snth_shd)

lemma snthp_snth: assumes"An. P(snth n (fm e s))"
shows"P (snth n(s))"
by (metis assms snth_scons)

lemma snthp_srt: assumes"An. P(snth n (s))"
shows"P (snth n(srt-s))"
by (metis assms snth_rt)

lemma snth_less: "[Fin n < #x; x C y]=snth n x = snth n y"
apply (simp add: atomize.imp)
apply (rule_tac x="x" in spec)
apply (rule_tac x="y" in spec)
apply (induct_-tac n, auto)
by (drule lessD, auto)+

(* Y
section (Further lemmas)
(* *)

(+ concatenation is associative =)

lemma assoc._sconc[simp]: "(sles2)es3 = sles2es3"
apply (rule_tac x="#sl1" in Incases, auto)
by (rule finind [of "s1"], auto)

(» 2 very specific lemmas, used in (stake_add) *)
lemma stake.conc: "stake i-s ® x = stake (Suc i)-s=>x = stake 1- (sdrop i-s)"
apply (induction i arbitrary: s)
apply (simp add: One_nat_def)
by (smt assoc.sconc inject.scons sdrop_forw_rt stake_Suc stream.take_strict strict_sdrop surj_scons)

lemma stake.concat:"stake i-s e stake (Suc j)- (sdrop i-s) = stake (Suc i)-s e stake j- (sdrop (Suc i)-s)"
proof -
obtain x where x_def: "stake i-s e x = stake (Suc i)-s"
by (metis (no-types, hide_.lams) Suc_n_not_.le_.n linear min.def split_streaml1 stream.take_take)
thus ?thesis
by (smt One_nat.def Rep-cfun_strict1 assoc.sconc sconc.snd_empty sdrop_-back.rt stake_Suc stake_conc
stream.take.0 stream.take_strict strict-sdrop surj.scons)

qed
(» for arbitrary natural numbers i, j and any streams s the following lemma holds: x)
lemma stake_add: "stake (i+j)-s = (stake i-s) e (stake j-(sdrop i-s))"
apply (induction i arbitrary: j)
apply simp

by (metis add_Suc_shift stake_concat)

lemma inject.sconc: "[#x = Fin k; x @ y = x @ z]=—>y = z"
apply (simp add: atomize.imp)

apply (rule_tac x=x in spec)

apply (induct-tac k, auto)

apply (rule_tac x=x in scases, auto)

by (drule inject.scons, auto)

lemma sconc.inj: assumes "#s < od'
shows "inj (Rep_cfun (sconc s))"
by (meson assms injl inject.sconc Inat_-well_h2)

(» x is a prefix of x e yx)

lemma sconc_prefix [simp]: "x C x e y"
apply (rule_tac x="#x" in Incases, auto)
apply (rule finind [of x], auto)

by (rule monofun_cfun.arg)

lemma slen_sconc.snd.inf: "#y-oc—=-#(x ® y) =od
apply (rule_tac x="#x" in Incases, auto)
by (rule finind [of "x"], auto)

(» stake n results in a stream of length n, so sdrop n then results in the empty stream =)
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lemma sdropostake: "sdrop n-(stake n-s) = €"
apply (rule spec [where x = n])

apply (rule ind [of _ s], auto)

by (case_tac x, auto)

(+ for all x it holds that if (P € A (Va s. P s—P (s e Ta))) then it follows that P applied to stake n-x is
true *)
lemma stakeind2:
"Vx. (P e AN (Va s. P s—P (s e Ta)))—P (stake n-x)"
apply (induction n)

apply simp

apply auto

apply (subst stake_suc)

by (metis (no-types, lifting) sconc_snd_empty sdrop-back-rt sdropostake split_.streaml1 stake_suc surj_scons)

(» if P is admissible and P holds for the empty stream and Aa s. P s implies P (s e ta) then P also holds for x x)
lemma ind2: assumes "adm P" and "p e" and "Aa s. P s =P (s e ta)"

shows "p x"
by (metis assms(1) assms(2) assms(3) stakeind2 stream.take_.induct)

(x 1f P holds for bottom and it holds that lscons: " (/\x XS. x;/;L:§ xs==>P (x&&xs))" and the length of xs is
finite, then P holds also for xs x)
lemma stream_fin_induct: assumes Bot: "p 1" and Iscons: " (Ax xs. xA=® xs==P (x&&xs))" and fin: "#xsod
shows "p xs"
by (metis finind infl Inless_def sconc_fst_.empty sconc_scons' sup'_-def up.defined assms)

(x» if length of s is finite => P holds for s => P is admissible => P holds for s =x)
lemma stream_infs: "(As::'a stream. #s<oc=P s)==adm P==P s"
by (metis inf_less_eq lel notinfl3 slen_stake_fst_inf stream.take.induct)

lemma slen_stake: "#s > Fin n—=—# (stake n-s) = Fin n"
proof (induction n)
case 0
then show ?case
by simp
next
case (Suc n)
assume "#s > Fin (Suc n)"
then have "#s > Fin n"
by (simp add: Suc.prems Fin_leq_-Suc.leq)
obtain r where "stake (Suc n)-s = (stake n-s) e r"
by (metis (no-types) Rep-cfun_strict1 sconc_snd_empty stake_concat stream.take_0)
then have "r # e"
by (metis (mono_tags, lifting) Fin_02bot Fin_.Suc One_nat.def Suc.prems (Fin n < #s) bot_.is_.0 drop.not.all
inject-Fin Inle_def Inless_def n_not-Suc-n only_empty_has_length_0 sdropostake slen_scons srt.drop
stake_Suc stake.conc strictl surj_scons)
have "#((stake n-s) e r) > Fin (Suc n)"

proof -
have f1: "#(stake n-s) = Fin n"
using Suc.IH (Fin n < #s) by fastforce
have f2: "Vs sa. (sa::'a stream) C sa e s"
by simp

have "3dn. stake n-s e r # stake n-s A Fin n = Fin n"
using f1 by (metis (r # €) inject_.sconc sconc._snd_empty)
then have "#(stake n-s e r) # Fin n"
by (metis Suc.IlH (Fin n < #s) (r # €) fin2stake sdropl6 sdropostake)
then show ?thesis
using f2 f1 by (metis (no_types) less2inleD Inless_def mono._len Inle_def)
qed
then show ?case
by (metis (stake (Suc n).s = stake n-s e r) dual_order.antisym ub_slen_stake)
qed

(*
section (Additional lemmas for approximation, chains and continuity)

(x - - - )

lemma approx|1:
"Wsl s2. sl £ s2 A #sl = Fin k—stake k-s2 = s1"
apply (induct_.tac k, auto)
apply (rule_tac x=s1 in scases, auto)
apply (rule_tac x=s2 in scases, auto)
apply (erule_tac x="s" in allE)
apply (erule_tac x="sa" in allE)
by (drule less.all_sconsD, auto)

lemma approx|2:
"sl E s2==-(s1 = s2) V (In. stake n-s2 = sl A Fin n = #s1)"
apply (rule_tac x="#sl1" in Incases, auto)
apply (rule eqg-less_and_fst_inf, assumption+)
by (insert approxIi
[rule_-format, of "si"™ "s2"], auto)

lemma inf_chainl1:
fixes Y::"nat = 'a stream"
shows"[chain Y; —finite_chain Y]==3k. #(Y i) = Fin k"
apply (rule ccontr, simp, frule infl)
apply (frule_tac k="i" in inf2max, assumption)
apply (frule_tac i="i" in max.in_chainl3, simp+)
by (simp add: finite.chain_def)
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lemma approxI3: "s1 C s2==3t. slet = s2"
apply (rule_tac x="#s1" in Incases, simp)
apply (drule eq-less_and_fst.inf, simp+)
apply (subst approxlI1

[rule_format, of "si" "s2", THEN sym], simp+)
by (rule_tac x="sdrop k-s2" in exl, simp)

lemma inf_chainl2:
fixes Y::"nat = 'a stream"
shows "[chain Y; — finite_chain Y]==3j. Y k C Y 3 A #(Y k) < #(Y )"
apply (auto simp add: finite_.chain_def max.in.chain_def)
apply (erule_tac x="k" in allE, auto)
apply (frule_tac i=k and j=j in chain-mono, assumption)
apply (rule_tac x="j" in exl, simp)
apply (auto simp add: Inless_def)
apply (rule mono.slen, assumption)
by (frule eq.slen_eq.and_less, simp+)

lemma inf_chainl3:
fixes Y::"nat = 'a stream"
shows "chain Y A —finite_chain Y—(3k. Fin n < #(Y k))"
apply (induct-tac n, auto)
apply (case-tac "Fin n = #(Y k)")
apply (frule_tac k=k in inf_chainl2, auto)
apply (rule_tac x="j" in exl)
apply (drule sym)
apply (rule_tac x="#(y j)" in Incases, auto)
apply (rule-tac x="k" in exl)
by (rule_tac x="#(y k)" in Incases, auto)

lemma inf_chainl4:
fixes Y::"nat = 'a stream"

shows "[chain Y; —finite_chain Y]=-#(lub(range Y)) =od'
apply (rule_tac x="#(Lub Y)" in Incases, auto)
apply (frule_-tac n = "suc k" in inf_chainl3

[rule_-format, OF conjl], assumption, erule exE)
apply (subgoal_-tac "Y ka £ (Lub Y)")
apply (drule mono_len2, simp)
apply (frule_tac x = "Fin (Suc k)" and

y = "#(Y ka)" and z = "Fin k" in trans_.Inle, simp+)
by (rule is_ub_thelub)

lemma finite_chain_stake:
"chain Y=—>finite_chain (Ai. stake n- (Y i))"
apply (frule ch2ch-Rep-cfunR [of _ "stake n"])
apply (rule ccontr)
apply (frule inf_.chainl4 [of "Xi. stake n-(Y i)"],assumption)
by (simp add: contlub_cfun_arg [THEN sym])

lemma lub_approx:
"chain Y==3k. stake n- (lub (range Y)) = stake n-(Y k)"
apply (subst contlub_cfun_arg, assumption)
apply (frule finite_chain_stake [of _ n])
apply (simp add: finite.chain_def, auto)
apply (rule_tac x="i" in exl)
by (rule lub_fincht
[THEN lub_eql, of "Xi. stake n-(Y i)"], auto)

lemma pr_contl:

"[monofun £; Vx.3n. (f x) = £ (stake n-x)]=—cont £"
apply (rule contl2, assumption)
apply (rule alll, rule impl)
apply (erule_tac x="lub (range Y)" in allE, erule exE)
apply (frule_.tac n = n in lub_approx, erule exE)
apply (subgoal_.tac "f (stake n-(Y k)) C £ (Y k)")
apply (subgoal_-tac "f (v k) C (Ji. £ (v i))")
apply (drule_tac x="f (stake n- (Y k))" and

y="f (Y k)" and z = " i. £ (Y 1)" in below_trans)

apply (rule is_ub_thelub)

apply (rule_tac f=f in ch2ch_monofun, assumption+)
apply (clarsimp)

apply (rule is_ub_thelub)

apply (rule-tac f=f in ch2ch_monofun, assumption+)
by (rule_-tac f = f in monofunE, simp+)

text (For continuous functions, each finite prefix of @{term "f.-x"} only

depends on a finite prefix of @{term "x"})
lemma fun_approx|i:

"3Jj. stake k- (f-x) = stake k- (f-(stake j-x))"
apply (subgoal_tac "f-x = (Ji. f£-(stake i-x))")
apply (erule ssubst)
apply (rule lub_approx)
apply (rule chain_monofun)
apply (rule ch2ch_Rep_cfunL)
apply (rule stream.chain_take)
apply (subst contlub_cfun_arg [THEN sym])
apply (rule ch2ch_Rep_cfunL)
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apply (rule stream.chain_take)
apply (subst reach_stream)
by (rule refl)

lemma fun_approxl2: "slen: (f-x) = Fin k==>3j. f:x = f-(stake j-x)"
apply (insert fun_approxI1 [of k "f" x], auto)
apply (rule_tac x="j" in exl)
unfolding len_stream_def[symmetric]
apply (frule fin2stake [THEN sym], simp)
apply (rule stream.take_lemma, simp)
apply (case-tac "n < k")
apply (simp add: min_def)+
apply (rule po.eq-conv [THEN iffD2])
apply (rule conjl)
apply (rule monofun_cfun_fun)
apply (rule chain_mono)
apply (rule stream.chain_take, simp+)
apply (subgoal_-tac "f- (stake j-x) C £-x")
apply (rule below_trans, auto)
apply (drule sym, drule sym, simp)
by (rule monofun_cfun_arg, simp)

(x» if two streams are unequal, it holds for a finite stream a that a e sl is unequal to a e s2 x)
lemma sconc.neq-h: assumes "s1 # s2"
shows "#a <oco—ra @ sl # a e s2"
apply(rule ind [of _a ])
apply(rule adml)
apply (rule impl)
apply (metis inf_.chainl4 142 neq-iff)
apply (simp add: assms)
by (metis inf_.ub inject.scons less_le sconc.scons slen_sconc.snd.inf)

(» if two streams are unequal and a stream a has finite lenght, it holds that a e sl is unequal to a ® s2 x)
lemma sconc_neq: assumes "sl # s2" and "#a < od'

shows "a e s1 # a e s2"
using assms(1) assms(2) sconc_neq-h by blast

lemma stake_prefix: "#s <oc=—t # e=—>s = t ® u=—>Jk. t = stake (Suc k)-s"
proof —
assume "#s <od' and "t # €" and "s = t e u"
then obtain k where "t = stake k-s"
by (metis approxl2 fin2stake inf_less_eq minimal monofun_cfun_arg ninf2Fin not.le sconc.snd_empty)
then obtain | where "k = suc 1"
by (metis Rep_cfun_strictl (t # e) notO_.implies_Suc stream.take_0)
thus ?thesis
using (t = stake k-s) by blast
qed

lemma stake_prefix2: "#s = Fin n—>s = stake n-(s e t)"
by (metis approxIt minimal monofun_cfun_arg sconc_-snd_empty)

lemma slen_conc: "#s <oc=>t # e=>#s > Fin n—>#(s e t) > Fin n"
by (metis (no.types, hide_lams) stake_prefix2 infl less_le less_le_trans mono_slen sconc._neq sconc.snd_empty
stream . take_below)

lemma stake_srt.conc [simp]: "srt- ((stake 1-s)e(s)) = s"
apply (cases s)
apply simp
by (metis One.nat.def Rep-_cfun_strictl Iscons_conv sconc_snd_empty stake_Suc stream.con.rews(2)
stream.sel_.rews (5) stream.take_0 surj.scons)

(% *)
section (Lemmas for the remaining definitions)

(* *)
(% - —-— - ——— %)
subsection (@{term slookahd})

(e %)

lemma cont_slookahd[simp]: "cont (X s. if s=e then 1 else eq (shd s))"
apply (rule pr_contl)

apply (rule monofunl, auto)

apply (rule_tac x=x in scases, auto)

apply (rule_tac x=y in scases, auto)

apply (drule less_all_sconsD, simp)

apply (rule_tac x=x in scases, auto)

by (rule_-tac x="suc 0" in exl|, auto)

(» slookahd applied to the empty stream results in the bottom element for any function eq x)
lemma strict-slookahd[simp]: "slookahd-e-eq = L"
by (simp add: slookahd._def cont2cont.LAM)

(» if s isn't the empty stream, the function eq will be applied to the head of s x)
lemma slookahd_scons[simp]: "s#e=>slookahd:s-eq = eq (shd s)"
by (simp add: slookahd_def cont2cont.LAM)

(» the constant function that always returns the empty stream unifies the two cases of slookahd x)
lemma strict2_slookahd[simp]: "slookahd-xs: (Ay. €) = €"
by (cases xs, simp.all)

(* *)
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subsection @{term sinftimes})
(% %)

(» repeating the empty stream produces the empty stream again for any nx)
lemma sntimes_eps[simp]: "sntimes n € = €"
by (induct_-tac n, simp+)

(+ after repeating the stream s n-times the head is s «)

(» n>0 otherwise (0 x Ts = €) *)
lemma shd_sntime [simp]: assumes "n>0" shows "shd (n x ts) = s"
by (metis assms grO.implies_-Suc shd1 sntimes.simps(2))

(» infinitely cycling the empty stream produces the empty stream again x)
lemma strict.icycle[simp]: "sinftimes € = €"
by (subst sinftimes.def [THEN fix_eq2], auto)

(» repeating a stream infinitely often is equivalent to repeating it once and then infinitely often )
lemma sinftimes_unfold: "sinftimes s = s ® sinftimes s"
by (subst sinftimes_def [THEN fix_eq2], auto)

lemma slen_sinftimes: "s # e=># (sinftimes s) =od'
apply (rule ccontr)
apply (rule_tac x="#(sinftimes s)" in Incases, auto)
apply (rule_tac x="#s" in Incases)
apply (insert sinftimes_unfold [of s], auto)
by (insert slen_sconc-.all_finite

[rule_-format, of "s" _ "sinftimes s"], force)

(» lenght of sinftimes of (fTa) is infinity =)
lemma [simp]: "#(sinftimes (ta)) =od'
by (simp add: slen_sinftimes)

(» converting the element x to a singleton stream, repeating the singleton and re-extracting x with
1shd is equivalent to imposing the discrete order on x x)

lemma Ishd_sinf [simp]: "lshd-1x"bo = updis x"

by (metis Ishd_updis sinftimes_unfold)

(» the infinite repetition of the stream x has the same head as x *)
lemma shd_sinf[simp]: "shd (x>9 = shd x"
by (metis assoc.sconc shdl sinftimes_unfold strict.icycle surj_scons)

(# srt has no effect on an infinite constant stream of x *)

lemma srt_sinf [simp]: "srt-tx>o= ((Tx)">9"
by (metis Iscons_conv sinftimes_unfold stream.sel_rews(5) up.defined)

(+ if the stream x contains y elements then the first y elements of the infinite repetition of x will
be x again *)

lemma stake_y [simp]: assumes "#x = Fin y"
shows "stake y- (sinftimes x) = x"

by (metis approxI1 assms minimal monofun_cfun_arg sconc_snd_empty sinftimes_unfold)

(» the infinite repetitions of the singleton stream s consists only of the element s «)
lemma snth_sinftimes[simp]: "snth i ((1s)>9 = s

apply (induction i)

apply (simp)

by (simp add: snth_rt)

(» dropping any finite number of elements from an infinite constant stream doesn't affect the stream x)

lemma sdrops_sinf[simp]: "sdrop i-((1x)b9 = ((1x)/>9"
apply (induction i)
apply (simp)

by (simp add: sdrop_forw_rt)

(» for a finite natural number "i", following relation between sntimes and stake holds: )
lemma sntimes_stake: "i x tx = stake i- ((Tx)/>9"

apply (induction i)

apply simp

by (metis sinftimes_unfold sntimes.simps(2) stake_Suc)

(+ for every finite number "i" is sntimes # sinftimes. x)
lemma snNEQSinf [simp]: "i % Tx # ((Tx)">9 "
by (metis Ishd_sinf sdropostake sdrops.sinf sntimes_stake stream.sel_-rews(3) up-defined)

(» for every natural number i, dropping the first (ixy) elements results in the same infinite stream x)
(» the first i "blocks" of x are dropped x)

lemma sdrop_sinf[simp]: assumes "Fin y = #x"
shows "sdrop (i * y)-(sinftimes x) = sinftimes x"

apply (induction i)

apply (simp)

by (metis assms mult-Suc sdrop_plus sdropl6 sinftimes_unfold)

(» repeating the empty stream again produces the empty stream =)
lemma sinf_notEps[simp]: assumes "xs # €" shows " (sinftimes xs) # e"
using assms slen_sinftimes by fastforce

(» sinftimes has no effect on streams that are already infinite x)
(» removed simp because of lemma stakewhile_sinftimes_lemmax)
lemma sinf_inf: assumes "¢s =od'

shows "s"bo = s"
by (metis assms sconc_fst.inf sinftimes_unfold)
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(» sinftimes is idempotent x)
lemma sinf_dupE [simp]: "(sinftimes s)’bo= (s'>9"
using sinf_inf slen_sinftimes by force

(» alternative unfold rule for sntimes, new element is appended on the end x)
lemma sntimes_Suc2: "(Suc i) * s = (ixs) e s"

apply (induction i)

apply simp

by (metis assoc_sconc sntimes.simps(2))

(*» Blockwise stake from sinftimes to sntimes. x)
lemma sinf2sntimes: assumes "Fin y = #x"
shows "stake (ixy)- (xb9 = ixx"
apply (induction i)
apply simp
by (metis assms mult-Suc sdrop_plus sdrop_sinf sntimes.simps(2) stake.add stake.y)

(» for any natural number i, sntimes is a prefix of sinftimes x)

lemma snT_le_sinfT [simp]: "ixs C (s> "

by (metis minimal monofun_cfun_arg ninf2Fin sconc_-fst_inf sconc_.snd_empty sinf2sntimes sinf_.inf sntimes.simps(2)
sntimes_Suc2 ub_stake)

(» repeating the stream s i times produces a prefix of repeating s i+l times x)
lemma sntimes_leq: "ixs C (Suc i)*s"
by (metis minimal monofun_cfun_arg sconc-snd_empty sntimes_-Suc2)

(» the repetitions of a stream constitute a chain x)
lemma sntimes_chain: "chain (Ai. ixs)"
by (meson po_class.chainl sntimes_leq)

(» xs is an infinite repetition of the finite stream x. Then dropping any fixed number i of repetitions
of x leaves xs unchanged. =)

lemma sdrop._sinf2: assumes "xs = xexs" and "#x = Fin y"
shows "sdrop (y*i)-xs = xs"

apply (induction i)

apply simp

by (metis assms mult_-Suc_right sdrop_plus sdropl6)

(* the recursive definition for a stream (xs = xexs) is identical to the infinite repetition of x at
every multiple of the length of x x)
lemma stake_eq-sinf: assumes "xs = xexs" and "#x = Fin y"
shows "stake (ixy)-xs = stake (ixy)- (sinftimes x)"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i)
have drop._xs:"sdrop (i*y)-xs = xs" by (metis assms mult.commute sdrop_sinf2)

have "stake (Suc i = y)-xs = stake (ixy)-xs e stake y- (sdrop (ixy)-xs)" by (metis add.commute mult-Suc
stake_add)
hence eqil:"stake (Suc i » y)-xs = stake (ixy)-xs e x" by (metis approxl1 assms drop.xs minimal

monofun_cfun_arg sconc.snd_empty)

have "stake (Suc i * y)-(sinftimes x) = stake (i*y)- (sinftimes x) @ stake y- (sdrop (ixy)- (sinftimes x))"
by (metis add.commute mult-Suc stake.add)
hence eq2:"stake (Suc i * y)-(sinftimes x) = stake (ixy)- (sinftimes x) e x" by (simp add: assms(2))

thus ?case using Suc.IH eql by auto
qed

(» when repeating a stream s a different number of times, one of the repetitions will be a prefix of
the other =)

lemma stake_sntimes2sntimes: assumes "j<k" and "#s = Fin y"
shows "stake (jxy): (kxs) = jxs"

by (smt assms(1) assms(2) min_def mult_.le_mono1 sinf2sntimes stakeostake)

(» for a stream s, a natural y and an arbitrary natural j, apply blockwise stake sntimes. x)
lemma lubStake2sn: assumes "#s = Fin y"
shows " (] i. stake (y+j)-(ixs)) = jxs" (is "(fi. 2c i) = _")
proof —
have "max_in_chain j (Ai. 2c i)" by (simp add: assms max.in_chainl mult.commute stake_sntimes2sntimes)
thus ?thesis by (simp add: assms maxinch_.is_thelub mult.commute sntimes._chain stake_sntimes2sntimes)
qed

(» building block of the lemma sntimesLub_Fin x)
lemma sntimesChain: assumes "#s = Fin y" and "y # 0"
shows "V3j. stake (yx3j)- (] i. ixs) = stake (y*3)- (s>
by (metis assms(1) contlub_cfun_arg lubStake2sn mult.commute sinf2sntimes sntimes_chain)

(» proof for lemma sntimesLub_Fin x)
lemma sntimesLub_Fin: assumes "#s = Fin y" and "y # 0"

shows " (| i. ixs) = (s’>9"
proof -
have "Vj. stake (jxy)- (] i. ixs) = stake (jxy)- (s’>9" by (metis assms(1) assms(2) mult.commute sntimesChain)
hence "Vj. stake j- (] i. i%s) = stake j- (s’>9" using assms by (metis gstake2stake)
thus ?thesis by (simp add: stream.take_lemma)
qed

(» for any stream s the LUB of sntimes is sinftimes =)

lemma sntimesLub[simp]:" (] i. i%s) = (s>9"

apply(cases "#s =od')

apply (metis inf2max sconc_fst.inf sinf_inf sntimes.simps(2) sntimes_chain)
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by (metis Fin.0 Incases lub_eq_bottom_iff slen_empty_eq sntimesLub_Fin sntimes_chain sntimes_eps strict.icycle)

(» shows that any recursive definition with the following form is equal to sinftimes x)
lemma rek2sinftimes: assumes "xs = x o xs" and "xFe"
shows "xs = sinftimes x"
proof (cases "#x =od')
case True thus ?thesis by (metis assms(1) sconc_fst_inf sinftimes_unfold)
next
case False
obtain y where y_def: "Fin y = #x A y#0" by (metis False Fin_02bot assms(2) infl Inzero.def slen_empty_eq)
hence "Vi. stake (i+y)-xs = stake (ixy)- (¥>9" using assms(1) stake_eq.sinf by fastforce
hence "Vi. stake i-xs = stake i- (x> " using gstake2stake y_def by blast
thus ?thesis by (simp add: stream.take_lemma)
qed

(» specializes the result from rek2sinftimes to singleton streams x)
lemma s2sinftimes: assumes "xs = Tx o xs"

shows "xs = ((1x)/>9 "
using assms rek2sinftimes by fastforce

(+ shows that the infinite repetition of a stream x is the least fixed point of iterating (A s. x e s),
which maps streams to streams x)

lemma fix2sinf[simp]: "fix- (A s. x @ 5) = (x> "
by (metis eta_cfun fix_eq fix-strict rek2sinftimes sconc.snd_empty strict-icycle)

lemma snth_bool_sinftimes: "snth (Suc n) ((Tbool ® 1 (= bool))’>) = (= snth n ((Tbool e T (=bool))’>d)"
apply (induction n)
apply (metis assoc.sconc shd1l sinftimes_unfold snth_scons snth_shd)
by (metis (no-types, hide_lams) sconc_fst_empty sconc.scons' sinftimes_unfold snth_scons sup'-def)

lemma sinftimes_srt: "srt-((ta ® 1o)’>9 = ((1b e Ta)’>g"
apply (subst sinftimes_unfold, simp)
by (metis (no-types, lifting) assoc_sconc rek2sinftimes sinftimes_unfold strictl)

lemma sinftimes_snth:" (n mod 2 = 0—>snth n ((Ta ® Th)>9 = a) A (nmod 2 = 1—snth n ((ta e Tb)/Bo) = b)"
proof(induction n arbitrary: a b)
case 0
then show ?case
by simp
next
case (Suc n)
moreover obtain m where m_def:"nA0=—-n = Suc m"
using notO_implies_Suc by auto
ultimately show ?case
apply(cases "n = Q")
apply(subst sinftimes_unfold, simp)
apply (metis sconc.scons shd1l sinftimes_unfold snth_scons snth_shd)
apply auto
apply (subst sinftimes_unfold, simp)
apply (simp add: snth_rt)
apply (metis One_nat_def even_Suc parity_cases sinftimes_srt)
apply (subst sinftimes_unfold, simp)
apply (simp add: snth_rt)
by (metis One.nat.def even_Suc parity_.cases sinftimes_srt)

qed

(e %)
subsection @{term smap})

(e %)

(» smapping a function to the empty stream gives us the empty stream x)
lemma strict_smap[simp]: "smap f:e = €"
by (subst smap._def [THEN fix_eq2], simp)

(» smap distributes over concatenation «)
lemma smap.scons[simp]: "smap f-(ta ® s) = T(f a) e smap f-s"
by (subst smap_def [THEN fix_.eq2], simp)

(» if Aa as. f£-(Ta ® as) is equal to T(g a) e f-as and f applied to bottom returns the bottom element, then
f applied to s is the same as applying smap to g-s x)
lemma rek2smap: assumes "Aa as. f-(ta ® as) = T(g a) e f-as"
and "f-1 = 1"
shows "f-s = smap g-s"
apply(rule ind [of _s])
by(simp_all add: assms)

(+ mapping f over a singleton stream is equivalent to applying f to the only element in the stream =)
lemma [simp]: "smap f-(fa) = T(f a)"
by (subst smap._def [THEN fix_eq2], simp)

(» smap leaves the length of a stream unchanged =)
lemma slen_smap[simp]: "#(smap f-x) = #x"

apply (rule ind [of _ x], auto)

unfolding len_stream._def

by simp

lemma smap-snth_lemma:
"Fin n < #s=snth n (smap f-s) = f (snth n s)"
apply (simp add: atomize.imp)
apply (rule-tac x="s" in spec)
apply (induct_-tac n, simp+)
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by (rule alll, rule_tac x="x" in scases, simp+)+

text(Doing smap in two passes, applying h in the first pass and g in the second is
equivalent to applying g o h in a single pass)

lemma smaps2smap: "smap g- (smap h-xs) = smap (A x. g (h x))-xs"

by (simp add: smap-snth_lemma snths_eq)

lemma sdrop_smap[simp]: "sdrop k- (smap f:s) = smap f- (sdrop k-s)"
apply (rule_tac x="k" in spec)

apply (rule ind [of _ s], simp+)

apply (rule alll)

by (case.tac "x", simp+)

lemma smap-split: "smap f-(a2 ® b) = (smap f-a) e (smap f-b)"
proof (rule Incases [of "#a"], simp)

fix k assume "#a = Fin k"

thus ?thesis by (rule finind [of "a"], simp_all)
qed

(» smap distributes over infinite repetition )
lemma smap2sinf[simp]: "smap f- (b9 = ((smap f-x)">9"
by (metis (no_-types) rek2sinftimes sinftimes_unfold slen_.empty_eq slen.smap smap-.split strict_.icycle)

(» smap and infinity =)
lemma 15: "smap g- ((Tx)">9 = ((T(g x))>9"
by simp

(» for any nonempty stream it holds that smap £ to stream s is T(f (shd s)) e smap f- (srt-s) =)
lemma smap_hd._rst : "s # e=smap f:s = T(f (shd s)) e smap f- (srt-s)" by (metis smap_scons surj_scons)

lemma smap.inj:"inj f=inj (Rep_cfun (smap f))"
apply(rule injl)
apply(rule snths_eq,auto)
apply (metis slen.smap)
by (metis inj_eq slen.smap smap.-snth_lemma)

lemma smapnoteq:assumes "Ax y. x # y=f x # £ y"
shows"x # y=—-smap f-x # smap f-y"
apply(cases "#x # #y",auto)
proof(metis slen_smap)
assume atl:"x # y"
assume a2:"#x = #y"
assume a3:" smap f-x = smap f-y"
obtain n where n_def:"Fin n < #x Asnth n x # snth n y"
using al a2 snths_eq dual_order.strict_.implies_order by blast
then have "snth n (smap f-x) 7 snth n (smap f-y)"
apply (subst smap_snth_lemma,simp add: n.def)
by (simp add: a2 assms smap-snth_lemma)
thus "False"
by (simp add: a3)
qed

lemma smapnotbelow:assumes "Ax y. x # y=f x # £ y"
shows"—x C y=—=-smap f-x C smap f-y"
apply(cases "#x = #y",auto)
proof—
assume atl:"—x C y"
assume a2:"#x = #y"
assume a3:" smap f-x C smap f-y"
obtain n where n_def:"Fin n < #x Asnth n x # snth n y"
using al a2 snths_eq dual_order.strict_.implies_order by blast
then have "snth n (smap f-x) # snth n (smap f-y)"
apply (subst smap_snth_lemma,simp add: n._def)
by (simp add: a2 assms smap-snth_lemma)
thus "False"
by (metis a2 a3 eqg-slen_eq-and.less slen_smap)
next
assume al:"—x C y"
assume a2:"#x # #y"
assume a3:" smap f-x C smap f-y"
show False
proof(cases "#x < #y")
case True
obtain n where n_def:"Fin n < #x Asnth n x # snth n y"
by (smt al a3 approxl2 mono.slen po_eq.-conv slen_smap
slen_stake snth_less snths_eq stream.take_below)
then have "snth n (smap f£:x) # snth n (smap f-y)"
apply (subst smap_snth_lemma,simp add: n_def)
by (metis True assms smap-snth_.lemma trans_Inless)
then show ?thesis
by (metis a3 n_def slen.smap snth_less)
next
case False
then show ?thesis
by (metis False a2 a3 Inless_def mono.len2 slen.smap)
qed
qed

132



(ke *)

(» sprojfst extracts the first element of the first tuple in any non-empty stream of tuples =)
lemma sprojfst_.scons[simp]: "sprojfst-(T(x, y) ® s) = Tx e sprojfst-s"
by (unfold sprojfst.def, simp)

(» the empty stream is a fixed point of sprojfst =)
lemma strict_sprojfst[simp]: "sprojfst-e = €"
by (unfold sprojfst.def, simp)

(» sprojfst extracts the first element of any singleton tuple-stream x)
lemma [simp]: "sprojfst- (f(a,b)) = ta"
by (simp add: sprojfst_def)

(+ sprojsnd extracts the second element of the first tuple in any non-empty stream of tuples =)
lemma sprojsnd_scons[simp]: "sprojsnd- (T(x,y) ® s) = Ty e sprojsnd-s"
by (unfold sprojsnd.def, simp)

(» the empty stream is a fixed point of sprojsnd x)
lemma strict_sprojsnd[simp]: "sprojsnd-e = €"
by (unfold sprojsnd.-def, simp)

(» sprojsnd extracts the second element of any singleton tuple-stream x)
lemma [simp]: "sprojsnd- (f(a,b)) = Tb"
by (simp add: sprojsnd.-def)

lemma sprojsnd_shd:
assumes "s # e"
shows "shd (sprojsnd-s) = snd (shd s)"
by (metis assms prod.collapse shdl sprojsnd_scons surj_scons)

lemma sconc_sprojsnd_shd:
shows "shd (sprojsnd-(Ta e s)) = snd a"
by (simp add: sprojsnd._shd)

(» commutativity of sprojsnd and srt =)
lemma rt_Sproj-2_eq: "sprojsnd- (srt-x) = srt- (sprojsnd-x)"
by (rule ind [of _ x], auto)

(» commutativity of sprojsnd and srt =)
lemma rt_Sproj-1_eq: "sprojfst- (srt-x) = srt- (sprojfst-x)"
by (rule ind [of _ x], auto)

(+ relation between sprojsnd and sprojfst with respect to the length operator )
lemma slen_sprojs_eq: "#(sprojsnd-x) = #(sprojfst-x)"
by (rule ind [of _ "x"], auto, simp add: len_stream_def)

(x» 1f sprojfst-x is the empty stream, then x was already empty =x)
lemma strict_-rev_sprojfst: "sprojfst.-x = e=x = €"
by (rule ccontr, rule_tac x=x in scases, auto)

(» if sprojsnd-x is the empty stream, then x was already empty x)
lemma strict.-rev_sprojsnd: "sprojsnd-x = e=>x = €"
by (rule ccontr, rule_-tac x=x in scases, auto)

(» sprojfst does not change the length of x x)
lemma slen_sprojfst: "#(sprojfst-x) = #x"
by (rule ind [of _ "x"], auto, simp add: len_stream_def)

(» sprojsnd does not change the length of x x)
lemma slen_sprojsnd: "#(sprojsnd-x) = #x"
by (rule ind [of _ "x"], auto, simp add: len_stream_def)

(» updis does not change the length x)
lemma slen_updis_eq: "#sl = #s2==-# (updis x1 && sl) = #(updis x2 && s2)"
by (simp add: Iscons_conv)

(» helper lemma for deconstruct_infstream x)

lemma deconstruct_infstream_h:
assumes "#s =od" obtains x xs where "(updis x) && xs = s A #xs =od'
using assms inf_scase Iscons_conv by blast

(» deconstruction of infinite streams x)

lemma deconstruct_infstream:
assumes "#s =od' obtains x xs where "(updis x) && xs = s A #xs =oco A xs # €"
by (metis Inf'_neq_0 assms deconstruct_infstream_h slen_empty_eq)

lemma sprojfst_.shd[simp]: assumes "s#e" shows "shd (sprojfst-s) = fst (shd s)"
by (metis assms prod.collapse shdl sprojfst.scons surj_scons)

lemma sprojfst_snth[simp]: assumes "Fin n < #s" shows "snth n (sprojfst-s) = fst (snth n s)"
using assms
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proof(induction n arbitrary: s)
case 0
then show ?case
apply simp
apply(rule sprojfst_shd)
by auto
next
case (Suc n)
then show ?case
apply(simp add: snth_rt)
by (metis not_less rt_Sproj-1.eq slen_.rt_ile_eq)
qed

lemma sprojfst_.shd2[simp]: "shd (sprojfst-(ta e s)) = fst (a)"
by simp

lemma sprojsnd_snth:
assumes "Fin n < #s"
shows "snth n (sprojsnd-s) = snd (snth n s)"
using assms
apply (induction n arbitrary: s)
using sprojsnd_shd apply force
by (metis leD lel rt_.Sproj-2_.eq slen_rt_ile_eq snth_rt)

lemma sprojsnd_shd2[simp]: "shd (sprojsnd-(fta e s)) = snd (a)"
by (simp add: sconc_sprojsnd_shd)

(% *)
subsection @{term sfilter})
(* *)

(» note that M is a set, not a predicate x)
lemma strict_sfilter[simp]: "sfilter M-e = €"
by (subst sfilter_def [THEN fix_eq2], simp)

(» if the head of a stream is in M, then sfilter will keep the head x)
lemma sfilter_in[simp]:

"a € M=—>sfilter M- (Ta ® s) = Ta e sfilter M-s"
by (subst sfilter_def [THEN fix_eq2], simp)

(* 1f the head of a stream isn't in M, then sfilter will discard the head x)
lemma sfilter_nin[simp]:

"a ¢ M=sfilter M- (fa ® s) = sfilter M-s"
by (subst sfilter_-def [THEN fix_-eq2], simp)

(x» 1f the sole element in a singleton stream is in M then sfilter is a no-op x*)
lemma [simp]: "a € M=sfilter M- (Ta) = ta"
by (subst sfilter_-def [THEN fix-eq2], simp)

(» if the sole element in a singleton stream is not in M then sfilter produces the empty stream x)
lemma [simp]: "a ¢ M=sfilter M- (fa) = €"
by (subst sfilter_def [THEN fix_eq2], simp)

(» filtering all elements that aren't in {a} from a stream consisting only of the element a has no effect «)
lemma sfilter_sinftimes_in[simp]:
"sfilter {a}- (sinftimes (Ta)) = sinftimes (Ta)"
apply (rule stream.take_lemma)
apply (induct-tac n, auto)
apply (subst sinftimes_unfold, simp)
apply (rule sym)
by (subst sinftimes_unfold, simp)

(x» 1f the element a isn't in the set F then filtering a stream of infinitely many a's using F will
produce the empty stream x)

lemma sfilter_sinftimes_nin:
"a ¢ F=>(F © (sinftimes (ta))) = e"

proof -
assume a_nin_F: "a ¢ F"
have "Ai. (F © (stake i:(sinftimes (Ta)))) = e"
proof (induct_-tac i, simp_.all)
fix n assume "F © (stake n- (sinftimes (fa))) = e"
hence "F © (stake (Suc n)-(ta e sinftimes (fa))) = e" using a.nin_F by simp
thus "F © stake (Suc n)- (sinftimes (Ta)) = €" by (subst sinftimes_unfold)
qed
hence "(F © (Ji. stake i-(sinftimes (Ta)))) = €" by (simp add:contlub_cfun.arg)
thus ?thesis by (simp add: reach_stream)
qed

lemma slen_sfilter_sdrop_.ile:
"4 (sfilter X- (sdrop n-p)) < #(sfilter X-p)"
apply (rule spec [where x = "n"])
apply (rule ind [of _ p], auto, simp add: len_stream_def)
apply (subst Inle_def, simp del: Inle_.conv)
apply (case_tac "x", auto)
apply (case_tac "a € x", auto)
apply (erule_tac x="nat" in allE)
by (rule trans_Inle, auto)
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lemma slen_sfilter_sdrop:
"Vp X. #(sfilter X-p) =oc—f (sfilter X: (sdrop n-p)) = od
apply (induct_-tac n, auto)
apply (rule_tac x=p in scases, auto)
by (case_tac "aex", auto)

text (@{term sfilter} on @{term "stake n"} returns (e) if none of the first
@{term n} elements is included in the filter)

lemma sfilter_empty_snths_nin_lemma:
"Vp. (Vn. Fin n < #p—snth n p € X)——sfilter X- (stake k-p) = €"

apply (induct-tac k, auto)

apply (rule-tac x=p in scases, auto)

apply (case-tac "aex", auto)

apply (erule_tac x="0" in allE, simp)

apply (case_-tac "n", auto)

apply (erule_tac x="s" in allE, auto)

by (erule_tac x="Suc n" in allE, auto)

text @{term sfilter} returns (e) if no element is included in the filter)
lemma ex_snth_in_sfilter_nempty:
"(VYn. Fin n < #p—>snth n p ¢ X)=>sfilter X-p = €"
apply (subgoal_-tac "sfilter X-p = ( k. sfilter X-(stake k-p))")
apply (erule ssubst)
apply (subst lub_eq-bottom_iff, simp)
apply (subst sfilter_empty_snths_nin_lemma, simp+)
apply (subst contlub_cfun_arg [THEN sym], simp)
by (simp add: reach_stream)

lemma sfilter_snths_in_lemma:
"Wp. (Vn. Fin n < #p—snth n p € X)—>sfilter X- (stake k-p) = stake k-p"
apply (induct-tac k, auto)
apply (rule_tac x=p in scases, auto)
apply (case_tac "aex", auto)
apply (case_tac "n", auto)
apply (erule_tac x="s" in allE, auto)
apply (erule_tac x="suc n" in allE, auto)
by (erule_tac x="0" in allE, simp)

lemma sfilter_snths_in_stream_lemma:assumes al:" A n . Fin n <#p =snth n p € X"
shows " p = sfilter X:-(p)"
apply (subst reach_stream [THEN sym], rule sym)
apply (subst reach_stream [THEN sym],case_-tac "#p=od')
apply(smt Inf.INF_.cong al approxI1 assms monofun_cfun_arg sfilter_.snths_in_.lemma slen_stake_fst.inf
stream . take_below)
by (metis (no-types, hide_lams) assms infl fin2stake sfilter_.snths_in_lemma)

lemma slen_sfilterl1: "#(sfilter s-x) < #x"

apply (rule ind [of _ x], auto, simp add: len_stream_def)
apply (subst Inle_def, simp del: Inle_conv)

apply (case_tac "a € s", auto)

by (rule trans_Inle, auto)

lemma sfilterl4:
"# (sfilter X-x) =oc—>#x = od'
by (insert slen_sfilterl1 [of X x], auto)

lemma sfilterl2:
"Wz. #(sfilter X-s) < #(sfilter X- ((stake n-z) e s))"
apply (induct-tac n, auto)
apply (rule-tac x=z in scases, auto)
apply (case_tac "a€x", auto)
apply (erule_tac x="sa" in allE)
by (drule trans_Inle, auto)

text (The filtered result is not changed by concatenating streams which are
filtered to (e))
lemma sfilterl3:
"Vs. #s = Fin k A sfilter S:s = e—>
sfilter S-(seZ) = sfilter S-Z"
apply (induct-tac k, auto)
apply (rule_tac x=s in scases, auto)
by (case_tac "a € s", auto)

lemma split_sfilter: "sfilter X-x = sfilter X-(stake n-x) @ sfilter X-(sdrop n-x)"
apply (rule-tac x=x in spec)

apply (induct-tac n, simp)

apply (rule alll)

apply (rule-tac x=x in scases, simp)

apply (erule_tac x="s" in allE, auto)

by (case.tac "a € x", auto)

lemma int_sfilterl1 [simp]: "sfilter S-(sfilter M-s) = sfilter (S M M)-s"
apply (rule ind [of _ s], auto)

apply (case_tac "a € s N M", auto)

by (case.tac "a € M", auto)

lemma add_sfilter:
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"#x = Fin k==sfilter t-(x ® y) = sfilter t-x e sfilter t-.y"
apply (simp add: atomize.imp)
apply (rule_tac x="y" in spec)
apply (rule_tac x="x" in spec)
apply (induct.-tac k, auto)
apply (rule_tac x="x" in scases, auto)
by (case_tac "a € t", auto)

lemma sfilter.smap_nrange:
"m ¢ range f=—>sfilter {m}: (smap f-x) = €"
apply (rule ex-snth_in_sfilter_.nempty [rule_format], simp)
apply (subst smap.snth_lemma, simp+)
apply (rule notl)
apply (drule sym)
by (drule_tac f="f" in range.eql, simp)

lemma sfilter_lub_inf: assumes "An. 3i. Fin n < $(A & (Y i))" and "chain Y"
shows " #(a © (Ji. ¥ i)) =od
proof(rule ccontr)
assume as: "#(A 6 (Jiz:nat. Y i)) F#od
obtain n where n_def:"#(( © (. Y i)) = Fin n"
using as Incases by auto
obtain i where i_def:"Fin (Suc n) < #(@RA O (Y i))"
using assms(1) by blast
have "#(2 © (Y 1)) < #(A © (Ji::nat. v i))"
using assms(2) cont_pref_eq1l is_ub_-thelub mono.slen by blast
thus False
using dual_-order.trans i_-def n_def by fastforce
qed

lemma snth_filter: "Fin n < #s=—snth n s€A—>sfilter A-s #L"
apply (induction n arbitrary: s)
apply auto
apply (metis Insuc_neq.-O_rev sfilter_in slen_scons strict.slen surj_scons)
apply(simp add: snth_rt)
by (metis Fin_02bot Fin_Suc inject_Fin Inzero_def n_not.Suc.n not.le only_empty_has_length_0 sfilter_in
sfilter_.nin slen_rt_ile_eq slen_scons stream.sel_-rews(2) strictl surj_scons)

(* *)
subsection (@{term stakewhile})
(*

*)

(» stakewhile f to an empty stream returns the empty stream x)
lemma strict-stakewhile [simp]: "stakewhile f-e = €e"
by (subst stakewhile_def [THEN fix_.eq2], simp)

(» if the head a passes the predicate f, then the result of stakewhile will start with fTa )
lemma stakewhile_t[simp]: "f a=—-stakewhile f.-(fa ® s) = Ta e stakewhile f-s"
by (subst stakewhile_def [THEN fix_eq2], simp)

(» if the head a fails the predicate f, then stakewhile will produce the empty stream =)
lemma stakewhile_f[simp]: "—f a==stakewhile f:(Ta ® s) = €"
by (subst stakewhile_def [THEN fix_eq2], simp)

(» if the element a passes the predicate f, then stakewhile applied to Ta is a no-op *)
lemma [simp]: "f a=—>stakewhile f:(ta) = Ta"
by (subst stakewhile_def [THEN fix_eq2], simp)

(» if the element a fails the predicate f, then stakewhile applied to Ta will produce the empty stream =)
lemma [simp]: "—f a=—stakewhile f-(fa) = €"
by (subst stakewhile_def [THEN fix_eq2], simp)

(» stakewhile can't increase the length of a stream x)

lemma stakewhile_less [simp]: "#(stakewhile f-s)<#s"

apply(rule ind [of _ s], auto)

apply (metis (mono_tags, lifting) adml inf_chainl4 inf_ub 142)

by (metis bot_is_.0 Inle_def Insuc.Inle_.emb minimal slen_.empty_eq slen_scons stakewhile_f stakewhile_t)

(» stakewhile doesn't take elements past an element that fails the predicate f x)

lemma stakewhile_slen[simp]: "—f (snth n s)==-# (stakewhile f.s)<Fin n"

apply (induction n arbitrary: s)

apply (metis Fin_02bot Inat.po.eq.-conv Inzero_def sdrop.0 slen.empty_eq snth_def stakewhile_f strict_.stakewhile
surj_scons)

by (smt inject.scons slen.rt.ile_eq snth_rt stakewhile_f stakewhile_t stream.take_strict strict.stakewhile
surj.scons ub_slen_stake)

(» the prefix of the constant stream of x's whose elements aren't equal to x is empty =)
lemma [simp]: "stakewhile (Xa. a # x) -Tx'bo= e"
by (metis (full_types)sinftimes_unfold stakewhile_f)

(» stakewhile produces a prefix of the input =)

lemma stakewhile_below[simp]: "stakewhile f-s C s"

apply (induction s)

apply (simp+)

by (smt minimal monofun_cfun_arg stakewhile_-f stakewhile_.t stream.con.rews(2) stream.sel_-rews(5) surj_scons)

(» if stakewhile leaves a stream s unchanged, then every element must pass the predicate f x)
lemma stakewhile_id_snth: assumes "stakewhile f.-s = s" and "Fin n < #s"

shows "f (snth n s)"

by (metis Fin_leq-Suc.leq assms(1) assms(2) less2eq less2InleD Inless_def stakewhile_slen)
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(» if stakewhile produces a result of length n or greater, then the nth element in s must pass f x)
lemma stakewhile_snth[simp]: assumes "Fin n < #(stakewhile f-s)"

shows "f (snth n s)"

by (meson assms not_less stakewhile_slen)

(» 1f stakewhile changes the stream s, then there must be an element in s that fails the predicate f x)
lemma stakewhile_notin [simp]:
shows "stakewhile f-s 7# s=# (stakewhile f-s) = Fin n=—>— f (snth n s)"
apply(induction n arbitrary:s)
apply (metis Fin_.02bot Inat.con.rews slen_scons snth_shd stakewhile_t surj_scons)
by (smt Fin_02bot Fin_Suc approxl2 inject-scons Inat.con_rews Inat_po_-eq-conv Insuc-Inle.emb Inzero_def
slen_empty_eq slen.rt_.ile_eq snth_rt snth_shd stakewhile_.below stakewhile_slen stakewhile_t
stream.take_strict surj_scons ub.slen_stake)

( - -
subsection @{term stwbl})

(» stwbl f to an empty stream returns the empty stream =)
lemma strict_stwbl[simp]: "stwbl f-e = €"
by (subst stwbl_def [THEN fix_eq2], simp)

(» if the head a passes the predicate f, then the result of stwbl will start with fa *)
lemma stwbl_t[simp]: "f a=—stwbl f-(ta ® s) = Ta @ stwbl f-s"
by (subst stwbl_def [THEN fix_.eq2], simp)

(» if the head a fails the predicate f, then stwbl will produce only Ta =)
lemma stwbl_f[simp]: "= £ a=—stwbl £ (ta ® s) = ta"
by (subst stwbl_def [THEN fix_eq2], simp)

(» if s is not empty, then stwbl f also does not return the empty stream x)
lemma stwbl_notEps: "s#e=—(stwbl f-s)#e"
by (smt Inat.con.rews Inzero_def sconc_snd_empty slen_scons strict.slen stwbl_f stwbl_.t surj_scons)

(» 1f stwbl f applied to s returns the empty stream, then s was empty =*)
lemma stwbl_eps: "stwbl f:s = e&——s=€"
using strict.stwbl stwbl_notEps by blast

lemma sfilter_twl1 [simp]:

"sfilter X- (stakewhile (Ax. x&X) p) = €"
apply (rule ind [of _ p], auto)
by (case_tac "aex", auto)

lemma sfilter_twl2 [simp]:

"sfilter X- (stakewhile (Ax. x€X)-p) = stakewhile (Ax. x€X)-p"
apply (rule ind [of _ p], auto)
by (case_tac "aex", auto)

text (If @{term "stakewhile (Ap. p = t)"} returns an infinite stream, all prefixes
of the original stream only consist of "@{term t}"s)

lemma stakewhile_sinftimes_lemma:
"Vz. #(stakewhile (Ap. p = t)-z) =oc—rstake n-z = stake n- (sinftimes (Tt))"

apply (induct-tac n, auto)

apply (subst sinftimes_unfold, simp)

apply (rule_-tac x=z in scases, auto)

by (case.tac "a=t", auto)

text (If @{term "stakewhile (Ap. p = t)"} returns an infinite stream, the original stream
is an infinite "@{term t}"-stream)

lemma stakewhile_sinftimesup:
"4 (stakewhile (Ap. p = t)-z) =oc=—>z = sinftimes (ft)"

apply (rule stream.take_lemma)

by (rule stakewhile_sinftimes_lemma [rule_format])

[T e *)
subsection (@{term sdropwhile})
(* -

(» sdropwhile f applied to the empty stream returns the empty stream x)
lemma strict_.sdropwhile [simp]: "sdropwhile f-e = €"
by (subst sdropwhile_.def [THEN fix_eq2], simp)

(x 1f the head a passes the predicate f, then the result of sdropwhile will drop the head x)
lemma sdropwhile_t[simp]: "f a=—>sdropwhile f-(fa ® s) = sdropwhile f-s"
by (subst sdropwhile_.def [THEN fix_eq2], simp)

(+ if the head a fails the predicate f, then the result of sdropwhile will start with fTa )
lemma sdropwhile_f[simp]: "—f a=-sdropwhile f-(ta ® s) = ta e s"
by (subst sdropwhile_.def [THEN fix_eq2], simp)

(» if the only element in a singleton stream passes the predicate f, then sdropwhile will produce
the empty stream x)

lemma [simp]: "f a=sdropwhile f-:(fa) = €"

by (subst sdropwhile_def [THEN fix_eq2], simp)
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(» if the only element in a singleton stream fails the predicate f, then sdropwhile will be a no-op *)
lemma [simp]: "—f a=—sdropwhile f£-(Ta) = fta"
by (subst sdropwhile_def [THEN fix_eq2], simp)

(» the elements removed by sdropwhile are a subset of the elements removed by sfilter x)
lemma sfilter_dwl1 [simp]:
"sfilter X- (sdropwhile (Ax. x¢X)-p) = sfilter X-p"
apply (rule ind [of _ p], auto)
by (case_tac "aex", auto)

(» the elements kept by sfilter are a subset of the elements kept by sdropwhile x)
lemma sfilter_dwl2:
"sfilter T-s # e—>sdropwhile (Aa. a & T)-s # €"
apply (rule notl)
apply (erule notE)
apply (subst sfilter.dwl1 [THEN sym])
by simp

lemma stwbl_stakewhile: "stwbl f-s = stakewhile f.s e (stake (Suc 0): (sdropwhile f-s))"
apply (rule stream.take_lemma)

apply (rule_tac x="s" in spec)

apply (induct-tac n, simp+)

apply (rule alll)

apply (rule_tac x="x" in scases, simp+)

by (case.tac "f a", simp+)

lemma stakewhile_sdropwhilelt:
"Vx. #(stakewhile f-x) = Fin n—>sdropwhile f-x = sdrop n-x"
apply (induct-tac n, auto)
apply (rule_tac x=x in scases, auto)
apply (case_tac "f a", auto)
apply (rule_tac x=x in scases, auto)
by (case_tac "f a", auto)

lemma sdropwhile.idem: "sdropwhile f- (sdropwhile f-x) = sdropwhile f-x"
apply (rule ind [of _ x], auto)
by (case.tac "f a", auto)

lemma tdw[simp]: "stakewhile f- (sdropwhile f-s) = "
apply (rule ind [of _ s], auto)
by (case.tac "f a", auto)

(» relation between stakewhile and sdropwhile x)

lemma stakewhileDropwhile: "stakewhile f-s @ (sdropwhile f-s) = s "

apply(rule ind [of _s])

apply (rule adml)

apply (metis (no_types, lifting) approxl2 inf_chainl4 lub_eql lub_finch2 sconc_fst_inf split_streaml1
stakewhile_below stakewhile_sdropwhilell)

apply simp

by (metis assoc.sconc sconc.fst_empty sdropwhile_f sdropwhile_t stakewhile_t tdw)

text (For the head of @{term "sdropwhile f-x"}, @{term f} does not hold)
lemma sdropwhile_resup: "sdropwhile f-x = ta ® s=— f a"

apply (subgoal_-tac "sdropwhile f-(ta @ s) = ta e s"

apply (case_-tac "f a", auto)

apply rotate_tac

apply (drule cfun.arg-cong [of . _ "stakewhile £"], simp)

apply (drule sym, simp)

by (rule sdropwhile_idem)

lemma sfilter_srtdwl3 [simp]:

"sfilter X- (srt- (sdropwhile (Ax. XQX) ‘p)) = srt-(sfilter X:-p)"
apply (rule ind [of _ p], auto)
by (case_tac "acx", auto)

lemma sfilter_ne_resup: "sfilter T-s # e=>shd (sfilter T-s) € T"
apply (subst sfilter.dwl1 [THEN sym])

apply (rule_tac x="sdropwhile (Ax. x ¢ T)-s" in scases, auto)
apply (drule sfilter.dwl2 , simp)

apply (rule_-tac x="s" in scases, auto)

apply (case-tac "aa € T", auto)

apply (drule inject.scons, simp)

by (drule sdropwhile_.resup, simp)

lemma sfilter_resl2:

"sfilter T-s = Ta ® as=—a € T"
apply (case_tac "sfilter T-s = €", simp)
by (drule sfilter_ne_resup , simp)

lemma sfilterl7:
"[Fin n < #x; sfilter T-s = x]=—>snth n x € T"
apply (simp add: atomize.imp)
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apply (rule_tac x="s" in spec)

apply (rule_tac x="x" in spec)

apply (induct_-tac n, auto)

apply (rule sfilter.ne_resup)

apply (rule_tac x="sfilter T-xa" in scases, auto)
apply (rule_tac x="xa" in scases, auto)

apply (simp add: Fin_Suc [THEN sym] del: Fin_Suc)
apply (case_-tac "a € T", auto)

apply (case-tac "sfilter T-s = €",simp+)

apply (simp add: Fin_Suc [THEN sym] del: Fin_Suc)
apply (rule_tac x="sfilter T-s" in scases, auto)
apply (erule_tac x="sa" in allE ,simp+)

apply (frule sfilter_resl2)

apply (drule mp)

by (rule_tac x="srt- (sdropwhile (Ax. x¢T)-s)" in exl|,simp+)

(% %)
subsection @{term srtdw})

(F %)

(» srtdw f applied to the empty stream always returns the empty stream «)
lemma [simp]: "srtdw f-e = €"
by (simp add: srtdw.def)

(» the rest of any singleton stream is the empty stream, regardless of whether the only element in
the stream was dropped =)

lemma [simp]: "srtdw f-(Ta) = €"

apply (simp add: srtdw._def)

by (case_-tac "f a", auto)

(» if the head a passes the predicate f, srtdw will drop the head x)
lemma [simp]: "f a=—>srtdw f- (Taeas) = srtdw f-as"
by (auto simp add: srtdw._def)

(» if the head a fails the predicate £, srtdw will produce the rest of the stream =)
lemma [simp]: "— f a=—>srtdw f- (Taeas) = as"
by (simp add: srtdw.def)

text @{term "sfilter M"} after @{term "srtdw (Ax. x ¢ M)"} almost behaves
like @{term "sfilter M"} alone)
lemma sfilterl8:
"sfilter M-x # e=—>
#(sfilter M-x) = lnsuc- (#(sfilter M- (srtdw (Ax. x & M)-x)))"
apply (induction x rule: ind)
apply (simp add: len_stream_def)
apply auto
by (case_tac "a € M", auto)

lemma sfilter_srtdwl2:

"#(sfilter X-s) =oc=—#(sfilter X- (srtdw (Aa. a € X)-s)) =od"
apply (case_-tac "sfilter X-s = €", auto)
by (drule sfilterl8 , auto)

lemma stwbl_srtdw: "stwbl f-s e srtdw f:s = s"
apply (rule stream.take_lemma)

apply (rule_tac x="s" in spec)

apply (induct-tac n, simp+)

apply (rule alll)

apply (rule-tac x="x" in scases, simp+)

by (case-tac "f a", simp+)

(» the length of srtdw f:-x is always smaller than the length of x %)
lemma slen_srtdw: "# (srtdw f-x) < #x"
apply (induction x rule:ind)
apply(simp add: len_stream_def)
apply (subst Inle_.conv [THEN sym], simp del: Inle_.conv, simp)
apply (case_tac "f a", simp+)
by (rule trans_Inle, simp+)

(» stwbl produces a prefix of the input *)
lemma stwbl_below [simp]: "stwbl f-s C s"
by (metis (no-types) minimal monofun_cfun.arg sconc.snd_empty stwbl_srtdw)

(» relation between srtdw and stwbl x)
lemma srtdw_stwbl [simp]: "srtdw f- (stwbl f-.s) = e" (is "?F s")
proof(rule ind [of _s ])
show "adm ?F" by simp
show "2F e" by simp
fix a
fix s
assume IH: "?F s"
thus "?F (ta e s)"
proof (cases "f a")
case True thus ?thesis by (simp add: IH)
next
case False thus ?thesis by simp
qed
qed
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(b ——— %)

(» srcdups applied to the empty stream returns the empty stream =)
lemma strict-srcdups|[simp]: "srcdups-e = €e"
by (subst srcdups.def [THEN fix_-eq2], simp)

(x a singleton stream can't possibly contain duplicates «x)
lemma [simp]: "srcdups- (fta) = fta"
by (subst srcdups.def [THEN fix_-eq2], simp)

(x» 1if the head a of a stream is followed by a duplicate, only one of the two elements will be kept by srcdups x)
lemma srcdups.eq[simp]: "srcdups- (Taetaes) = srcdups- (taes)"

apply (subst srcdups_def [THEN fix_eq2], simp)

by (rule sym, subst srcdups_def [THEN fix.eq2], simp)

(» if the head a of a stream is followed by a distinct element, both elements will be keypt by srcdups x)
lemma srcdups_neq[simp]:

"a#b=—=srcdups- (Ta ® Tb @ s) = Ta e srcdups-(Tb e s)"

by (subst srcdups_def [THEN fix_eq2], simp)

lemma srcdups_slen [simp]: "#(srcdups-s) < #s"
apply (rule ind [of _ s])
apply (simp-all)
apply (metis (mono_tags, lifting) adml inf_chainl4 inf_ub 142)
apply (rule-tac x=s in scases, simp-all)
apply (case-tac "a = aa", simp-.all)
using less_.Insuc order.trans by blast

(#xUsed for ABP-Composition of sender and receiverx)

lemma srcdups.eq2:"a=b=—>srcdups- (Taetbes) = srcdups- (Tbes)"
by simp
lemma srcdups_ex:"3Jy. srcdups- (Taes) = Taey"

by (subst srcdups.def [THEN fix_eq2], auto)

lemma srcdups_shd[simp]:"shd (srcdups- (Taes)) = a"
by (subst srcdups.def [THEN fix_eq2],auto)

lemma srcdups_srt:"srt- (srcdups- (taes)) = (srcdups- (sdropwhile (Az. z = a)-s))"
by (subst srcdups.def [THEN fix_eq2], auto)

lemma srcdups_shd2[simp]:"s#e=—>shd (srcdups-s) = shd s"
by (subst srcdups-def [THEN fix_eq2],auto)

lemma srcdups.srt2:"s#e=—>srt- (srcdups-s) = (srcdups- (sdropwhile (Az. z = shd s)- (srt-s)))"
by (subst srcdups.def [THEN fix_eq2],auto)

lemma srcdups_imposs_h:"Fin 1 < #(srcdups-s)==shd (srcdups-s)##shd(srt- (srcdups-s))"
apply (cases "s=e")
using empty_is_shortest apply fastforce
apply (subst srcdups_srt2,auto)
apply (subgoal_-tac "srcdups- (sdropwhile (Az. z = shd s)- (srt-s))#e")
apply (metis (mono_tags, lifting) sdropwhile_.resup srcdups.shd2 strict.srcdups surj_scons)
proof —
assume al: "s # e"
assume a2: "Fin 1 < #(srcdups-s)"
have f1:"Fin 0 = 0"
using Fin_02bot bot.is_.0 by presburger
then have "lnsuc-0 = Fin (Suc 0)"
by (metis Fin_Suc)
then show "srcdups- (sdropwhile (Aa. a = shd s)-(srt-s)) # €"
using a2 a1 f1
by (metis Suc-lel less2nat not.-le not.one_le_.zero srcdups-srt2 srt_decrements_length strict-slen zero.le_one)
qed

lemma srcdups.imposs:"srcdups: (Ta @ s) # Ta e Ta e y"
apply(cases "# (srcdups- (ta es)) < Fin 1 ")
apply (metis One_nat_def bot.is_.0 Inat.con_rews neq02Suclnle not.less slen_scons)
apply(insert srcdups.imposs_h[of "ftae s"])
by (metis Fin_02bot Fin_.Suc One_nat.def Inat.con_rews Inat.sel_rews(2) Iscons_conv neq.iff shd1
slen_scons stream.sel_.rews(5) up-defined)

lemma srcdupsimposs: "srcdups- (Ta e s) # Ta e Ta e srcdups-s"
by (simp add: srcdups-imposs)

lemma srcdupsimposs2_-h2:"Vx. srcdups- (ta e s)# ta e ta e x"
by (simp add: srcdups-imposs)

lemma srcdupsimposs2: "srcdups: (ta ® s) # ta e Ta e s"
by (simp add: srcdups-imposs)

lemma srcdups_anotb_h:"srcdups: (Taetb) = Ta e Th=a # b"
by (metis sconc_snd_empty srcdups_imposs)

lemma srcdups.anotb:"srcdups- (ta @ th @ s) = ta e Tb e s=—-a# b"
using srcdupsimposs2_h2 by auto

lemma srcdups2srcdups: "srcdups- (srcdups-s) = srcdups-s"
proof(induction rule: ind [of _ s])
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case 1
then show ?case
by simp
next
case 2
then show ?case
by simp
next
case (3 a s)
have f1:"a = shd s=>s7=srcdups- (Ta e s) = srcdups-s"
using srcdups-eq[of "shd s" "srt-s"] surj.scons[of s] by auto

have f2:"a=shd s=—s#e=—srcdups- (srcdups- (ta @ s)) = srcdups-(Ta e s)"
using f1 "3.IH" by auto
moreover have"azshd s=>srcdups- (Ta @ s) = Taesrcdups-s"
by (metis srcdups-neq srcdups-shd srcdups.srt strict-sdropwhile surj.scons)
ultimately have f3:"a# shd s=—srcdups- (srcdups- (Ta e s)) = srcdups- (Ta e s)"
proof -
assume al: "a # shd s"
then have f2: "srcdups:(ta e s) = ta e srcdups-s"
by (metis (a # shd s=-srcdups-(fta e s) = fta e srcdups-s))
obtain ss :: "'a stream= 'a = 'a stream" where
f3: "Va s. srcdups:-(ta @ s) = Ta @ ss s a"

by (meson srcdups_ex)
then have f4: "f(shd s) e srt:s = s—ssrcdups- (Ta @ s) = ta @ T(shd s) e ss (srt-s) (shd s)"
using f2 by metis
have f5: "f(shd s) e srt-s

s—srcdups- (T (shd s) @ ss (srt-s) (shd s)) = srcdups-s"

then have "s # e"
by force
then have ?thesis
using f5 f4 f2 atl by (simp add: surj_scons) }
then show ?thesis
by fastforce
qed
then show ?case
using f2 by fastforce
qed

lemma srcdups_prefix_.neq:"x C y==-srcdups-x #x=—>srcdups-y # y"
proof(induction arbitrary: y rule: ind [of _ x])
case 1
then show ?case
by simp
next
case 2
then show ?case
by simp
next
case (3 a s)
have f1:"a=shd s=>srcdups- (Ta ® s) = srcdups-s"
by (metis "3.prems"(2) srcdups.eq2 srcdups_shd srcdups._srt strict_.sdropwhile strict_.srcdups surj_scons)
have f2:"azshd s=—>srcdups- (Ta ® s) = Ta e srcdups-s"
by (metis srcdups.neq srcdups.shd srcdups_srt strict_.sdropwhile surj_scons)
then have f3:"a#shd s=>srcdups-s # s"
using "3.prems" by auto
show ?case
by (smt "3.IH" "3.prems" (1) f1 f2 f3 less_fst_sconsD Iscons_conv scases srcdups2srcdups

srcdups-eq srcdups_ex srcdups.srt srcdupsimposs2 stream.con.rews(2) stream.sel_rews(5)
sup'-def surj.scons)

qed

lemma srcdups_smap-adm [simp]:
"adm (MAa. srcdups- (smap f- (srcdups-a)) = smap f- (srcdups-a)
——srcdups- (smap f-a) = smap f- (srcdups-a))"

apply (rule adm.imp, auto)
apply(rule adm_upward)
apply rule+

using srcdups_prefix_neq
by (metis monofun_cfun_arg)

lemma srcdups_smap-com_h:"s#e=—-a # shd s=-srcdups- (smap f- (srcdups-(Ta ® s))) = smap f- (srcdups- (fa e s))=—F
(shd s) # £ a"
apply(cases "shd(srt-s) # shd s")
apply (insert srcdups.neq[of a "shd s" "srt-s"] surj.scons[of s], simp)
apply (metis smap.scons srcdups.-ex srcdupsimposs2_h2)
apply (insert srcdups_-neq[of a "shd s" "srt-s"] surj.scons[of s], simp)
apply(insert srcdups-ex[of "shd s" "srt-s"],auto)
by (simp add: srcdupsimposs2.h2)

lemma srcdups_-smap-com:

shows "srcdups- (smap f- (srcdups-s)) = smap f- (srcdups-s)—srcdups- (smap f-s)= smap f- (srcdups-s)"
proof(induction rule: ind [of _ s])
case 1
then show ?case
by simp
next
case 2
then show ?case
by simp
next
case (3 a s)
have s_eps: "s = 1= srcdups: (1(f a) e smap f-s) = smap f- (srcdups- (ta e s))" by simp
hence f1: "shd s = a=>?case"
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by (metis "3.IH" "3.prems" smap.scons srcdups.eq surj.scons)
have h1: "s#Al—>s = (1(shd s) e srt-s)" by (simp add: surj_scons)
have h2: "s#Al—>shd sfa—=F (shd s) # f a—srcdups- (smap f-(Ta ® (T (shd s) e srt-s))) = smap f- (srcdups- (Ta e
(T(shd s) e srt-s)))"
proof —
assume al: "f (shd s) # £ a"
assume a2: "s # e"
assume a3: "shd s # a"
have f4: "s = 1(shd s) e srt-s"
using a2 by (metis ht)
obtain ss :: "'b stream= 'b = 'b stream" where
f5: "Vb s. srcdups:- (b @ s) = Tb @ ss s b"
by (meson srcdups-ex)
then have f6: "f(shd s) e ss (srt-s) (shd s) = srcdups-s"
using f4 by metis
have f7: "srcdups- (T(f a) @ T(f (shd s)) e smap f- (ss (srt-s) (shd s))) = t(f a) e srcdups- (1 (f (shd s))
® smap f- (ss (srt-s) (shd s)))"
using al by auto
have f8: "ta e 1 (shd s) e ss (srt-s) (shd s) = srcdups-(Ta e T(shd s) e srt-s)"
using f5 a3 by (metis (no_types) srcdups_neq)

then have f9: "1(f a) e 17 (f (shd s)) e smap f- (ss (srt-s) (shd s)) = smap f- (srcdups- (Ta e s))"
using f4 by (metis (no-types) smap.scons)
then obtain ssa :: "'a stream= 'a = 'a stream" where
f10: "T(f a) e ssa (T(f (shd s)) e ssa (smap f:(ss (srt-s) (shd s))) (f (shd s))) (f a) = srcdups- (smap

f.(srcdups: (Ta @ s)))"
by (simp add: "3.prems")
then have f11: "1(f a) e ssa (T(f (shd s)) @ ssa (smap f-(ss (srt-s) (shd s))) (f (shd s))) (f a) =
srcdups: (T(f a) ® T(f (shd s)) e smap f- (ss (srt-s) (shd s)))"
using f9 by presburger
have "1 (f a) ® ssa (T(f (shd s)) e ssa (smap f-(ss (srt-s) (shd s))) (f (shd s))) (f a) = T(f a) e smap
f. (srcdups-s)"
using f10 f8 f6 f4 by (metis (no-types) "3.prems" smap-scons)
then have "srcdups- (smap f-s) = smap f- (srcdups-s)"
using f11 {7 f6 by (metis (no_types) "3.IH" inject_scons smap.scons)
then have "srcdups- (smap f-(Ta ® T(shd s) e srt-s)) = smap £- (Ta e T(shd s) e ss (srt-s) (shd s))"
using f6 f4 al by (metis (no_types) smap.scons srcdups_neq)
then show ?thesis
using f8 by presburger
qed
have f2: "s#l—>shd s#a=—F (shd s) # f a=—7case"
using h1 h2 by auto
have f3: "s#l=shd sa=—F (shd s) = f a=>?case"
by (simp add: "3.prems" srcdups.smap-com_h)
then show ?case using f1 f2 by fastforce
qed

lemma srcdups_nbot: "s#4=srcdups-s # 1"
by (metis Iscons_conv srcdups-ex stream.con_rews(2) surj.scons)

lemma srcdups_fin: assumes "# (srcdups-s)<od and "#s=od'
obtains x where "srcdups-x = srcdups-s" and "xCs" and "#x < od'
proof -
obtain n where "srcdups- (stake n-s) = srcdups-s"
by (metis assms(1) fun_approxl2 len_stream.def Inat_-well_h2)
thus ?thesis
using Inless_def that by auto
qed

lemma srcdups._step: "srcdups- (Ta ® s) = Ta e srcdups- (sdropwhile (Ax. x=a)-s)"
apply(rule ind [of _ s], simp.all)
by (metis Iscons_conv srcdups.ex srcdups.srt stream.sel.-rews(5) up-defined)

lemma snprefix: "-xy=1shd-x=1shd-y==—(srt-x)C(srt-y)"
apply auto
by (metis Ishd_updis monofun.cfun_arg stream.sel_-rews(2) stream.sel_-rews(3) sup'-def surj.scons)

lemma srcdups.consec.noteq: "Fin (Suc n) < #(srcdups-xs)==snth n (srcdups-xs) i snth (Suc n) (srcdups-xs)"
proof

fix n :: nat
assume "Fin (Suc n) < #(srcdups-xs)" and "snth n (srcdups-xs) = snth (Suc n) (srcdups-xs)"
then obtain a s where "sdrop n-: (srcdups-xs) = Ta @ Ta e s"

by (metis convert.inductive_asm drop_not.all sdrop_back.rt snth_def surj_scons)
then have p: "srcdups- (sdrop n- (srcdups-xs)) # sdrop n- (srcdups-xs)"
by (simp add: srcdupsimposs2.h2)
have not_p: "srcdups- (sdrop n- (srcdups-xs)) = sdrop n- (srcdups-xs)"
proof —
have "srcdups- (sdrop n- (srcdups-xs)) = sdrop n- (srcdups- (srcdups-xs))"
proof (induction n)
case 0
then show ?case
by simp
next
case (Suc n)
then show ?case
by (metis sdrop_-back.rt srcdups2srcdups srcdups.srt2 stream.sel_rews(2))

qed
thus "srcdups- (sdrop n- (srcdups-xs)) = sdrop n- (srcdups-xs)"
by (simp add: srcdups2srcdups)
qed

thus "False"
using p by auto
qed

lemma bool_stream_snth:
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fixes s t :: "bool stream" and n :: nat and a :: bool
shows "s = ta e t—>Fin n < #(srcdups-s)—>snth n (srcdups-s) = (even n = a)"
proof (induction n)
case 0
then show ?case
by simp
next
case (Suc n)
then show ?case
using convert.inductive_asm even_Suc srcdups_consec.noteq by blast
qed

lemma srcdups_snth_stake_fin: "As n. #s = Fin k=—>k > (Suc n)=>snth n s # snth (Suc n) s=—>srcdups- (stake (Suc
n) -s) # srcdups-s"
proof (induction k rule: less.induct)
case (less k)
then show ?case
proof (cases "k < Suc 0")
case True
then show ?thesis
using less.prems(2) by linarith
next
case False
then obtain a b t where "s = Ta e tb e t"
by (metis drop_-not.all lel le_Sucl less.prems(1) less2nat.-lemma sdrop_-0 sdrop_back.rt surj_scons)
obtain | where "k = Suc 1"
using Suc_less_eq2 less.prems(2) by blast
then have "1 < k"
by simp
moreover have "#(tb e t) = Fin 1"
using (k = Suc 1) (s = ta e tb e t) less.prems(1) by auto
then show ?thesis
proof (cases n)
case 0
then have "srcdups- (stake (Suc n)-s) = Ta"
by (simp add: (s = ta e tb e t))
moreover have "srcdups-s # fta"
proof —
have "snth 0 s # snth (Suc 0) s"
using "0" less.prems(3) by blast
then have "a # b"
by (simp add: (s = ta e tb e t))
then have "srcdups-s = Ta e srcdups- (Tb e t)"
using (s = ta e tb e t) srcdups_neq by blast
then show ?thesis
using srcdups-nbot by force
qed
ultimately show ?thesis
by auto
next
case (Suc m)
have "Suc m < 1"
using Suc (k = Suc |) less.prems(2) by blast
moreover have "snth m (Tb e t) # snth (Suc m) (Tb e t)"
proof —
have "tb e t = srt-s"
by (simp add: (s = ta e tb e t))
then show ?thesis
by (metis (no-types) Suc less.prems(3) sdrop_forw_rt snth_def)
qed
ultimately have "srcdups- (stake (Suc m):(fb e t)) # srcdups:-(Tb e t)"
using (#(tb e t) = Fin |) (I < k) less.IH by blast
then have "srcdups- (b e (stake m-t)) # srcdups- (b e t)"

by simp
then have "srcdups-s # fTa @ (srcdups-(Tb e (stake m-t)))"
by (metis (no_types, lifting) (s = ta e tb e t) inject_.scons srcdups2srcdups srcdups-eq srcdups_neq

srcdups_step)
then show ?thesis
proof -
{ assume "a # b"
then have "srcdups- (Ta @ Tb e stake m-t) # srcdups-s"
using (srcdups-s # ta e srcdups-(tb e stake m-t)) by auto
then have ?thesis
using Suc (s = Ta e tb e t) by force }
then show ?thesis
using Suc (s = Ta e tb e t) (srcdups-(Tb e stake m-t) # srcdups-(ftb e t)) by fastforce
qed
qed
qed
qed

lemma srcdups-end.neq: "#s < ooc—>a 7 b—>srcdups- (s ® Ta @ Tb) = srcdups- (s e ta) e Thb"
proof (rule finind3 [of s], simp+)
assume "#s <od' and "a # b"
then show "srcdups-(Ta e Tb) = ta e Tb"
by (metis Iscons_conv srcdups_neq srcdups.step strict.sdropwhile strict_srcdups sup'.def)
next
fix t :: "'a stream" and ¢ :: 'a
assume "#t <od' and "srcdups-(t e Ta e Tb) = srcdups-(t e Ta) e Tb"
then have "srcdups- (fc e (t e ta)) @ Tb = srcdups- (Tc @ (t e Ta e Thb))"
proof (cases "t = €")
case True
then show ?thesis
by (metis (no_types, lifting) (srcdups-(t e ta e tb) = srcdups-(t e ta) e tb) assoc_sconc inject.scons
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sconc_snd_empty srcdups_eq srcdups.neq)
next
case False
then have not_empty: "t # e"
by simp
then show ?thesis
proof (cases "c = shd t")
case True
then show ?thesis
by (metis False (srcdups-(t e Ta e tb) = srcdups-(t e ta) e Tb) sconc._scons srcdups._eq surj_scons)
next
case False
then have "srcdups: (Tc @ (t @ ta @ Th)) = Tc @ srcdups-(t e Ta e Th)"
proof -
have "1 (shd t) e srt-t = t"
using not_.empty surj_scons by blast
then show ?thesis
by (metis (no.types) False assoc_sconc srcdups.neq)
qed
then show ?thesis
proof —
have "t (shd t) e srt-t = t"
by (meson not_empty surj_scons)
then show ?thesis
by (metis (no.types) False (srcdups-(t e ta e tb) = srcdups-(t e fta) e Tb) assoc.sconc srcdups_neq)
qed
qed
qed
thus "srcdups- ((Tc @ t) e Ta @ Thb) = srcdups: ((fTc e t) e Ta) e Tb"
by simp
qed

lemma srcdups-end_eq: "srcdups- (s e ta e ta) = srcdups: (s e Ta)"
proof (cases "#s <od')

case True

then show ?thesis

proof (rule finind3, simp)

show "srcdups- (Ta @ tTa) = ta"
by (simp add: srcdups.step)
next
fix t 11 "'a stream" and b :: ‘a
assume "#t <od' and "srcdups- (t e Ta e Ta) = srcdups- (t e ta)"
then show "srcdups:-((tb e t) e ta e ta) = srcdups- ((Th e t) e Ta)"
proof (cases "t = e")
case True

then show ?thesis
by (metis sconc_snd_empty srcdups-eq srcdups-neq)
next
case False
then have 1: "t # e"
by simp
then show ?thesis
proof(cases "shd t = b")
case True
then show ?thesis
by (metis False (srcdups-(t e ta e ta) = srcdups-(t e ta)) assoc.sconc srcdups.eq surj.scons)
next
case False
have "t # e"
by (simp add: "1")
then have "srcdups-(Tb e t e Ta @ ta) = tb e srcdups-(t e ta e ta)"

by (metis (no-types, lifting) False assoc.sconc srcdups-neq surj_scons)
then show ?thesis
by (metis (no_types, lifting) "1" False (srcdups-(t e ta e ta) = srcdups-(t e fa)) sconc_scons
srcdups-neq surj-scons)
qed
qed
qed
next
case False

then show ?thesis
by (simp add: less_le)
qed

lemma srcdups_sntimes: "n > 0=srcdups- (sntimes n (ta)) = ta"
proof (induction n)
case 0
then show ?case
by simp
next
case (Suc n)
then show ?case
proof (cases "n > 0")
case True
then show ?thesis
by (metis Suc.IH grO_implies_Suc sntimes.simps(2) srcdups_eq)
next
case False
then show ?thesis
by auto
qed
qed

lemma srcdups_sntimes_prefix: "n > 0==-srcdups- ((sntimes n (ta)) @ s) = ta e srcdups- (sdropwhile (Ax. x=a)-s)"
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proof (induction n)
case 0
then show ?case
by simp
next
case (Suc n)
then show ?case
proof (cases "n > 1")
case True
then obtain m where "n = Suc m" and "m > 0"
by (metis One.nat-def Suc_lessE)
then have "srcdups- ((sntimes (Suc n) (fTa)) e s) = srcdups- ((sntimes n (Ta)) e s)"
by (simp add: (n = Suc m))
then show ?thesis
using Suc.IH (n = Suc m) zero_less_Suc by auto

next
case False
have "srcdups-(Ta @ s) = Ta e srcdups- (sdropwhile (Ax. x=a)-s)"
using srcdups_step by blast
moreover have "sntimes 1 (ta) = fta"

by (simp add: One_nat_def)
ultimately show ?thesis

by (metis (no-types, lifting) False One_nat.def Suc.lessl assoc.sconc neqO_conv sntimes.simps(2) srcdups-eq)
qed
qed
(* *)
subsection (@{term sscanl})
(* *)

(* SSCANL with the empty stream results in the empty stream x)
lemma SSCANL_empty[simp]: "SSCANL n f g € = €"
by (induct-tac n, auto)

lemma mono_SSCANL:
"W xy g. x Cy—SSCANL n £ q x C SSCANL n £ g y"
apply (induct_-tac n, auto)
apply (drule lessD, erule disjE, simp)
apply (erule exE)+
apply (erule conjE)+
by (simp, rule monofun_cfun_arg, simp)

lemma contlub_SSCANL:
"Wf g s. SSCANL n £ g s = SSCANL n f g (stake n-s)"
apply (induct-tac n, auto)
apply (rule-tac x=s in scases)
apply auto
apply (rule-tac x=s in scases)
by auto

lemma chain.SSCANL: "chain SSCANL"

apply (rule chainl)

apply (subst fun_below_iff)+

apply (induct_-tac i, auto)

apply (rule monofun_cfun_arg)

apply (erule_tac x="x" in allE)

apply (erule_tac x="x xa (shd xb)" in allE)
by (erule_tac x="srt-xb" in allE, auto)

lemma cont_lub_SSCANL: "cont (As. [Ji. SSCANL i £ g s)"
apply (rule cont2cont_lub)

apply (rule ch2ch_fun)

apply (rule chainl)

apply (rule fun_belowD [of _ _ "g"])

apply (rule fun_belowD [of _ _ "f"])

apply (rule chainE)

apply (rule chain_SSCANL)

apply (rule pr_contl)

apply (rule monofunl)

apply (rule mono.SSCANL [rule_format], assumption)
apply (rule alll)

apply (rule_tac x="i" in exl)

by (rule contlub.SSCANL [rule_format])

(» sscanl applied to the empty stream returns the empty stream x)
lemma sscanl_empty[simp]: "sscanl f g-e = €"
apply (simp add: sscanl_-def)
apply (subst beta.cfun, rule cont_lub_SSCANL)
by (subst is_lub_const
[THEN lub_eql, of "e", THEN sym], simp)

(+ scanning Taes using g as the initial element is equivalent to computing T(f g a) and appending the
result of scanning s with (f g a) as the initial element x)

lemma sscanl_scons[simp]:
"sscanl f g- (Taes) = 1(f g a) e sscanl £ (f g a)-s"

apply (simp add: sscanl_def)

apply (subst beta_cfun, rule cont.lub_SSCANL)+

apply (subst contlub_cfun_arg)

apply (rule ch2ch_fun, rule ch2ch_fun)
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apply (rule chainl)

apply (rule fun_belowD [of _ _ "f"])

apply (rule chain.SSCANL [THEN chainE])

apply (subst lub_range_shift [where j="Suc 0", THEN sym])
apply (rule ch2ch_fun, rule ch2ch_fun)

apply (rule chainl)

apply (rule fun_belowD [of _ _ "f"])

by (rule chain.SSCANL [THEN chainE], simp)

(+ scanning a singleton stream is equivalent to computing T(f a b) *)
lemma sscanl_one[simp]: "sscanl f a-(Th) = T(f a b)"
by (insert sscanl_scons [of f a b €], auto)

lemma fair2_sscanl: "#x < #(sscanl f a-x)"
apply (rule spec [where x = a])

apply (rule ind [of _ x], auto)

apply (simp add: len_stream_def)
by (subst Inle_def, simp del: Inle_conv)

(» The first element of the result of sscanl_h is (f g (shd s)) =)
lemma sscanl_shd: "s#e=—shd (sscanl f g-s) = (f g (shd s))"
by (metis shd1 sscanl_scons surj_scons)

(» dropping the first element of the result of sscanl is equivalent to beginning the scan with

(f a (shd s)) as the initial element and proceeding with the rest of the input «)
lemma sscanl_srt: "srt-(sscanl f a-s) = sscanl f (f a (shd s)) - (srt-s) "
by (metis (no-types, lifting) sconc.fst_empty sconc_scons' sscanl_empty sscanl_scons stream.sel_-rews(2)

stream.sel_.rews (5) sup'-def surj_scons up-defined)

(* the n + 1'st element produced by sscanl is the result of mering the n + 1'st item of s with the n'th
element produced by sscanl x)
lemma sscanl_snth: "Fin (Suc n) < #s==snth (Suc n) (sscanl f a-s) = f (snth n (sscanl f a-s)) (snth (Suc n) s)"
apply (induction n arbitrary: a s)
apply (smt Fin_02bot Fin_leq-Suc_leq less2InleD less_Insuc Inat.po_eq-conv Inless_def Inzero.def shd1
slen_empty_eq slen_rt_ile_eq snth_scons snth_shd sscanl_scons surj_scons)
by (smt Fin_Suc Inat_po.eq.conv Inle_def Inless_def Insuc_Inle_.emb Inzero.def minimal slen_scons snth_scons
sscanl_scons strict_slen surj_scons)

(» the result of sscanl has the same length as the input stream x *)
lemma fair_sscanl[simp]: "#(sscanl f a-x) = #x"

apply (rule spec [where x = a])

by (rule ind [of _ x], auto, simp add: len_stream_def)

(» Verification of sscanl with sscanl_nth «)

primrec sscanl_nth :: "nat = ('a= 'a = 'a) = 'a = 'a stream = 'a" where
"sscanl_nth 0 f g s = f g (shd s)" |
"sscanl_nth (Suc n) f g s = sscanl_nth n £ (f g (shd s)) (srt-s)"

(» Nth element of sscanl is equal to sscanl_nth x)
lemma sscanl2sscanl_nth:

"Fin n<#s=—snth n (sscanl f g-s) = sscanl_nth n f g s"
proof (induction n arbitrary: q s, auto)

fix g :: "'a" and s :: "'a stream" and k :: "lnat"

assume al: "#s = lnsuc-k"

hence hi1: "s # e"

using Insuc_neq.-O.rev strict_slen by auto

thus "shd (sscanl f g-s) = £ g (shd s)"
by (simp add: sscanl_shd)
next
fix n :: "nat" and q :: "'a" and s :: "'a stream"
assume a2: "Ag s. Fin n < #s=>snth n (sscanl f g-s) = sscanl_nth n £ q s"
assume a3: "Fin (Suc n) < #s"
thus "snth (Suc n) (sscanl f g-s) = sscanl_nth n f (f g (shd s)) (srt-s)"
by (metis a2 a3 lel not-less slen_rt.ile_eq snth_rt sscanl_srt)
qed

lemma sscan_ntimes_loop:
assumes "/\r. sscanl f state-(s e r) = out e (sscanl f state-r)"
shows "sscanl f state- (sntimes n s) = sntimes n out"
using assms
by (induction n, simp_.all)

lemma sscanl_inftimes_loop:
assumes "Ar. sscanl f state-(s o r
shows "sscanl f state- (sinftimes s
using assms
by (metis rek2sinftimes sinftimes_unfold slen_.empty_eq sscanl_empty fair_sscanl strict_icycle)

= out e (sscanl f state-r)"
= sinftimes out"

(* *)
subsection (@{term szip})
(* - - %)

(» szip applied to €-s returns the empty stream x)
lemma strict_szip-fst[simp]: "szip-e-s = e"
by (subst szip.def [THEN fix_eq2],simp)

(» szip applied to s-€ returns the empty stream x)

lemma strict_szip.snd[simp]: "szip-s-e = e"
by (subst szip_def [THEN fix_eq2], simp)
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(» unfolding szip x*)
lemma szip_scons[simp]: "szip- (Taesl) - (tbes2) = 1(a,b) e (szip-sl-s2)"
by (subst szip.def [THEN fix_eq2], simp)

(» rules for szip =*)
lemma [simp]: "szip- (ta)-(th @ y) = T(a,b)"
by (subst szip_def [THEN fix_eq2], simp)

(» rules for szip )
lemma [simp]: "szip-(ta e x):(Tb) = T(a,b)"
by (subst szip.def [THEN fix_.eq2], simp)

(+ rules for szip )
lemma [simp]: "szip- (Ta)- (Tb) = T(a,b)"
by (subst szip.-def [THEN fix_-eq2], simp)

lemma strict.rev_szip: "szip:-x-y = e=>x = € Vy = €"
apply (rule_tac x=x in scases, auto)
by (rule_tac x=y in scases, auto)

lemma sprojfst_szipli[rule_format]:

"Vx. #x =oo—rsprojfst- (szip-i-x) = i"
apply (rule ind [of _ i], auto)
by (rule_-tac x=x in scases, auto)

(» analogous for sprojsnd x)
lemma sprojsnd_szipl1[rule_format]:
"Wx. #x =oo—rsprojsnd- (szip-x-i) = i"
apply (rule ind [of _ i], auto)
by (rule-tac x=x in scases, auto)

(+ zipping the infinite constant streams Tw0 and Tyo is equivalent to infinitely repeating the tuple
T(x, y) %)

lemma szip2sinftimes[simp]: "szip- ((Tx)"9 - ((Ty)™9 = ((T(x, y))’>9 "

by (metis s2sinftimes sinftimes_unfold szip.scons)

(» the length of szip-as-bs is the minimum of the lengths of as and bs x)

lemma szip_len [simp]: "#(szip-as-bs) = min (#as) (#bs)"

apply(induction as arbitrary: bs)

apply(rule adml)

apply auto[1]

apply (metis inf_chainl4 inf_less_eq lub_eql lub_finch2 min_def slen_sprojsnd sprojsnd_szipl1)
apply simp

apply(case_tac "bs=e")

apply auto[1]

proof —
fix u :: "'a discr u"
fix as:: "'a stream"
fix bs:: "'b stream"
assume as1: "u # 1" and
as2: "(Nos::'b stream. #(szip-as-bs) = min (#as) (#bs))" and as3: "bs # €"

obtain a where a.def: "updis a = u" by (metis (mono_tags)asi Ishd_updis stream.sel_rews(4) stream.sel_-rews(5)
surj_scons)
obtain b bs2 where b_def: "bs = tb e bs2" by (metis as3 surj_scons)

hence "# (szip-(Ta @ as)-(Tb @ bs2)) = min (#(ta e as)) (#(Tb e bs2))" by (simp add: as2 min._def)
thus "#(szip- (u && as)-bs) = min (#(u && as)) (#bs)" by (metis a_def b_def Iscons_conv)

qed

lemma szip_nth: "Fin n < #sl=>Fin n < #s2==snth n (szip-sl-s2) = (snth n sl, snth n s2)"
apply(induction n arbitrary: s1 s2)
apply auto

apply (metis Insuc-neq-0 only_empty_has_length_0 shd1 surj_scons szip_-scons)

apply(simp add: snth_rt)

by (smt empty_is_shortest leD not.-le only_empty_has_length_.0 only_empty_has_length_0 only_empty_has_length_0
slen_rt.ile_eq slen_rt_.ile_eq snth_rt snth_scons stream.sel.-rews(2) stream.sel_.rews(2) strict_slen
strict-slen strict-slen strict.szip-snd surj_-scons surj.scons szip-scons)

lemma szip-sdrop: "sdrop n- (szip-s-t) = szip- (sdrop n-s) - (sdrop n-t)"
apply(induction n arbitrary: s t, simp)
by (metis (no-types, lifting) sdrop-forw_.rt sdrop-scons stream.sel_rews(2) strict-szip-fst
strict_.szip_snd surj_scons szip.scons)
(% %)
subsection @{term sscanlA})
(% *)

lemma sscanla_cont: "cont (As. sprojfst- (sscanl (A(_,b). f b) (undefined, s0)-s))"
by simp

lemma sscanla_len [simp]: "#(sscanlA f s0-s) = #s"
by (simp add: sscanlA_def slen_sprojfst)

lemma sscanla_bot [simp]: "sscanlA f s0-L = 1"
by (simp add: sscanlA_def)

lemma sscanla_step [simp]: "sscanlA f sO-(ta @ as) = T(fst (f sO a)) e sscanlA f (snd (f sO a))-as"
apply (simp add: sscanlA_.def sprojfst_def)

proof —
have "(case f s0 a of (a, x) = f x) = (case (undefined::'a, snd (f s0 a)) of (a, x) = f x)"

by (metis (no_types) old.prod.case prod.collapse)
then have "1 (shd as) e srt-as = as—sscanl (A(a, y). £ y) (f s0 a)-as = sscanl (A(a, y). £ y) (undefined, snd
(f s0 a))- (T(shd as) e srt-as)"
by (metis (no_types) sscanl_scons)

147



then show "1 (fst (f s0 a)) e smap fst- (sscanl (A(a, y). £ y) (f sO a)- as) = T (fst (f s0 a)) e smap fst-
(sscanl (A(a, y). f y) (undefined, snd (f sO a))- as)"
using surj_scons by force
qed

lemma sscanla.one [simp]: "sscanlA f b- (Tx) = T(fst (f b x))"
apply (simp add: sscanlA_def)
by (metis prod.collapse sconc.snd_empty sprojfst.scons strict_sprojfst)

lemma sscanla.shd: "s#e=—-shd (sscanlA f g-s) = fst (f g (shd s))"
by (metis shd1 sscanla.step surj_scons)

lemma sscanla.srt: "srt- (sscanlA f a-s) = sscanlA f (snd (f a (shd s)))- (srt-s)"
by (metis (no-types, lifting) sconc_fst_empty sconc_scons' sscanla_-bot sscanla.step stream.sel_.rews(2)
stream.sel_.rews(5) sup'-def surj_scons up-defined)

lemma sscanla_ntimes_loop:
assumes "/\r. sscanlA f state-(s @ r) = out e (sscanlA f state-r)"
shows "sscanlA f state- (sntimes n s) = sntimes n out"
using assms
by (induction n, simp_all)

lemma sscanla_inftimes_loop:
assumes "Ar. sscanlA f state:(s ® r) = out e (sscanlA f state-r)"
shows "sscanlA f state- (sinftimes s) = sinftimes out"
using assms
by (metis rek2sinftimes sinftimes_unfold slen_.empty_eq sscanla_bot sscanla_len strict.icycle)

(* *)

subsection (@{term sscanlAg})

(* - - - - %)

lemma sscanlag-cont: "cont (As. (sscanl (A(b,_). f b) (s0, undefined)-s))"
by simp

lemma sscanlag-len [simp]: "#(sscanlAg f s0-s) = #s"

by(simp add: sscanlAg.def slen_sprojsnd)

lemma sscanlag_bot [simp]: "sscanlag £ s0-L = 1"
by (simp add: sscanlAg.def)

lemma sscanlag.one [simp]: "sscanlAg f b- (tx) = T (fst(f b x), snd (f b x))"
by (simp add: sscanlAg.-def)

lemma sscanlag-step [simp]: "sscanlAg f sO-(ta @ as) = T((f s0O a)) e sscanlAg f (fst (f sO a))-as"
apply (simp add: sscanlAg.def sprojfst_def)
by (smt case_prod.conv prod.collapse sscanl_empty sscanl.scons surj_scons)

lemma sscanlag-shd: "s#e=—>shd (sscanlAg f g-s) = (f g (shd s))"
by (metis shd1 sscanlag-step surj.scons)

lemma sscanlag.srt: "srt- (sscanlAg f a-s) = sscanlAg f (fst (f a (shd s)))- (srt-s)"
by (metis (no.-types, lifting) sconc_fst_empty sconc.scons' sscanlag-bot sscanlag.step stream.sel_.rews(2)
stream.sel_rews (5) sup'.def surj_scons up-defined)

lemma snth_sscanlAg:
assumes "Fin (Suc j)<#i"

shows "snth (Suc j) (sscanlAg f s0-i) = f (fst (snth j (sscanlAg f s0-i))) (snth (Suc j) i)"
apply (simp add: sscanlAg.def)
by (metis (mono-tags, lifting) assms case_prod.conv prod.exhaust.sel sscanl_snth)

lemma sscanlag-ntimes_loop:
assumes "/\r. sscanlAg f state-(s @ r) = out e (sscanlAg f state-r)"
shows "sscanlAg f state- (sntimes n s) = sntimes n out"
using assms
by (induction n, simp_.all)

lemma sscanlag.inftimes_loop:
assumes "Ar. sscanlAg f state-(s e r
shows "sscanlAg f state- (sinftimes s
using assms
by (metis rek2sinftimes sinftimes_unfold slen_empty_eq sscanlag_bot sscanlag_len strict_icycle)

= out e (sscanlAg f state-r)"
= sinftimes out"

(* - - - ——= %)
subsection (@{term sscanlAfst})
(* *)

lemma sscanlafst_.cont: "cont (As. sprojfst- (sscanlAg (A(_,b). f b) (undefined, s0)-s))"
by simp

lemma sscanlafst_len [simp]: "#(sscanlAfst f sO-s) = #s"
by (simp add: sscanlAfst_.def slen_sprojfst)

lemma sscanlafst_bot [simp]: "sscanlafst f s0-1 = 1"
by (simp add: sscanlAfst_def)

lemma sscanlafst_step [simp]: "sscanlAfst f s0-(Ta ® as) = P (fst (f s0 a)) e sscanlAfst f (fst (f sO a))-as"
apply (simp add: sscanlAfst_.def sprojfst_def sscanlAg.def)
by (smt approxl2 case_prod_conv eta_cfun fair.sscanl fin2stake prod.collapse sconc_prefix sconc.snd_empty
slen_scons slen.smap smap.hd.rst sprojfst.def sscanl_empty sscanl_shd sscanl_srt strict.sprojfst)

lemma sscanlafst_.one [simp]: "sscanlAfst f b-(Tx) = T(fst (f b x))"
apply(simp add: sscanlAfst_def)
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by (metis prod.collapse sconc.snd_empty sprojfst_scons strict.sprojfst)

lemma sscanlafst_shd: "s#e=—-shd (sscanlAfst f g-s) = fst (f g (shd s))"
by (metis shd1 sscanlafst.step surj.scons)

lemma sscanlafst_srt: "srt-(sscanlAfst f a-s) = sscanlAfst £ (fst (f a (shd s)))-(srt-s)"
by (metis (no-types, lifting) sconc_fst_empty sconc_scons' sscanlafst_bot sscanlafst_step stream.sel_-rews(2)
stream.sel_rews (5) sup'-def surj.scons up-defined)

lemma sscanlafst_snth: assumes "Fin (Suc n) < #s" and "s2 = fst (shd (sscanlAg f state-s))"
shows "snth (Suc n) (sscanlAfst f state-s) = snth n (sscanlAfst f s2-(srt-s))"
apply (simp add: assms sscanlAfst.def)
apply (subst sprojfst_snth)
apply(simp add: assms)
apply (meson assms(1) leD lel slen_rt.ile_eq)
apply (subst snth_sscanlAg)
apply(simp add: assms)
by (metis (no-types, lifting) assms(1) empty.is_shortest shd1 snth_scons snth_sscanlAg sscanlag-step surj_scons)

lemma sscanlafst_ntimes_loop:
assumes "Ar. sscanlAfst f state-(s e r) = out e (sscanlAfst f state-r)"
shows "sscanlAfst f state- (sntimes n s) = sntimes n out"
using assms
by (induction n, simp_-all)

lemma sscanlafst_inftimes_loop:
assumes "Ar. sscanlAfst f state-(s ® r) = out e (sscanlAfst f state-r)"
shows "sscanlAfst f state- (sinftimes s) = sinftimes out"
using assms
by (metis rek2sinftimes sinftimes_unfold slen_.empty_eq sscanlafst_-bot sscanlafst_len strict_icycle)

(* -
subsection (@{term sscanlAsnd})

lemma sscanlasnd_cont: "cont (As. sprojsnd- (sscanl (A(b,_). £ b) (s0, undefined)-s))"
by simp

lemma sscanlasnd_len [simp]: "#(sscanlAsnd f s0-s) = #s"
by(simp add: sscanlAsnd_def slen_sprojsnd)

lemma sscanlasnd_bot [simp]: "sscanlAsnd f s0-1L = L"
by (simp add: sscanlAsnd.def)

lemma sscanlasnd_step [simp]: "sscanlAsnd f sO-(ta ® as) = T(snd (f s0O a)) e sscanlAsnd f (fst (f s0 a))-as"
apply (simp add: sscanlAsnd.def sprojsnd.def sscanlAg.def)

proof —
have "(case f s0 a of (x, a) = f x) = (case (fst (f s0 a), undefined::'a) of (x, a) = f x)"

by (metis (no-types) old.prod.case prod.collapse)
then have "1 (shd as) e srt-as = as—#sscanl (A(b, uu). £ b) (f s0 a)-as)= (sscanl (A(b, uu). f b) (fst (f sO
a), undefined) -as)"
by (metis (no_types) sscanl_scons)
then show "1 (snd (f s0 a)) e smap snd- (sscanl (A(b, uu). £ b) (f sO a)-as) = P(snd (£ s0 a)) e smap snd- (sscanl
(A(b, uu). £ b) (fst (f s0 a), undefined)-as)"
using surj_scons by force
qed

lemma sscanlasnd_one [simp]: "sscanlAsnd f b- (tx) = T(snd (f b x))"
apply(simp add: sscanlAsnd._def)
by (metis eq-snd.iff sconc.snd_empty sprojsnd.scons strict_sprojsnd)

lemma sscanlasnd.shd: "s#e=—>shd (sscanlAsnd f g-s) = snd (f g (shd s))"
by (metis shd1 sscanlasnd_step surj.scons)

lemma sscanlasnd_srt: "srt- (sscanlAsnd f a-s) = sscanlAsnd f (fst (f a (shd s)))- (srt-s)"
by (metis (no-types, lifting) sconc_fst_empty sconc_scons' sscanlasnd.-bot sscanlasnd.step stream.sel_-rews(2)
stream.sel_rews (5) sup'-def surj_scons up-defined)

lemma sscanlasnd_snth: assumes "Fin (Suc n)<#s" and "s2 = fst(shd(sscanlAg f state-s))"
shows "snth (Suc n) (sscanlAsnd f state-s) = snth n (sscanlAsnd f s2-(srt-s))"
apply(simp add: assms sscanlAsnd_def)
apply (subst sprojsnd_snth)
apply(simp add: assms)
by (metis assms(1) empty.is_shortest eta.cfun rt_Sproj.2_eq smap-snth_lemma snth_rt sprojsnd._def sscanlag-len
sscanlag.shd sscanlag-.srt)

lemma sscanlasnd._snth2:
assumes "Fin (Suc n) < #(Ta e s)"
shows "snth (Suc n) (sscanlAsnd f state-(fa ® s)) = snth n (sscanlAsnd f (fst (f state a))-s)"
using assms
apply (induction s arbitrary: a rule: ind)
by simp_all

lemma sscanlasnd.ntimes_loop:
assumes "Ar. sscanlAsnd f state:-(s e r
shows "sscanlAsnd f state- (sntimes n s
using assms
by (induction n, simp_.all)

= out @ (sscanlAsnd f state-r)"
= sntimes n out"

lemma sscanlasnd_inftimes_loop:
assumes "Ar. sscanlAsnd f state-(s e r
shows "sscanlAsnd f state- (sinftimes s
using assms
by (metis rek2sinftimes sinftimes_unfold slen_.empty_eq sscanlasnd_bot sscanlasnd_len strict_icycle)

= out e (sscanlAsnd f state-r)"
= sinftimes out"
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lemma sscanlasnd2sinftimes:
assumes "#s=od'
and "sscanlAsnd f state-s = out e (sscanlAsnd f state-s)"
and "out # e"
shows "sscanlAsnd f state-s = sinftimes out"
using assms rek2sinftimes by auto

lemma sscanl2smap:
assumes "Ae. fst(f s e) = s"
and "g = (Aa. snd(f s a))"
shows"sscanlAsnd £ s = smap g"
apply(rule cfun_eql)
by(induct-tac x rule: ind,simp_.all add: assms)

(h ——— %)

subsection @{term merge})

(» unfolding of merge function =)
lemma merge_unfold: "merge f- (tx ® xs)-(fye ys) = T(f x y) ® merge f-xs-ys"
by(simp add: merge_def)

(» relation between merge and snth *)
lemma merge_snth[simp]: "Fin n <#xs==%in n < #ys=—snth n (merge f-xs-ys) = f (snth n xs) (snth n ys)"
apply(induction n arbitrary:xs ys)
apply (metis Fin_.02bot merge_unfold Inless_def Inzero.def shd1 slen_.empty_eq snth_shd surj.scons)
by (smt Fin_.Suc Fin_leq-Suc-leq Suc-eq-plus1_left merge_unfold inject_-Insuc less2eq less2InleD Inle.conv
Inless_def Insuc-Inle_.emb sconc.snd_empty sdropostake shdi slen_scons snth_rt snth_scons split_streaml1
stream.take_strict surj.scons ub_.slen_stake)

(x» merge applied to f-e-ys return the empty stream x)
lemma merge_epsi[simp]: "merge f-e-ys = €"
by (simp add: merge_def)

(x» merge applied to f-xs-€ also returns the empty stream =)
lemma merge_eps2[simp]: "merge f:-xs-e = €"
by(simp add: merge_def)

(» relation between srt and merge x)
lemma [simp]: "srt- (merge f-(Ta ® as)-(Tb e bs)) = merge f-as-bs"
by (simp add: merge_unfold)

(» the length of merge f-as-bs is the minimum of the lengths of as and bs )
lemma merge_len [simp]: "#(merge f-as-bs) = min (#as) (#bs)"
by (simp add: merge_def)

(x the merge function is commutative x)
lemma merge_commutative: assumes "A a b. £ a b = £ b a"
shows "merge f-as-bs = merge f-bs-as"
apply(rule snths_eq)
apply (simp add: min.commute)
by (simp add: assms)

( R R

subsection (@{term siterate})
(% *)

R -

lemma siterate_inv_lemma:
"Wx z a. #z = #x
——stake n- (sscanl (Aa b. f a) a-x) =
stake n-(sscanl (Aa b. f a) a-z)"
apply (induct-tac n, auto)
apply (rule-tac x=x in scases, auto)
by (rule_-tac x=z in scases, auto)

lemma siterate.def2:
"#x = oc—>siterate f a = Ta e sscanl (Aa b. f a) a-x"
apply (subst siterate_def)
apply (rule somel2_ex)
apply (rule_tac x="sinftimes (T(SOME a. True))" in exl|, simp)
apply (rule cfun.arg-cong)
apply (rule stream.take_lemma)
by (rule siterate_inv_.lemma [rule_-format], simp)

lemma siterate._scons: "siterate f a = Ta @ siterate f (f a)"
apply (rule stream.take_lemma [OF spec [where x="a"]])

apply (induct-tac n, auto)

apply (insert siterate_def2 [of _ f], atomize)

apply (erule_tac x="sinftimes (tx)" in allE, auto)

by (subst sinftimes_unfold, simp)

(» to define the nth element of siterate we define a helper function <niterate> *)
(% (iterate) cannot be used, because the function is only about CPO's, maybe some
of those lemmata about niterate could be in Prelude, but not all of them x)

primrec niterate :: "nat = ('a::type = 'a) = ('a=- 'a)" where
"niterate 0 = (A F x. x)"
| "niterate (Suc n) = (A F x. F (niterate n F x))"

(» niterate applied to the successor of n is the same as applying niterate to n F )
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lemma niterate_Suc2: "niterate (Suc n) F x = niterate n F (F x)"
apply (induction n)
by(simp_all)

(» relation between iterate and niterate x)

lemma niter2iter: "iterate g-h:-x = niterate g (Rep_cfun h) x"
apply (induction g)

by(simp_.all)

(» iterate and the empty stream x)

lemma iterate_eps [simp]: assumes "g e = €"
shows " (iterate i-(A h. (As. s @ h (g s)))-Ll) € = e"
using assms by (induction i, auto)

(» fix and the empty stream x)
lemma fix_eps [simp]: assumes "g e = €"
shows "(u h. (As. s e h (g s))) € = €"

proof —
have al: "max_in_chain 0 (Ai. (iterate i-(A h. (As. s @ h (g s)))-Ll) € )" by (simp add: max.in_chainl assms)
hence " ( }i. (iterate i-(A h. (As. s @ h (g s)))-Ll) €) = e" wusing assms by auto

hence " (] i. iterate i-(A h. (As. s @ h (g s)))-L) € = €" by (simp add: lub_fun)
thus ?thesis using fix_.def2 by (metis (no.types, lifting) lub_eq)
qed

(* beginning the iteration of the function h with the element (h x) is equivalent to beginning the
iteration with x and dropping the head of the iteration «x)

lemma siterate_sdrop: "siterate h (h x) = sdrop 1-(siterate h x)"

by (metis One.nat.def sdrop_0 sdrop-scons siterate_scons)

(» iterating the function h infinitely often after having already iterated i times is equivalent to
beginning the iteration with x and then dropping i elements from the resulting stream x)

lemma siterate_drop2iter: "siterate h (niterate i h x) = sdrop i- (siterate h x)"

apply (induction i)

apply (simp add: One_nat_def)

by (simp add: sdrop_back.rt siterate_sdrop One_nat._def)

(+ the head of iterating the function g on x doesn't have any applications of g )
lemma shd_siter[simp]: "shd (siterate g x) = x"
by (simp add: siterate.def)

(» dropping i elements from the infinite iteration of the function g on x and then extracting the head
is equivalent to computing the i'th iteration via niterate =)

lemma shd_siters: "shd (sdrop i-(siterate g x)) = niterate i g x"

by (metis shd_siter siterate_drop2iter)

lemma snth_siterate_.Suc: "snth k (siterate Suc j) = k + 3"
apply (rule-tac x="j" in spec)

apply (induct-tac k, simp)

apply (rule alll)

by (subst siterate_scons, simp)+

(» applying snth to k and siterate Suc 0 returns k x)
lemma snth_siterate_Suc_0[simp]: "snth k (siterate Suc 0) = k"
by (simp add: snth_siterate_Suc)

(» relation between sdrop and siterate «)
lemma sdrop_siterate:
"sdrop k- (siterate Suc j) = siterate Suc (j + k)"
apply (rule_tac x="j" in spec)
apply (induct-tac k, simp+)
apply (rule alll)
by (subst siterate_scons, simp)

lemma [simp]: "# (siterate f k) =od'
apply (rule infl)

apply (rule alll)

apply (rule_tac x="x" in spec)
apply (induct_-tac k, simp+)

by (subst siterate_scons, simp)+

(# the i'th element of the infinite stream of iterating the function g on x can alternatively be found
with (niterate i g x) =)

lemma snth_siter: "snth i (siterate g x) = niterate i g x"

by (simp add: shd_siters snth_def)

(» dropping j elements from the stream x and then extracting the i'th element is equivalent to extracting
the i+j'th element directly =)

lemma snth_sdrop: "snth i (sdrop j-x) = snth (i+3j) x"

by (simp add: sdrop-plus snth_def)

(» extracting the i+1'st element from the stream of iterating the function g on x is equivalent to extracting
the i'th element and then applying g one more time x)

lemma snth_snth_siter: "snth (Suc i) (siterate g x) = g (snth i (siterate g x))"

by (simp add: snth_siter)

(» dropping the first element from the chain of iterates is equivalent to shifting the chain by applying g x)
lemma sdrop.siter: "sdrop 1-(siterate g x) = smap g- (siterate g x)"

apply(rule sinf_snt2eq)

apply (simp add: fair_.sdrop)

apply simp

by (simp add: smap.snth_lemma snth_sdrop snth_snth_siter One_nat.def)
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(» if the functions g and h commute then g also commutes with any number of iterations of h x)

lemma iterate_insert: assumes "Vz. h (g z) = g (h z)"
shows "niterate i h (g x) = g (niterate i h x)"
using assms by (induction i, auto)

(» lifts iterate_insert from particular iterations to streams of iterations =)
lemma siterate_smap: assumes "Vz. g (h z) = h (g z)"
shows "smap g- (siterate h x) = siterate h (g x)"
apply (rule sinf_snt2eq, auto)
by (simp add: assms smap.snth_lemma snth_siter iterate.insert)

(» iterating the function g on x is equivalent to the stream produced by concatenating 1Tx and the
iteration of g on x shifted by another application of g x)

lemma siterate_unfold: "siterate g x = ?x @ smap g- (siterate g x)"

by (metis siterate.scons siterate_.smap)

(+ iterating the identity function produces an infinite constant stream of the element x )
lemma siter2sinf: "siterate id x = sinftimes (Tx)"
by (metis id_apply s2sinftimes siterate_scons)

(» dropping i and iterating the identity function returns siterate id x )
lemma "sdrop i-(siterate id x) = siterate id x"
by (smt sdrops_sinf siter2sinf)

(» if g acts as the identity for the element x then iterating g on x produces an infinite constant
stream of x )

lemma siter2sinf2: assumes "g x = x"
shows "siterate g x = sinftimes (fx)"

by (smt assms s2sinftimes siterate_scons)

(» shows the equivalence of an alternative recursive definition of iteration x)
lemma rek2niter: assumes "xs = Tx ® (smap g-xs)"
shows "snth i xs = niterate i g x"
proof (induction i)
case 0 thus ?case by (metis assms niterate.simps(1) shd1 snth_shd)
next
case (Suc i)
have "#xs =od" by (metis Inf'_def assms below_refl fix_least_-below inf_less_eq Inle_def slen_scons slen_smap)
thus ?case by (metis Fin_neq.inf Suc assms inf_ub Inle_def Inless_def niterate.simps(2) smap_snth_lemma
snth_scons)
qed

(» important =)
(» recursively mapping the function g over the rest of xs is equivalent to the stream of iterations of g on x x)
lemma rek2siter: assumes "xs = tx ® (smap g-xs)"
shows "xs = siterate g x"
apply (rule sinf_snt2eq, auto)
apply (metis Inf'_def assms fix_least inf_-less_eq Inle_.conv slen_scons slen_smap)
by (metis assms rek2niter snth_siter)

(» shows that siterate produces the least fixed point of the alternative recursive definition x)
lemma fixrek2siter: "fix- (A s . (Tx ® smap g-s)) = siterate g x"
by (metis (no_types) cfcomp1 cfcomp2 fix_eq rek2siter)

(» dropping elements from a stream of iterations is equivalent to adding iterations to every element x)
lemma sdrop2smap: "sdrop i-(siterate g x) = smap (niterate i g)-(siterate g x)"
by (simp add: iterate.insert siterate.drop2iter siterate.smap)

(* *)
section (Adm simp rules)
(* *)

lemma adm_subsetEq [simp]: "adm (As. g-s C h-s)"
by (metis (full_-types) SetPcpo.less_set_-def adm_below cont_Rep.cfun2)

lemma adm_subsetEq._rc [simp]: "adm (As. g-s C cs)"

by (metis (no_types, lifting) adm.def chain_monofun contlub_cfun_arg lub_below set_.cpo_simps(1))

lemma adm_subsetEq.lc [simp]: "adm (As. cs C h-s)"
by (simp add: adm_subst adm_superset)

lemma adm_subsetNEq.rc [simp]: "adm (As. = g:-s C cs)"
apply(rule adml)

apply(rule+)
by (metis SetPcpo.less_set_-def is_.ub_thelub monofun_cfun.arg subset.eq)

lemma sValues.adm2[simp]: "adm (MAa. sValues- (g-a) C svValues-a)"
apply(rule adml)
by (smt SetPcpo.less_set_def ch2ch_Rep_cfunR contlub_cfun_arg is_ub_thelub lub_below subset_iff)

(» admissibility of finstream x)
lemma adm_finstream [simp]: "adm (As::'a stream. #s<oo—P s)"
apply(rule adml)

apply auto

using inf_chainl4 len_stream_def lub_eql lub_finch2 by fastforce

(» admissibility of fin below *)
lemma adm_fin_below: "adm (Ax::'a stream . - Fin n C # x)"
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apply(rule adml)
apply auto
by (metis inf_chainl3 finite_.chain_def maxinch_is_thelub)

(*+ admissibility of fin below for special case of < %)
lemma adm_fin_below2: "adm (Ax::'a stream . — Fin n < # x)"
by(simp only: Inle_def adm_fin_below)

(* *)
section (New @{term sfilter} lemmata and @{term sfoot})

(* *)
(* - - - = %)
subsection (New @{term sfilter} lemmata)
(e %)

text (Appending the singleton stream fa increases the length of the stream y by one)
lemma slen_Insuc:
shows "#(y e Ta) = lnsuc- (#y)"
apply(induction y)
apply (smt adml fold.inf inf_.chainl4 lub_eql lub_finch2 sconc_fst.inf)
apply (metis sconc_fst_empty sconc_snd_empty slen_scons)
by (metis (no-types, lifting) assoc_sconc slen_scons stream.con.rews(2) stream.sel_rews(5) surj_scons)

(» if filtering the stream s2 with the set A produces infinitely many elements then prepending any
finite stream sl to s2 will still produce infinitely many elements x)
lemma sfilter_.conc2[simp]: assumes "# (sfilter A-s2) =od" and "#sl <od'

shows "# (sfilter A-(sles2)) =od
proof —
have " (sfilter A-(sles2)) = ((sfilter A-sl) e (sfilter A-s2))"

using add_sfilter assms(2) Inless_def ninf2Fin by fastforce
thus ?thesis by (simp add: assms(1) slen_sconc.snd_inf)
qed

(+ if the stream z is a prefix of another non-empty stream (yefTa) but isn't equal to it, then z is
also a prefix of y =)
lemma below_conc: assumes "z C (yeta)" and "z#(yeta)"
shows "zCy"
proof(cases "#y =od')
case True thus ?thesis using assms(1) sconc_fst_inf by auto
next
case False
obtain n.y where "Fin n_y= #y" using False ninf2Fin by fastforce
have "#z < #(yeta)" using assms(1) mono.slen by blast
have "#z # #(yeta)" using assms(1) assms(2) eq-slen_eq-and_less by blast
hence "#z < #(yeta)" using (#z < #(y e ta)) Inle_def Inless_def by blast
obtain n_z where nz_def: "Fin n_z = #z" using approx|2 assms(1) assms(2) by blast
have "#y < #(y e ta)"
by (metis (Fin n.y = #y) len_stream_def eq.slen_eq-and_less inject_sconc Inless_def minimal monofun_cfun_arg
sconc_snd_empty stream.con.rews(2) sup'_-def up.defined)
have "#y <od' by (simp add: False Inless_def)
hence "Fin n_z < #y" by (metis Fin_Suc (#z < #(y e ta)) less2InleD Insuc_Inle_emb nz_def slen_Insuc)
have "As. stake n_y-(y e s) = y" by (simp add: (Fin n.y = #y) approxI1)
hence "stake n_z-y = stake n_z- (yeta)" by (metis (Fin n.y = #y) (Fin n_z < #y) less2nat min_def stakeostake)
thus ?thesis by (metis (Fin n_.z = #z) approxl1 assms(1) stream.take_below)

qed

(» for any set A and singleton stream Ta the following predicate over streams is admissible =)
lemma sfilter_.conc_adm: "adm (Ab. #boo—# (A © b) < #(A O b e ta))" (is "adm ?2F")

by (metis (mono-tags, lifting) adml inf_chainl4 Inless_def lub_eql lub_finch2)

(» the element a is kept when filtering with A, so (x e Ta) produces a larger result than just x,
provided that x is finite x)
lemma sfilter_conc: assumes "aca"
shows "#xoc=—=-#(A © x) < #(A S (x ® Ta))" (is "_=7?F x")
proof(induction x)
show "adm (Ab. #b <oco—#(A S b) < #(A S b e Ta))" using sfilter_.conc_adm by blast
show "?F e" using assms(1) Inless_def by auto

next

fix u :x "'a discr u"

fix s 11 "'a stream"

assume "u#l" and "#soc—=—>?F s" and "#(u && s) <od'

obtain ua where " (updis ua) = u" by (metis (u # 1) discr.exhaust upE)

hence "u && s = fua es" using Iscons_conv by blast
thus "?F (us&&s)"
by (smt (#(u && s) <oo) (#s <occ—=#(A O s) < #(A©S s e Ta)) assoc.sconc fold.inf Inat.sel_-rews(2) Inless_def
monofun_cfun_arg sfilter_in sfilter_nin slen_scons)
qed

(» for any finite stream s and set A, if filtering s with A doesn't produce the empty stream, then
filtering and infinite repetition are associative x)

lemma sfilter_sinf [simp]: assumes "#s<od' and " (A & s) # €"
shows "2 6 (s>9 = ((A © s)’59"

by (metis add.sfilter assms(1) assms(2) infl Inless_def rek2sinftimes sinftimes_unfold)

(x 1f filtering the stream s with the set A produces infinitely many elements, then filtering the
rest of s with A also produces infinitely many elements x)

lemma sfilter_srt_sinf [simp]: assumes "#(A © s) =od'
shows "#(A © (srt-s)) =od'

by (smt assms inf_scase inject.scons sfilter_in sfilter_nin stream.sel_-rews(2) surj_scons)

(» additional snth--lemma x)
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lemma sfilter_.ntimes [simp]: "#({True} & ((sntimes n (fFalse))eora2)) = # ({True} © ora2)"
apply (induction n)

by auto
(» snth to sntimes x)
lemma snth2sntimes: " (Ai. i<n=snth i s = False)==Fin n < #s=(sntimes n (fFalse)) C s"
proof(induction n arbitrary: s)
case 0
then show ?case by auto
next

case (Suc n)
have "shd s = False"
using Suc.prems snth_shd by blast
hence "s = fTFalse ® (srt-s)"
using Suc.prems(2) empty_is_.shortest surj_scons by force
have "(Ai. i < n—>snth i (srt-s) = False)"
using Suc.prems snth_rt by auto
hence "nxfrFalse C (srt-s)"
by (meson Suc.IH Suc.prems(2) linorder_not_le slen_rt_ile_eq)
hence "ftralse e (nxTFalse) C 1TFalse @ (srt-s)"
by (simp add: monofun_cfun.arg)
then show ?case
using (s = tFalse e srt-s) by auto
qed

(+ length of sntimes )

lemma sntimes_len [simp]: "#(nxTa) = Fin n"
apply (induction n)
by auto

(» if length of a stream is Fin n, then snth (n+m) (xseys) is equal to snth m ys =)
lemma snth_scons2: assumes "#xs = Fin n"

shows "snth (n+m) (xseys) = snth m ys"

apply (simp add: snth_def)

by (simp add: add.commute assms sdrop_plus sdropl6)

(» if ({True} © s) is unequal to bottom, then (sntimes n (fFalse)) @ TTrue is a prefix of s )
lemma sbool_ntimes_f: assumes " ({True} © s) #L"
obtains n where " (sntimes n ({False)) e TTrue C s"
proof —
have h1: "3i. snth i s = True"
by (metis assms ex_snth_in_sfilter_nempty singletonD)
obtain n where "Fin n < #s" and n_def: "n = Least (Ai. snth i s = True)"
by (smt assms ex.snth_in_sfilter_.nempty less2nat not-less not_-less_Least not.-less_iff_.gr_or_.eq singletonD
trans_Inless)
have "snth n s = True"
using Leastl h1 n_def by force
have "Ai. i<n=-snth i s # True" using not_less_Least n_def by fastforce
hence"Ai. i<n=>snth i s = False" by auto
hence " (sntimes n (fFalse)) C s"
using (Fin n < #s) snth2sntimes by blast
obtain xs where xs_def: "s = (sntimes n (fFalse)) ® xs"
using (nxtFalse C s) approxI3 by auto
hence "xsAL"
by (metis assms sfilter_ntimes slen_empty_eq strict_sfilter)
have "shd xs = snth n s"
by (simp add: sdroplé snth_def xs.def)
hence "shd xs = True"
using (snth n s = True) by auto
thus ?thesis
by (metis (full_types)(xs # €) lIscons_conv minimal monofun_cfun_arg sup'.def surj_scons that xs_def)
qed

*)

(*
section (@{term sfoot})

(x - - )

(» appending the singleton stream Ta to a finite stream s causes sfoot to extract a again x)
lemma sfoot1[simp]: assumes "xs = se(Ta)" and "#xs < od'

shows "sfoot xs = a"
proof —

have "xs # e" using assms(1) strictl by force

obtain n where n_def: "Fin n = #xs" by (metis assms(2) Incases Inless_def)

hence "n>0" using assms(2) gr0l using Fin_02bot (xs # €) Inzero_def slen_.empty_eq by fastforce

hence "(THE n'. lnsuc-(Fin n') = #xs) = n-1" by (metis (mono.tags, lifting) Fin.Suc Suc_diff_.1 n_def inject_Fin
inject_Insuc the_equality)
have "snth (n-1) xs = a" by (metis Fin.0 Fin_.Suc Suc._diff_.1 assms(1) n_def bot.is_0 inject_.Insuc Inat.con_rews

Iscons_conv neqO.conv sdropl6é shd1 slen_Insuc snth_def sup'.def)
thus ?thesis by (metis ((THE n'. Insuc-(Fin n') = #xs) = n - 1) sfoot.def)
qed

(» sfoot extracts the element a from any finite stream ending with fTa =)
lemma sfoot12 [simp]: assumes "#sod'
shows "sfoot (sefta) = a"
by (metis assms fold_.inf inject_-Insuc Inless_.def monofun_cfun_arg sfoot1 slen_Insuc)

(» sfoot extracts a from the singleton stream Ta =)
lemma sfoot_one [simp]: "sfoot (fa) = a"
by (metis Inf'_neq.0 inf_.ub Inle_def Inless_def sconc_fst.empty sfoot12 strict_slen)

(» concatenating finite streams produces another finite stream «x)
lemma sconc_slen [simp]: assumes "#s<d and "#xs<od
shows "# (sexs) < od'
by (metis Fin_neq-inf assms(1) assms(2) infl inf_.ub Inle_def Inless_def slen_sconc_all_finite)
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lemma sconc_slen2: "A(sl::'a stream) s2::'a stream. #(sl e s2)

proof -
fix s1::"'a stream"
fix s2::"'a stream"

have "#s1 =oc—=># (sl e s2) #s1 + #s2"
by (simp add: plus_lnatinf_r)

#s1l + #s2"

moreover
have "#s2 =oc=># (sl @ s2) = #sl + #s2"
by (simp add: slen_sconc.snd.inf)
moreover
have "#s1 #oc=—=#s2 #Zoc—># (sl e s2) = #sl + #s2"
proof-
assume "#sl F#od'
then obtain |_.s1 where |_s1_def: "Fin 1_s1 = #s1"
using infl by metis
assume " #s2 Fod'
then obtain |_.s2 where |_s2_def: "Fin 1_s2 = #s2"
using infl by metis

show ?thesis
using I_s1_def I.s2_def by (metis Inat_plus_fin

qed

then show "#(s1 e s2) #s1 + #s2"
using calculation by linarith

slen_sconc_all_finite)

consists of another stream s (possibly empty)

qed

(» 1f the foot of a non-empty stream xs is a, then xs
concatenated with Ta =)

lemma sfoot2 [simp]: assumes "sfoot xs = a" and "xs#e"

shows "3s. xs s e Ta"
proof (cases "#xs =od')

case True thus ?thesis by (metis sconc_fst_inf)
next

case False

obtain n where "#xs = Fin n" using False Incases by auto
hence " (THE n'. lnsuc- (Fin n') = #xs) = n-1"
by (smt Fin_02bot Fin_.Suc Suc.diff_.1 assms(2) bot.is_.0 inject_Fin inject.Insuc neqO.conv slen_empty_eq
the_equality)
have "stake (n-1)-xs @ T(snth (n-1) xs) = xs"

Inf'_def Suc_diff_1

by (smt Fin_.0 Fin_Suc (#xs
ub_slen_stake)
thus ?thesis by (metis ((THE n'.
qed

(» when sfoot is applied to the concatenation of two finite streams s and xs

then sfoot will produce the foot of xs *)

Fin n) assms(2) fin2stake fix_least_below
notinfl3 sconc_snd.empty sdrop.back.rt sdropostake slen_empty_eq snth_def split_streaml1

Insuc- (Fin n') = #xs)

surj_scons

n - 1) assms(1) sfoot_def)

and xs is not empty,

lemma sfoot.conc [simp]: assumes "#s<od' and "#xsod and "xs#e"

shows "sfoot (sexs) sfoot xs"

by (metis (no.types,

hide_lams) assms(1) assms(2) assms(3) assoc.sconc sconc.slen sfootl

sfoot2)

(+ if the finite stream s contains more than one element then the foot of s will be the foot of the

rest of s =*)
lemma sfoot_sdrop: assumes "Fin 1<#s" and "#s<od'
shows "sfoot (srt-s) sfoot s"
proof —
obtain s' where "s
strict_slen)
hence "s' # e"
by (metis Fin_02bot Fin_.Suc One.nat.-def assms(1)
hence "srt-s = srt-s' o f(sfoot s)"
by (smt (s
thus ?thesis
by (metis (s
slen_sconc_snd_inf strictl

s' e T(sfoot s)) (s' # e) assms(2)
surj_-scons)

qed

(» if length of xs is finite,
lemma [simp]: assumes "#xs < od'
shows "sfoot (Ta @ Tb e xs)
using assms Inless_def by auto

sfoot (Th e xs)"

s' e T (sfoot s)" by (metis assms(1) below_antisym bot.is_0

s' e T(sfoot s)) assoc_sconc inject_scons sconc.snd_empty strictl

then it holds that sfoot

Inless_def minimal sfoot2

Inless_def Inzero.def slen_Insuc strict-slen)
surj_scons)

inf_ub Inle_.conv Inless_def sconc.snd_empty sfootl

(Ta ® Tb e xs) = sfoot (Thb e xs) )

(» the foot of any stream s is the nth element of s for some natural number n x)

lemma sfoot_exists [simp]:"3n. snth n s sfoot s"

by (metis sfoot.-def)

(» if the stream s contains n+l elements then the foot of s will be found at index n x)

lemma sfoot_exists2:
shows "Fin (Suc n) = #s—snth n s = sfoot s"
apply(induction n arbitrary: s)
apply (metis (mono-tags, lifting)

Fin_02bot Fin_Suc Zero-Inless_infty

inject-Insuc

sconc.snd_empty sfoot12 slen_empty.eq slen_scons snth_shd surj_scons)

by (smt Fin_Suc Fin_neq.inf fold_inf inf_ub
sconc.snd_empty sfoot.conc slen_scons snth_rt

lemma add_sfilter2: assumes "#x <od'
shows "sfilter A-(x ® y)

by (metis (no_types)

then it holds that
(Suc n)"

(x» 1f lenght of s is Fin (Suc n),
lemma sfood.id: assumes"#s Fin

inject_-Insuc

sfilter A-x e sfilter A-
add_sfilter assms Incases Inless_def)

Inat.con_rews Inle_conv Inless_def Inzero_def

strict_slen surj_scons)

&l

(stake n-s) e T(sfoot s) = s *)
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shows " (stake n-s) e T(sfoot s) = s"

using assms apply(induction n arbitrary: s)

apply simp

apply (metis Fin_.02bot Fin_Suc Inat.sel.-rews(2) Insuc_neq-O.rev Inzero.def Iscons_.conv sfoot_exists2
slen_scons snth_shd strict_.slen sup'.def surj_scons)

apply (subst stake_suc)

apply simp

by (smt Fin_02bot Fin_Suc One_nat.def Rep.cfun_stricti Zero_not-Suc lel Inat.sel_-rews(2) Inle_Fin_0 Inzero.def
notinfl3 sconc_snd.empty sfoot.sdrop slen.rt.ile_eq slen_scons stake_Suc stream.take_0 strict_-slen
surj_scons)

lemma footind: "#s = Fin k=P e= (At a. #t <oc=—>P t==P (t e Ta))=—P s"
proof -
assume "#s = Fin k" and "P €" and "At a. #t <oc=>P t=P (t e ta)"
then show "p s"
proof (induction k arbitrary: s rule: less_induct)
case (less k)
then have IH: "At. #t < Fin k=>P e==(A\u b. #u <oc=P u==P (u e Th))==P t"
by (meson Inat_well_h1)
then show ?case
proof (cases "k = 0")
case True
then show ?thesis
using less.prems(1) less.prems(2) by force
next
case False
then obtain u b where "s = u o tb"
using less.prems(1) sfoot2 by force
then have "#u < Fin k"
by (metis fold_inf lel less.prems(1) In_less Insuc-Inle_.emb notinfl3 slen_Insuc)
then show ?thesis
by (metis IH (s = u e tb) inf_ub less.prems(2) less.prems(3) less_le not._less)
qed
qed
qed

lemma footind2: "#s <oc=P e=-(At a. #t <oc—=—>P t=="PF (t e ta))==P s"
by (metis footind infl less_le)

lemma srcdups_sfoot:

"s # e=>#s < oo=>sfoot (srcdups-s) = sfoot s"
proof (rule footind2, simp+)
fix t :: "'a stream" and a :: 'a
assume "#t <od' and "sfoot (srcdups-t) = sfoot t"
show "sfoot (srcdups-(t e Ta)) = a"
proof (rule footind2 [of t], auto, simp add: (#t <o9)
fix t :: "'a stream" and b :: 'a

assume "#t <od' and "sfoot (srcdups-(t e Ta
then show "sfoot (srcdups-(t e th e ta)) =
proof —
have "Al. 1 <ocoV 1 =od'
by (meson inf_less_eq le_less_linear)
then show ?thesis
by (metis (no-types) Fin_Suc (#t <oo (sfoot (srcdups-(t e ta)) = a) Inat_well_.h2 notinfl3 sfoot12
slen_Insuc srcdups_end_eq srcdups_end_neq srcdups_slen)
qed
qed
qed

lemma sfoot_end:
fixes s and a
assumes "#s <od' and "s # €"
shows "3t n. s = t e (sntimes n (T(sfoot s))) A (t = € V sfoot s # sfoot t)"
apply (rule footind2)
apply (simp add: assms(1))
apply (metis sconc-fst_empty sntimes.simps(1))

proof -
fix t :: "'a stream" and a :: 'a
assume "#t <od' and "Jta n. t = ta e (sntimes n (T(sfoot t))) A (ta = € V sfoot t # sfoot ta)"
then obtain u n where "t = u e (sntimes n (fT(sfoot t)))" and "u = € V sfoot t # sfoot u"
by blast
then have expr: "t e Ta = u @ (sntimes n (f(sfoot t))) e fa"
by (metis assoc.sconc)
then show "3ta n. ((t e ta) =(ta @ (nx(T(sfoot (t e Ta)))))) A ((ta = €) V (sfoot (t e ta) # sfoot ta))"
proof (cases "a = sfoot t")
case True

then have "t e ?a = u e (sntimes (Suc n) (f(sfoot t)))"
by (metis expr sntimes_-Suc2)
then show ?thesis
by (metis True (#t <og (u = e Vv sfoot t # sfoot u) sfoot12)
next
case False
then have "t e Ta = (u e (sntimes n (1 (sfoot t)))) e (sntimes (Suc 0) (T (sfoot (t e ta))))"
using (#t <od (t = u e (nxt(sfoot t))) by auto
then show ?thesis
by (metis False (#t <oo (t = u e (nxt(sfoot t))) sfoot12)
qed
qed

lemma srcdups_split_fin: "#s = Fin k==>Suc n < k==snth n s # snth (Suc n) s==srcdups-s = srcdups- (stake (Suc
n) -s) e (srcdups- (sdrop (Suc n)-s))"
proof (induction k arbitrary: n s)
case 0
then show ?case
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by auto
next
case (Suc k)
then obtain a t where "s = ta e t"
by (metis Fin.0 Suc-neq.-Zero strict_slen surj_scons)
assume "snth n s # snth (Suc n) s"
then have "Suc n < Suc k"
using Suc.prems(2) by blast
then show ?case
proof (cases "k > 1")

case True

then obtain a b t where "s = ta e tb e t"

proof -
assume al: "Aa b t. s = ta @ b e t=thesis"
have "#(e::'a stream) = L"

using bot.is_0 by auto
then show ?thesis
using al by (metis Fin_.Suc Suc.prems(1) True inject.Insuc less2nat_lemma Inat.con_rews Inle_def minimal
not_le srt_.decrements_length surj_scons)
qed
then have "t # e"
using Suc.prems(1) True by force
then show ?thesis
proof (cases "n = 0")
case True
then have "a # b"
using Suc.prems(3) (s = Ta e tb e t) by auto
then show ?thesis
using True (s = ta e tb e t) by auto
next
case False
then obtain m where "n = Suc m"
using notO-implies-Suc by blast
have "#(Tb e t) = Fin k"
using Suc.prems(1) (s = Ta e tb e t) by auto
moreover have "snth n s = snthm (Tb e t)"
by (simp add: (n = Sucm) (s = ta e tb e t))
ultimately have "srcdups- (b e t) = srcdups- (stake n-(Tb e t)) e (srcdups- (sdrop n-(tb e t)))"
by (metis Suc.IH Suc.prems(2) Suc.prems(3) Suc_less.-SucD (n = Sucm) (s = Ta e tb e t) snth_scons)
then show ?thesis
proof (cases "srcdups-s = srcdups- (tb e t)")
case True
then show ?thesis
proof —
have "a = b"
by (metis (no.types) True (s = ta e tb e t) srcdups_shd)
then show ?thesis
by (simp add: (n = Sucm) (s = ta e tb e t) (srcdups-(tb e t) = srcdups- (stake n- (th e t)) e
srcdups - (sdrop n-(tb e t))))
qed
next
case False
then show ?thesis
proof —
have "a # b"
using False (s = ta e tb e t) srcdups_-eq2 by blast
then show ?thesis
by (simp add: (n = Sucm) (s = ta e tb e t) (srcdups-(tb e t) = srcdups- (stake n- (tb e t)) e
srcdups - (sdrop n-(tb e t))))
qed
qed
qed
next
case False
then have "k < 1"
by auto
then show ?thesis
proof (cases "k = 0")
case True
then show ?thesis
using Suc.prems(2) by blast
next
case False
then have "k = 1"
using (k < 1) by auto
then obtain a b where "s = ta e 1b"
by (metis One_nat.def Rep_cfun_strict1 Suc.prems(1) (Athesis. (Aa t. s = ta o t=—-thesis)=—-thesis)
sconc.snd_empty sfood.id stake_Suc stream.take.0)
then have "a # b"
using Suc.prems(2) Suc.prems(3) (k = 1) by auto
then have "srcdups-s = ta e 1Tb"
by (metis (s = ta e tb) Iscons_conv srcdups_neq srcdups.step strict.sdropwhile strict_.srcdups sup'-def)
then show ?thesis
using Suc.prems(2) (k = 1) (s = ta e tb) by auto
qed
qed
qed

lemma srcdups_split.inf: "#s = oc=>snth n s # snth (Suc n) s=—>srcdups-s = srcdups- (stake (Suc n)-s) e
(srcdups- (sdrop (Suc n)-s))"
proof (induction n arbitrary: s)
case 0
then obtain a b t where "s = ta e tb e t" and "a # b"
by (metis inf_scase shd1 snth_scons snth_shd)
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then show ?case
by auto
next
case (Suc n)
obtain a t where "s = ta o t"
using Suc.prems(1) inf_scase by blast
then have "#t =od'
using Suc.prems(1) by auto
moreover have "snth n t # snth (Suc n) t"
using Suc.prems(2) (s = Ta e t) by auto
ultimately have "srcdups-t = srcdups- (stake (Suc n)-t) e (srcdups- (sdrop (Suc n)-t))"
using Suc.IH by blast
then show ?case
proof (cases "a = shd t")
case True
then have "srcdups:-s = srcdups-t"
by (metis Inf'_neq_0 (#t =o0 (s = ta e t) slen_empty_eq srcdups_eq surj_scons)
then show ?thesis
using True (#t =o0 (s = ta e t) (srcdups-t = srcdups- (stake (Suc n)-t) e srcdups-(sdrop (Suc n)-t))
inf_scase by fastforce
next
case False
then have "srcdups-s = ta e srcdups-t"
by (metis Inf'_'neq-0 (#t =09 (s = ta e t) slen_empty_eq srcdups.-neq surj.scons)
then show ?thesis
using False (#t =09 (s = Ta e t) (srcdups-t = srcdups- (stake (Suc n)-t) e srcdups-(sdrop (Suc n)-t))
inf_scase by fastforce
qed
qed

lemma srcdups-split2: "Fin (Suc n) < #s=—snth n s # snth (Suc n) s=—>srcdups-s = srcdups- (stake (Suc n)-s) e
(srcdups- (sdrop (Suc n)-s))"
by (metis less2nat ninf2Fin not.le srcdups-split-fin srcdups-split-inf)

(* *)
subsection @{term sValues})

(» sValues equality rule x)
lemma sValues_eq: "{z. 3n. Fin n < #s A z = snth n s} = {snth n s |n. Fin n < #s}"
by auto

(» another sValues equality rule )
lemma sValues_eq2: "{snth n s |n. Fin n < #s} = {z. In. Fin n < #s A z = snth n s}"
by auto

lemma slen_snth_prefix: "#s > Fin n—>snth n s = snth n (s e t)"
by (simp add: monofun_cfun.arg snth_less)

lemma srcdups-sconc:
"#xs < oc=>xs # e=—>

srcdups:- (xs @ ys) = (srcdups-xs) e (srcdups- (sdropwhile (Ax. x=sfoot xs)-ys))"
proof —
assume "#xs <od and "xs # €"
then obtain t n where "xs = t @ (sntimes n (f(sfoot xs)))" and "t = e V sfoot t # sfoot xs"

using sfoot.end by fastforce
then show ?thesis
proof (cases "t = €")

case True

then have "xs e ys = (sntimes n (T (sfoot xs))) e ys"
using (xs = t e (nxT(sfoot xs))) by auto
then have "srcdups- (xs e ys) = (T(sfoot xs)) e srcdups- (sdropwhile (Ax. x=sfoot xs)-ys)"

by (metis Fin_02bot True (xs t o( nxt(sfoot xs))) (xs # €) Inzero.def neqO_conv sconc_fst_empty
slen_empty_eq sntimes_len srcdups-sntimes_prefix)
then show ?thesis
by (metis Fin_02bot True (xs =t e (nxt(sfoot xs))) (xs # €) Inzero.def neq0-conv sconc_fst_empty
slen_empty_eq sntimes_len srcdups_sntimes)
next
case False
then obtain k where "#t = Fin (Suc k)"
by (metis Fin_02bot (t = ¢ v sfoot t # sfoot xs) (xs = t e (nxP(sfoot xs))) bot_is_.0 ninf2Fin
notO_implies_.Suc sconc_fst.inf slen_empty_eq)
then show ?thesis
proof (cases "ys = €")
case True
then show ?thesis
by simp
next
case False
have "snth k (xs e ys) # snth (Suc k) (xs e ys)"
proof
assume "snth k (xs e ys) = snth (Suc k) (xs e ys)"
then have "snth k xs = snth (Suc k) xs"
by (metis Fin_02bot Fin_Suc len_stream_def Suc_neq-Zero (#t = Fin (Suc k)) (#xs <oo (t = e V sfoot t #
sfoot xs) (xs = t e (nxf(sfoot xs))) stake_prefix slen_snth_prefix inject_.Fin le2Inle lel less_le
Inless_def Inzero_def monofun_cfun_arg notinfl3 sfoot_exists2 stream.take_below strict_slen)
then show "False"
by (metis Fin_02bot Fin_Suc Suc_neq.-Zero (#t = Fin (Suc k)) (t = € Vv sfoot t # sfoot xs) (xs =t e
(nxt(sfoot xs))) slen_snth_prefix inject_-Fin lel In_less Inzero.def neqO_conv notinfl3
sconc.snd_empty sdropl6 sfoot_exists2 shd_sntime slen_empty_eq snth_def sntimes_len)
qed
moreover have "Fin (Suc k) < #(xs e ys)"
by (metis False (#t = Fin (Suc k)) (#xs <o (xs = t e (nxf(sfoot xs))) minimal mono_slen
monofun_cfun_arg sconc.snd_empty slen_conc)

158



ultimately have "srcdups- (xs e ys) = srcdups- (stake (Suc k):-(xs e ys)) e srcdups- (sdrop (Suc k):(xs @ ys))"
using srcdups.split2 by blast
then have "srcdups- (xs e ys) = srcdups-t e srcdups- ((sntimes n (T (sfoot xs))) e ys)"
by (metis (#t = Fin (Suc k)) (xs = t e (nxt(sfoot xs))) assoc.sconc stake_prefix2 sdropl6)
then have "srcdups- (xs e ys) = srcdups-t e T (sfoot xs) e srcdups- (sdropwhile (Ax. x=sfoot xs)-ys)"
by (metis (t = ¢ vV sfoot t # sfoot xs) (xs = t e (nxt(sfoot xs))) (xs # €) neqO.conv sconc.snd_empty
sntimes.simps (1) srcdups_sntimes_prefix)
moreover have "srcdups-xs = srcdups-t e f(sfoot xs)"
proof —
have "srcdups-xs = srcdups-t e srcdups- (sntimes n (1 (sfoot xs)))"
by (metis (#t = Fin (Suc k)) (snth k (xs e ys) # snth (Suc k) (xs e ys)) (xs =t e (nxt(sfoot xs)))
convert.inductive_asm slen_snth_prefix stake_prefix2 not.-less notinfl3 sconc_snd.empty sdropl6
slen_conc srcdups-split2 strict_srcdups ub.slen_stake)
then show ?thesis
by (metis (t = € vV sfoot t # sfoot xs) (xs =t e (nxt(sfoot xs))) (xs # e€) neqO-conv sconc.snd_empty
sntimes.simps (1) srcdups_sntimes)
qed
ultimately show ?thesis
by simp

qed

qed
qed

lemma
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
by (ru

lemma

sValues_mono: "monofun (As. {snth n s |n. Fin n < #s})"
(simp add: sValues.-eq2)

(rule monofunl)

(rule_tac x="#x" in Incases)

(drule eqg-less_and_fst_.inf, simp+)
(simp add: atomize_imp)

(rule-tac x="y" in spec)

(rule_-tac x="x" in spec)
(induct-tac k, simp+)

(auto simp add: less_set_def)
(drule lessD, auto)

(erule_tac x="g" in allE)
(erule_tac x="w" in allE, auto)
(case_tac "na", auto)

(rule_tac x="0" in exl, auto)
(frule_tac mono_len2, simp)
(rule_tac x="Suc nat" in exl, auto)
(rule_tac x="#w" in Incases, auto)
le snth_less, auto)

inf_chainl3rf: fixes Y::"nat = 'a stream"

shows "[chain Y; —finite_chain Y]==3k. Fin n < #(Y k)"

by (ru

lemma
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
apply
by (ru

lemma
apply
apply
by (ru

(* con
lemma

le inf.chainl3 [rule_-format], auto)

sValues_cont: "cont (As. {snth n s | n. Fin n < #s})"
(rule contl2)

(rule sValues_mono)

(simp add: sValues_eq2)

(rule alll, rule impl)

(simp add: less_set_def)

(auto simp add: lub_eq_Union)

(case_tac "finite_chain Y")

(subst lub_finch2 [THEN lub_eql], simp)
(rule-tac Xx="LEAST i. max_in_chain i Y" in exl)
(rule_tac x="n" in exl, simp)

(subst lub_finch2 [THEN lub_eql, THEN sym], simp+)
(frule_-tac n="Suc n" in inf_chainl3rf, simp+)
(erule exE)

(rule_-tac x="kx" in exl)

(rule-tac x="n" in exl)

(rule conjl)

(rule_tac x="#(Y k)" in Incases, simp+)

(rule sym)

(rule snth_less)

(rule_tac x="# (Y k)" in Incases, simp+)

le is_ub_thelub)

sValues_def2: "svalues:s = {snth n s | n. Fin n < #s}"
(subst sValues_def)

(subst beta_cfun)

le sValues_cont, simp)

tinuity of sValues x)
sValues_cont2: "VY. chain Y—sValues- (] i. Y i) = (] i. sValues- (Y i))"

by (simp add: contlub_cfun_arg)

lemma srcdups-bool_prefix:
fixes xs :: "bool stream" and ys :: "bool stream"
assumes "lshd- (srcdups-xs) = lshd- (srcdups-ys)" and "# (srcdups - xs) S # (srcdups-ys)"

shows " (srcdups-xs) C (srcdups-ys)"

proof

(rule scases [of xs])

assume "xs = e"

then
by
thus
by
next

have "srcdups-xs = €"
simp

"srcdups-xs C srcdups-ys"
simp
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fix a :: bool and s :: "bool stream"
assume "xs = Ta e s"
have "lshd: (srcdups-ys) = updis a"
by (metis (xs = ?a e s) assms(1) Ishd_updis srcdups_step)
then have "lshd-ys = updis a"
by (metis Ishd_updis srcdups_shd2 stream.sel_rews(3) strict_srcdups surj.scons up-defined)

then have "Vn. Fin n < #(srcdups-ys)—snth n (srcdups-ys) = (even n = a)"

by (metis (no-types, lifting) bool_stream_snth Ishd_updis stream.sel_-rews(3) sup'-def surj_scons)
then have ys_expr: "Vn. Fin n < #(srcdups-xs)—>snth n (srcdups-ys) = (even n = a)"

using assms(2) less_le_trans by blast
then have first.n_eq: "Vn. Fin n < #(srcdups-xs)—>snth n (srcdups-xs) = snth n (srcdups-ys)"

using (xs = ta e s) bool_stream_snth by blast
then show "srcdups-xs C srcdups-ys"
proof (cases "#(srcdups-xs) <od')
case False
then have "# (srcdups-xs) = #(srcdups-ys)"
using assms(2) less_le by fastforce
then have "Vk. snth k (srcdups-xs) = snth k (srcdups-ys)"
by (metis False Fin_neq.inf first_n_eq inf_ub order.not.eq.-order_implies_strict)
then have "srcdups-xs = srcdups-ys"
by (simp add: (Vk. snth k (srcdups-xs) = snth k (srcdups-ys)) (#(srcdups-xs) = #(srcdups-ys)) snths_eq)
thus "srcdups-xs C srcdups-ys"

by simp
next
case True
then obtain k where "# (srcdups-xs) = Fin k"
using Inat-well_h2 by blast
then have eq.len: "#(srcdups-xs) = #(stake k- (srcdups-ys))"
using assms(2) slen_stake by force
have "Vn. Fin n < #(srcdups-xs)—>snth n (srcdups-xs) = snth n (stake k- (srcdups-ys))"

by (metis eq-len first.-n_eq snth_less stream.take_below)
then have "srcdups-xs = stake k- (srcdups-ys)"
by (simp add: (vn. Fin n < #(srcdups-xs)—>snth n (srcdups-xs) = snth n (stake k- (srcdups-ys))) eq-len

snths_eq)
thus ?thesis
by simp

qed
qed
lemma srcdups_snth_stake.inf: "#s = oc=>snth n s # snth (Suc n) s=srcdups- (stake (Suc n)-s) # srcdups-s"
proof

assume "#s =od and "snth n s # snth (Suc n) s" and "srcdups- (stake (Suc n)-s) = srcdups-s"

have "#(stake (Suc (Suc n))-s) = Fin (Suc (Suc n))"

by (simp add: (#s =oo slen_stake_fst_inf)
moreover have "Suc (Suc n) > Suc n"
by simp
moreover have "snth n (stake (Suc (Suc n))-s) # snth (Suc n) (stake (Suc (Suc n))-s)"
by (metis Fin_leq-Suc_-leq Suc.n_not_le_.n (snth n s # snth (Suc n) s) calculation(1) less2nat_lemma not_le
snth_less stream.take_below)
ultimately have "srcdups- (stake (Suc n) - (stake (Suc (Suc n))-s)) # srcdups- (stake (Suc (Suc n))-s)"
using srcdups-snth_stake_fin by blast
then have "srcdups- (stake (Suc n)-s) # srcdups- (stake (Suc (Suc n))-s)"
by (simp add: min_def)
moreover have "srcdups- (stake (Suc (Suc n))-s) = srcdups-s"
proof (rule ccontr)
assume "srcdups- (stake (Suc (Suc n))-s) # srcdups-s"
moreover have "srcdups- (stake (Suc n)-s) C srcdups- (stake (Suc (Suc n))-s)"
by (simp add: less_imp.le_nat monofun_cfun_arg stake-mono)
ultimately have "srcdups-: (stake (Suc n)-s) # srcdups-s"
by (metis below_antisym monofun_cfun.arg stream.take_below)
then show "False"
by (simp add: (srcdups-(stake (Suc n)-s) = srcdups-s))
qed
ultimately show "False"
by (simp add: (srcdups-(stake (Suc n)-s) = srcdups-s))
qed

(» sValues applied to the empty stream returns the empty set x)
lemma [simp]: "sValues-e = {}"
by (auto simp add: sValues.def2 Inless_def)

(» the head of any stream is always an element of the domain «x)
lemma sValues2un[simp]: "svValues:(Tz ® s) = {z} U sValues-s"
apply (auto simp add: sValues_def2)

apply (case-tac "n", auto)

apply (rule_tac x="0" in exl, auto)

by (rule_-tac x="suc n" in exl|, auto)

lemma srcdups-dom_h: assumes "sValues- (srcdups-s) = sValues-s"
shows "sValues: (srcdups- (Ta @ s)) = insert a (sValues-s)"
proof (cases "shd s = a")
case True

have "srcdups- (ta e ta e srt-s) = srcdups- (fa e srt-s)"
using srcdups._eq by blast
hence "a € svalues- (srcdups:- (Ta e srt-s))"
by (simp add: srcdups.step)
then show ?thesis
by (metis True Un_insert_left assms insert_absorb2 sValues2un srcdups_eq srcdups._step strict_sdropwhile
sup-bot.left_neutral surj_scons)
next
case False

160



then show ?thesis
by (metis (no-types, lifting) assms insert_.is_.Un sValues2un srcdups.neq srcdups.step strict.sdropwhile
surj_scons)
qed

lemma srcdups.dom [simp]: "sValues- (srcdups-xs) = sValues-xs"
apply(rule ind, simp-all)
by (simp add: srcdups_-dom_h)

(» only the empty stream has no elements in its domain =)
lemma strict.sValues_rev: "svalues-s = {}=s = €"

apply (auto simp add: sValues_def2)

apply (rule-tac x="s" in scases, auto)

by (metis Fin_02bot gr-0 Inzero.def)

lemma sValues_notempty:"s#e——svValues-s#A{}"
using strict_.sValues.rev by auto

(» the infinite repetition of a only has a in its domain x)
(»with new lemmata not necessary:

apply (subst sinftimes_unfold, simp) *)

(xapply (induct_tac n, auto)

apply (subst sinftimes_unfold, simp)

apply (rule_tac x="0" in exI)

by (subst sinftimes_unfold, simp) *)

lemma [simp]: "sValues- (sinftimes (ta)) = {a}"

by (auto simp add: sValues_def2)

(» any singleton stream of z only has z in its domain «x)
lemma [simp]: "svalues- (Tz) = {z}"
by (auto simp add: sValues_def2)

(» 1f an element z is in the domain of a stream s, then z is the n'th element of s for some n x*)
lemma sValues2snth: "z € svalues-s=3n. snth n s = z"
by (auto simp add: sValues_def2)

(» if the natural number n is less than the length of the stream s, then snth n s is in the domain of s x*)
lemma snth2sValues: "Fin n < #s=>snth n s € sValues-s"
by (auto simp add: sValues_def2)

lemma smap._well:"svalues-xCrange f== Js. smap f:s = x"
apply(rule_tac x = "smap (inv £f)-x" in exl)
by (simp add: snths_eq smap.snth_.lemma f_inv_into_f snth2sValues subset_eq)

lemma smap_inv_id[simp]: "sValues-s C range F—>smap (F o (inv F))-s = s"
apply (induction s rule: ind )
by(simp_.all add: f_.inv_.into.f)

lemma smap-.inv_eq[simp]:"inj F—smap (inv F o F)-x = x"
by (metis inv_o_cancel smap-.inv.id subset-UNIV surj_id surj.iff)

(» checking if the domain of a stream x isn't a subset of another set M is an admissible predicate x)
lemma [simp]: "adm (Ax. — sValues-x C M)"

apply (rule adml)

apply (rule notl)

apply (frule_tac x="0" in is_ub_thelub)

apply (frule_tac "sValues" in monofun.cfun_arg)

by (erule_tac x="0" in allE, auto simp add: less_set._def)

lemma sfilter_sValuesl!3:

"sValues-s C X—>sfilter X-s = s"
apply (rule impl)
apply (rule stream.take_lemma)
apply (simp add: atomize.imp)
apply (rule-tac x="s" in spec)
apply (rule-tac x="x" in spec)
apply (induct_-tac n, simp+)
apply (rule alll)+
apply (rule impl)
by (rule_tac x="xa" in scases, simp+)

lemma sfilter_sValuesl4 [simp]:
"sfilter (sValues-s)-s = s"
by (rule sfilter.sValuesl3 [rule_-format, of "s" "svalues-s"], simp)

lemma sfilter_fin: assumes "#(A © s) <od'

shows "3n. (A © (sdrop n-s)) = 1"
apply(rule ccontr)
apply auto

by (metis len_stream_def assms fun_approxl2 Inat-well_h2 sconc-neq-h sconc.snd_empty split_sfilter)

lemma s_one_dom.inf: assumes "svalues-s = {x}" and "#s = od'
shows "s = ((Tx)/>9"
by (metis Fin_02bot Fin.Suc Suc-n_not_le_.n assms(1) assms(2) bot-is-0 inject-Fin less_or_eq-imp-le
sinftimes_unfold singleton_iff slen.scons slen_sinftimes snth2sValues snth_sinftimes snths.eq
strict-icycle strict_slen)

lemma sfilter_bot.dom: "(a & s) = l=svalues-s C UNIV - A"
apply(induction s rule: ind)
apply auto
by (metis DiffD2 inject.scons rev_subsetD sfilter_.in sfilter_nin strictl)

161



lemma sValues_sconc2un:
"#x = Fin k==sValues: (x ® y) = sValues-x U sValues-y"
apply (simp add: atomize.imp)
apply (rule_tac x="x" in spec)
apply (induct-tac k, simp+)
apply (rule alll, rule impl)
by (rule_-tac x="x" in scases, simp+)

(» sValues applied to sles2 is a subset of the union of sValues sl and sValues s2 *)
lemma sconc_sValues: "svalues- (sles2) C sValues-sl U sValues-s2"
by (metis SetPcpo.less_set_def below_refl Incases sconc_fst.inf sValues_.sconc2un sup.coboundedli)

(» relation between sValues and sfoot x)
lemma sfoot.dom: assumes "#s = Fin (Suc n)" and "sValues-sCA"
shows "sfoot s€A"
by (metis Suc_n_not_.le_.n assms(1) assms(2) contra_subsetD lel less2nat.lemma sfoot_exists2 snth2sValues)

(» stakewhile doesn't include the element a that failed the predicate f in the result x)
lemma stakewhile_.dom[simp]:assumes "—f a"
shows "a¢sValues- (stakewhile f-s)"
by (smt assms below_antisym Inle_conv Inless_def mem_Collect.eq sValues_def2 snth_less stakewhile_below
stakewhile_slen)

lemma srcdups_sconc_duplicates:
assumes "#xs <od' and "xs # €" and "srcdups-xs = srcdups- (xs e ys)"
shows "svalues-ys C {sfoot xs}"
proof —
have "srcdups- (xs @ ys) = (srcdups-xs) @ (srcdups- (sdropwhile (Ax. x=sfoot xs)-ys))"
using assms(1) assms(2) srcdups-sconc by blast
then have "srcdups-xs = srcdups-xs @ (srcdups- (sdropwhile (Ax. x=sfoot xs)-ys))"
using assms(3) by presburger
moreover have "# (srcdups-xs) <od'
by (meson assms(1) leD lel srcdups_slen trans_.Inle)
ultimately have "srcdups- (sdropwhile (Ax. x=sfoot xs)-ys) = e"
using sconc.neq-h by fastforce
then have "sdropwhile (Ax. x=sfoot xs)-ys = €"
using srcdups_nbot by blast
then show ?thesis
by (metis (full_types) insertl1 sconc.snd_empty stakewhileDropwhile stakewhile.dom subsetl)
qed

(» if stakewhile changes the stream s, which is a prefix of the stream s', then stakewhile of s and s'
produce the same result x)
lemma stakewhile_finite_below:
shows "stakewhile f-s # s=—sCs'=—stakewhile f-s = stakewhile f-s'"
apply (induction s)
apply simp+
by (smt approxl1 len_stream.def approxl2 Inless_.def monofun_cfun.arg rev_below_trans snth_less stakewhile_below
stakewhile_notin stakewhile_snth)

(» if there is an element in the stream s that fails the predicate f, then stakewhile will change s x)
lemma stakewhile_noteq[simp]: assumes "—f (snth n s)" and "Fin n < #s"
shows "stakewhile f-s # s"
proof (rule ccontr)
assume " stakewhile f-s # s"
hence "svValues- (stakewhile f-s) = sValues-s" by simp
hence "(snth n s)EsValues- (stakewhile f-s)" by (simp add: assms(2) snth2sValues)
thus False by (simp add: assms(1))
qed

(» if there's an element a in the domain of s which fails the predicate f, then stwbl will produce a
finite result =)
lemma stwbl_fin [simp]: assumes "a€sValues-s" and "— f a"
shows "# (stwbl f-s) <od'
by (metis assms(1) assms(2) inf.ub Inle_.conv Inless_def notinfl3 sconc.slen sValues2snth stakewhile_slen
stwbl_stakewhile ub_slen_stake)

(» stwbl keeps at least all the elements that stakewhile keeps x)

lemma stakewhile_stwbl [simp]: "stakewhile f- (stwbl f-s) = stakewhile f-s"
proof —
have "As sa. (s::'a stream) C s o sa"
by simp
then have "stakewhile f- (stwbl f-s) = stwbl f.-s——>stakewhile f:(stwbl f-s) = stakewhile f-s"

by (metis (no_-types) below_antisym monofun_cfun_.arg stwbl_below stwbl_stakewhile)
then show ?thesis
using stakewhile_finite_below stwbl_below by blast
qed

(» sValues applied to sntimes n s is a subset of sValues applied to s )
lemma sntimes_sValues1[simp]: "sValues- (sntimes n s) C sValues-s"
proof (induction n)
case 0 thus ?case by simp
next
case (Suc n) thus ?case using sconc.sValues sntimes.simps(2) sup.orderE by auto
qed

(» if filtering everything except z from the stream x doesn't produce the empty stream, then z must
be an element of the domain of x *)

lemma sfilter2dom:
"sfilter {z}-x # e=z € sValues-x"

apply (subgoal_-tac "Jk. snth k x = z A Fin k < #x", erule exE)

apply (erule conjE)

apply (drule sym, simp)
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apply (rule snth2sValues, simp)
apply (rule ccontr, simp)
by (insert ex_snth_in_sfilter_.nempty [of x "{z}"], auto)

text (For injective functions @{term f} with @{term "f(y) = x"}, @{term x} can only
be contained in @{term "smap f£-s"} if the original stream contained @{term y})

lemma sValues_smapli: "[x € svValues- (smap f-s); inj f; f y = x]=>y € sValues-s"
by (smt mem_Collect_.eq sValues_def2 slen_.smap smap.snth_-lemma the_.inv_f_f)

(*

apply (auto simp add: sValues_def2)

apply (rule_tac x="n" in exI, simp)

apply (simp add: smap_snth_lemma)

by (simp add: inj_on_def) x)

(
(

(» appending another stream xs can't shrink the domain of a stream x x)
lemma sValues_sconc[simp]: "svValues-x C sValues-(x ® xs)"
by (metis minimal monofun_cfun_arg sconc_snd_empty set_cpo.simps(1))

(» repeating a stream doesn't add elements to the domain x)
lemma sinftimes_sValues[simp]: "sValues: (sinftimes s) C sValues-s"
by (smt chain.monofun contlub_cfun_arg lub_below set_.cpo.simps (1) sntimesLub sntimes_chain sntimes_sValuest)

(» repeating a stream doesn't remove elements from the domain either «)
lemma sinf_sValues [simp]: "svalues- (s’59 = svalues-s"
by (metis antisym_conv sValues_sconc sinftimes_sValues sinftimes_unfold)

(» sfilter doesn't add elements to the domain x)

lemma sbfilter_.sbdom[simp]: "svValues: (sfilter A-s) C sValues-s"

apply(rule ind [of _s], auto)

by (metis (mono-tags, lifting) UnE contra_subsetD sValues2un sfilter_in sfilter_.nin singletonD)

(» smap can only produce elements in the range of the mapped function f x)
lemma smap-sValues_range [simp]: "sValues- (smap f-s) C range f"
by (smt mem_Collect_eq range_eql sValues.def2 slen.smap smap.snth_lemma subsetl)

(x every element produced by (smap f) is in the image of the function f )

lemma smap-sValues: "svalues- (smap f-s) = f ~ sValues-s"

apply(rule)

apply (smt image_eql mem_Collect_eq sValues_def2 slen.smap smap_snth_lemma subsetl)
by (smt image_subset_iff mem_Collect_eq sValues_def2 slen_smap smap_snth_lemma)

(* lemmas for SB «)

(» if the stream a is a prefix of the stream b then a's domain is a subset of b's =)
lemma sValues_prefix [simp]: "a C b=sValues-a C sValues-b"

by (metis SetPcpo.less_set.def monofun_cfun_arg)

(» the lub of a chain of streams contains any elements contained in any stream in the chain x)
lemma sValues_chain2lub: "chain S=svValues- (s i) C svalues- (] j. s j)"
using sValues_prefix is_ub_thelub by auto

(» if every element in a chain S is a prefix of s then also the least upper bound in the chain S if prefix of s x)
lemma lubChainpre: "chain s==S i =Vi. s i L s=(] j. s j) C s"
by (simp add: lub_below)

(» if every element in a chain S is a prefix of s, then the domain of S i is a subset of the domain of s x)
lemma sValues_chainprefix: "chain s==Vi. s i C s==Vi. svalues- (s i) C sValues-s"
by simp

(» if every element in a chain S is a prefix of s, then the domain of the lub is a subset of the domain of s x)
lemma sValues_chainlub: "chain s= Vi. s i C s=>svalues- (] j. s j) C svValues-s"
using sValues_prefix lub_below by blast

(x streams appearing later in the chain S contain the elements of preceding streams x)
lemma sValues_chain_below: "chain s=i < j=sValues- (s i) C sValues- (S j)"
by (simp add: po-_class.chain.mono)

(+ for two elements i, j with i < j in a chain S it holds that the domain of S i is a subset of the domain of S j
*)

lemma sValues_lub2union: "chain S=finite_chain S=sValues- (| j. S j) C (Ji. sValues-(S i))"

using 142 by fastforce

(* important =)

(+ the lub doesn't have any elements that don't appear somewhere in the chain )
lemma sValues_lub: "chain Ss=svalues- (| j. S j) = (Ji. svalues-(S i))"

apply (simp add: contlub_cfun.arg)

by (simp add: lub_eq-Union)

lemma sscanlasnd_smap_state_loop:
assumes"Ae. e € sValues.-s==fst (f state e) = state"

shows "sscanlAsnd f state-(s) = smap (MAe. snd (f state e))-s"
using assms
apply (induction s rule: ind)

apply (rule adm.imp)

apply (rule adml)

apply (meson sValues_chain2lub set_-rev_mp)
by simp_all

(x core lemma for exchanging transition function (general lemma) =*)
lemma sscanla_exchange_f:
assumes "Ae state. P e=>Fl state e = F2 state e"
and "Vx € svalues-s. P x"
shows "sscanlAsnd F1 state-s = sscanlAsnd F2 state-s"
using assms
apply (induction s arbitrary: state rule: ind)
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apply (rule adm.imp, simp)+

apply (rule adml)

apply (meson sValues_chain2lub subsetCE)
by simp_all

lemma 144: assumes "chain s" and "Vi. sValues- (S i) C B"
shows "svalues- (] j. S j) C B"
by (metis (mono-tags, lifting) UN.E assms sValues_lub subsetCE subsetl)

(* helper lemma x)
lemma 16: "chain S=Vi. sValues- (s i) C B=sValues- (]| j. S (j + (SOME k. a))) C B"
by (simp add: 144 lub_.range_shift)

(» dropping elements can't increase the domain =)
lemma sdrop-sValues[simp]: "svValues- (sdrop n-s)CsvValues-s"
by (metis Un_upper2 approxl2 sValues_prefix sValues_sconc2un sdrop_-0 sdropostake split_streaml1 stream.take_below)

(» if none of the elements in the domain of the stream s are in the set A, then filtering s with A
produces the empty stream x)

lemma sfilter_sValues_eps: "sValues:s N A = {}=(A O s) = €"

by (meson disjoint_iff_not_equal ex.snth_in_sfilter_.nempty snth2sValues)

(x» if x in sValues-: (A9s) then x is in A *)

lemma sValues_sfilter1: assumes "x€sValues: (AOs)"
shows "xeA"

by (smt assms mem_Collect.eq sValues.def2 sfilterl7)

(+ if u is not bottom then sValues-sCsValues- (u && s) *)

lemma sValues_subset: assumes "uL"

shows "svalues-sCsValues- (u && s)"

by (metis Un_upper2 assms sValues2un stream.con_rews(2) stream.sel_rews(5) surj.scons)

(+ if u is not bottom then sValues- (A3s)CsValues: (A & (u && s)) *)

lemma sValues_sfilter_subset: assumes "uAL"

shows "svalues- (20s)CsValues:- (A © (u && s))"

by (smt Un_upper2 assms eq-iff sValues2un sfilter_in sfilter_nin stream.con.rews(2) stream.sel_.rews(5) surj_scons)

(» if x in A then x€sValues-s implies x€(sValues- (A & s)) *)
lemma sValues_sfilter2: assumes "xea"
shows "x€sValues: s—>x€(sValues: (A © s))"
apply (induction s)
apply(rule adml)
apply rule
apply (metis (mono_tags, lifting) UN.iff ch2ch_.Rep_-cfunR contlub_cfun_arg sValues_lub)
apply simp
by (smt UnE assms empty_iff insert_iff sconc_sValues sValues2un sValues.sconc sValues_sfilter_.subset sfilter_in
stream.con_rews(2) stream.sel-rews(5) subsetCE surj_scons)

(» sValues applied to AOs returns the intersection of sValues applied to s and A x)

lemma sValues_sfilter[simp]: "svalues- (ASs) = sValues-s N A"
apply rule
apply (meson Intl sbfilter_.sbdom sValues_sfilter1 subset_iff)
apply rule

by (simp add: sValues_sfilter2)

(» if sfilter of A-s is s then sValues-s is a subset of A «x)
lemma sfilterEq2sValues_h: "sfilter A-s = s—»sValues-s C A"
apply(rule ind [of _s])
apply (smt adml inf.orderl sValues_sfilter)
apply (simp)
apply(rule)
by (metis inf.orderl sValues_sfilter)

(» sfilter of A-s is s implies that sValues-s is a subset of A «x)
lemma sfilterEq2sValues: "sfilter A-s = s=—>sValues-s C A"
by (simp add: sfilterEq2sValues_h)

(» if Va€sValues-s. f a then stwbl applied to f-s returns s x)
lemma stwbl_id_help:
shows " (Va€svValues-s. f a)——>stwbl f-s = s"
apply (rule ind [of _s])
apply(rule adm.imp)
apply(rule adml, rule+)
using sValues_chain2lub apply blast
apply(rule adml)
apply (metis cont2contlubE cont_-Rep._cfun2 lub_eq)
using strict_stwbl apply blast
apply rule+
by simp

(» A\ a. a€sValues-s=f a implies that stwbl applied to f:s is s =)
lemma stwbl_id [simp]: "(A a. a€svValues:-s=f a)=—>stwbl f:s = s"
by (simp add: stwbl_.id_help)

(« if a in sValues s and —f a then it holds that 3x. (stwbl f-s) = stakewhile f-s @ Tx *)
lemma stwbl2stakewhile: assumes "a€svValues-s" and "—f a"

shows "3Jx. (stwbl f-s) = stakewhile f-s e tx"
proof —

have "#(stwbl f-s) <od'" using assms(1) assms(2) snth2sValues stwbl_fin by blast
hence "stwbl f-s # €" by (metis assms(1) assms(2) stakewhile_.dom strict_stakewhile stwbl_notEps)
thus ?thesis
by (smt Fin_02bot approxl2 assms(1) assms(2) bottoml Inle_def Inzero.def mem_Collect_eq sconc_snd_empty
sValues_def2 sdrop.0 slen_empty_eq slen_rt_.ile_eq split_streaml1 stakewhile_below stakewhile_noteq
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stakewhile_sdropwhilel1 stwbl_notEps stwbl_stakewhile surj_scons tdw ub_slen_stake)
qed

(+ 1if a in sValues s and —f a it holds that — f (sfoot (stwbl f:s)) =*)
lemma stwbl_sfoot: assumes "a€sValues-s" and "—f a"

shows "— £ (sfoot (stwbl f:s))"
proof(rule ccontr)

assume "— - f (sfoot (stwbl f-s))"

hence "f (sfoot (stwbl f-s))" by blast

obtain x where x_def:" (stwbl f-s) = stakewhile f-s e Tx"
using assms(1) assms(2) stwbl2stakewhile by blast

hence "sfoot (stwbl f-s) = x"

using assms(1) assms(2) sfootl stwbl_fin by blast
have "stakewhile f-s e tx C s" by (metis stwbl_below x_.def)
have "f x"
using (f (sfoot (stwbl f-s))) (sfoot (stwbl f-s) = x) by blast
thus False
by (metis approxl2 assms(1) assms(2) inject.sconc sconc.snd_empty sdropwhile_resup stakewhileDropwhile
stakewhile_below stakewhile.dom stakewhile_stwbl x_def)

(% by (smt Fin_02bot (sfoot (stwbl f-s) x) approxl2 assms (1) assms(2) assoc_sconc bottomI lnle_def
Inzero_def sconc_fst_empty sconc_snd_empty sdrop_0 sdropwhile_t sfootl slen_empty_eq slen_rt_ile_eq
split_streamll stakewhile_below stakewhile_dom stakewhile_sdropwhilell stakewhile_stwbl stream.take_strict
strict_stakewhile stwbl_fin stwbl_notEps stwbl_stakewhile surj_scons tdw ub_slen_stake) =)

qed

(» stwbl applied to f and stwbl f:.s returns stwbl f-s x)
lemma stwbl2stbl[simp]: "stwbl f. (stwbl f-s) = stwbl f-s"
apply(rule ind [of _s])
apply simp_.all
by (metis sconc_snd_empty stwbl_f stwbl_t)

(» (Ax. b & sValues-x) is admissible «)
lemma adm_nsValues [simp]: "adm (Ax. b ¢ sValues-x)"
proof (rule adml)
fix Y
assume asl1: "chain Y" and as2: "Vi. b¢sValues- (Y i)"
thus "b¢svalues- (Ji. Y i)"
proof (cases "finite_chain Y")
case True thus ?thesis using as1 as2 142 by fastforce
next
case False
hence "#(}i. Y i) =od" using asi inf_chainl4 by blast
hence "An. snth n (Ji. Y i) # b"
proof -
fix n
obtain j where "Fin n < # (Y j)" by (metis False inf_chainl2 as1 inf_chainl3rf less_le)
hence "snth n (Y j) #" using as2 snth2sValues by blast
thus "snth n (Ji. Y i) # b" using (Fin n < #(Y j)) as1 is_ub_thelub snth_less by blast
qed
thus ?thesis using sValues2snth by blast
qed
qed

(» strdw_filter helper lemma x)
lemma strdw_filter_h: "bEsvalues-s——lnsuc: (# ({b} © srtdw (Aa. a # b)-s)) = #({b} © s)"
proof(rule ind [of _s])
have "adm (Xa. lnsuc- (#({b} © srtdw (Aa. a # b)-a))
thus "adm (Aa. b € sValues-a—lnsuc:- (# ({b} © srtdw

= #({b} © a))" by (simp add: len_stream.def)
(
show "b € sValues-e——lnsuc- (# ({b} © srtdw (Aa. a #b

Aa. a #b)-a)) = #({b} © a))" by simp
)-€)) = #({b} © €)" by simp

fix a

fix s

assume |H: " b € sValues-s—>lnsuc- (# ({b} & srtdw (Aa. a # b)-s)) = #({b} & s)"

show " b € sValues- (Ta ® s)——lnsuc- (#({b} © srtdw (Aa. a #b)-(Ta @ s5))) = #({b} © Ta @ s)"

proof (cases "a=b")
case True thus ?thesis by simp

next
case False
hence f1:"#({b} © Ta e s) = #({b} & s)" using sfilter_.nin singletonD by auto
hence f2:"#({b} © srtdw (Aa. a # b)-(Ta ® s)) = #({b} © srtdw (Aa. a # b)-(s))" using False by auto

hence "b € svalues- (Ta @ s)=—=beEsvValues-s" using False by auto
thus ?thesis using IH f2 local.f1 by auto
qed
qed

(* strdw filter lemma =)
lemma strdw_filter: "b€sValues:-s==lnsuc- (# ({b} © srtdw (Aa. a # b)-s)) = #({b} © s)"
by(simp add: strdw_filter_h)

(» length of stwbl filter x)
lemma stwbl_filterlen[simp]: "bEsValues-ts—# ({b} © stwbl (Aa. a # b)-ts) = Fin 1"
apply(rule ind [of _ ts])
apply(rule adm.imp)
apply simp
apply (simp add: len_stream_def)
apply simp
apply auto
by (metis (mono_tags, lifting) Fin_02bot Fin.Suc One_nat_.def Inzero_.def sconc_snd_empty sfilter_in sfilter_nin
singletonD singletonl slen_scons strict_sfilter strict_slen stwbl_f stwbl_t)

(» srtdw concatenation )
lemma srtdw_conc: "bEsValues-ts = (srtdw (Aa. a # b)-(ts @ as)) = srtdw (Aa. a # b) - (ts) e as"
apply(induction ts arbitrary: as)
apply (rule adm.imp)
apply auto
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apply(rule adml)
apply rule+
apply (metis (no_types, lifting) approxI3 assoc.sconc is_ub_thelub)

proof -
fix u ts as
assume asl: "u # 1" and as2: "(Aas. b € sValues-ts=>srtdw (Aa. a # b) - (ts e as) = srtdw (Aa. a # b)-ts e as)"

and as3: "b € sValues: (u && ts)"
obtain a where a.def: "updis a = u" by (metis Exh.Up as1 discr.exhaust)
have "a#b=—bEsValues-ts" by (metis UnE a.def as3 Iscons_conv sValues2un singletonD)

hence "ao——>srtdw (Aa. a # b) - (Tae (ts e as)) = srtdw (Aa. a # b)-(Tae ts) e as " using as2 a.-def by auto
thus "srtdw (Aa. a # b)-((u && ts) e as) = srtdw (Aa. a # b)-(u && ts) e as "
by (smt a_def inject_-scons Iscons_conv sconc.scons stwbl_f stwbl_srtdw)
qed

(* stwbl concatenation x)
lemma stwbl_conc[simp]: "bEsvalues-ts=—
(stwbl (Aa. a # b) - (stwbl (Aa. a # b)-ts e xs)) =
(stwbl (Aa. a # b) - (ts))"
apply(induction ts)
apply(rule adm.imp)
apply simp
apply(rule adml)
apply (metis (no-types, lifting) ch2ch_Rep_cfunR contlub_cfun_arg inf_.chainl4 lub_eql lub_finch2
sconc_fst.inf stwbl2stbl)
apply simp
by (smt UnE assoc_sconc sValues2un singletonD stream.con_rews(2) stream.sel_-rews(5) stwbl_f stwbl_t surj_scons)

(* *)
section (@{term siterateBlock})
(* - - %)

(» block-iterating the function f on the stream x is equivalent to the stream produced by concatenating x
and the iteration of f on x shifted by another application of f x)

lemma siterateBlock_unfold: "siterateBlock f x = x e siterateBlock f (f x)"

by(subst siterateBlock_def [THEN fix_eq2], auto)

(+ if g doesn't change the length of the input, then iterating g doesn't either )
lemma niterate_len[simp]: assumes "Vz. #z = #(g z)"

shows "#((niterate i g) x) = #x"
using assms by(induction i, auto)

(» dropping i blocks from siterateBlock g x is equivalent to beginning siterateBlock after i iterations
of g have already been applied *)
lemma siterateBlock_sdrop2: assumes "#x = Fin y" and "Vz. #z = #(g z)"
shows "sdrop (y+i) - (siterateBlock g x) = siterateBlock g ((niterate i g) x)"
apply (induction i, auto)
by (metis assms(1) assms(2) niterate_len sdrop-plus sdroplé siterateBlock-unfold)

"

(x» the yxi'th element of siterateBlock is the same as the head of the i'th iteration )
lemma siterateBlock.snth: assumes "#x = Fin y" and "Vz. #z = #(g z)" and "#x > Fin 0"

shows "snth (yxi) (siterateBlock g x) = shd ((niterate i g) x)"
proof —
have eql: "sdrop (yxi)- (siterateBlock g x) = siterateBlock g ((niterate i g) x)" using assms(1) assms(2)

siterateBlock_sdrop2 by blast

have "#((niterate i g) x) > 0" by (metis Fin_02bot assms(2) assms(3) Inzero.def niterate_len)
hence "shd (siterateBlock g ((niterate i g) x)) = shd (((niterate i g) x))" by (metis Fin_0 minimal
monofun_cfun_arg sconc.snd_empty siterateBlock_unfold snth_less snth_shd)
thus ?thesis by (simp add: eql snth._def)
qed

(» dropping a single block from siterateBlock is equivalent to beginning the iteration with (g x) x)
lemma siterateBlock.sdrop: assumes "#x = Fin y"

shows "sdrop y- (siterateBlock g x) = siterateBlock g (g x)"
by (metis assms sdropl6 siterateBlock-unfold)

(» block-iterating the function g on the empty stream produces the empty stream again x)
lemma siterateBlock_eps[simp]: assumes "g € = €e"

shows "siterateBlock g € = €"
by(simp add: siterateBlock_def assms)

(+ block-iterating the identity on the element x is equivalent to infinitely repeating x =)
lemma siterateBlock2sinf: "siterateBlock id x = sinftimes x"
by (metis id_apply rek2sinftimes siterateBlock.eps siterateBlock_unfold strict_.icycle)

(» siterateBlock doesn't affect infinite streams «)

lemma siterBlock.inf [simp]: assumes "#s =od'
shows "siterateBlock f s = s"

by (metis assms sconc_fst_inf siterateBlock-unfold)

(» the first element of siterateBlock doesn't have any applications of g x)
lemma siterateBlock_-shd [simp]: "shd (siterateBlock g (Tx)) = x"
by (metis shd1 siterateBlock-unfold)

(» helper lemma for siterateBlock2siter x)
lemma siterateBlock2niter: "snth i (siterateBlock (As. (smap g-s)) (Tx)) = niterate i g x" (iS "snth i (?B) = ?N
i)
proof —
have f1: "#(tx) = Fin 1" by simp
have "Vz. #z = #((As. (smap g-s)) z)" by simp
hence f2: " snth (i) (siterateBlock (As. (smap g-s)) (Tx)) = shd (niterate i (As. (smap g-s)) (Tx))"
by (metis Fin.0 Fin_Suc One_nat.def f1 Inat.con_rews Inless_def Inzero.def minimal nat.mult_1
siterateBlock_snth)
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have "shd (niterate i (As. (smap g-s)) (Tx)) = niterate i g x"
proof (induction i)
case 0 thus ?case by simp
next
case (Suc i) thus ?case
by (smt Fin_.0 f1 inject.scons neqO.conv niterate.simps(2) niterate_len slen_.smap smap.scons strict.slen
surj_scons zero_less_one)
qed
thus ?thesis by (simp add: f2)
qed

(» siterateBlock creates an infinitely long stream x)

lemma siterateBlock.len [simp]: "#(siterateBlock (As. (smap g-s)) (tx)) =od'

apply (rule infl)

apply (rule alll)

apply (rule_tac x="x" in spec)

apply (induct_-tac k, simp+)

apply (metis bot.is_.0 Inat.con_rews siterateBlock.-unfold slen_scons strict_slen)

by (metis Fin_Suc Inat.sel_-rews(2) sconc_.snd_empty siterateBlock_unfold slen_scons smap.scons strict_.smap)

(» iterating the identity function commutes with any function f «)
lemma siterateBlock_.smap: "siterateBlock id (smap f-x) = smap f- (siterateBlock id x)"
by (simp add: siterateBlock2sinf)

(» converting x to a singleton stream and applying siterateBlock using smap g is equivalent to
iterating using g directly on x )

lemma siterateBlock2siter [simp]: "siterateBlock (As. (smap g-s)) (Tx) = siterate g x"

apply (rule sinf_snt2eq, auto)

by (simp add: siterateBlock2niter snth_siter)

(K %)
subsection @{term sislivespf})
(% %)

(# if length of f-x is infinite then also length of x is infinite, and then sislivespf f holds =)
lemma sislivespfl:

"(Ax. #(f-x) =oc=—>#x =o9g=—>sislivespf f"
by (simp add: sislivespf_def)

(» if length of x is finite then also length of f-x is finite, and then it holds that sislivespf f )
lemma sislivespfl2:
"(Ak. Vx. #x = Fin k—# (f-x) #od=—>sislivespf f"
apply (rule sislivespfl)
by (rule_tac x="#x" in Incases, simp+)

(» 1f sislivespf f holds and length of x is finite, then also length of f:-x is finite x)
lemma sislivespfD1:
"[sislivespf £; #x = Fin k]==#(f-x) F#od'
apply (rule notl)
by (simp add: sislivespf_def)

(# if sislivespf f holds and f-x has infinite length, then x has infinite length )
lemma sislivespfD2:

"[sislivespf f; #(f-x) =od=#x =o'
by (simp add: sislivespf_def)

(* *)
section (Lemmas on lists and streams)

(* *)
(* *)
subsection @{term list2s})

(% - —-— B *)

(+ consing onto a list is equivalent to prepending an element to a stream )
lemma [simp]: "list2s (a#as) = fTa e list2s as"
by (simp add: Iscons_conv)

declare list2s_Suc [simp del]

(x» infinite lists don't exist =)
lemma [simp]: "#(list2s x) #od'
by (induct x, simp+)

lemma s2list_ex:

"#s = Fin k=>31. list2s 1 = s"
apply (simp add: atomize.imp)
apply (rule-tac x="s" in spec)
apply (induct-tac k, simp+)

apply (rule_tac x="[]" in exl|, simp+)
apply (rule alll, rule impl)
apply (rule_tac x="x" in scases, simp+)

(
apply (erule_tac x="s" in allE)
apply (drule mp)

apply (simp add: Fin_Suc [THEN sym] del: Fin_Suc)
apply (erule exE)

by (rule_tac x="a # 1" in exl, simp)

(» the empty stream corresponds to the empty list =*)
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lemma [simp]: "s2list e = []"

apply (simp add: s2list_def)

apply (rule somel2_ex)

apply (rule_tac x="[]" in exl, simp)
apply (simp add: atomize.imp)

by (induct_-tac x, simp+)

(» the singleton stream corresponds to the singleton list x)
lemma [simp]: "s2list (fTa) = [a]"

apply (simp add: s2list-def)

apply (rule somel2_ex)

apply (rule_tac x="[a]" in exl, simp)

apply (simp add: atomize.imp)

apply (induct-tac x, auto)

by (case-tac "list", simp+)

(» the empty list is the bottom element for lists x)
lemma [simp]: "[] C 1"
by (simp add: sq-le_list)

lemma list2s_emb: "[#s #og #s' #od=(s2list s C s2list s') =
apply (simp add: s2list-def)

apply (rule somel2_ex)

apply (rule_tac x="#s'" in Incases, simp)
apply (frule s2list.ex, simp)

apply (rule somel2_ex)

apply (rule_tac x="#s" in Incases, simp)
apply (frule s2list.ex, simp)

apply (rule iffl)

apply (drule sym, drule sym, simp)

apply (simp add: sq-le-list)

by (simp add: sqg-le_list)

lemma list2s_mono: "1 C 1'=-1ist2s 1 C list2s 1'"
by (simp add: sqg-le_list)

lemma monofun_lcons: "monofun (Al. a # 1)"
apply (rule monofunl)

apply (simp add: atomize.imp)
apply (rule_tac x="a" in spec)
apply (induct-tac x, simp+)
apply (rule alll)

apply (simp add: sq-le-list)
apply (rule alll)

apply (rule impl)

apply (simp add: sq-le-list)

by (rule monofun_cfun.arg, simp)

lemma s2list2lcons: "#s #oc=—>s2list (Ta @ s) = a # (s2list s)"
apply (rule_tac x="#s" in Incases, simp+)
apply (simp add: atomize.imp)

apply (rule_tac x="s" in spec)

apply (rule_tac x="a" in spec)

apply (induct-tac k, simp+)

apply (rule alll ,rule alll, rule impl)
apply (rule_tac x="xa" in scases, simp+)
apply (simp add: s2list-def)

apply (rule somel2_ex)

apply (frule s2list.ex, simp)

apply (rule somel2_ex)

apply (frule s2list_ex)

apply (erule exE)

apply (rule_tac x="x#a#1" in exl, simp+)
by (rule list2s_inj [THEN iffD1], simp)

lemma [simp]: "s2list (list2s 1) = 1"
apply (induct_-tac |, simp+)
by (subst s2list2lcons, simp+)

lemma slistl5[simp]: "list2s (1 €@ [m]) = list2s 1 e tm"
by (induct_-tac |, simp+)

(%
subsection (List- and stream-processing functions)

(*

(» concatenating streams corresponds to concatenating lists x)
lemma listConcat: "<11> e <12> = <(11 @ 12)>"
apply (induction 11)

by auto

(» smap for streams is equivalent to map for lists =)
lemma smap2map: "smap g- (<ls>) = <(map g ls)>"

apply (induction Is)

by auto

(» the notion of length is the same for streams as for lists «x)

168



lemma list2streamFin: "#(<ls>) = Fin (length 1ls)"
apply(induction Is)
by auto

lemma mono_slpf2spf:
"monofun f=>monofun (As. list2s (f (s2list (stake k-s))))"
apply (rule monofunl)
apply (simp add: atomize.imp)
apply (rule-tac x="y" in spec)
apply (rule-tac x="x" in spec)
apply (induct-tac k, simp+)
apply (rule impl)
apply (drule mp, assumption)
apply (rule alll)+
apply (rule impl)
apply (drule lessD, simp)
apply (erule disjE, simp)
apply (rule list2s_mono)
apply (rule_tac f="f" in monofunE,simp+)
apply (erule exE)+
apply (erule conjE)
apply (erule exE,simp)
apply (erule conjE)
apply (rule list2s_.mono)
apply (rule-tac f="f" in monofunE,simp+)
apply (rule-tac x="xa" in scases,simp)
apply (subst list2s_emb ,simp+)
apply (rule monofun_cfun_arg)+
by simp

lemma chain_slpf2spf:
"monofun f==1list2s (f (s2list (stake i-x))) C list2s (f (s2list (stake (Suc i)-x)))"
apply (rule list2s_mono)
apply (rule_tac f="f" in monofunE, simp+)
apply (subst list2s_emb ,simp+)
by (rule chainE, simp)

lemma slpf2spfl_contl:
"monofun f=—
cont (As. (k. list2s (f (s2list (stake k-s)))))"
apply (rule cont2cont_lub)
apply (rule chainl)
apply (rule chain_slpf2spf, simp)
apply (rule pr-contl)
apply (rule mono-slpf2spf, assumption)
apply (rule alll)
by (rule_-tac x="k" in exl, simp)

lemma slpf2spf_cont:
"monofun f=—
(A's. (k. list2s (f (s2list (stake k-s)))))-s = (k. list2s (f (s2list (stake k-s))))"
apply (subst beta_cfun)
by (rule slpf2spfl_contl, assumption, simp)

lemma slpf2spf.def2:

"monofun f=>slpf2spf f-x = (k. list2s (f (s2list (stake k-x))))"
apply (simp add: slpf2spf.def)
by (rule slpf2spf_cont)

lemma sislivespf_sipf2spf:
"monofun f==sislivespf (slpf2spf f)"
apply (rule sislivespfl)
apply (rule_tac x="#x" in Incases, assumption)
apply (simp add: slpf2spf.def2)
apply (subgoal_tac
"finite_chain (Ak. list2s (f (s2list (stake k-x))))")
apply (simp add: finite_chain_def)
apply (erule conjE, erule exE)
apply (frule lub_finch1, simp+)
apply (frule lub_eql, simp)
apply (simp add: finite_.chain_def, rule conjl)
apply (rule chainl)
apply (rule chain_slpf2spf, assumption)
apply (rule_tac x="k" in exl)
apply (simp add: max.in_chain_def)
apply (rule alll, rule impl)
apply (subgoal_-tac "stake j-x = stake k-x", simp)
apply (subst fin2stake [THEN sym], simp+)
by (simp add: min_def)

lemma sspf2lpf_mono:

"sislivespf f==monofun (sspf2lpf f)"
apply (rule monofunl)
apply (simp add: sspf2lpf_def)
apply (subst list2s_emb)
apply (rule notl, frule sislivespfD2, simp+)+
apply (rule monofun_cfun_arg)
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by (simp add: sqg-le_list)

lemma monofun_spf_ubl[simp]:

"#((f-x)::'a stream) =oc—f-(x ® y) = f£-x"
apply (rule sym)
apply (rule eq-less_and_fst_inf [of "f.-x"])
by (rule monofun_cfun._arg, auto)

lemma inj_sfilter_.smap_.siteratell:
"inj f=-sfilter {f j}-(smap f- (siterate Suc (Suc (k + j)))) = €"
apply (rule ex-snth_in_sfilter_.nempty [rule_format])
apply (simp add: atomize.imp)
apply (rule impl)
apply (subst smap_snth_lemma, simp+)
apply (simp add: snth_siterate_Suc)
apply (rule notl)
by (frule_tac x="Suc (n+(k+3j))" and y="j" in injD, simp+)

(+ an element m can't appear infinitely often in a stream produced by mapping an injective function f
over the natural numbers =)

lemma inj_sfilter_smap_siteratel2[simp]:
"inj f==#(sfilter {m}- (smap f- (siterate Suc j))) F#od'

apply (case-tac "m€range f")

apply (rule-tac b="m" and f="f" in rangeE, simp+)

apply (rule notl)

apply (drule_tac n="suc x" in slen_sfilter_sdrop [rule_format], simp)

apply (simp add: sdrop-siterate)

apply (simp add: inj_sfilter_.smap_.siteratell)

by (simp add: sfilter_smap-nrange)

T *)

(# finite chains have lub *)
lemma finChainapprox:fixes Y::"nat = 'a stream"
assumes "chain Y" and "# (li. Y i) =Fin k"
shows "3i. v i = (Ji. v i)"
using assms(1) assms(2) inf_chainl4 lub_eql lub_finch2 by fastforce

(» finite streams are compact =*)
lemma finCompact: assumes "#(s::'a stream) = Fin k"

shows "compact s"

proof (rule compactl2)

fix Y assume as1: "chain y" and as2: "s C (Ji. v i)"

show "3Ji. s C v i" by (metis approxl2 as1 as2 assms finChainapprox lub_approx stream.take_below)
qed

(» the empty stream is compact x)
lemma "compact e"
by simp

(+ Tx is compact x)
lemma "compact (Tx)"
by (simp add: sup'.-def)

(*» not so compact stuff «)

lemma nCompact: assumes "chain Y" and "Vi. (v i C x)" and "Vi. (Y i # x)" and "x C (Ji. v i)"
shows "—(compact x)"
by (meson assms below_antisym compactD2)

(» infinite streams are not compact x)
lemma infNCompact: assumes "#(s::'a stream) =od'
shows"— (compact s)"
proof (rule nCompact)
show "chain (Ai. stake i-s)" by simp
show "Vi. stake i-s C s" by simp
show "Vi. stake i-s # s" by (metis Inf'_neq_0 assms fair_sdrop sdropostake strict_slen)
show "s C (] i. stake i-s)" by (simp add: reach_stream)
qed

(+ sinftimes (Tx) is not compact *)
lemma "— (compact (sinftimes (fx)))"
by (simp add: infNCompact slen_sinftimes)

(+ add function x)
definition add:: "nat stream — nat stream — nat stream" where
"add = A sl s2 . smap (A s3. (fst s3) + (snd s3)):(szip-sl-s2)"

(* add is continuous x)
lemma "cont (A sl s2 . smap (A s3. (fst s3) + (snd s3))-(szip-sl-s2))"
by simp

(x add returns the same result as merge plus x)
lemma "add = merge plus"
by(simp add: add_def merge_def)

(» unfolding rule for add x)

lemma add._unfold: "add: (Tx e xs) - (Tye ys) = T (x+y) e add-xs-ys"
by (simp add: add.def)
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(* relation between snth and add =)
lemma add_snth: "Fin n <#xs=—=%in n < #ys=—>snth n (add-xs-ys) = snth n xs + snth n ys"
by (simp add: add.def smap.snth_lemma szip_nth)

(» add applied to the empty stream always returns the empty stream =*)
lemma add_epsi[simp]: "add-e-ys = e"
by (simp add: add.def)

(» add applied to the empty stream always returns the empty stream x)
lemma add_eps2[simp]: "add-xs-e = €"
by (simp add: add.def)

(» relation between srt and add x)
lemma [simp]: "srt- (add-(ta e as)-(tb e bs)) = add-as-bs"
by (simp add: add-unfold)

(» helper lemma for commutativity of add x)
lemma add.commu_helper: assumes "Ay. add-x-y = add-y-x"
shows "add: (1a @ x) -y = add-y-(Ta e x)"
apply(cases "y = €")
apply auto[1]
by (metis (no-types, lifting) Groups.add.ac(2) assms add_unfold surj.scons)

(» the add function is commutative =)
lemma add_commutative: "add-x-y = add-y-x"
apply(induction x arbitrary: y)
apply(simp-all)
by (metis add_.commu_helper stream.con.rews(2) stream.sel_.rews(5) surj_scons)

(* relation between add, lnsuc and srt =)
lemma add_len: assumes "xs#L" and "uAL"
shows "# (add-xs-(u && ys)) = lnsuc- (#(add- (srt-xs)-ys))"
by (metis (no_types, lifting) add_-unfold assms(1) assms(2) slen_scons stream.con_rews(2) stream.sel_rews(5)
surj_scons)

(x helper lemma for add2smapsu x)
lemma add2smapsuc_helper:" suc = (Az. z+1)"
by auto

(» relation between add and smap applied to (Suc)-sc x)
lemma inf_srcdups_stake_snth_sdrop:
assumes "#s =od" and "srcdups-s = srcdups- (stake k-s)"

shows "snth n (sdrop k-s) = snth k s"
proof (induction n)
case 0

then show ?case
by (simp add: snth_def)
next
case (Suc n)
then have "snth (Suc n) (sdrop k-s) # snth k s=>False"
proof -
assume "snth (Suc n) (sdrop k-s) ;é snth k s"
have "#s =od'
by (simp add: assms(1))
moreover have "snth (n + k) s # snth (n + k + 1) s"
by (metis Suc.IH Suc.prems Suc_eq-plus1 (snth (Suc n) (sdrop k-s) # snth k s)
semiring_normalization_rules (23) snth_sdrop)
ultimately have "srcdups-: (stake (n + k + 1)-s) # srcdups-s"
by (metis add2smapsuc_helper srcdups-snth_stake_inf)
moreover have "srcdups- (stake (n + k + 1)-s) = srcdups- (stake k-s)"

proof -
have "srcdups- (stake k-s) C srcdups- (stake (n + k + 1) -s)"
proof —
have "k + (1 + n) n+ k + 1"
by simp

then show ?thesis
by (metis (no-types) minimal monofun_cfun.arg sconc.snd_empty stake.add)
qed
then show ?thesis
by (metis assms(2) below_antisym monofun_cfun_arg stream.take_below)
qed
ultimately show "False"
by (simp add: assms(2))
qed
then show ?case
by blast
qed

lemma srcdups_split:
assumes "# (srcdups-s) <od and "#s =od'
obtains n where "s = (stake n-s) e ((T(snth n s))’>9"
proof —
obtain k where "srcdups-s = srcdups- (stake k-s)"
by (metis len_stream_def assms(1) fun_approxl2 Inat-well_h2)
then have "sdrop k-s # srt- (sdrop k-s)=——False"
proof -
assume "sdrop k-s # srt- (sdrop k-s)"
moreover have "# (sdrop k-s) = #(srt- (sdrop k-s))"
by (metis assms(2) fair_.sdrop sdrop-back.rt)
ultimately obtain n where "snth n (sdrop k-s) # snth n (srt- (sdrop k-s))"
using snths_eq by blast
moreover have "snth n (srt- (sdrop k-s)) = snth k s"
by (metis (srcdups-s = srcdups-(stake k-s)) assms(2) inf_srcdups_stake_snth_sdrop snth_rt)
then show "False"
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by (metis (no-types) (snth n (srt-(sdrop k-s)) = snth k s) (srcdups-s = srcdups- (stake k-s)) assms(2)
calculation inf_srcdups_stake_snth_sdrop)
qed
then have "sdrop k-s = T (snth k s) e (sdrop k-s)"
by (metis Inf'_neq-0 assms(2) fair_sdrop snth_def strict_.slen surj_scons)
then have "sdrop k-s = ((f(snth k s))’bg"
using s2sinftimes by blast
then have "s = (stake k-s) e ((f(snth k s)) b "
by (metis split_streaml1)
thus ?thesis
by (metis that)
qed

lemma add2smapsuc:"add- ( (11)"59 -s=smap (Suc) -s"
by (metis add_eps2 add_unfold plus_-1_eq-Suc rek2smap sinftimes_unfold)

(» relation between add and smap *)

lemma add2smap_f: "add- ((1x)"59 = smap (Az. z+x)"

apply(rule cfun_eql)

by (metis (no-types, lifting) add_.commutative add_eps2 add_unfold rek2smap sinftimes_unfold)

(» relation between shd and updis «)
lemma shd._updis:"shd (u && s) = (THE a. updis a= u)"
by(simp add: shd_-def the_equality , metis)

(» smap applied to the identity + stream returns the stream )
lemma smap-id:"smap (id)-s = s"

apply (induction s, auto)

apply (simp add: smap-hd_rst)

using stream.con.rews(2) surj_.scons by fastforce

(» smap applied to the identity + stream returns the identity + stream x)
lemma smapid2ID_h:"smap id- s = ID- s"

apply (simp add: ID_def)

by(rule snths_eq, auto, simp add: smap.id)

(» smap applied to the identity returns the identity x)
lemma smapid2ID:"smap id= ID"
by(rule cfun_eql, simp add: smapid2ID.h)

(» add applied to TOxs returns the identity + stream =)
lemma add2ID_h:"add- ((10)">9 -s=ID-s"
proof(induction s rule: ind)
case 1
then show ?case
by simp
next
case 2
then show ?case
by simp
next
case (3 a s)
then show ?case
by (metis ID1 add_unfold semiring_normalization_rules (5) sinftimes_unfold)
qed

(+ add applied to T0x returns the identity =)

lemma add2ID:"add 100 = ID"
by (simp add: add2ID_h cfun_eql)

(* - - - = %)
subsection (Reachability)
(* *)
definition freach_.h :: "('s= 'i= ('s X '0)) = 's= 'i set = 's set = 's set" where

"freach_h f initial domain states

= states U {fst (f s elem) | elem s. s € (states U {initial}) A elem € domain}"

definition freach :: "('s= 'i= ('s X '0)) = 's = 'i set = 's set" where

"freach f initial domain = {initial} U fix-(A S. freach_h f initial domain S)"

lemma freach_h_mono: "monofun (AS. freach_h f initial domain S)"
apply (rule monofunl)
by (auto simp add: less_set.def freach_h_def)

lemma freach_h_cont: "cont (AS. freach_h f initial domain S)"
apply (rule contl2)
apply (simp add: freach_h_mono)
by (auto simp add: chain.def less_set_.def lub_eq-Union freach_h_def)

lemma freach_insert:
"freach f initial domain = {initial} U freach f initial domain
U {fst (f s elem) | elem s. s € (freach f initial domain U {initial}) A elem € domain}"
apply (subst freach_def)
by (smt Abs_cfun.inverse2 Collect.cong UnCl UnE Un.def fix_.eq freach.def freach_h_cont
freach_h_def mem_Collect-eq)

lemma freach_empty [simp]: "freach £ i {} = {i}"
apply (simp add: freach_def)
apply (subst fix_strict)
apply (simp add: freach_h_cont freach_h_def)
by (simp add: UU_eqg.empty)
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lemma freach_mono: "monofun (freach f i)"

apply (rule monofunl)

apply (simp add: less_set_def)

apply (simp add: freach.def)

apply (rule parallel_fix_.ind , auto)

apply (rule adml)

apply (subgoal_tac "fst (. v i) = (Ui. fst (Y i))", simp)
apply (subgoal_tac "snd (Ji. Y i) = (Ui. snd (Y i))", simp)
apply blast

apply (metis (mono_-tags, lifting) lub_prod set.cpo.simps(2) snd_conv)
apply (simp add: lub_prod set.cpo.simps(2))
by (auto simp add: freach_h_cont freach_h_def)

lemma freach_initial.in:
"i € freach f i domain"
by (simp add: freach_def)

lemma freach_suc.in:
assumes "a € freach f i domain"
shows "Ve € domain. fst (f a e) € freach f i domain"
using assms freach_insert by fastforce

lemma freach_ext.dom:
assumes "b € freach f i (sValues: (srt-s))"
shows "b € freach f i (sValues-s)"
using assms
apply (subgoal_-tac "freach f i (sValues- (srt-s)) C freach f i (sValues-s)")
apply (metis SetPcpo.less_set.def contra_subsetD)
apply (subgoal_tac "(svalues- (srt-s)) C (sValues-s)")
apply (rule monofunE [of "freach £ i"], auto)
apply (simp add: freach-mono)
by (metis (full-types) SetPcpo.less_set_-def sdrop.-0 sdrop-forw_rt sdrop-sValues)

lemma freach_ext.dom2:
assumes "s # e"
shows "freach f i (sValues- (srt-s)) C freach £ i (sValues-s)"
using assms
by (simp add: SetPcpo.less_set.def freach_ext_.dom subset_iff)

lemma freach_step_ext:
assumes "s # €"
shows "freach f (fst (f i (shd s))) (sValues-s) C freach f i (sValues-s)"
using assms
apply (simp add: SetPcpo.less_set_def)

apply (subst freach_def)

apply (rule fix_-ind)

apply (rule adml)

apply (simp add: SUP_least lub_eg-Union)

apply (metis UU_eqg-empty freach_initial-in freach_suc-in sfilter_ne_resup sfilter_.sValuesl4

singletonD subsetl sup-bot.right_neutral)
apply (auto simp add: freach_h_cont freach_h_def)
apply (simp add: freach_suc.in)
by (meson contra_subsetD freach_suc.in)

lemma freach_step:
assumes "s # €"
shows "freach f (fst (f i (shd s))) (sValues- (srt-s)) C freach £ i (sValues-s)"
using assms
by (meson freach_ext.dom2 freach_step_ext rev_below_trans)

lemma f2snth_sscanlasnd_freach:
assumes "Fin j < #s"
and "/\b e. e € sValues-s=>b € freach f i (sValues-s)=P e (snd (f b e))"
shows "P (snth j s) (snth j (sscanlAsnd f i-s))"
using assms
proof (induction j arbitrary: s f i)
case 0
then show ?case
by (metis Fin_02bot freach_initial_.in Inless_def Inzero_def slen_empty_eq snth2sValues
snth_shd sscanlasnd_shd)
next
case (Suc j)
then show ?case
apply (simp add: snth_rt sscanlasnd_srt)
apply (rule Suc.IH)
apply (meson not_le slen_rt_ile_eq)
apply (rule Suc.prems)
apply (metis (no-types, hide_lams) contra.subsetD empty.iff Iscons_conv sValues_subset
sfilterEq2sValues sfilter.ne_resup snth2sValues stream.con.rews(2) surj_scons)
by (metis (no-types, lifting) SetPcpo.less_set_.def contra.subsetD empty.is_shortest
freach_step)
qed

lemma freach_initial_transfer:
assumes "P i"
and "Ve € sValues-s. Vb. P b——P (fst (f b e))"
shows "Vb € freach f i (sValues-s). P b"
using assms
apply (subst freach_def)
apply (rule fix_ind)
apply simp_.all
apply (rule adml)
apply (simp add: lub_eq_Union)
apply (simp add: UU_eg-empty)
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by (auto simp add: freach_h_cont freach_h_def)

hide_const %invisible slen
end
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Appendix C

Stream Bundle Theories

C.1 Datatype

(x:maxLinelLen=68:«)

theory Datatypes
imports inc.Prelude

begin

default_sort %invisible type

section (System specific Datatypes)

subsection (Channel Datatype)

text (The channel datatype is fixed for every system. The

temperature alarm system \cref{fig:sensor} would have the channel

type (cempty | cTemp | cAlarm). This datatype contains every used

channel and at least one dummy "channel" for defining components with no

input or no output channels. The (cempty) element in the channel

datatype is a technical work-around since there are no empty types in Isabelle.
Thus, even the type of an empty channel set has to contain an element.)

datatype channel = DummyChannel

hide_const DummyChannel

subsection (Message Datatype)

text (Analogous to the channel datatype, the message datatype
contains the messages that channels can transmit. Hence, every kind
of message has to be described here. The messages for our sensor
system would be defined as (\<I> int | \<B> bool). This message type
contains all messages transmittable in a system.)

datatype M = DummyMessage
hide_const DummyMessage

instance M :: countable
apply(intro_classes)
by(countable_datatype)

definition %invisible ctype :: "channel =M set" where
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"ctype ¢ = {}" (x Should be invisible to the user, would only confuse x)

text(Such a mapping is described by the @{const ctype} function. Only
messages included in the @{const ctype} are allowed to be transmitted
on the respective channel. For the sensor system, channel (c1) would

be allowed to transmit all (\<I> int) and (c2) all (\<B> bool) messages.
The (cempty) channel can never transmit any message, hence,

@{const ctype} of (cempty) would be empty.)

theorem ctypeempty_ex: "Jc. ctype c = {}"
by (simp add: ctype.def)

hide_fact %invisible ctype_def

end

C.2 Channel

(*:maxLinelLen=68:x)
theory Channel

imports HOLCF user.Datatypes
begin

subsection(Domain Classes)

paragraph (Preliminaries for Domain Classes \\)

definition cEmpty :: "channel set" where
"cEmpty = {c. ctype ¢ = {}}"

lemma cempty_exists: "cEmpty # {}"
by (simp add: cEmpty_def ctypeempty_ex)

paragraph(Classes \\)

class rep =

fixes Rep :: "'a = channel"
begin

abbreviation "Abs = inv Rep"
end

class chan = rep +
assumes chan_botsingle:
"range Rep C cEmpty V
range Rep M cEmpty = {}"
assumes chan_.inj[simp]:"inj Rep"
begin
theorem abs_rep.id[simp]:"Abs (Rep c) = c"
by simp
end

paragraph (Class Functions \\)

text(We will now define a function for types of @{class chan}. It
returns the Domain of the type. As a result of our class assumptions
and of interpreting empty channels as non existing, our domain is
empty, if and only if the input type contains channel(s) from
@{const cEmpty}. A type can be defined as the input of a function by
using (itself) type in the signature. Then, input

(chDom TYPE ('cs)) results in the domain of ('cs).)

definition chDom::"'cs::chan itself = channel set" where
"chDom a = range (Rep::'cs = channel) - cEmpty"

abbreviation chDomEmpty ::"'cs::chan itself = bool" where
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"chDomEmpty cs = chDom cs = {}"

lemma inchdom|[simp] :"—~chDomEmpty TYPE('cs)
—Rep (c::'cs::chan) € chDom TYPE('cs)"
apply (simp add: chDom._def)
using chan_botsingle by blast

paragraph (Class somechan \\)

text(Types of (somechan) can transmit at least one message
on every channel.)

class somechan = rep +
assumes chan_notempty: " (range Rep) N cEmpty = {}"
and chan_inj[simp]:"inj Rep"
begin end

subclass (in somechan) chan
apply(standard)
by (simp_all add: local.chan_notempty)

lemma somechannotempty[simp]: "—chDomEmpty TYPE('c::somechan)"
using chDom_def somechan_class.chan_notempty by fastforce

lemma somechandom:"chDom (TYPE ('c: :somechan))
= range (Rep::'c=channel)"
by (simp add: chDom_def somechan_.class.chan_notempty Diff_triv)

paragraph(Class emptychan \\)

text(Types of (emptychan) can not transmit any message on any
channel.)

class emptychan = rep +
assumes chan_empty:" (range Rep) C cEmpty"
and chan_inj[simp]:"inj Rep"
begin end

subclass (in emptychan) chan
apply (standard)
by (simp-all add: local.chan_empty)

theorem emptychanempty[simp] :"chDomEmpty TYPE('cs::emptychan)"
by (simp add: chDom.def emptychan_class.chan_empty)

lemma emptychan_type[simp]: "ctype (Rep (c::('cs::emptychan))) = {}"
using chan_empty cEmpty_def by auto

subsubsection %invisible ( rep abs chan lemmata )
default_sort %invisible chan

lemma repinrange[simp]:"Rep (c::'c) = x
—=x€ range (Rep::'c = channel)"
by blast

lemma chan_eq[simp]:"Rep (c::'c) = x==>xE€ range (Rep::'d=channel)
—Rep ( (Abs::channel = 'd) (Rep c)) = x"
by (simp add: f_inv_into_f)

lemma cempty_rule[simp]:assumes"chDomEmpty (TYPE ('c))"
shows"Rep (c::'c) € cEmpty"
using assms chan_botsingle chDom_def by blast

lemma cnotempty_rule[simp]:assumes"—chDomEmpty (TYPE ('c))"
shows"Rep (c::'c) & cEmpty"
using assms chan_botsingle chDom._def by blast

lemma cnotempty_cdom[simp]:assumes"—chDomEmpty (TYPE ('c))"
shows"Rep (c::'c) € chDom(TYPE('c))"
using assms by (simp add: chDom._def)

lemma cdom_notempty[simp]:assumes"c €chDom TYPE('c)"
shows" c ¢ cEmpty"
using assms by (simp add: chDom_def)

lemma notcdom_empty[simp]:assumes"Rep (c::'c) ¢chDom TYPE('c)"
shows" Rep ¢ € cEmpty"
using assms by (simp add: chDom._def)

lemma chdom.in: fixes c::"'cs::chan"
assumes "chDom TYPE('cs) # {}"
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shows "Rep ¢ € chDom TYPE('cs)"
by (metis Diff_eq_empty_iff Diff_triv assms chDom_def
chan_botsingle rangel)

lemma abs_reduction[simp]:
fixes c::"'csl::chan"
assumes"Rep c€chDom TYPE ('csl)"
and "Rep ¢ € chDom TYPE('cs2)"
shows "Rep ((Abs::channel= 'cs2) (Rep c)) = Rep c"
by (metis DiffD1 assms(2) chDom._def chan_eq)

lemma abs_fail:
fixes c::"'csl"
assumes"Rep c€chDom TYPE('csl)"
and "Rep ((Abs::channel='cs2) (Rep c)) # Rep c"
shows "Rep c ¢ chDom TYPE('cs2)"
using assms(1) assms(2) by auto

lemma dom_ref:

fixes c::"'esim
assumes"Rep c€chDom TYPE('csl)"
and "Rep ((Abs::channel='cs2) (Rep c)) = Rep c"

shows "Rep c € chDom TYPE('cs2)"
using assms(1) assms(2) chDom_def by fastforce

lemma rep.reduction:
assumes " c € chDom TYPE('cs2)"
shows "Rep ((Abs::channel= 'cs2) c) = c"
by (metis DiffD1 assms chDom_def f_inv_into_f)

lemma rep-reduction2[simp]:
assumes "Rep c¢ € chDom TYPE('c)"
shows"Abs (Rep ((Abs::channel = 'c) (Rep c))) = Abs (Rep c)"
using assms rep_reduction by force

lemma abs_eql:

fixes c::"channel"

"'esl”

'cs2"
assumes "Rep cl = Rep c2"
and "Rep cl = c"
shows "Abs c = c1"
and "Abs c = c2"
using assms(2) apply auto[1]
using assms(1) assms(2) by auto

lemma cdomemty_type[simp]:
"chDomEmpty TYPE('cs)=—=ctype (Rep (c::'cs)) = {}"
by (simp add: chDom.def cEmpty.def subset_eq)

declare %invisible [[ show_types]]
declare %invisible [[ show_consts]]

subsection (Interconnecting Domain Types)

text (Furthermore, the type-system of Isabelle has no dependent
types which would allow types to be based on their value
\cite{Moura.2015}. This also effects this framework, because a type
('cs1 U 'cs2) is always different from type ('cs2 U 'cs1), without
assuming anything about the definition of (U). This also makes
evaluating types harder. Even type ('cs U 'cs) is not

directly reducible to type ('cs) by evaluating (U). Of course the
same holds for the (-) type.)

subsubsection (Union Type)

typedef ('cs1,'cs2) union (infixr "u" 20) =
"if chDomEmpty TYPE ('csl) A chDomEmpty TYPE ('cs2)
then cEmpty
else chDom TYPE('csl) U chDom TYPE('cs2)"
apply (auto)
using chDom_def by blast

text(Because channels in @{const cEmpty} are interpreted as no real
channels, the union of two empty domains is defined as the

channel set @{const cEmpty}. The next step is to instantiate the
union of two members of class @{class chan} as a member of class
@{class chan}. This is rather easy, because either the union results
in @{const cEmpty}, so there are no channels where a message can

be transmitted, or it results in the union of the domains without
channels from @{const cEmpty}. Hence, the representation function
@{const Rep} is defined as the representation function @{const Rep-union}
generated from the (typedef)-keyword. The output type union

type of two input @{class chan} types is always a member of

@{class chan} as shown in following instantiation.)

instantiation union :: (chan, chan) chan
begin

definition "Rep == Rep_union"
instance

apply intro_classes
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apply auto

apply (metis Rep.union Rep.union_.def Un_iff cdom_notempty)

by (simp add: Channel.Rep_union_def Rep_union_inject inj_on_def)
end

lemma union_range_empty:"chDomEmpty TYPE ('csl)
A chDomEmpty TYPE ('cs2)=—
range (Rep_union::'csl U 'cs2 = channel) =
cEmpty"
by (metis (mono-tags, lifting) type-definition.Rep-range
type_definition_union)

lemma union_range_-union:"—(chDomEmpty TYPE ('csl)
A chDomEmpty TYPE ('cs2))=—
range (Rep_union::'csl U 'cs2 = channel) =
chDom TYPE ('csl) U chDom TYPE('cs2)"
by (smt type._definition.Rep_range type._definition_union)

theorem chdom_union[simp]:"chDom TYPE('csl U 'cs2) =
chDom TYPE ('csl) U chDom TYPE('cs2)"
apply (subst chDom_def)
apply(simp.all add: Rep.union_def)
using chDom_def union_.range_empty union_range_union by auto

subsubsection (Minus Type)

typedef ('cs1,'cs2) minus (infixr "-" 20) =
"if chDom TYPE('csl) C chDom TYPE('cs2)
then cEmpty
else chDom TYPE('csl) - chDom TYPE('cs2)"
apply(cases "range Rep C range Rep", auto)
using cempty_exists by blast+

instantiation minus :: (chan, chan) chan
begin

definition "Rep == Rep_minus"
instance

apply intro_classes

apply auto

apply (metis Diff_iff Rep-minus Rep-minus_def cdom_notempty)
by (simp add: Channel.Rep-minus_def Rep.minus_inject inj_on_def)
end

lemma minus_range_empty:"chDom TYPE ('csl) C chDom TYPE('cs2)=—
range (Rep_minus::'csl - 'cs2 => channel) = cEmpty"
by (metis (mono_tags, lifting) type.definition.Rep.range
type.definition_.minus)

lemma minus_range_minus:"—(chDom TYPE('csl) C chDom TYPE('cs2))=—>
range (Rep_minus::'csl - 'cs2 = channel) =
chDom TYPE('csl) - chDom TYPE('cs2)"
by (metis (mono_tags, lifting) type_definition.Rep_range
type_definition_minus)

theorem chdom_minus[simp]:"chDom TYPE('csl - 'cs2) =
chDom TYPE ('csl) - chDom TYPE('cs2)"
apply (subst chDom_def)
apply(simp-all add: Rep-minus_def)
using Diff_Int_distrib2 minus_range.empty minus_.range-minus
by auto

text(If we subtract domain ('cs2) from domain ('cs1) the resulting domain
should contain no channels from ('cs2).We also verify this correctness
property .)

theorem [simp]:"chDom TYPE('csl - 'cs2) N chDom TYPE ('cs2) = {}"
by auto

end

C.3 SBelem Data Type

(x:maxLineLen=68:«)
theory sbElem

imports Channel
begin

declare %invisible [[ show_types]]
declare %invisible [[ show_consts]]
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default_sort %invisible chan

section (Stream Bundle Elements)

fun sbElem_well :: "('cs = M) option = bool" where
"sbElem_well None = chDomEmpty TYPE('cs)" |
"sbElem_well (Some sbe) = (Vc. sbe c € ctype(Rep c))"

(x cbot ist leer, daher wird das nie wahr sein flir das leere Blindel.
Also geht fir "cbot" nur "None" «x)

typedef 'cs sbElem ("(_\A"[1000] 999) =

"{f::('cs = M) option. sbElem_well f}"
proof(cases "chDomEmpty (TYPE ('cs))")
case True

then show ?thesis
apply(rule_tac x=None in exl)
by (simp add: chDom._def)
next
case False
then have "Vc€(range (Rep::'csschannel)). ctype c # {}"
using cEmpty_def chDom_def chan_botsingle by blast
then have "sbElem_well
(Some (A(c::'cs). (SOME m. m € ctype (Rep c))))"
apply (simp add: sbElem_well.cases,auto)
by (simp add: some.in_eq)
then show ?thesis
by blast
qed

text(The suffix ((-\/)) abbreviates ('cs sbElem) to ('cs"\/).)

instantiation sbElem::(chan) discrete_cpo

begin
definition below_sbElem::"'cs"\/= 'cs"\/= bool" where
"below_sbElem sbel sbe2 = sbel = sbel2"

instance
by(standard, simp add: below_sbElem_def)
end

lemma sbe_eql:"Rep_sbElem sbel = Rep_sbElem sbe2=—=-sbel = sbe2"
by (simp add: Rep-sbElem_inject)

lemma sbelemwell2fwell[simp] :"Rep_sbElem sbe = f=—-sbElem_well f"
using Rep_sbElem by auto

subsection(Properties)

lemma sbtypeempty_sbewell:"chDomEmpty TYPE ('cs)
—>sbElem_well (None::('cs => M) option)"
by(simp add: chDom._def)

lemma sbtypeempty_notsbewell:"chDomEmpty TYPE ('cs)
——sbElem_well (Some (f::'cs=M))"
by (simp add: chDom_def)

lemma sbe_emptyiff: fixes sbe :: "'cs\f
shows "Rep_sbElem sbe = None«—chDomEmpty TYPE('cs)"
apply auto

using sbelemwell2fwell apply force
using sbElem_well.elims (2) sbelemwell2fwell sbtypeempty_notsbewell by blast

theorem sbtypeepmpty_sbenone[simp]:
fixes sbe::"'cs\M
assumes "chDomEmpty TYPE ('cs)"
shows "sbe = Abs_sbElem None"
using assms
apply (simp add: chDom_def)
apply(rule sbe_eql)
by (metis Diff_eq-empty.iff not-Some_eq Rep_sbElem mem_Collect-eq
chDom_def sbtypeempty_notsbewell)

theorem sbtypefull_none[simp]:
fixes sbe::"tcs\M
assumes "—chDomEmpty TYPE ('cs)"
shows "Rep_sbElem sbe # None"
using sbElem_well.simps(1) assms sbelemwell2fwell by blast
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theorem sbtypenotempty_somesbe:
assumes "—chDomEmpty TYPE ('cs)"
shows "3Jf::'cs = M. sbElem_well (Some f)"
using assms sbElem_well.simps(1) sbelemwell2fwell by blast

(*Not in pdf at the moment, because uglyx)

setup_lifting %invisible type.definition_.sbElem
subsection (sbElem functions)

(«xworks if sbe 7 Nonex and 'e C 'c *)

definition sbegetch::"'e = '&*/= M"where
"sbegetch ¢ = (A sbe. ((the (Rep_sbElem sbe)) (Abs (Rep c))))"

lemma sbtypenotempty_fex[simp]:

"—(chDomEmpty TYPE ('cs))=——=3f. Rep_sbElem (sbe::'cs/\/) = (Some f)"
apply(rule_-tac x="(A(c::'c). (THE m. m= sbegetch c sbe))" in exl)
by (simp add: sbegetch_def)

definition sbeConvert::"' /= '&\/where
"sbeConvert = (Asbe. Abs_sbElem(Some (Ac. sbegetch c sbe)))"

lemma chDomEmpty2chDomEmpty:"chDomEmpty TYPE ('c)=—>
Rep (c::'c) € range(Rep::'d> channel)=——-chDomEmpty TYPE ('d)"
apply(simp add: chDom.def cEmpty_def,auto)
by (metis (mono_tags, lifting) Int_.Collect cEmpty_def
chan_botsingle insert.not_empty le_.iff_inf mk_disjoint.insert
repinrange)

lemma sbgetch_ctype:

assumes "Rep (c::'e) € range(Rep::'d = channel)"

and "—chDomEmpty (TYPE ('d))"

shows "sbegetch c (sbeZ::'dAVA € ctype ((Rep::'e = channel) c)"

using assms apply(simp add: sbegetch_def)

by (metis (no-types, hide_lams) assms(1) assms(2) f_.inv_.into._f
option.sel sbElem_well.simps(2) sbegetch_def sbelemwell2fwell
sbtypenotempty_fex)

lemma sberestrict_getch:

assumes"Rep (c::'c) € range(Rep::'d = channel)"

and "—(chDomEmpty TYPE('c))"

and "range (Rep::'d = channel) C range (Rep::'c => channel)"

shows "sbegetch c ((sbeConvert::'c/\\/:> 'd/\\/) sbe) = sbegetch c sbe"

using assms

apply (simp add: sbeConvert_def)

apply (simp add: sbegetch_def)

apply (subst Abs_sbElem_inverse)

apply (smt Rep_sbElem chDom_def f_inv_into_f mem_Collect_eq
option.sel rangel sbElem_well.elims(1) sbElem_well.simps(2)
subset_iff)

by simp

definition sbeUnion::"' /= 'd/= 'e"\fwhere
"sbeUnion = (Asbel sbe2. Abs_sbElem (Some(\ c.
if (Rep ¢ € (range (Rep ::'c = channel)))

then sbegetch c sbel

else sbegetch c sbe2)))"

lemma sbeunion_getchfst:
assumes "Rep (c::'c) € range(Rep::'e = channel)"
and "—(chDomEmpty TYPE('c))"
and "range (Rep::'e = channel) C
range (Rep::'c = channel) U range(Rep::'d = channel)"
shows "sbegetch c ((sbeUnion::'c\/= 'd\/= 'e’\/) sbel sbe2)
= sbegetch c sbel"
apply (simp add: sbeUnion.def sbegetch_def)
apply (subst Abs_sbElem_.inverse)
apply (auto simp add: chDom_def assms)
using assms(2) sbgetch_ctype apply force
apply (smt assms(2) sbElem_well.simps(2) Un_iff assms(1) assms(3)
chDomEmpty2chDomEmpty chan_eq repinrange sbgetch_ctype
subset_eq)
by(simp add: sbegetch_def assms)

lemma sbeunion_getchsnd:
assumes "Rep (c::'d) € range(Rep::'e = channel)"
and "Rep c € range(Rep::'c = channel)"
and "—(chDomEmpty TYPE ('d))"
and "range (Rep::'e = channel) C
range (Rep::'c = channel) U range(Rep::'d = channel)"
shows"sbegetch ¢ ((sbeUnion::'cN/= 'dN/= 'e\A sbel sbe2) =
sbegetch c sbe2"
apply (simp add: sbeUnion.def sbegetch_def)
apply (subst Abs_sbElem_.inverse)
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apply (auto simp add: chDom_def assms)

apply (metis assms(1) assms(3) chDomEmpty2chDomEmpty chan_eq
rangel sbgetch_ctype)

apply (smt assms sbElem_well.simps(2) Un_.iff assms(1) assms(3)
chDomEmpty2chDomEmpty chan_eq repinrange sbgetch_ctype
subset.eq)

by(simp add: sbegetch_def assms)

end

C.4 SB Data Type

(¥ :maxLineLen=68: %)
theory SB

imports stream.Stream sbElem
begin

declare %invisible [[ show_types]]
declare %invisible [[ show_consts]]

default_sort %invisible chan

section (Stream Bundles Datatype)

definition sb_well :: "('c::chan =M stream) = bool" where
"sb_well f = Vc. sValues- (f c) C ctype (Rep c)"

lemma sbwelll:
assumes"/Ac. svalues- (f c) C ctype (Rep c)"
shows"sb_well f"
by (simp add: assms sb_well_def)

lemma sbwellD: assumes "sb_well sb" and "ctype (Rep c) C A"
shows "svalues- (sb c) C A"
using assms(1) assms(2) sb_well_def by blast

lemma sbwell_ex:"sb_well (Ac. €)"
by(simp add: sb_well_def)

lemma sbwell_adm: "adm sb_well"
unfolding sb_well_def
apply(rule adm_all, rule adml)
by (simp add: ch2ch_fun 144 lub_fun)

pcpodef 'c::chan sb("(_)"[1000] 999)
= "{f::('c::chan = M stream). sb_well f}"
by (auto simp add: sbwell_ex sbwell.adm lambda_strict[symmetric])

(x TODO: Remove Warning x)
setup_lifting %invisible type.definition_sb

paragraph (SB Type Properties \\)

text(The (L) element of our \gls{sb} type is a
mapping to empty streams.)

theorem bot_sb: "L = Abs_sb (Ac. €)"
by (simp add: Abs_sb_strict lambda_strict)

lemma rep_sb._well[simp]:"sb_well (Rep_sb sb)"
using Rep.sb by auto

lemma abs_rep_sb_sb[simp]:"Abs_sb(Rep_sb sb) = sb"
using Rep_sb_.inverse by auto

lemma sbrep_cont[simp, cont2cont]: "cont Rep_sb"
using cont_.Rep_sb cont.id by blast
(*
*)
lemma sb_abs_cont2cont [cont2cont]:
assumes "cont h"
and "Ax. sb_well (h x)"
shows "cont (Ax. Abs_sb (h x))"
by (simp add: assms(1) assms(2) cont-Abs_sb)

lemma comp_abs_cont[cont2cont]:
assumes" . sb_well (f2 x)"
and "cont f2"
shows "cont (Abs_sb o f2)"
apply(rule Cont.contl,simp)
using assms cont_Abs_sb cont_def by force
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lemma sb_rep_eql:assumes"Ac. (Rep_sb sbl) c = (Rep_sb sb2) c"
shows "sbl = sb2"
by(simp add: po.eq.-conv below_sb_def fun_belowl assms)

text(In case of an empty domain, no stream should be in a \gls{sb}.
Hence, every \gls{sb} with an empty domain should be (L). This is
proven in the following theorem.)

theorem sbtypeepmpty_sbbot[simp]:
fixes sb::"rcs Q"
assumes "chDomEmpty TYPE ('cs)"
shows "sb = L"
unfolding bot.sb
using assms
apply (simp add: chDom.def cEmpty_def)
apply(rule sb_rep-eql)
apply (subst Abs_sb_inverse)
apply (simp add: sbwell_ex ,auto)
apply(insert sb_well_def[of "Rep_sb sb"],auto)
using strict.sValues.rev by fastforce

lemma sbwell2fwell[simp]:"Rep_sb sb = f=—=-sb_well f"
using Rep.sb by auto

section (Functions for Stream Bundles)

subsubsection (Converter from sbElem to SB)

text(First we construct a converter from @{type sbElem}s to
\Gls{sb}. This is rather straight forward, since we either have a
function from channels to messages, which we can easily convert to a
function from channels to streams. This consists only of streams
with the exact message from the @{type sbElem}. In the case of an
empty domain, we map @{const None} to the (L) element of \Gls{sb}.)

lift_definition sbe2sb::"'N/= Q" is
"\ sbe. case (Rep_sbElem sbe) of Some f =>Ac. T(f c)

| None =1 "
apply(rule sbwelll, auto)
apply(case_tac "Rep_sbElem sbElem = None")
apply auto

apply(subgoal_tac "sbElem_well (Some y)",simp)
by(simp only: sbelemwell2fwell)

text (Through the usage of keyword (lift_.definition) instead of
(definition) we automatically have to proof that the output is
indeed a \gls{sb}.)

subsubsection (Extracting a single stream)

text(The direct access to a stream on a specific channel is one of
the most important functions in the framework and also

often used for verifying properties. Intuitively , the signature of
such a function should be ('cs = 'cs"2—M stream ), but we use a
slightly more general signature. Two domain types could contain
exactly the same channels, but we could not obtain the streams of a
\gls{sb} with the intuitive signature, when the type of the \gls{sb}
is different (see \cref{sec:interdom}). To avoid this, we can use the
@{const Rep} and @{const Abs} functions of our domain types to
convert between the them by representation and abstraction via the
global channel type. This also facilitates later function
definitions and reduces the total framework size by using
abbreviations of one general function that only restrict the
signature.)

lift_definition sbGetCh :: "'csl = 'cs2’2— M stream" is
"Ac sb. if Rep c€chDom TYPE ('cs2)
then Rep_sb sb (Abs(Rep c))
else €"
by(intro cont2cont,simp add: cont2cont_fun)

text (Our general signature allows the input of any channel from the
@{type channel} type. If the channel is in the domain of the input
\gls{sb}, we obtain the corresponding channel by converting the
channel to an element of our domain type with the nesting of (Abs)
and (Rep). Is the channel not in the domain, the empty stream (e)
is returned. The continuity of this function is also immediately
proven.)

lemmas sbgetch_insert = sbGetCh.rep_eq

abbreviation sbgetch_magic_abbr :: "'cs1”Q2= 'cs2 = M stream"
(infix " \<“enum>\<"sub>x " 65) where "sb \<“enum>\<“sub>x ¢ = sbGetCh c-sb"
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abbreviation sbgetch_abbr :: "'csQ= 'cs = M stream"
(infix "™ \<“enum> " 65) where "sb \<“enum> ¢ = sbGetCh c-sb"

definition sbHdElemWell::" ' /2 = bool" where
"sbHdElemWell = X sb. (Vc. sb \<"enum> c # €)"

abbreviation sblsLeast::"'cs"2= bool" where
"sbIsLeast sb = —sbHdElemWell sb"

(» paragraph (sbGetCh Properties \\) x)

theorem sbgetch_.insert2:"sb \<“enum> c = (Rep_sb sb) c"
apply (simp add: sbgetch.insert)
by (metis (full-types)Rep-sb_strict app-strict cnotempty_.cdom
sbtypeepmpty_sbbot)

lemma sbgetch_empty[simp]: fixes sb::"'csQ"
assumes "Rep c ¢ chDom TYPE('cs)"
shows "sb \<“enum>\<"sub>* c = €"
by(simp add: sbgetch_insert assms)

lemma sbhdelemchain[simp]:
"sbHdElemWell x=—> x L y=—=sbHdElemWell y"
apply (simp add: sbHdElemWell_def sbgetch_insert2)
by (metis below_antisym below_sb_def fun_belowD minimal)

lemma sbgetch_ctypewell[simp]:"svValues- (sb \<“enum>\<"sub>x c) C ctype (Rep c)"
apply(simp add: sbgetch.insert)
by (metis DiffD1 chDom.def f_inv_into_f sb_well_.def sbwell2fwell)

lemma sbmap_well:assumes"As. svalues- (f s) C sValues-s"
shows"sb_well (Ac. £ (b \<"enum>\<"sub>% c))"
apply(rule sbwelll)
using assms sbgetch_ctypewell by fastforce

lemma sbgetch_ctype_notempty:"sb \<“enum>\<"sub>%x c 7# e=>ctype (Rep c) # {}"
proof—
assume al: "sb \<"enum>\<"sub>*x c # €"
then have "Je. e€ svalues- (sb \<“enum>\<"sub>%x c)"
by (simp add: sValues_notempty strict.sValues_rev neq.emptyD)
then show "ctype (Rep c) # {}"
using sbgetch_ctypewell by blast
qed

lemma sbhdelemnotempty:
"sbHdElemWell (sb::'cs )= — chDomEmpty TYPE ('cs)"
by(auto simp add: sbHdElemWell_def chDom_def cEmpty_def)

lemma sbgetch_empty2: fixes sb::"'cs™Q"
assumes "chDomEmpty (TYPE ('cs))"
shows "sb \<“enum>\<"sub>x c = €"
by(simp add: sbgetch_insert assms)

lemma sbempt2least: fixes sb::"'cs” Q"
assumes "chDomEmpty (TYPE ('cs))"
shows "sbIsLeast sb"
unfolding sbHdElemWell_def
apply simp
by(rule ex| [where x="undefined"], simp add: assms)

text(If a \gls{sb} (sb1) is prefix of another \gls{sb} (sb2), the
order also holds for each streams on every channel.)

theorem sbgetch_sbelow[simp]:"sbl C sb2==sbl \<"enum> c C sb2 \<“enum> c"
by (simp add: mono.slen monofun_cfun.arg)

lemma sbgetch_below_slen[simp]:
"sbl C sb2==# (sbl \<"enum>\<"sub>*x c) < #(sb2 \<"enum>\<"sub>x c)"
by (simp add: mono_slen monofun_cfun.arg)

lemma sbgetch_bot[simp]:"L \<“enum>\<"sub>x ¢ = €"
apply (simp add: sbGetCh.rep.eq bot.sb)
by (metis Rep.-sb_strict app-strict bot-sb)

theorem sb_belowl:

fixes  sb1 sb2::"'csQn

assumes "A c. Rep c€chDom TYPE ('cs)== sbl \<"enum> c C sb2 \<“enum> c"

shows "sbl C sb2"

apply (subst below_sb_def)

apply(rule fun_belowl)

by (metis (full-types) assms po-eqg-conv sbGetCh.rep-eq
sbgetch_insert2)
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theorem sb_eql:

fixes  sb1 sb2::"'cs"Qr

assumes "/Ac. Rep cE€chDom TYPE('cs)==sbl \<"enum> c = sb2 \<“enum> c"

shows "sbl = sb2"

apply(cases "chDom TYPE('cs) # {}")

apply (metis Diff_.eq-empty_iff Diff_triv assms chDom.def
chan_botsingle rangel sb_rep.eql sbgetch.insert2)

by (metis (full_types) sbtypeepmpty_sbbot)

lemma sb_empty_eq[simp]: fixes sb1 sb2::"'cs\Qr
assumes "chDomEmpty TYPE('cs)"
shows "sbl = sb2"
by(rule sb.eql, simp add: assms)

lemma slen_empty_eq: assumes"chDomEmpty (TYPE('c))"
shows " #(sb \<“enum> (c::'c)) =0"
using assms chDom._def cEmpty.def sbgetch_ctype_notempty
by fastforce

text(Lastly, the conversion from a @{type sbElem} to a \gls{sb}
should never result in a \gls{sb} which maps its domain to (€).)

theorem sbgetch_sbe2sb_nempty:
fixes  sben"rcsN\
assumes "—chDomEmpty TYPE('cs)"
shows "sbe2sb sbe \<“enum> c # €"
apply (simp add: sbe2sb._def)
apply (simp split: option.split)
apply (rule conjl)
apply (rule impl
using assms chDom_def sbElem_well.simps(1) sbelemwell2fwell
apply blast
by (metis (no_-types) option.simps(5) sbe2sb.abs_eq sbe2sb.rep.eq
sbgetch.insert2 sconc.snd_empty srcdups.step srcdupsimposs
strict_sdropwhile)

lemma botsbleast[simp]:"sbIsLeast "
by (simp add: sbHdElemWell_def)

lemma sbleast.mono[simp]:"x C y==—sbIsLeast x==— sbIsLeast y"
by simp

lemma sbnleast.mex:"—sbIsLeast x==x \<“enum> c # €"
by (simp add: sbHdElemWell_def)

lemma sbnleast-mexs[simp]:"—sbIsLeast x==3a s. x \<"enum> c = Ta @ s"
using sbnleast.mex scases by blast

lemma sbnleast_hdctype[simp]:

"—sbIsLeast x==Vc. shd (x \<"enum> c) € ctype (Rep c)"
apply auto
apply (subgoal_tac "svalues: (x \<“enum> c¢)C ctype(Rep c) ")
apply (metis sbnleast_.mex sfilter_ne_resup sfilter.sValuesl3)
by simp

lemma sbgetchid[simp]:"Abs_sb (( \<"enum> ) (x)) = x"
by (simp add: sbgetch_insert2)

paragraph (Bundle Equality \\)

definition sbEQ:"'cs1”Q2= 'cs2”2= bool" where
"sbEQ sbl sb2 = chDom TYPE('csl) = chDom TYPE('cs2) A
(Vc. sbl \<“enum> c = sb2 \<"enum>\<"sub>% c)"

text(The operator checks the domain equality of both bundles and
then the equality of its streams. For easier use, an infix
abbreviation (\<triangleq>) is defined.)

abbreviation sbeqg.abbr :: "'cs12 = 'cs2’2= bool"
(infixr "\<triangleg>" 70) where "sbl \<triangleqg> sb2 = sbEQ sbl sb2"

lemma sbeq-getch: assumes "sbl \<triangleg> sb2"
shows "sbl \<“enum>\<"sub>* c = sb2 \<“enum>\<"sub>*x c"
apply (auto simp add: sbGetCh.rep_eq)
using assms apply(auto simp add: sbEQ-_def)
by (metis(mono-tags) rep-reduction sbgetch_insert)

subsubsection (Concatenation)

lemma sbconc_well[simp]:"sb_well (Ac. (sbl \<"enum> c) e (sb2 \<“enum> c))"
apply(rule sbwelll)
by (metis (no-types, hide_lams) Un_subset.iff dual_order.trans
sbgetch_ctypewell sconc.sValues)
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lift_definition sbConc:: "'cs”Q= 'cs’Q— 'csQ" is
"Asbl sb2. Abs_sb(Ac. (sbl \<"enum> c) e (sb2 \<“enum> c))"
by(intro cont2cont, simp)

lemmas sbconc.insert = sbConc.rep.eq

abbreviation sbConc.abbr :: "'cs2 = 'cs’Q= s
(infixr "e"Q" 70) where "sbl "2 sb2 = sbConc sbl-sb2"

theorem sbconc_getch [simp]:
shows " (sbl o0 sb2) \<”enum> c = (sbl \<“enum> c) e (sb2 \<"enum> c)"
unfolding sbgetch_insert2 sbconc_insert
apply (subst Abs_sb_inverse)
apply simp
apply(rule sbwelll)
apply (metis (no_-types, hide_lams) Un_subset.iff dual_order.trans
sbgetch_ctypewell sbgetch.insert2 sconc.sValues)

text(It follows, that concatenating a \gls{sb} with the (L) bundle
in any order, results in the same \gls{sb}.)

theorem sbconc_bot_r[simp]: "sb &2 L = sb"
by(rule sb_eql, simp)

theorem sbconc_bot_I[simp]: "L &2 sb = sb"
by(rule sb_eql, simp)

subsubsection (Length of SBs)

text(We define the length of a \gls{sb} as
follows:
\<"item> A \gls{sb} with an empty domain is infinitely long
\<"item> A \gls{sb} with an non-empty domain is as long as its shortest
stream

The definition for the empty domain was designed with the timed case in mind.
This definition can be used to define causality.)

definition sblLen::"'cs”2= lnat"where
"sbLen sb = if chDomEmpty TYPE('cs) then oo
else LEAST n . n€{#(sb \<"enum> c) | c. True}"

text (Our @{const sbLen} function works exactly as described. It
returns (<, if the domain is empty. Else it chooses the minimal
length of all the bundles streams.)

lemma sblen_empty'[simp]:
fixes  sb::i"rcs/\Qr
assumes "chDomEmpty TYPE('cs)"
shows "sbLen sb = od'
by (simp add: sbLen_def assms slen_empty_eq)

lemma sblenleq': assumes "— chDomEmpty TYPE('a)" and
"Jc::'a. #(sb\<"enum>c) < k"

shows "sbLen sb < k"

apply (simp add: sblLen_def assms)

apply(subgoal_-tac "Ac::'a. Rep c ¢ cEmpty")

apply auto

apply (metis (mono_tags, lifting) Least_le assms(2)

dual_order.trans)
using assms(1) by simp

lemma sblengeq":
fixes sb::"'csQ"
assumes "/Ac. (Rep c)EchDom TYPE ('cs)==k< # (sb\< enum>c)"
shows "k < sblLen sb"
apply (cases "chDomEmpty (TYPE('cs))",simp add: assms)
apply (subgoal_tac "Ac. k< #(sb\<"enum>c)")
apply (simp add: sbLen_def)
using Leastl2_wellorder_ex inf_.ub insert_.iff mem_Collect-eq
sbLen_def assms apply smt
by (simp add: assms)

lemma sblen_mono:"monofun sbLen"
apply(rule monofunl,simp)
apply(cases "chDomEmpty TYPE('a)",simp)
apply(rule sblengeq')
apply(rule sblenleq")
using sbgetch_below_slen by auto

instantiation sb :: (chan) len

begin

definition len_sb::"'cs”Q=> lnat" where
"len_sb = sbLen"
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instance
apply(intro_classes)
by (simp add: len_sb_def sblen_mono)

end

hide_const %invisible sbLen

lemma sblen_empty[simp]:
fixes  sb:i:mres Q"
assumes "chDomEmpty TYPE('cs)"
shows "#sb = od'
by(simp add: len_sb_def assms)

lemma sblenleq:
assumes "— chDomEmpty TYPE('a)"
and "3Jc::'a. #(sb\<“enum>c) < k"
shows "#sb < k"
by(simp add: len_sb_def assms sblenleq")

lemma sblengeq: assumes "Ac. k< # (sb\<"enum>c)"
shows "k < #sb"
by(simp add: len_sb_def assms sblengeq')

lemma sblen_min_len [simp]:
assumes"—chDomEmpty (TYPE ('c) )"
shows"# (sb :: ') < #(sb \<"enum> c)"
apply(simp add: len_sb_def sbLen_def assms)
by (metis (mono-tags, lifting) Least.le)

lemma sblen_min_len2: fixes sb::"'cs"Qr
assumes " (Rep c)€EchDom TYPE('cs)"
shows "#sb < # (sb\<“enum>c)"
apply(rule sblen_min_len)
using assms by blast

theorem sblen_sbconc: "#sbl + #sb2 < #(sbl ¢ sb2)"
apply(cases "chDomEmpty (TYPE('a))",simp)
apply(rule sblengeq)
by (metis lessequal-addition sbconc_getch sblen_min_len
sconc-slen2)

lemma sblen_monosimp[simp]:"x C y=# x < # y"
by (simp add: mono_len)

text(This rule captures all necessary assumptions to obtain the
exact length of a \gls{sb} with a non-empty domain:
\<"item> All streams must be at least equally long to the length of the
\gls{sb}
\<'item> There exists a stream with length equal to the length of the

\gls{sb})

theorem sblen_rule:

fixes sb::"rcs Q"

assumes "—chDomEmpty TYPE('cs)"
and "Ac. k < #(sb \<"enum> c)"
and "Jc. #(sb \<"enum> c) = k"

shows "#sb = k"

by (metis assms(1) assms(2) assms(3) dual-order.antisym
sblen_min_len sblengeq)

theorem sblen_sbeql:
fixes sb1 sb2::m'cs”Qn
assumes "sbllsb2" and "#sbl =od'
shows "sbl = sb2"
apply(cases "chDomEmpty TYPE('cs)")
apply (metis (full_-types)sbtypeepmpty_sbbot)
using assms proof(simp add: len_sb_def sblLen._def)
assume atl: "sbl C sb2"
assume a2: " (LEAST n::lnat. Jc::'cs. n = #(sbl \<"enum> c)) =od"
assume a3: "chDom TYPE('a) # {}"
then have "Ac. #(sbl \<"enum> c) =od'
by (metis (mono_tags, lifting) Least.le a2 inf_less_eq)
moreover have "Ac. #(sb2 \<"enum> c) =od'
using al calculation cont.pref_eq1l mono_fst.infD by blast
then show ?thesis
apply (subst sb_eql[of sb1 sb2],auto)
by (simp add: ail calculation cont_pref_.eq1l eq-less_and_fst.inf)
qed

lemma sblen_leadm:
fixes sb::"'cs\n
shows "adm (Asb. k < #sb)"
apply(rule adml)
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using is_ub_thelub mono_len order_trans by blast

lemma sblen2slen_h:

fixes "c1i"

assumes"—chDomEmpty (TYPE ('c) )"

and "Vc2. #((sb :: '¢Y \<“enum> cl) < #(sb \<“enum> c2)"
shows "#((sb :: '¢2) \<“enum> cl) = #sb"

apply (simp add: sblLen_def len_sb_def)
apply (subst Least_equality)
apply(simp_.all add: assms)

apply auto[1]

using assms(2) by auto

lemma sb_minstream_exists:
assumes "—chDomEmpty (TYPE ('c))"

shows "Jcl. Ve2. #((sb :: '&?) \<"enum> cl) < #(sb \<"enum> c2)"
using assms

proof —
{ fix cc :: "c= e

have ff1: "Vs ¢ 1. 1 < #(s \<"enum> (c::'c)) V = 1 < #s"
by (meson assms sblen_min_len trans_Inle)
{ assume "3c 1. = 1 < #(sb \<"enum> c)"
then have "—oco< #sb"
using ff1 by (meson inf_ub trans_Inle)
then have "3c. #(sb \<"enum> c) < #(sb \<“enum> cc c)"
using ff1 by (metis less_le_not_-le In_less
Orderings.linorder_class.linear Inle2le sblengeq) }
then have "Jc. #(sb \<“enum> c) < #(sb \<“enum> cc c)"
by meson }
then show ?thesis
by metis
qed

theorem sblen2slen:
assumes "—chDomEmpty TYPE('cs)"

shows "Jc. #(sb :: 'cs’) = #(sb \<"enum> c)"
proof —
obtain min_c where "Vc2. #((sb :: 'cs’) \<“enum> min_c) < #(sb \<"enum> c2)"
using sb_minstream_exists assms by blast
then have "#(sb :: 'cs’2) = #(sb \<"enum> min_c)" using sblen2slen_h

using assms by fastforce
then show ?thesis
by auto
qed

lemma sbconc_chan_len:"# (sbl &2 sb2 \<“enum> c) = #(sbl \<“enum> c)+ #(sb2 \<“enum> c)"
by (simp add: sconc.slen2)

lemma sblen_sbconc_eq:
assumes "Ac.# (sbl \<“enum> c) = k"
shows " (# (sbl "2 sb2)) = (#sb2) + k"
apply(cases "chDomEmpty (TYPE('a))",simp)
apply (simp add: plus-Inatinf_r)
apply (subgoal_tac "#sbl = k")
apply(rule sblen_rule ,simp)
apply (metis add.commute dual_order.trans sblen_min_len
sblen_sbconc)
apply (metis assms Inat-plus_.commu sbconc-chan_len sblen2slen)
by(rule sblen_rule,simp_all add: assms)

lemma sblen_sbconc_rule:
assumes "Ac.# (sbl \<“enum> c) > k"
shows " (#(sbl @2 sb2)) > (#sb2) + k"
by (metis (full_types) add.commute assms dual_order.trans
lessequal_addition order_refl sblen_sbconc sblengeq)

theorem sbelen_one[simp]:
fixes  sbe:r"res\M
assumes "—chDomEmpty TYPE('cs)"

shows " #(sbe2sb sbe) = 1"
proof—
have "Ac. #(sbe2sb (sbe::'cs’\A \< enum> (c :: 'cs )) = 1"

apply (simp add: sbe2sb_def)

apply(subgoal_tac "Rep_sbElem sbe # None")

apply auto

apply(simp add: sbgetch_insert2)

apply (subst Abs_sb_inverse ,auto)

apply (metis (full_-types) option.simps(5) sbe2sb.rep_-eq
sbwell2fwell)

apply (simp add: one.lnat.def)

by (simp add: assms)

then show ?thesis
apply (subst sblen_rule)
by(simp_-all add: assms)
qed

lemma sbe2slen_1: assumes"—chDomEmpty (TYPE('a))"
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shows "/\c::'a. # (sbe2sb sbe \<"enum> <¢) = (l::lnat)"

apply(simp add: sbe2sb_def)

apply(subgoal_tac "Rep_sbElem sbe # None")

apply auto

apply(simp add: sbgetch_insert2)

apply(subst Abs_sb_.inverse ,auto)

apply (metis (full_-types) option.simps(5) sbe2sb.rep_.eq
sbwell2fwell)

apply (simp add: one.lnat_def)

by (simp add: assms)

lemma sbnleast_len[simp]:"—sbIsLeast x=—>#x # 0"
apply(rule ccontr,auto)
apply (simp add: sbHdElemWell_def)
apply(cases "chDomEmpty TYPE('a)",simp)
by (metis Stream.slen_empty_eq sblen2slen)

lemma sblen_eql2:
fixes sb1 sb2::"'cs”Qn
assumes "sbl C sb2"
and "Ac. Rep c€chDom TYPE('cs)==#(sbl \<"enum> c) = #(sb2 \<"enum> c)"
shows "spbl = sb2"
by (simp add: assms(1) assms(2) eq-slen_eqg-and_less
monofun_cfun_arg sb_eql)

lemma sbnleast.dom[simp]:
"—sbIsLeast (x:: 'cs/KZ) —=—chDomEmpty TYPE('cs)"
using sbhdelemnotempty by blast

lemma sbleast2sblenempty[simp]:
"sbIsLeast (x::'cs/\ﬂ):>chDomEmpty TYPE('cs) V # x = 0"
apply(simp only: sbLen_def len_sb_def sbHdElemWell_def,auto)
by (metis (mono_tags, lifting) Leastl_.ex Least_.le gr.0 leD Inle2le
neqE strict_slen)

subsubsection (Dropping Elements)

text(Through dropping a number of \gls{sb} elements, it is possible
to access any element in the \gls{sb} or to get a later part.
Dropping the first (n) Elements of a \gls{sb} means dropping the
first (n) elements of every stream in the \gls{sb}.)

lemma sbdrop-well[simp]:"sb_well (Ac. sdrop n- (b \<“enum>\<"sub>x c))"
apply(rule sbwelll)
by (meson dual_order.trans sbgetch_ctypewell sdrop_sValues)

lift_.definition sbDrop::"nat = 'cs"Q— 'cs”\Qis
"A n sb. Abs_sb (Ac. sdrop n-(sb \<"enum> c))"
apply(intro cont2cont)
by(simp add: sValues_def)

lemmas sbdrop-insert = sbDrop.rep_-eq

abbreviation sbRt :: "'cs"Q— 'cs”Q"  where
"sbRt = sbDrop 1"

lemma sbdrop_bot[simp]:"sbDrop n-L = 1"
apply(simp add: sbdrop.insert)
by (simp add: bot.sb)

lemma sbdrop_-eq[simp]:"sbDrop 0-sb = sb"
by(simp add: sbdrop.insert sbgetch_insert2)

subsubsection (Taking Elements)

text(Through taking the first (n) elements of a \gls{sb}, it is
possible to reduce any \gls{sb} to a finite part of itself. The
output is always a prefix of the input.)

lemma sbtake_well[simp]:"sb_well (Ac. stake n-(sb \<“enum>\<"sub>x c))"
by (simp add: sbmap.well)

lift_definition sbTake::"nat = 'cs"Q— 'cs’\Q'is
"X\ n sb. Abs_sb (Ac. stake n- (sb \<"enum> c))"
by(intro cont2cont, simp)

lemmas sbtake.insert = sbTake.rep_-eq

abbreviation sbHd :: "'cs"Q— 'cs”Q"  where
"sbHd = sbTake 1"

theorem sbtake_getch[simp]:"sbTake n-sb \<“enum> c = stake n-(sb \<“enum> c)"
apply(simp add: sbgetch_insert sbTake.rep.eq)
apply (subst Abs_sb_inverse,auto simp add: sb_well_def)
by (metis sValues_sconc sbgetch._ctypewell sbgetch_insert2
split.streaml1 subsetD)
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theorem sbtake_below[simp]: "sbTake i-sb C sb"
by (simp add: sb_belowl)

lemma sbTakezero[simp]:"sbTake 0:-sb = L"
by(rule sb_eql,simp)

lemma sbtake.idem[simp]:
assumes "n > i"
shows"sbTake n- (sbTake i-sb) = (sbTake i-sb)"
by (simp add: sb_eql assms min_absorb2)

lemma sbmap._stake_eq:"

Abs_sb (Ac::'a. stake n-(sb \<“enum> c)) \<"enum> c = stake n-(sb \<“enum> c)"

apply (simp add: sbgetch_insert2)

apply (subst Abs_sb_inverse)

apply simp

apply(rule sbwelll)

apply (metis sbgetch_.insert2 sbgetch_ctypewell dual_order.trans
sValues_sconc split_streaml1)

by simp

lemma sbtake_max_len [simp]:"# (sbTake n-sb \<"enum> c¢) < Fin n"
by simp

lemma abs_sb_eta:
assumes "sb_well (Ac::'cs. f-(sb \<“enum> c))"
and "—chDomEmpty TYPE('cs)"

shows " (Abs_sb (Ac::'cs. f-(sb \<"enum> <c)) \<"enum> c¢) = f-(sb \<"enum>

by (metis Abs_sb.inverse assms(1) mem_Collect_.eq sbgetch.insert2)

lemma sbconc_sconc:
assumes "sb_well (Ac::'cs. f-(sb \<“enum> c))"
and "sb_well (Ac. g-( sb \<“enum> c))"
and "—chDomEmpty TYPE('cs)"
shows "Abs_sb (Ac. f-(sb \<"enum> c)) ¢'Q Abs_sb (\c. g- (sb \<“enum>
Abs_sb (Ac. f-(sb \<"enum> <c) e g-(sb \<“enum> <c))"
by (simp add: assms abs_sb_eta sbconc.insert)

text (Concatenating the first (n) elements of a \gls{sb} to the
\gls{sb} without the first (n) elements results in the same

\gls{sb}.)

theorem sbconctakedrop[simp]:"sbConc (sbTake n-sb) - (sbDrop n-sb) = sb"
apply(cases "chDomEmpty TYPE('a)")
apply (metis (full_-types) sbtypeepmpty_sbbot)
apply (simp add: sbtake_insert sbdrop-insert)
by (subst sbconc.sconc,simp_.all)

lemma sbcons [simp]:"sbConc (sbHd-sb) - (sbRt-sb) = sb"
by simp

lemma sbtakesuc:"sbTake (Suc n)-sb = sbHd-sb ¢ sbTake n- (sbRt-sb)"
apply(rule sb_eql,auto)
apply(case_tac "sb \<"enum> c = €",simp)
apply (metis sbconc_bot.l sbconc_bot.r sbconc_getch
sbconctakedrop sbdrop_bot sbgetch_bot sbtake_getch)
proof —
fix ¢ :: 'a
assume al: "sb \<"enum> c # €"
have "sb = sbHd-sb OAQ sbDrop (Suc 0) -sb"
by auto
then show "stake (Suc n)- (sb \<“enum> c) = stake (Suc 0)- (sb \<“enum> c)
stake n- (sbDrop (Suc 0)-sb \<“enum> c)"
using al by (metis One_nat.def sbconc_getch sbtake_getch
stake2shd stake_Suc)
qed

lemma sbtake_len:
assumes "—chDomEmpty TYPE('b)"
and "Fin i < #(sb::'p Q"
shows "# (sbTake i-sb) = Fin i"
using assms
apply (induction i)
apply (simp add: sbLen_def len_sb_def)
apply (metis (mono-tags, lifting) Leastl)
apply(rule sblen_rule, auto simp add: assms)
apply (auto simp add: sbLen.def len_sb_def)

proof -
fix ia :: nat
assume "Fin (Suc ia) < (if chDomEmpty (TYPE('b)::'b itself) then oo else LEAST n.

True})"
then have "Fin (Suc ia) < #sb"
by (simp add: len_sb_def sblLen_def)
then show "3b. #(stake (Suc ia):(sb \<“enum> b)) = Fin (Suc ia)"
by (metis (no_-types) assms(1) sblen2slen slen_stake)

next
fix ia :: nat and ¢ :: 'b
assume "Fin (Suc ia) < (if chDomEmpty (TYPE('b)::'b itself) then oo else LEAST n.

True})"
then have "Fin (Suc ia) < #sb"
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by (simp add: len_sb_def sblLen_def)
then show "Fin (Suc ia) < #(stake (Suc ia)- (sb \<“enum> c))"
by (metis (no_types) assms(1) refl_Inle sblen_min_len slen_stake trans_Inle)
qed

subsubsection (Converter from SB to sbElem)

text(Converting a \gls{sb} to a @{type sbElem} is rather complex.
The main goal is to obtain the first slice of a \gls{sb} as a
@{type sbElem}. This is not possible, if there is an empty stream in
the bundles domain. Hence, the @{type sbElem} can only be obtained,
if the domain is:
\<'item> empty, then the head element is @{const None}
\<"item> non-empty and contains no empty stream, the head element is some
function that maps to the head of the corresponding bundle
streams

For defining the sbHdElem function we use a helper that has always a
defined output. For this, the output is extended by (l). In the case
of an non-empty domain and an empty stream in the bundle, (L) is
returned. In \cref{subsub:sbhdelemc} we will also show the helpers
continuity for finite bundles.)

lemma sbhdelem_mono:
"monofun (Asb::'c\X.
if chDomEmpty TYPE('c)
then Tup (Abs_sbElem None)
else if sbIsLeast sb
then L
else Iup (Abs_sbElem
(Some (Ac::'c. shd (sb \<“enum>\<"sub>x c)))))"
apply (rule monofunl)
apply (cases "chDomEmpty TYPE('c)")
apply auto
by (metis below.shd.alt monofun_cfun_arg sbnleast-mex)

definition sbHdElem_h::"'cs"Q= ('cs’\/) u"where
"spbHdElem_h sb =
(if chDomEmpty TYPE('cs)
then Iup (Abs_sbElem None)
else if sbIsLeast sb
then L
else Iup(Abs_sbElem (Some (Ac. shd((sb) \<“enum> c)))))"

text(The final @{type sbElem} obtaining function then uses
@{const sbHdElem_h} to obtain only the @{type sbElem} outputs, if
the helper returns (L) the output is @{const undefined}.)

definition sbHdElem::"' Q= '\ Fwhere
"sbHdElem sb = (case (sbHdElem_h sb) of

Tup sbElem = sbElem |
= undefined)"

text( The @{const sbHdElem} function checks if the output of
@{const sbHdElem_h} is a @{type sbElem}. And then returns it. If the
helper returns (L) our converter maps to (undefined) as mentioned
above.)

abbreviation sbHdElem.abbr :: "'™Q2= '¢N\/M ( "\<lfloor>_" 70) where
"\<lfloor>sb = sbHdElem sb"

paragraph (sbHdElem Properties \\)

text(Our (sbHdElem) operator maps each \gls{sb} to a

corresponding @{type sbElem} exactly as intended. I|f the domain of
the \gls{sb} is empty, it results in the @{const None}

@{type sbElem} and if the input bundle contains no empty stream, the
resulting @{type sbElem} maps to the head of the corresponding
streams. )

theorem sbhdelem_none[simp]:
fixes  sb:imres/Qr
assumes "chDomEmpty TYPE('cs)"
shows "sbHdElem sb = Abs_sbElem None"
by (simp add: sbHdElem_.def assms sbHdElem_h_def)

theorem sbhdelem_some:
fixes  sb::"res/ Qv
assumes "sbHdElemWell sb"
shows "sbHdElem sb = Abs_sbElem(Some (Ac. shd(sb \<“enum> c)))"
using assms
by (simp add: sbHdElem_def sbHdElem_h_def)

theorem sbhdelem_mono_eq[simp]:
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fixes  sbi:mres’Qr

assumes "sbHdElemWell sbl"

and "sbl C sb2"

shows "sbHdElem sbl = sbHdElem sb2"

apply (cases "chDomEmpty TYPE('cs)",simp)

apply(simp_.all add: sbhdelem_some assms)

apply (subst sbhdelem_some)

using assms sbleast_.mono apply blast

by (metis below_shd_alt monofun_cfun.arg assms sbnleast.mex)

theorem sbhdelem_mono_empty[simp]:
fixes  sbt1::"rcs/Qr
assumes "chDomEmpty TYPE('cs)"
shows "sbHdElem sbl = sbHdElem sb2"
by (simp add: assms)

subsubsection (Concatenating sbElems with SBs)

text(Given a @{type sbElem} and a \gls{sb}, we can append the
@{type sbElem}to the \gls{sb}. Of course we also have to consider the
domain when appending the bundle:
\<"item> If the domain is empty, the output \gls{sb} is (1)
\<"item> If the domain is not empty, the output \gls{sb} has the input
@{type sbElem} as its first element.

Using only this operator allows us to construct all \glspl{sb} where
every stream has the same length. But since there is no restriction
for the input bundle, we can map to any \gls{sb} with a length
greater 0.)

definition sbECons:"'cs"\/= 'cs"Q2— 'cs” Q" where
"sbECons sbe = sbConc (sbe2sb sbe)"

abbreviation sbECons.abbr::"'cs\/= 'cs’Q= 'csQ"(infixr "o’/ 100)
where "sbe OA\/ sb = sbECons sbe-sb"

text(The concatenation results in (1) when the domain is empty.)

theorem sbtypeempty.sbecons_bot:
fixes  sbe::"'cs\M
assumes "chDomEmpty TYPE ('cs)"
shows  "sbe o/ sb = L"
by (simp add: assms)

lemma sb_empty_unfold: fixes sb::"'cs"
assumes "chDomEmpty TYPE('cs)"
shows "sb = (Abs_sbElem None) "/ sb"
by(rule sb_empty_eq, simp add: assms)

lemma exchange_bot_sbecons:
"chDomEmpty TYPE ('cs)==P sb==P ((sbe::'cs\/j o/ sb)"
by (metis (full_types) sbtypeepmpty_sbbot)

theorem sbrt_sbecons: "sbRt: (sbe ¢/ sb) = sb"

apply (cases "chDomEmpty (TYPE('a))", simp)

apply (simp add: sbDrop.rep.-eq)

apply (simp add: sbECons_def)

apply (subst sdropl6)

apply (subgoal_tac "Ac. Im. sbe2sb sbe \<"enum> c = tm")

apply (metis Fin.0 Fin_Suc Inzero.def Iscons_conv slen_scons
strict_.slen sup'.def)

apply (simp add: sbgetch_insert2 sbe2sb.rep.eq chDom_def)

apply (metis Diff_eq.empty_iff chDom.def option.simps(5)
sbtypenotempty_fex)

by (simp add: sb_rep.eql sbgetch.insert2 Rep_sb_inverse)

lemma sbhdelem_h_sbe:" sbHdElem_h (sbe o’/ sb) = up-sbe"
apply (cases "chDomEmpty (TYPE('a))")
apply (simp.all add: sbHdElem_def sbHdElem_h_def)+
apply (simp_.all add: up.def)
apply (metis sbtypeepmpty_sbenone)
apply (simp add: sbECons.def, auto)
apply (subgoal_tac "Vc::'a. sbe2sb sbe \<"enum> c # €")
apply (simp add: sbe2sb_def)
apply (simp split: option.split)
apply (rule conjl)
apply (metis Abs_sb_strict option.simps(4) sbgetch_bot)
apply (metis (no-types, lifting) option.simps(5) sbHdElemWell_def
sbconc_bot.r sbconc.getch strictl)
using sbgetch_sbe2sb_nempty apply auto[1]
apply (simp only: sbHdElemWell_def sbe2sb_def)
apply (simp split: option.split,auto)
apply (metis emptyE option.discl sbtypenotempty_fex)
apply (subgoal_tac
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"We:i:'a. Bbs_sb (Ac::'a. T(x2 ¢)) \<"enum> c = T(x2 c)")
apply (simp add: Abs_sbElem_inverse)
apply (metis Rep_sbElem_inverse)
by (metis option.simps(5) sbe2sb.abs_eq sbe2sb.rep_eq
sbgetch_insert2)

lemma sbhdelem_sbecons: "sbHdElem (sbe "/ sb) = sbe"
by(simp add: sbHdElem_def sbhdelem_h_sbe up.def)

theorem sbh_sbecons: "sbHd- (sbe "/ sb) = sbe2sb sbe"
apply(rule sb_eql, auto simp add: sbECons._def)
apply(auto simp add: sbe2sb.rep.eq sbgetch_.insert2)
apply(cases "Rep_sbElem sbe = None")
apply auto
using sbtypefull_.none by blast

text(Constructing a \gls{sb} with @{const sbECons} increases its
length by exactly 1. This also holds for empty domains, because we
interpret the length of those \Gls{sb} as (9 .)

theorem sbecons_len:

shows "# (sbe o/\/ sb) = lnsuc- (¥ sb)"
apply cases "chDomEmpty(TYPE('a))")
apply (simp)

apply (simp add: sbECons_def sbgetch_insert2 sbconc.insert)

apply(subst Abs_sb_inverse)

apply simp

apply(insert sbconc_well[of "sbe2sb sbe" sb],simp add:
sbgetch_insert2)

apply(subst sconc_slen2)

apply (subgoal_tac "# (Rep_sb (sbe2sb sbe) c) = 1",auto)

apply (metis equalsOD lessequal.-addition Inat_plus_.commu
Inat_plus_suc sbelen_one sbgetch.insert2 sblen_min_len)

apply (metis emptyE sbe2slen_.1 sbgetch_insert2)

by (metis all_not_in_conv Inat_plus.commu Inat_plus_suc sbECons_def sbconc_chan_len sbe2slen_1 sblen2slen)

(
(
apply(rule sblen_rule,simp)
(
(

lemma sbHdElem:
"4 (sb::'cs"Q) # (0::1lnat)=>sbe2sb (sbHdElem sb) = sbHd-sb"
apply (case-tac "chDomEmpty (TYPE ('cs))")
apply (metis (full_-types) sbtypeepmpty_sbbot)
apply (rule sb_rep-eql)
apply (simp add: sbHdElem.def sbHdElem_h_def)
apply rule+
using sbleast2sblenempty apply blast
apply(simp add:sbtake_insert stake2shd sbe2sb.abs_eq
sbe2sb.rep_eq Abs_sbElem_inverse Abs_sb_inverse sb_well_def)
by (metis (no_-types) sbgetch_.insert2 sbmap.stake.eq sbnleast_mex
stake2shd)

(*sb_indx)

lemma sbtake_chain:"chain (Ai::nat. sbTake i-x)"
apply (rule chainl)
apply(simp add: below_sb_def)
apply(rule fun_belowl)
apply(simp add: sbtake_insert)
by (metis (no-types) Suc.leD le.refl sbgetch_insert2
sbmap_stake_eq stake-mono)

lemma sblen_sbtake:
"—chDomEmpty TYPE ('c)=—# (sbTake n-(x :: 'C/\Q)) < Fin (n)"
proof—
assume a0:"-chDomEmpty TYPE ('c)"
have h0:"Ac. # (sbTake n-x) < #((sbTake n-x) \<"enum> (c::'c))"
by(rule sblen_min_len, simp add: a0)
have h1:"Ac. #((sbTake n-x) \<“enum> (c::'c)) < Fin (n)"
by simp
then show ?thesis
using dual.order.trans hO by blast
qed

lemma sbtake_lub:" ( Ji::nat. sbTake i-x) = x"
apply(rule sb_eql)
apply (subst contlub_cfun_arg)
apply(simp add: sbtake_chain)
by(simp add: sbtake_insert sbmap-stake_eq reach_stream)

lemma sbECons_sbLen:"# (sb::'cs’2) # (0::1lnat)=

— chDomEmpty TYPE('cs)==>3 sbe sb'. sb = sbe OA\/ sb'"
by (metis sbECons.def sbHdElem sbcons)

lemma sbecons_sbhdelemwell: "sbHdElemWell (sbe2sb sbe)=—>

sbHdElemWell (sbe o/ sb)"
by (metis monofun_cfun_arg sbECons.def sbTakezero sbconc.bot.r
sbleast_-mono sbtake_below)

paragraph (SB induction and case rules \\)
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text(This framework also offers proof methods using the

@{type sbElem} constructor, that offer an easy proof process when
applied correctly. The first method is a case distinction for
\glspl{sb}. It differentiates between the short \glspl{sb} where an
empty stream exists and all other \glspl{sb}. The configuration of
the lemma splits the goal into the cases (least) and (sbeCons). It
also causes the automatic usage of this case tactic for variables of
type \gls{sb}.)

theorem sb_cases [case_-names least sbeCons, cases type: sb]:

assumes "sbIsLeast (sb'::'cs’\2)==p"

and "Asbe sb. sb' = sbe "/ sb==>—chDomEmpty TYPE ('cs)
=p"

shows  "p"

by (meson assms sbECons_sblLen sbnleast.dom sbnleast_len)

lemma sb_cases2 [case.-names least sbeCons]:

assumes "# (sb'::'cs’)) = 0==P"
and "Asbe sb. sb' = sbe o/ sb==pP"
shows "p"

by (metis (full_types) assms(1) assms(2) sbECons_def sbHdElem sbconctakedrop)

lemma sb_finind1:
fixes x::"'cs™Qv
shows "# x = Fin k
—> (Asb. sbIsLeast sb==P sb)
= (/\sbe sb. P sb
—>—chDomEmpty TYPE ('cs)==P (sbe ¢/ sb))
=3 x"
apply (induction k arbitrary:x)
using sbnleast_len apply fastforce
by (metis Fin_Suc inject.Insuc sb_cases sbecons_len)

lemma sb_finind:
fixes x::"'cs"\Qv
assumes "# x < od'
and "Asb. sbIsLeast sb==P sb"
and "Asbe sb. P sb=—=—chDomEmpty TYPE ('cs)==P (sbe 0/\\/ sb) "
shows "p x"
by (metis assms(1) assms(2) assms(3) Inat-well_.h2 sb_finind1)

lemma sbtakeind1:
fixes x::"'cs™\Qv

shows "Wx. (( V(sb::'cs’() . sbIsLeast sb—sP sb) A
(V (sbe::'cs™\A sb::'cs’2 P sb ——chDomEmpty TYPE ('cs)
——P (sbe o/ sb))) A

( —chDomEmpty TYPE ('cs)——# x < Fin n)—P (x)"
by (metis (no-types, lifting) inf_ub less2eq
order.not_eq-order_implies_strict sb_cases sb_finind
sb_finind1)

lemma sbtakeind:

fixes x::"'cs™Qv

shows "Wx. (( V(sb::'cs’()) . sbIsLeast sb—sP sb) A
v (sbe::'cs/\\/) sb::'cs/\ﬂ. P sb ———chDomEmpty TYPE ('cs)
——P (sbe o/\\/ sb)))
—P (sbTake n-x)"

apply rule+

apply (subst sbtakeind1, simp_all)

using sblen_sbtake sbtakeind1 by auto

text (The second showcased proof method is the induction for
\glspl{sb}. Beside the admissibility of the predicate, the
inductions subgoals are also divided into the cases (least) and
(sbeCons) . )

theorem sb_ind[case_-names adm least sbeCons, induct type: sb]:

fixes  x::"'cs\Qn

assumes "adm P"

and "Asb. sbIsLeast sb==P sb"

and "Asbe sb. P sb==—chDomEmpty TYPE ('cs)
—P (sbe ¢/ sb)"

shows  "p x"

using assms(1) assms(2) assms(3)

apply (unfold adm_def)

apply(erule_tac x="Ai. sbTake i-x" in allE ,auto)
apply (simp add: sbtake_chain)

apply (simp add: sbtakeind)

by (simp add: sbtake_lub)

text(Here we show a small example proof for our \gls{sb} cases rule.
First the (ISAR) proof is started by applying the proof tactic

to the theorem. This automatically generates the proof structure
with the two cases and their variables. These two generated cases
match with our theorem assumptions from (sb_cases). Our theorems
statement then follows then directly by proving both generated
cases.)

theorem sbecons_eq:
assumes "# sb # 0"
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shows "sbHdElem sb e/ sbRt-sb = sb"
proof %visible (cases sb)
assume "sbIsLeast sb"
thus "sbHdElem sb e/ sbRt-sb = sb"
using assms by(simp only: assms sbECons_def sbHdElem sbcons)
next
fix sbe and sb'
assume "sb = sbe ¢/ sb'"
thus " (sbHdElem sb) .A\/ sbRt -sb = sb"
using assms by(simp only: assms sbhdelem_sbecons sbrt_sbecons)
qed

text(The first subgoals assumption after applying the case tactic
is (sblsLeast sb) and proving this case and the (sbeCons)
case is often simpler than proving the theorem without
case distinction.)

text(The second subgoals assumes (sb = sbe ¢/ sb'). This alows splitting the \gls{sb}
two parts, where the first part is a @{type sbElem}. This
helps if a function works element wise on its input.)

text (The next theorem is an example for the induction rule. Similar
to the cases rule there are automatically generated cases that
correspond to the assumptions of (sb_ind). Our theorem is

proven after showing the three generated goals.)

theorem shows "sbTake n-sb C sb "
proof %visible (induction sb)
case adm
then show ?case
by simp
next
case (least sb)
then show "sbIsLeast sb=—>sbTake n-sb C sb"
by simp
next
case (sbeCons sbe sb)
then show "sbTake n-sb T sb==sbTake n- (sbe "/ sb) C sbe o/ sb"
by simp
qed

subsubsection (Converting Domains of SBs)

text(Two \glspl{sb} with a different type are not comparable, since
only \glspl{sb} with the same type have an order. This holds even if
the domain of both types is the same. To make them comparable we
introduce a type caster that converts the type of a \gls{sb}. This
casting makes two \Gls{sb} of different type comparable.

Since it does change the type, it can also restrict or expand the
domain of a \gls{sb}. Newly added channels map to (¢).)

lemma sbtypecast.well[simp]:"sb_well (Ac. sb \<"enum>\<"sub>x c)"
by(rule sbwelll, simp)

lift_definition sbTypeCast::"'cs1’Q2— 'cs2/\Q"is

"(A sb. Abs_sb (Ac. sb \<“enum>\<"sub>x c ))"
by(intro cont2cont, simp)

lemmas sbtypecast.insert = sbTypeCast.rep.eq

abbreviation sbTypeCast.abbr :: "'cs1/Q= 'cs2/ Q"
( "_x" 200) where "sbx = sbTypeCast:sb"

abbreviation sbrestrict_abbr_fst :: "('csl U 'cs2)’Q2= 'cs1/\Q"
( "_x\<"sub>1" 200) where "sbx\<“sub>1 = sbTypeCast-sb"

abbreviation sbrestrict.abbr_snd :: "('cslU'cs2) 2= 'cs2 "
( "_x\<"sub>2" 200) where "sbx\<“sub>2 = sbTypeCast-sb"

abbreviation sbrestrict_abbr_.commu :: "('csl U'cs2)’ 2= ('cs2 U 'cs1)/ Q"
( "_x\<"sub>=" 200) where "sbx\<"sub>= = sbTypeCast-sb"

abbreviation sbrestrict_.abbr.minus :: "'cs1’Q= ('csl-'cs2)/\Q"

( "_x\<"sub>-" 200) where "sbx\<“sub>- = sbTypeCast-sb"
abbreviation sbTypeCast_abbr_fixed :: "'cs1’2= 'cs3 itself = 'cs3\Q"
( "_i_" 201) where "sb | _ = sbTypeCast-sb"

text (A \gls{sb} with domain (('cs1 U 'cs2) -'cs3) can be restricted
to domain (('cs1 - 'cs3)) by using (sb | TYPE ('cs1 - 'cs3)).)
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lemma sbtypecast_rep[simp]: "Rep_sb(sb*x) = (Ac. sb \<"enum>\<"sub>% c)"
by (simp add: Abs_sb_inverse sbtypecast.insert)

lemma sbconv_eq[simp]:"sbx = sb"
apply(rule sb_.eql)
by (metis (no-types) Abs_sb.inverse mem_Collect-eq
sbtypecast.insert sbtypecast-well sbgetch_insert2)

theorem sbtypecast-getch [simp]: "sbx \<“enum> c = sb \<"enum>\<"sub>% c"
by (simp add: sbgetch_insert2)

lemma sbtypecast_len:
assumes "chDom TYPE ('cs2) g chDom TYPE('csl)"

shows "#sb < #((sbTypeCast_abbr :: tes1™M = 'es2’Y) sb) "
proof (cases "chDomEmpty TYPE('cs2)")
case True
then show ?thesis
by simp
next

case cs2_typenempty: False
obtain least.ch where least.chi_def: "#sb = #(sb \<“enum> least_ch)"
by (metis cs2_typenempty assms empty_subsetl equalityl
order.trans sblen2slen)
have cs2_sbtypecast.getch: "Ac::'cs2. sbx \<"enum> ¢ = sb \<"enum>\<"sub>x c"
by simp
thus ?thesis
proof (cases "Rep least_ch € chDom TYPE('cs2)")
case least_ch_in_cs2: True
then show ?thesis
by (metis Un_iff assms chdom.in cs2_sbtypecast.-getch
cs2_typenempty least.chi.def order.refl sbgetch_empty2
sbgetch.insert sbgetch_insert2 sblen_min_len sblengeq
strict_.slen sup.absorb_iff1)
next
case least.ch_nin_cs2: False
then show ?thesis
by (metis Un_iff assms chdom.in cs2_sbtypecast_getch
cs2_typenempty least.chi._def refl_Inle sbgetch_empty2
sbgetch_insert sbgetch.insert2 sblen_min_len sblengeq
strict_slen sup.absorb_iff1)
qed
qed

lemma sb_star21:
fixes sb::"'cs0Q"
assumes "chDom TYPE('cs2) C chDom TYPE('csl)"
shows "sb | TYPE('csl) | TYPE ('cs2) = sb | TYPE('cs2)"
apply(rule sb_eql, auto)
apply (auto simp add: sbGetCh.rep.eq)
using assms by blast

subsubsection (Union of SBs)

definition sbUnion::"'cs1”Q— 'cs2”2— ('csl U 'cs2)”Q" where
"sbUnion = A sbl sb2. Abs_sb (A c.

if Rep ¢ € chDom TYPE('csl)

then sbl \<“enum>\< sub>x ¢

else sb2 \<"enum>\<"sub>x c)"

lemma sbunion_sbwell[simp]: "sb_well ((A (c::'e).
if (Rep ¢ € chDom TYPE('c)) then
(sbl::'¢ Y \<“enum>\<"sub>*x c else (sb2::'d) \< enum>\< sub>% c))"
apply(rule sbwelll)
by simp

lemma sbunion_insert:" (sbUnion- (sbl::'c(?) -sb2) = Abs_sb (A c. if
(Rep ¢ € chDom TYPE('c)) then
sbl \<"enum>\<"sub>% c else sb2 \<“enum>\<"sub>x c)"
unfolding sbUnion_def
apply (subst beta_cfun, intro cont2cont, simp)+

lemma sbunionm_insert:" (sbUnion- (sbl::'c)) -sb2)* = Abs_sb (A c. if

(Rep ¢ € chDom TYPE('c)) then
sbl \<“enum>\<"sub>% c else sb2 \<“enum>\<"sub>x c)"

unfolding sbUnion_def

apply (subst beta_cfun, intro cont2cont, simp)+

apply (simp add: sbtypecast-insert)

apply(rule sb_rep-eql)

apply (subst Abs_sb_inverse,simp)

apply (subst Abs_sb_inverse ,simp)

apply (subst sbgetch_.insert)

apply (subst Abs_sb_inverse ,simp)

apply(case_tac "Rep cE€chDom TYPE('c)";simp)

by(auto simp add: rep.reduction sbgetch_.insert)
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lemma sbunion_rep.eq:"Rep_sb (sbUnion- (sbl::'c’)) -sb2) =
(A c. if (Rep ¢ € chDom TYPE('c))
then sbl \<“enum>\<"sub>x c
else sb2 \<"enum>\<"sub>%x c)"
apply(simp add: sbunion_insert sbgetch_.insert)
apply (subst Abs_sb_inverse ,simp)
by auto

lemma sbunionm_rep_eq:"Rep_sb ((sbUnion- (sbl::'c/?) -sb2) %) =
(A c. if (Rep ¢ € chbhom TYPE('c))
then sbl \<“enum>\<"sub>x c
else sb2 \<“enum>\<"sub>% c)"
apply (simp add: sbunionm_insert sbgetch_insert)
apply (subst Abs_sb_inverse ,simp)
by auto

abbreviation sbUnion_abbr :: "'cs12= 'cs2’2= ('csl U 'cs2) "
(infixr "w" 100) where "sbl W sb2 = sbUnion-sbl-sb2"

text(The following abbreviations restrict the input and output
domains of @{const sbUnion} to specific cases. These are displayed

by its signature. Abbreviation (W\<'sub>x) is the composed function of
@{const sbUnion} and @{const sbTypeCast}, thus, it converts the

output domain.)

abbreviation sbUnion_-magic.abbr :: "'cs1’Q= 'cs2/\2= 'cs3/Q"
(infixr "w\< sub>x" 100) where "sbl W\<"sub>x sb2 = (sbl W sb2)«"

text(The third abbreviation only fills in the stream its missing in
its domain ('cs1). It does not use stream on channels that are in
domain (cs2) but not (cs1).)

abbreviation sbUnion_minus_abbr :: "('csl - 'cs2)/2= 'cs2’ Q= 'cs1\"
(infixr "w\<“sub>-" 500) where "sbl W\< sub>- sb2 = sbl W\< sub>% sb2"

paragraph (sbUnion Properties \\)

lemma sbunion_getch[simp]:fixes c::"'a"
assumes"Rep ¢ € chDom TYPE('c)"
shows "(stnlon_magic_abbr::‘a/\fb Q= '’ cb db \<"enum>\<"sub>x ¢ = cb \<"enum> c"
apply (simp add: sbunionm_.insert)
apply(simp add: sbgetch_insert)
apply (subst Abs_sb_inverse ,simp add: assms)+
apply (auto simp add: rep-reduction sbgetch_insert assms)
using assms cdom_notempty notcdom_empty apply blast
done

lemma sbunion_.eq [simp]: "sbl W\<“sub>x sb2 = sbl"
apply(rule sb_eql)
apply simp
using sbunion_getch by fastforce

lemma sbunion_sbtypecast.eq[simp]:"cb W\<"sub>x cb = (cbx)"

apply(rule sb_eql,simp)
by (metis sbtypecast.rep sbunionm_rep_eq)

theorem ubunion_commu:

fixes  sbl ::"rcs1Qr

and sb2 ::mres2/\r

assumes "chDom TYPE ('csl) M chDom TYPE ('cs2) = {}"
shows "sbl W\<"sub>* sb2 = sb2 W\<"sub>x sbl"

apply(rule sb_rep_eql)
apply(simp add: sbunion_rep.eq sbgetch_.insert rep-reduction assms)
using assms cdom_notempty cempty.rule cnotempty_.cdom by blast

lemma ubunion_fst[simp]:

fixes sbl ::"rcs1Qr

and sb2 1:mrcs2/Qn

assumes "chDom TYPE ('cs2) M chDom TYPE ('cs3) = {}"
shows "sbl W\<“sub>x sb2 = (sblx :: 'cs3/\9) "

apply(rule sb_rep_eql)
apply(simp add: sbunion_rep.eq sbgetch_.insert rep_reduction assms)
using assms cdom_notempty cempty.rule cnotempty_.cdom by blast

lemma ubunion_id [simp]: "outx\<"sub>1 W (out*\<"sub>2) = out"
proof(rule sb_eql)
fix c::"'a U 'b"
assume as:"Rep ¢ € chDom TYPE('a U 'b)"
have "Rep c € chDom (TYPE ('a))=—out* W (out*) \<"enum> c = out \< enum> c"
by (metis sbgetch_insert2 sbunion_getch sbunion.rep-eq
sbunion_sbtypecast.eq)
moreover have "Rep ¢ € chDom (TYPE ('b))
—out*x W (outx) \<“enum> c = out \<“enum> c"
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by (metis sbgetch_insert2 sbunion_getch sbunion_rep_eq
sbunion_sbtypecast.eq)
moreover have "Rep c € chDom TYPE ('a) V Rep c € chDom TYPE ('b)"
using as chdom.in by fastforce
ultimately show "outx W (outx) \<“enum> c = out \<"enum> c" by fastforce
qed

theorem sbunion_getchl[simp]:

fixes  sbl ::"rcs1Qv

and sb2 :i:mrcs2/\n

assumes "Rep ¢ € chDom TYPE('csl)"

shows "(sbl W sb2) \<"enum>\<"sub>x c = sbl \<“enum>\<"sub>%x c"
apply (auto simp add: sbgetch.insert rep.reduction sbunion_rep_eq

assms)
done

theorem sbunion_getchr[simp]:

fixes  sbl ::"rcs1/Qn

and sb2 ::nmrtcs2/\n

assumes "Rep c ¢ chDom TYPE('csl)"

shows "(sbl W sb2) \<“enum>\<"sub>%x c = sb2 \<“enum>\<"sub>% c"

by(auto simp add: sbgetch_insert rep.reduction sbunion_.rep-eq
assms)

lemma sbunion_conv_fst:

fixes sb1 :: "rcs1/Qn

and sb2 :: "rcs2/\Qr
assumes "chDom TYPE ('cs3) C chDom TYPE('csl)"
shows " (((sbl W SbZ)*)Z:'CS3AQ) = (sblx)"

apply(rule sb_.eql)
using assms sbunion_getchl by fastforce

lemma sbunion_conv_snd:

fixes sbl :: "rcs1/Qn

and sb2 :: "rcs2/\Qr
assumes "chDom TYPE('csl) M chDom TYPE('cs3) = {}"
shows " (((sbl W sb2)«)::'cs3’Q) = (sb2x)"

apply(rule sb_eql)
using assms sbunion_getchr by fastforce

lemma sbunion_star_getchr[simp]:

fixes  sb1 ::"rcs1n

and sb2 i:nrcs2/\n

assumes "Rep c ¢ chDom TYPE('csl)"

shows " (sbl WA<"sub>% sb2) \<"enum> c = sb2 \<"enum>\<“sub>x c"

apply (auto simp add: sbgetch.insert rep.reduction sbunion_rep-eq
assms)

using cdom_notempty notcdom_empty by blast

lemma sbunion_minus_getchr[simp]:
fixes sb1 ::"('csl-'cs2)/ Q"
and sb2 ::"'cs2/\Qn
assumes "Rep c¢ € chDom TYPE('csl)"
and "Rep c & chDom TYPE('csl-'cs2)"

shows " (sbl W\<"sub>- sb2) \<“enum>\<"sub>x c = sb2 \<“enum>\<"sub>%x c"
apply (auto simp add: sbgetch.insert rep.-reduction sbunion_rep-eq
assms)
using assms apply auto[1]
done

lemma sbunion_minus_getchl[simp]:

fixes sbl ::"('csl-'cs2)/ "
and sb2 ::"'cs2\Qn
assumes "Rep c € chDom TYPE('csl-'cs2)"
shows " (sbl W\<"sub>- sb2) \<"enum>\<"sub>* c = sbl \<"enum>\<"sub>x c"
apply (auto simp add: sbgetch_insert rep_reduction sbunion_rep_eq
assms)

using assms by auto[1]

lemma sbunion_minus_getchempty [simp]:

fixes sb1 ::"('csl-'cs2)/Q"

and sbh2 ::"'cs2\Qn

assumes "Rep c Q chDom TYPE('csl)™"

shows " (sbl W\<"sub>- sb2) \<“enum>\<"sub>x c = €"

by (simp add: assms)

lemma sbunion_minus_getchl2[simp]:

fixes sb1 ::"('csl-'cs2)/Q"
and sh2 ::"rcs2/\Qn
assumes "Rep c ¢ chDom TYPE ('cs2)"
shows " (sbl W\<"sub>- sb2) \<"enum>\<"sub>* c = sbl \<"enum>\<"sub>x c"

by(auto simp add: sbgetch_insert rep.reduction sbunion_rep_eq
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assms)

lemma sbunion_star_getchl[simp]:

fixes sb1 ::"'cs1/Qr
and sbh2 ::"'cs2/\n
assumes "Rep c $ chDom TYPE ('cs2)"
shows " (sbl W\<"sub>x sb2) \<"enum> ¢ = sbl \<“enum>\<"sub>x c"

by (metis assms sbgetch_empty sbgetch_insert2 sbunionm_rep.eq)

lemma sbunion_getch_nomag [simp]:
"sbl W\<“sub>x sb2 \<“enum> c = (sbl W sb2) \<“enum>\<“sub>x c"
by(auto simp add: sbgetch_insert2 sbunion_rep.eq)

lemma sbunion_magic:
fixes sb1 ::"'cs1/Qr
and  sb2 ::ivres2’\Qn
shows " (sbl W sb2)* = sbl W\<"sub>% sb2"
apply(rule sb_eql)

by auto

lemma sbunion_magic_len_fst:
fixes sb1 :: "res1Qr
and  sb2 :: "res2/\Qr

assumes "chDomEmpty TYPE('cs2)"
and "—chDomEmpty TYPE('csl)™"

and "chDom TYPE('cs3) = chDom TYPE('csl)"
shows "# ((sbl W\<"sub>x sb2):: 'csB/\Q) = #sbl"
proof-

obtain least_ch::'cs1 where
sb2_len_chdef: "#sbl = #(sbl \<"enum>\<"sub>% least_ch)"
by (metis assms(2) sblen2slen)

thus ?thesis
apply (subst sbunion_conv_fst)
apply (simp add: assms)
apply (rule sblen_rule [where k="#sb1"])
using assms apply blast
apply (metis assms(2) assms(3) cnotempty.cdom sbgetch_.insert

sbgetch.insert2 sblen_min_len sbtypecast_getch)
apply (rule_tac x="(2Abs (Rep least_ch))" in exl)
by (simp add: assms(2) assms(3) sbgetch_insert)
qed

lemma sbunion_emptyr: fixes sb2::"'cs2/\Q"
assumes "chDom TYPE('cs2) = {}"
shows "sbl W sb2 = sblx"
apply(rule sb_eql, auto simp add: sbGetCh.rep_eq assms)
by (simp add: sbgetch.insert sbunion_rep_eq)

lemma sbunion_emptyl: fixes sbi::"'cs1/Q"
assumes "chDom TYPE('csl) = {}"
shows "sbl W sb2 = sb2x"
apply(rule sb_eql, auto simp add: sbGetCh.rep.eq assms)
by (simp add: assms sbgetch_insert sbunion_rep.eq)

lemma sbunion_magic_len_snd:
fixes sb1 :: "res1/Qr
and  sb2 :: "res2/\Qr
assumes "chDomEmpty TYPE('csl)"
and "—chDomEmpty TYPE('cs2)"

and "chDom TYPE('cs3) = chDom TYPE('cs2)"
shows "# ((sbl W\<"sub>x sb2)::'cs3’ Q) = #sb2"
proof-

obtain least_ch::'cs2 where
sb2_len_chdef: "#sb2 = #(sb2 \<"enum>\<"sub>% least_ch)"
by (metis assms(2) sblen2slen)
thus ?thesis
apply (subst sbunion_conv_snd)
apply (simp add: assms)
apply (rule sblen_rule [where k="#sb2"])
using assms apply blast
apply (metis assms(2) assms(3) cnotempty.cdom sbgetch_.insert
sbgetch.insert2 sblen_min_len sbtypecast_getch)

apply (rule_tac x="(2Abs (Rep least_ch))" in exl)
by (simp add: assms sbgetch_insert)
qed
lemma sbunion_magic_len:
fixes sb1 :: "rcs1/Q"
and  sb2 :: "res2/\Qr
assumes "chDom TYPE('csl) N chDom TYPE('cs2) = {}"
and "chDom TYPE('cs3) = chDom TYPE('csl) U chDom TYPE('cs2)"
shows "# ((sbl W\<"sub>x sb2)::'cs3/\Q) = min (#sbl) (#sb2)"

proof (cases "chDomEmpty TYPE('csl)")
case csl1.dom_empty: True
then show ?thesis
proof (cases "chDomEmpty TYPE ('cs2)")
case cs2.dom_empty: True
thus?thesis
by (simp add: assms cs1.dom_empty)
next
case False
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then show ?thesis
by (simp add: assms csi1.dom_empty sbunion_magic_len_snd)
qed
next
case cs1_.dom_nempty: False
then show ?thesis
proof (cases "chDomEmpty TYPE('cs2)")
case True
then show ?thesis
apply (subst sbunion_magic_len_fst, simp_-all)
using csi1.dom.nempty apply blast
using assms by blast
next
case cs2.dom_nempty: False
obtain least.cs1::'cs1 where
sb1_len_chdef: "#sbl = #(sbl \<“enum>\<"sub>x least_csl)"
by (metis cs1i_.dom_nempty sblen2slen)
obtain least.cs2::'cs2 where
sb2_len_chdef: "#sb2 = #(sb2 \<“enum>\<"sub>* least_cs2)"
by (metis cs2.dom_nempty sblen2slen)
have least.cs1_.dom: "Rep least_csl € chDom TYPE('csl)"
by (simp add: cs1_.dom_nempty)
have least.cs1.dom: "Rep least_cs2 € chDom TYPE('cs2)"
by (simp add: cs2_dom_nempty)
have "Ac::'cs3. Rep ¢ ¢ chDom TYPE('csl)=—>
Rep ¢ € chDom TYPE('cs2)"
using assms(2) cnotempty.cdom cs1_.dom_nempty by auto
then show ?thesis
apply (subst sblen_rule [where k="min (#sbl) (#sb2)"])
apply (simp-all add: assms csi.dom_nempty)
apply (case_tac "Rep c € chDom TYPE('csl)", simp.all)
apply (metis (full_-types) min.coboundedI1 rep-reduction
sbgetch.insert sblen_min_len2)
apply (simp add: sbgetch_.insert )
apply (metis cs2.dom_nempty min_le_iff_disj sbgetch_insert2
sblen_min_len)
apply (cases "min (#sbl) (#sb2) = #sbl", simp.all)
apply (rule_tac x="Abs (Rep least_csl)" in exl)
apply (simp add: sbgetch_insert)
apply (simp add: assms cs1.dom_nempty sbi1_len_chdef
sbgetch_insert sbunion_rep_eq)

apply (rule_tac x="Abs (Rep least_cs2)" in exl)
apply (subgoal_tac "min (#sbl) (#sb2) = #sb2")
apply (simp add: sbgetch_insert)

apply (simp add: assms cs2.dom_nempty sb2_len_chdef

sbgetch_insert sbunion_rep-eq)
using assms(1) least.cs1.dom apply blast
by (metis min_def)
qed
qed

theorem sbunion_fst: " (sbl W sb2)x\<"sub>1 = sbl"
by simp

theorem sbunion_snd[simp]:

fixes  sb1 ::"rcs1n

and sb2 ::vres2Qr

assumes "chDom TYPE ('csl) M chDom TYPE ('cs2) = {}"
shows "(sbl W sb2)*x\<"sub>2 = sb2"

by (metis assms sbconv_eq ubunion.commu ubunion_fst)

lemma sbunion_eql:
assumes "sbl = (sbx\<"sub>1)"
and "sb2 = (sbx\<“sub>2)"
shows "sbl W sb2 = sb"
by (simp add: assms)

lemma sbunion_beql:
assumes "sbl = (sbx\<"sub>1)"
and "sb2 = (sbx\<"sub>2)"
shows "sbl W sb2 \<triangleqg> sb"
by (simp add: assms sbEQ_def)

lemma sbunion_len[simp]:

fixes sb1 :: "res1Qn
and  sb2 :: "res2\n
assumes "chDom TYPE('csl) M chDom TYPE('cs2) = {}"
shows "#(sbl W sb2) = min (#sbl) (#sb2)"
proof—
have "# ((sbUnion_magic_abbr:: e = 'es2= ('esl U 'es2)Y)
sbl sb2) = min (#sbl) (#sb2)"

by (rule sbunion.magic.len, simp.all add: assms)
thus ?thesis

by simp
qed
lemma union_minus_nomagfst[simp]:
fixes sb1 ::"(('a U 'b) - 'c U 'a)/ Q"
and sb2 ::"('c U 'd)"\Qr
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shows "sbl W\<"sub>x sb2 = ((sbl W\<"sub>- sb2)*\<"sub>1)"
apply(rule sb_eql,simp)
by(case_tac "Rep c€ chDom TYPE('c U 'd)",auto)

lemma union_minus_nomagsnd[simp]:

fixes sb1 :"(('aU 'b) - 'c U 'd)ffp
and sb2 ::"('c U 'd)/Qr
shows "sbl W\< sub>x sb2 = ((sbl W\<"sub>- sb2)*\<"sub>2)"

apply(rule sb_eql,simp)
by(case_tac "Rep c€ chDom TYPE('c U 'd)",auto)

lemma union_minus:

fixes sb1 ::"('csl-'cs2)\Q"

and  sb2 ::vres2/r

shows " (sbl W sb2)* = sbl W\<"sub>- sb2"
by simp

lemma sbunion_belowl:

fixes sb1::"'cs1Q" and sb2::"'cs2/\"

assumes "sbl C (out)" and "sb2l (out*)"

shows "sbl W\<“sub>x sb2 C out"
apply(rule sb_belowl, rename_tac c)
apply(case_tac " (Rep c)E(chDom TYPE('csl))", simp)
using assms(1) apply(auto simp add: fun_below._iff)
using sbgetch_sbelow

apply (metis (mono_tags, hide_lams) abs_reduction abs_rep.id assms(1) sbGetCh.rep_eq sbconv._eq sbgetch.insert2

sbtypecast.rep)
apply(case_tac " (Rep c)&(chDom TYPE('cs2))", auto)
using assms(1) apply(auto simp add: fun_below_iff)
using sbgetch_sbelow

apply (metis (mono_-tags, hide_lams) abs_reduction abs._rep.id assms(2) sbGetCh.rep.-eq sbconv_.eq sbgetch.insert2

sbtypecast.rep)
done

lemma sbunion_belowl2:
fixes sb1::"'cs1’Q" and sb2::"'cs2/\Qn
assumes "sbl C (outx\<"sub>1)" and "sb2C(out*\< sub>2)"
shows "sbl W sb2 C out"
by (metis assms(1) assms(2) monofun_cfun monofun_cfun_arg
ubunion_id)

lemma sbunion_minus_len:
fixes sb1 :: "('csl-'cs2)”Q" and sb2 :: "res2’Qr
assumes "chDom TYPE ('cs2) g chDom TYPE('csl)"
shows "# (sbl W\<"sub>- sb2) = min (#sbl) (#sb2)"
apply (rule sbunion_magic_len)
apply (simp add: inf_commute)
using assms by auto

lemma sbunion_minus_sbunion_star_eq:
fixes sb1::"'cs1/Qr
and  sb2::"'cs2/\r
shows " (sblx\<"sub>-) W\< sub>- sb2 = (sb2 W\< sub>x sbl)"
apply(rule sb_eql, simp)
apply(case_tac " Rep ¢ € chDom TYPE ('cs2)")
apply(simp_.all)
by(simp add: sbgetch_insert)

lemma sbunion_minus_star_minus_fst_id:
fixes sb1::m'cs1/Qr
and  sb2::"'cs2/\r
assumes "Ac. Rep c€ chDom TYPE ('csl) M chDom TYPE ('cs2)=>sbl \<"enum> c = sb2 \<“enum>\<"sub>% c"
shows " (sblx\<"sub>-) W\<"sub>- sb2 = sbl"
apply(rule sb_eql)
apply(case_tac "Rep c €chDom TYPE ('csl) - chDom TYPE ('cs2)", simp.all add: assms)
by(simp add: sbgetch_insert)

subsubsection (Renaming of Channels)

lift_.definition sbRenameCh:"('csl = 'cs2) = 'cs2/ Q2 — 'cs1/Q" is
"Af sb. if (Vc. ctype (Rep (f c¢)) C ctype (Rep c)
then Abs_sb (Ac. sb \<"enum> (f c))
else undefined"
apply(intro cont2cont)
apply(rule sbwelll) using sbgetch_ctypewell by blast

lemma sbrenamech_rep:
assumes "Ac. ctype (Rep (f c)) C ctype (Rep c)"
shows "Rep_sb (sbRenameCh f-sb) = (Ac. sb \<"enum> (f c)) "
apply (simp add: assms sbRenameCh.rep_eq)
apply(rule Abs_sb_inverse, simp)
apply(rule sbwelll) using sbgetch_ctypewell assms by blast

theorem sbrenamech_getch[simp]:
assumes "Ac. ctype (Rep (f c)) C ctype (Rep c)"
shows " (sbRenameCh f-sb) \<"enum> c = sb \<"enum> (f c)"
by (simp add: assms sbgetch.insert2 sbrenamech.rep)
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lemma sbrenamech_len[simp]:
fixes f::m"'csl = 'cs2"
assumes "Ac. ctype (Rep (f c)) C ctype (Rep c)"
and "—chDomEmpty TYPE('cs2)"
shows "#sb < # (sbRenameCh f-sb)"
by(rule sblengeq, simp add: assms)

lemma sbconvert_eq2:
fixes sbi::m a’Qn
and  sb2::" ' B\Qn
assumes "chDom TYPE('a) = chDom TYPE ('b)"
shows "sblx = sb2=—sbl = (sb2x)"
apply(rule sb_eql, simp)
by (metis assms sbunion_getch sbunion_sbtypecast-eq)

text (In some cases only certain channels should be modified, while
keeping all other channels. For this case we define an alternative
version of (sbRename). It takes an partial function as argument.
Only the channels in the domain of the function are renamed.)
definition sbRename_part::"('csl — 'cs2) = 'cs2’2— 'cs1/Q" where
"sbRename_part f = sbRenameCh (Acsl. case (f csl) of Some cs2 = cs2
| None = Abs (Rep csl))"

lemma sbrenamepart-well[simp]:

fixes f :: "('csl — 'cs2)"

assumes "/\c. c€dom f=——=-ctype (Rep (the (f c¢))) g ctype (Rep c)"
and "Ac. c¢dom f=(Rep c) € chDom TYPE ('cs2)"

shows "ctype (Rep (case f c of None = Abs (Rep c) | Some (cs2::'cs2) = cs2)) C ctype (Rep c)"
apply(cases "c&dom f")
apply (auto simp add: assms)
using assms(1) apply fastforce
by (simp add: assms(2) domlff rep_reduction)

text (The (getch) lemmata is seperated into two cases. The first case is when
the channel is part of the mapping. This first assumption is directly
taken from the normal (sbRename) definition. The second assumption
ensures that unmodified channels also exist in the output bundle.)
theorem sbrenamepart_getch_in[simp]:
fixes f :: "('csl — ‘'es2)"
assumes "Ac. c€dom f=>ctype (Rep (the (f c))) C ctype (Rep c)"
and "Ac. c¢dom f=>(Rep c) € chDom TYPE ('cs2)"
and "c€dom f"
shows " (sbRename_part f-sb) \<"enum> c = sb \<"enum> the (f c)"
apply (simp add: sbRename_part.def)
apply (subst sbrenamech_getch)
apply (auto simp add: assms)
using assms(3) by auto

theorem sbrenamepart.getch_out[simp]:
fixes f :: "('csl — 'cs2)"
assumes "/Ac. c€dom f==>ctype (Rep (the (f c¢))) C ctype (Rep c)"
and "Ac. c¢dom f==(Rep c) € chDom TYPE ('cs2)"
and "c¢dom f"
shows " (sbRename_part f-sb) \<"enum> c = sb \<“enum>\<"sub>x c"
apply (simp add: sbRename_part.def)
apply (subst sbrenamech_getch)
apply (auto simp add: assms)
by (metis assms(2) assms(3) domlff option.simps(4) sbgetch_insert sbgetch.insert2)

end

(*» :maxLineLen=68:x*)

theory SB_fin
imports SB

begin

declare %invisible [[show_types]]
default_sort %invisible"{finite, chan}"

subsection (SB Functions with finite Domains)

subsubsection (Continuous Version of sbHdElem\_h)

text(The @{const sbHdElem_h} \ref{subsub:sbhdelem} operator is in
general monotone, but not continuous. The following theorem shows
why bundle chains with infinite domains cause continuity problems.
One can construct a chain of bundle with an infinite domain, where
the first chain element is (L) and the next element of all elements
in the chain always have one more stream that is not (e) anymore.
This results in an infinite chain where all chain bundles have
infinitely many empty stream but the least upper bound has none.)
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text(Thus @{const sbHdElem_h} function will output (L) for each

chain element, but for the chains loop, it returns a @{type sbElem}.

This is proven in the following theorem, where the chain is
formulated in assumptions.)

theorem sbhdelem_h_n_cont:
fixes  Y::"nat = ('cs::chan)’\Q"
assumes "chain Y"

and "Ai. —sbHdElemWell (Y i)"
and "sbHdElemWell (Ji. Y i)"
shows " (. sbHdElem_h (Y i)) # sbHdElem_h (Ji. v i)"

apply(auto simp add: sbHdElem_h_def assms)
using assms(3) sbHdElemWell_def apply auto[1]

proof—
assume al:"Iup (Abs_sbElem (Some (Ac. shd (( k. Y x) \<“enum> c))))=L"
have "—sbElem_well (Some (Ac. shd ((Jk. Y x) \<“enum> c))) A
sbElem_well (Some (Ac. shd ((|_[x. Y x) \<"enum> c)))"
by (metis a1 inst_up-pcpo u.distinct(1))
then show False
by blast
qed
lemma cont_h2:
assumes"3s. sEUNIV A s¢{c::'c. Ji::nat. Y i \<"enum> c # e}"
shows"{c::'c. Ji::nat. Y i \<“enum> c # €}AUNIV"
using assms by auto
lemma sbisleastadm[simp]:
"adm (sbIsLeast::(‘cs::{finite,chan})/\fbbool)"
apply (simp only: sbHdElemWell_def,simp)
proof(rule adml)
fix Y:iivnat = 'a"Q"
assume chain:"chain Y"
assume epsholds:"Vi::nat. Jc::'a. Y i \<"enum> c = €"
have well:"V i. = sbHdElemWell (Y i) "
by (simp only: sbHdElemWell_def,simp add: epsholds)
have h0:"Vc i. ((Y i) \<"enum> c # e)—>((Ji::nat. Y i) \<"enum> c # €)"

by (metis (full_-types) chain is_ub_thelub minimal
monofun_cfun_arg po-eqg-conv)
then obtain set.not.eps where set_not_eps-def:

"set_not_eps = {c::'a. Ji. Y i \<"enum> c # €}"
by simp
have hO1:"finite set_not_eps™"
by simp
have h1:"Vc€ (UNIV - set_not_eps). (Ji::nat. ¥ i) \<"enum> c

by (simp add: chain contlub_cfun_arg set_not_eps_def)
have "set_not_eps 7 UNIV"
proof(auto)
assume al: "set_not_eps = UNIV"
have "3Jc € UNIV. (fi::nat. ¥ i) \<"enum> c # €"
using al h0 set_not_eps_def by blast
have "3 i. sbHdElemWell (Y i)"
proof (rule ccontr, simp)
assume al0: "Vi::nat. — sbHdElemWell (Y i)"
have f110: "A i::nat. — sbHdElemWell (Y i)"
by (simp add: a10)
obtain i where i_def: "— sbHdElemWell (Y i)"
by (simp add: al10)
obtain ch_not.eps where ch_not_eps-def:
"ch_not_eps = {{i. Y i \<"enum> (ch) # €}|ch::'a. True }"

by blast

obtain surj_f where surj_f_def:
"surj_f = (A ch. {i. Y i \<“enum> (ch::'a) # €})"
by simp

have "ch_not_eps C surj_f °~ ({c::'a | c. True})"

using ch_not_eps._def surj_f_def by auto
then have ch_not_epsfinite: "finite ch_not_eps™"
by (metis finite_code finite_surj)
have ch_not_eps.ele_not.emp: "V ele € ch_not_eps. ele # {}"
using ch_not_eps._def al set_not_eps_def by blast
have dom_emty_iff:"Ac. (ch_not_eps={})—
(Rep (c::'a) € cEmpty)"
by (metis (mono.-tags, lifting) Collect.empty_-eq
Diff_eq-empty.iff Intl chDom.def ch_not-eps-def
ch_not_eps_ele_not_.emp chan_botsingle empty_iff
mem_Collect-eq repinrange sbGetCh.rep.eq)
have dom_not_-emp_false: "ch_not_eps= {}"
proof —
have el_ch_not_eps_least: "V ele. ele € ch_not_eps
—(F i. i Eele A (VW j € ele. 1 < 9"
proof (rule ccontr, simp)
assume al111: "Jele::nat set. ele € ch_not_eps A
(Vi::nat. i € ele—(Ix::nat€ele. = 1 < x))"
obtain the_ch where the_ch_def:
"(surj_f the_ch) € ch_not_eps A
(Vi::nat. i € (surj_f the_ch)
— (Ix::nat € (surj_f the_ch). =1 < x))"
and the_ch_def2:
"(surj_f the_ch) = {i. Y i \<"enum> the_ch # e}"
using al111 ch_not.eps_def surj_-f_.def by blast
obtain the_i where the_i_def: "the_i € (surj_f the_ch)"
using ch_not.eps-ele_.not_.emp the.ch.def by auto
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obtain the_subs where the_subst_def:
"the subs = {i. 1 < the_ i A Y i \<"enum> the_ch # €}"

by simp

have the_subs_fin: "finite the_subs"

hence the_min_in_subs:

by (simp add: the_subst_def)

"Min the_subs € the_subs"

using Min_in the_subs_fin the_i_def the_subst._def

the_ch_def2 by blast

hence the_min_min: "V i € (surj_f the_ch).

Min the_subs < i"

using the_ch.def2 nat.le_linear the_subst_def

by fastforce

show False
using the_ch_def the_min_.in_subs the_min_min surj_f_def

qed
ob
"bla =

the_ch_def the_subst.def by auto

tain bla::"nat set = nat set" where bla_def:

(A da_set. {the_i. (V i € da_set. the_i <

the_i € da_set})"
by simp

obtain min_set_set::"nat set" where min_set_set_def:

"min_set_set = {THE i. i € bla da_set |

da_set

. da_set € ch_not_eps}"

by simp
have i_max.is.max: "V ch::'a. 3 i
(i € min_set_set)—Y i \<“enum> ch # €"

using al set_not.eps.def by blast

have min_set_set_finite: "finite min_set_set
by (simp add: ch_not._epsfinite min_set_set_def)
obtain the_.max where the_max_def:

"the_max = Max min_set_set"

by simp

have "the_max € min_set_set"
by (metis (mono._tags, lifting) Max.in min_set_set_finite

ch_not_eps.def empty_Collect.eq equals
min_set_set_def the_max.def)

have "sbHdElemWell (Y the_max)"
proof (simp only: sbHdElemWell_def, rule)

qe

fix c::'a

obtain the_set where the_set_def: "the_set
by simp

then obtain the_min where the_min_def:

"the_min € the_set A (V j € the_set. the_min < j)"
using el_ch_not_eps_least ch_not_eps._def surj_f_def

the_set_def by blast
have "bla the_set = {the_min}"
using bla_-def the_min_def by force

i) A

ol

= surj_f c"

hence " (THE i::nat. i € bla the_set) = the_min"

by auto

hence the_min_min_set_set.in: "the_min € min_set_set"

using min_set_set.def ch_not_eps.def surj_f_def

the_set.def by blast
have "Y the_min \<"enum> c # €"
using surj_f_def the_min_def the_set_def
thus "Y the_max \<“enum> c # €"
by (metis min_set_set_finite the_max.def

by blast

chain

po_class.chain.mono minimal monofun_cfun_arg
po-eqg.conv Max_ge the_min_min_set_set_in)

d

then show ?thesis

qed
then

by (simp add: a10)

show False

using ch_not_eps.def by auto

qed

thus False

by (
qed

metis well)

then show "3c. (Ji::nat. Y i) \<"enum> c = €"

using
qed

h1 by blast

lift_definition sbHdElem_h_cont::"'cs::{finite,chan}’2— ('cs’\A u"
is "sbHdElem_h"

unfolding

sbHdElem_h_def

apply(intro cont2cont)

apply(rule
apply(rule
apply auto

Cont.contl2)
monofunl)

(1]

apply (metis sbhdelem_mono_eq sbhdelem_some sbhdelemchain)

proof—

fix Y:i"nat = '\Qn
assume ch1:"chain Y"
assume ch2:"chain (Ai::nat. if sbIsLeast (Y i) then

have "adm
apply (in
by (simp

hence "Vi:

Iup (Abs_sbElem (Some (Ac::'c. shd (Y i
(Asb::'¢2 3Jc. sb \<“enum> c

sert sbisleastadm)

only: sbHdElemWell_def,simp)

tnat. Je::'c. Y i \<"enum> c = €

=

—3c::'c. (Ji::nat. Y i) \<"enum> c = €"
using admD ch1 by blast

hence finiteln:"vc:: (K::nat. ¥ i) \<"enum> c
—3i. Vc:: (Y i) \<"enum> c # €e"
by blast

1 else
\<"enum>

# €
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thus " (if sbIsLeast (Ji::nat. Y i) then L else

Iup (Abs_sbElem (Some (Ac::'c. shd ((|_li::nat. Y i) \<“enum> ¢))))) C
(Lfi::nat. if sbIsLeast (Y i) then L
else Iup (Abs_sbElem (Some (Ac::'c. shd (Y 1 \<"enum> <c¢)))))"
proof(cases "sbIsLeast (fi::nat. Y i)")
case True
then show ?thesis
using sbnleast.mex by auto
next
case False
obtain n where n_def:"—sbIsLeast (Y n)"
by (metis False finiteln sbHdElemWell_def)
have "sbHdElemWell ( Jx::nat. Y x)=—>
Abs_sbElem (Some (Ac::'c. shd ((|_[x::nat. Y x) \<"enum> c))) =
Abs_sbElem (Some (Ac::'c. shd (Y n \<"enum> c)))"
by (metis below.shd ch1 is_ub_thelub n.def sbHdElemWell_def
sbgetch_sbelow)
hence " (if sbIsLeast (Ji. Y i) then L else Iup
(Abs_sbElem (Some (Ac::'c. shd ((li::nat. Y i) \<“enum> <¢))))) C

Iup (Abs_sbElem (Some (Ac::'c. shd (Y n \<"enum>
by auto
then show ?thesis

e

by (metis (mono_tags, lifting) below_lub ch2 n_def)

qed
qed

subsubsection (SB step functions)

text (Often a \gls{sb} is processed element wise by an automaton.
If there is no complete element in the \gls{sb} it returns (L).
We use the following definition for realising the automaton

semantics, but it could also be used to define a continuous version

of the length definition\
domain or other operators

ref{subsub:sblen} for \Gls{sb} with a finite
)

definition Sb,split::"('csA\/:> 1o’ — 'a::pcpo) — 1es™Y— 'a" where

"sb_split = A k sb. fup: (A sbe. k sbe- (sbRt-sb)) - (sbHdElem_h_cont-sb)"

lemma sb_split_insert:"sb_split-k-sb = (case sbHdElem_h_cont-sb of

up- (sbe:: 'b/\\/) = k sbe: (sbRt-sb))"
apply(simp add: sb_split.def)
apply (subst beta_cfun)
apply(intro cont2cont,simp_.all)
using cont2cont_fst cont_fst cont.snd discr_.cont3

lemma sb_splits_bot[simp]:
"= (chDomEmpty (TYPE ('cs)))==sb_split-f- (L::'cs’Q)

by blast

- o

by(simp add: sb_split.insert sbHdElem_h_cont.rep.eq sbHdElem_h_def

chDom_def)

theorem sb_splits_leastbot[simp]:
fixes  sb::imres/Qr
assumes "—chDomEmpty (TYPE ('cs))"
and "sbIsLeast sb"
shows "sb_split-f-sb = L"
using assms

by(simp add: sb_split-insert sbHdElem_h_cont.rep.eq sbHdElem_h_def

chDom_def)

lemma sb_splits_len0[simp]:
fixes  sb::i"res”Qr
assumes "#sb = 0"
shows "sb_split-f-sb = 1"
apply(cases "chDomEmpty (TYPE ('cs))")
using assms apply auto[1]

using assms sb_splits_leastbot sbnleast_len by blast

theorem sb_splits_sbe[simp]:"sb_split-f- (sbe oA\/ sb) = f sbe-sb"
apply (subst sb_split_insert)
apply (subst sbrt_sbecons)
by (simp add: sbHdElem_h_cont.rep_.eq sbhdelem_h_sbe)

lemma sbsplit_eql: assumes "Asbe sb. spf- (sbe %/ sb) = f sbe-sb"

and "Asb. #sb = 0=spf-sb = L"
shows "spf = sb_split-f"
apply(rule cfun_eql, rename_tac "sb")
apply(case_tac "sb" rule: sb_cases2)
by (simp add: assms)+

lemma sb_splits_sbe_empty [simp]:

"chDomEmpty TYPE ('cs)—>sb_split:-f- (sb::'cs’) = £ sbe-sb"
by (metis (full_-types) sb_splits.sbe sbtypeepmpty_sbbot)

lemma sb_splits_sbe_empty2:
"chDomEmpty TYPE ('cs)=—>sb_split-f- (sb::'es’) =

f (Abs_sbElem None) - 1"
by (metis (full_types) sb_splits.sbe sbtypeepmpty_sbbot)
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subsection(Datatype Constructors for SBs)

text(Type ('a) can be interpreted as a tuple. Because we have
almost no assumptions for ('a ), the user can freely choose ('a).
Hence, he will not use the datatype (M). These locales could for
example create setters from from ('a = (nat x bool) stream) and
('a = (nat stream x bool stream)) to a bundle with one
(bool)-channel and one (nat)-channel. Thus, we can construct all
bundles with a finite domain.)

subsubsection (sbElem Locale)

text(The first locale provides two mappings. The fist one maps some
type ('a) to a @{type sbElem}. The second one maps a @{type stream}
of type ('a) to a \gls{sb}. For example could a \gls{sb} setter map
a (natxbool) @{type stream} to a \gls{sb} with a (nat) and a (bool)
stream. The constructor mapping is always injective, but in general
not surjective.)

text(The locales assumptions depend on the constructors domain.
If the domain is empty, ('a) must be a singleton, else, the
constructor has to map to a function that can be interpreted as a
@{type sbElem}. The constructor also has to map to every

possible @{type sbElem} and be injective.)

locale sbeGen =
fixes IConstructor::"'a::countable = 'cs::{chan, finite} = M"
assumes c_well: "Aa. —chDomEmpty TYPE ('cs)
==Vc. lConstructor a ¢ € ctype(Rep c)"
and c.inj: "—chDomEmpty TYPE ('cs)==-inj lConstructor"
and c_surj: "Asbe. —chDomEmpty TYPE ('cs)
=—=Vc. sbe ¢ € ctype(Rep c)
—sbe€range lConstructor"
and c_empty: "chDomEmpty TYPE ('cs)
—is_singleton(UNIV::'a set)"

begin

lift_.definition setter::"'a= 'cs\/ is
"if chDomEmpty TYPE ('cs) then (A_. None) else Some o lConstructor"
using c-well sbtypeempty_sbewell by auto

text(In the definition of the setter (o) is used to compose the
mappings (Some) and (IConstructor) into one function where (Some)
is applied to the output of (IConstructor).)

text(The getter work analogous with the inverse constructor. If the
input @{type sbElem} is (None), we know that the domain ('cs) is
empty and hence, the type ('a) only contains one element. Therefore,
@{const undefined} can be returned.)

definition getter::"'cs”\/= 'a" where

"getter sbe = case (Rep_sbElem sbe) of
None = undefined |
Some f = (inv lConstructor) f"

theorem get_set[simp]: "getter (setter a) = a"
unfolding getter_def
apply (simp add: setter.rep.eq c-inj c.empty)
by (metis (full-types)UNIV_.l c_empty is_singletonE singleton_iff)

lemma set.inj: "inj setter"
by (metis get_set injl)

lemma set_surj: "surj setter"
unfolding setter_def
apply(cases "—(chDomEmpty (TYPE('cs)))",auto)
apply (simp add: chDom_def)
apply auto
proof—
fix xb::mres\M and xa::'cs
assume chnEmpty:"Rep xa ¢ cEmpty"
obtain f where f_def:"Rep_sbElem xb=(Some f)"
using chnEmpty sbtypenotempty_fex cempty_rule by blast
then obtain x where x_def:"f = 1lConstructor x"
by (metis (no-types) chnEmpty c_surj empty_iff imageE
notcdom_empty sbElem_well.simps(2) sbelemwell2fwell)
then show "xb€range (Ax::'a. Abs_sbElem (Some (lConstructor x)))"
by (metis (no-types,lifting) Rep-sbElem.inverse f.def range_eql)
qed

lemma set_bij: "bij setter"
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by (metis bijl inj_onl sbeGen.get_set sbeGen.axioms set_surj)

lemma get.inv_set: "getter = (inv setter)"
by (metis get_set set_surj surj.imp_inv_eq)

theorem set_get[simp]: "setter (getter sbe) = sbe"
apply (simp add: get.inv_set)
by (meson bij.inv_eq-iff set_bij)

lemma "getter A = getter B=—A = B"
by (metis set.get)

fixrec setterSB::"'a stream — 'cs"Q" where
"setterSB: ((up-1l)&&ls) = (setter (undiscr 1)) I/\\/ (setterSB-1s)"

lemma settersb_unfold[simp]:

"setterSB- (Ta @ s) = (setter a) 0/\/ setterSB-s"
unfolding setterSB_def
apply (subst fix_-eq)

apply simp

apply(subgoal_-tac "31. Ta e s = (up-1)&&as"

apply auto

apply (metis (no_types, lifting) Ishd_updis stream.sel_-rews (4)

undiscr_Discr up-.inject)
by (metis Iscons_conv)

lemma settersb_emptyfix[simp]:
"chDomEmpty (TYPE ('cs))=—setterSB-s = L"
by simp

lemma settersb_strict[simp]:"settersB-e = 1"
apply(simp add: setterSB_def)
apply (subst fix-eq)
by auto

definition getterSB::"'csQ2— 'a stream" where
"getterSB = fix- (A h. sb_split-
(Asbe. A sb. updis (getter sbe) && h-sb))"

lemma gettersb_unfold[simp]:
"getterSB- (sbe o/\/ sb) = T(getter sbe) ® getterSB-sb"
unfolding getterSB._def
apply(subst fix_eq)
apply simp
by (simp add: Iscons.conv)

lemma gettersb_emptyfix:
"chDomEmpty (TYPE ('cs))

—>getterSB:-sb = T (getter (Abs_sbElem None)) ® getterSB-sb"
by (metis(full_-types) gettersb_unfold sbtypeepmpty_sbbot)

lemma gettersb_empty_inf: "chDomEmpty (TYPE ('cs))
—getterSB-sb = sinftimes (f(getter (Abs_sbElem None)))"
using gettersb_emptyfix s2sinftimes by blast

lemma gettersb_realboteps[simp]:
"= (chDomEmpty (TYPE ('cs)))=—>getterSB-L = e"
unfolding getterSB._def
apply (subst fix-eq)
by (simp)

lemma gettersb_boteps[simp]:
" (chDomEmpty (TYPE ('cs)))=—>sblIsLeast sb—>getterSB-sb = €"
unfolding getterSB_def
apply(subst fix_eq)
by (simp)

lemma gettersb_inftimes:
assumes "chDomEmpty (TYPE ('cs))"
shows " (getterSB-sb) = (sinftimes (f(a)))"
apply(insert assms,subst gettersb_emptyfix ,simp)
using gettersb_emptyfix s2sinftimes c.empty
by (metis (mono-tags) get-set sbtypeepmpty_sbenone)
lemma "—chDomEmpty TYPE ('cs)—-sblLen (setterSB-s) =
oops

#s"

lemma "a C getterSB- (setterSB-a)"
apply(induction a rule: ind)

apply (auto)
by (simp add: monofun_cfun_arg)

theorem getset_eq[simp]:

assumes "—chDomEmpty (TYPE ('cs))"
shows "getterSB- (setterSB-a) = a"
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apply (induction a rule: ind)
using assms by auto

lemma "setterSB- (getterSB-sb) C sb"
apply (induction sb,simp)
apply (cases "chDomEmpty (TYPE('cs))",simp,simp)
apply (subst gettersb_unfold;subst settersb_unfold)
by (metis cont_pref_.eq1l set_get)

lemma "sbl = sb2==>sbe o’/ sbl = sbe o/ sb2"

by simp

(*Important TODOx)

lemma setget_eq:" (Vc. #(sb \<"enum> c) = k)=—petterSB- (getterSB-sb) = sb"
oops

fun setterList::"'a list = 'cs"2" where

"setterList [] = 1" |

"setterList (l#ls) = (setter 1) O/\/ (setterList 1s)"

end

(» Das ist ein Test, ob "sbeGen" auch mit leeren kandlen klappt =)
locale sbeGen.empty =
fixes t::"'cs::{emptychan, finite} itself"
begin
end

sublocale sbeGen_empty C sbeGen" (A (u::unit) cs::'cs. undefined)"
apply(standard, simp.all)
by (metis card_.UNIV_unit is_singleton_altdef)

end

theory sbLocale

imports SB

begin

subsubsection (Lifting from Stream to Bundle)

text(This section provides a bijective mapping from ('a ) to

\gls{sb}. Type ('a) could for example be a (nat stream x bool stream).

A locale \cite{ballarin2006interpretation} can be used to lift functions over streams to bundles. The number of
channels is not

fixed, it can be an arbitrary large number.)

text (A (locale) is a special environment within Isabelle. In the beginning of the locale
are multiple assumptions. Within the locale these can be freely used. To use the locale the
user has to proof these assumptions later. After that all definitions and theorems in the locale
are accessible. The locale can be used multiple times. )

text (The definition (lIConstructor) maps the ('a) element to a

corresponding \gls{sb}. The constructor has to be injective and maps precisely
to all possible functions, that can be lifted to stream bundles.

Since the setter and getter in this locale are always bijective, all
\glspl{sb} can be constructed.)

text(The continuity of the setter is given by assuming the

continuity of the constructor. Thus continuity of the getter follows

from assuming that the constructor maintains non-prefix orders and

from the continuity and surjectivity of the setter. Furthermore, assumptions
over the length ((#)) exist.)

(xTodo exchange c_type with sb_well assumptionx)

locale sbGen =
fixes IConstructor::" 'a::{pcpo,len} = 'cs::{chan} =M stream"
assumes c_type: "Aa c. sValues-: (1Constructor a c) C ctype (Rep c)"

and c.inj: "inj lConstructor"

and c_surj: "Af. sb_well f=>f€range lConstructor"

and c_cont: "cont lConstructor"

and c_nbelow: "Ax y. = (x C y)=

—(lConstructor x C 1Constructor y)"
and c_len:"A a c. —chDomEmpty TYPE ('csy=>#a < # (lConstructor a c)"

and c_lenex:"A a. —chDomEmpty TYPE ('csy=>3c.#a = # (lConstructor a c)"

begin

lift_.definition setter::"'a — 'cs"Q"
is "Abs_sb o lConstructor"
apply(intro cont2cont)
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using c_type sbwelll apply blast
by (simp add: c.cont cont2cont_fun)

lemma setter_rep[simp]: "Rep_sb (setter-a) = lConstructor a"
apply(simp add: setter.rep.eq)
by (simp add: Abs_sb_inverse c_type sbwelll)

lemma set.inj: "inj (Rep_cfun setter)"
apply(rule injl)
apply(simp add: setter.rep.eq)
by (metis abs_rep_sb_sb c.inj injD setter_rep)

lemma set_surj: "surj (Rep_cfun setter)"
unfolding setter.rep_eq setter_def
proof(simp add: surj.def,auto)

fix y:imres™Qn
obtain f where f_def:"Rep_sb y=£f"
by simp

then obtain x where x_def:"f = 1Constructor x"
by (metis c.inj c.surj f_the_inv_into_f sbwell2fwell)
then have "3Jx::'a. y = Abs_sb (lConstructor x)"
by (metis Rep.sb_inverse f_def)
thus "Jx::'a. y = Abs_cfun (Abs_sb o lConstructor) -x"
using setter.rep.eq setter_def by auto
qed

lemma set_bij: "bij (Rep_cfun setter)"
using bij_betw_def set_.inj set.surj by auto

lemma set.inv: "inv (Rep_cfun setter) = (inv lConstructor) o Rep_sb"
by (simp add: c.inj set.surj surj.imp_inv_eq)

lemma cont.inv_set:"cont (inv (Rep_cfun setter))"
apply(intro cont2cont)
apply (simp add: set_surj)
using c-nbelow cont2monofunE sbrep-cont by (metis setter_rep)

lift_definition getter::"'csQ— 'a"
is "(inv lConstructor) o Rep_sb"
apply(intro cont2cont)
using cont.inv_set set.inv by auto

theorem get_set[simp]: "getter-: (setter-a) = a"
apply (simp add: getter.rep.eq setter.rep.eq
using c.inj setter.rep.eq setter.rep by auto

theorem set_get[simp]: "setter- (getter-sb) = sb"
apply (simp add: getter.rep.eq setter.rep.eq )
by (simp add: c-surj f_inv_.into_f)

lemma get.eq: "getter-A = getter-B==A = B"
by (metis set_get)

(» Should not be used from the user, but still helpful! x)
lemma setter_getch: "setter-a \<"enum> c = lConstructor a c"
by (simp add: sbgetch_insert2)

lemma setter_getch2[simp]: " (Rep c) € chDom TYPE ('cs)=—>
setter-a \<“enum>\<"sub>x ¢ = lConstructor a (Abs (Rep c))"
by (auto simp add: sbgetch_.insert)

text (The length of the resulting bundle is connected to the length of the user-supplied
datatype ('a):)
theorem setter_len: assumes "chDom TYPE('cs) # {}"
shows "# (setter-a) = #a"
apply(rule sblen_rule, simp add: assms)
apply (simp add: assms setter_getch)
apply (simp add: assms c-len)
by (metis assms c_lenex setter_getch)

lemma getter_len: assumes "chDom TYPE('cs) # {}"
shows "# (getter-sb) = #sb"
by (metis assms set.get setter_len)

end

(» Das ist ein Test, ob "sbGen" auch mit leeren kandlen klappt x)
locale sbGen_empty =

fixes t::"'cs::{emptychan} itself"
begin

end

sublocale sbGen_empty C sbGen " (A(u::unit) cs::'cs. €)"
apply (standard, simp_.all)



apply(rule injl, simp)
apply (auto simp add: sb_well_def)
using sValues_notempty by blast

end
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Appendix D

Stream Processing Function
Theories

D.1 SPF Data Type

(x:maxLinelLen=68:«)

theory SPF
imports bundle.SB
begin

section (Stream Processing Functions in Isabelle)

text (A \gls{spf} is written as (('1"Q2— '0"Q2)). It is an continuous
function from the input bundle (('1”Q)) to an output bundle (('0"2)).

The signature of the component is directly visible from the
type-signatur of the \gls{spf}:)

definition spfType ::"('1"2— '0’)) itself =
(channel set X channel set)" where
"spfType _ = (chDom TYPE ('I), chDom TYPE ('O))"

definition spfDom ::"('12— '0’\?) itself = channel set" where
"spfDom = fst o spfType"

definition spfRan ::" ("2 — '0’\?) itself = channel set" where
"spfRan = snd o spfType"

definition spflO::" ('11”"Q2 — 017 = ('11/Q2 x '017Y) set" where
"spfIO spf = {(sb, spf-sb) | sb. True}"

paragraph (SPF Equality \\)

text (Evaluate the equality of bundle functions with same input and
output domains disregarding different types is possible by reusing
the bundle equality (\<triangleq>) operator.)

definition spfEq::" ('117'Q— '017Q) = ('12”2 — '02"Y) = bool" where
"spfEq fl f2 = chDom TYPE('I1l) = chDom TYPE('I2) A
chDom TYPE('Ol) = chDom TYPE('02) A
(Vsbl sb2. sbl \<triangleg> sb2——>fl-sbl \<triangleg> £f2-sb2)"

text(The operator checks the domain equality of input and output
domains and then the bundle equality of its possible output bundles.
For easier use, a infix abbreviation (\<triangleq>\<"sub>f) is defined.)

abbreviation sbeqg.abbr :: "('11°Q— '017Q) = ('12"Q— 02”2 = bool"
(infixr "\<triangleg>\<"sub>f" 101) where "fl \<triangleg>\<"sub>f f2 = spfEq fl f2"
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definition spfConvert::" ('17'2— 0\ — ('1e"2— '0¢” Y " where
"spfConvert =A f sb. (f-(sbx)*x)"

lemma spfconvert.eq [simp]: "spfConvert-f = f£"
apply(rule cfun_eql)
by (simp add: spfConvert_def)

lemma spfconvert_apply:"spfConvert-F-sb = (F: (sb*)*)"
by (simp add: spfConvert_def)

subsection (Causal SPFs)

text(The \gls{spf} types introduced in this framework correspond to
their causality. Beside the continuity of the components its
causality is important for its realizeability. This section
introduces two predicates to distinguish between weak and strong
causal \glspl{spf}. The original definition of weak and strong
causality \cite{BS01} are slightly

different from our predicates. A weak causal component should always
produce the same output for (n) time slots, if its input is also
equal for (n) time slots. A strong causal components output should
even be equal for (n+1) time slots. The causality definitions from
\cite{BSO1} can also be formulated in our framework, but are

only defined for components with infinite input and output.)

definition weak_causal_broy::" (' 12— '0/2) = bool"where
"weak_causal_broy spf = Vsbl sb2 n.
# sbl =co A # sb2 =oc—
sbTake n-sbl = sbTake n-sb2—->
(# (spf-sbl)=oo A # (spf-sb2)=o9 A
sbTake n- (spf-sbl) = sbTake n- (spf-sb2)"

text(The causal \gls{spf} types of our framework are a direct
consequence from their predicates. Strong causal components are a
subset of the weak causal components. A weak causal component is
realizable, but we also introduce a type for strong causal
components for their compositional properties. In general, both
causal types do not contain a (L) element, because this would be
inconsistent with our time model. Hence, the fixed point operator
@{const fix} can not be used for causal \gls{spf} types.)

subsubsection (Weak causal SPF)

text(If the input (sb1) is prefix of another input (sb2), the first
output of a \gls{spf} (spf-sb1) is also prefix of the output
(spf-sb2) because the function is monotone. This means, that the
component cannot change output depending on future input, because it
would immediately lead to a contradiction with the monotony
property. Thus, \glspl{spf} can not look into the future because
they are monotone. Their output depends completely on their previous
input. Since we interpret a stream bundle element as a time slice,
sbLen \ref{subsub:sblen} is enough to restrict the

behaviour to a causal one. If the output of a \gls{spf} is longer or
equally long to the input, it consists of as least as many time
slices as the input. Hence, we can define a \gls{spf} as weak, if
the output is in all cases at least as long as the input.)

definition weak_well::" ('I::len — 'O::1len) = bool" where
"weak_well f = Vsb. #sb < #(f-sb)"

definition sometimesspfw::" ('17'Q2 — '0\Q) "where
"sometimesspfw = (A sb. Abs_sb(Ac. sinftimes
(T(SOME a. a € ctype (Rep c)))))"

lemma sometimesspfw_well:

"—chDomEmpty TYPE ('cs)—

sb_well (Ac::'cs. sinftimes (T(SOME a. a € ctype (Rep c))))"
apply (auto simp add: sb_well_def)
using cEmpty_def cnotempty_rule some.in_eq by auto

lemma sometimesspfw_len:
"—chDomEmpty TYPE ('cs)=—=># ((Sometimesspfw~sb)::'cs/\ﬂ) =od"
apply(rule sblen_rule ,simp_.all add: sometimesspfw_def
sbgetch_insert2)
by(simp add: Abs_sb_inverse sometimesspfw_well)+

lemma weak_-well_adm:"adm weak_well"
unfolding weak._well_def
apply (rule adml)
apply auto
by (meson is_ub_thelub cfun_below_iff len_mono Inle_def
monofun_def less_Insuc order_trans)
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lemma strong_spf_exist:" 3x:: ("1 — 0\
(Vsb. lnsuc- (# sb) < # (x-sb))"
apply(cases "chDomEmpty TYPE('O)")
apply simp
apply(rule_tac x=sometimesspfw in exl)
by(simp add: sometimesspfw_len)

cpodef ('l ,'O) spfw = "{f:: ("T"'2— 'O’ . weak_well f}"
apply(simp add: weak.well_def)
apply (metis (full_types) eq.iff strong_spf_exist fold_inf inf_ub
le2inle lel le_cases less_irrefl trans_Inle)
by (simp add: weak-well_.adm)

setup_lifting %invisible type_definition_spfw

lemma [simp, cont2cont]:"cont Rep_spfw"
using cont-Rep.spfw cont.id by blast

lift_definition %invisible Rep.spfw_fun::
"('I,'0)spfw — (1YY "is "A spfs. Rep_spfw( spfs)"
by(intro cont2cont)

lemma spf_weakl:
fixes spf :: "1\ — Q"
assumes "Asb. (#sb) < #(spf-sb)"
shows "weak_well spf"
by(simp add: weak_well_def assms)

lemma spf_weakl2:
fixes spf :: "r1’2— o
assumes "—chDomEmpty TYPE('I)"
and "Asb. # sb <oc=# sb < # (spf-sb)"
shows "weak_well spf"
proof-
have "Asb. # sb =oc=—# sb < # (spf-sb)"
proof (rule ccontr)
fix sb:imrT\Qn
assume sb_len: "# sb =od'
and not.weak: "= # sb < # (spf-sh)"

then obtain k where out_len: "4 (spf-sb) = Fin k"
by (metis le_less_linear Inat-well_h2)
have sbtake_sb_len: "# (sbTake (Suc k)-sb) = Fin (Suc k)"

by (simp add: assms sbtake_len sb_len)
have "# (spf- (sbTake (Suc k)-sb)) < # (spf-sb)"

using monofun_cfun_arg sblen.monosimp sbtake_below by blast
thus False

by (metis Fin_Suc LNat.Inat.distinct(1) assms(2) inf_.less_.eq le2Inle not.-less out_len

qed
thus ?thesis
by (metis assms(2) inf_ub order.not_eq.order_implies_strict
weak._well_def)
qed

subsubsection (Strong causal SPF)

text(Strong causal \Gls{spf} model weak components, whose output
never depends on the current input. Thus, its output only depends on
earlier input. This property is again defined with sbLen ((#)).
Here we have to mind that an input can be infinitely long, hence,
the output will not always be longer than the input. Therefore, we
use a increment instead of the smaller relation.)

definition strong.-well::"('I::len — 'O::1len) = bool" where
"strong_well spf = Vsb. lnsuc- (¥sb) < #(spf-sb)"

theorem strong2weak:"strong_well f=—>weak_well f"
using less_Insuc strong.well_def trans_Inle weak.well_def by blast

lemma strong_well_adm:
"adm (Ax::('I, '0O) spfw. strong_well (Rep_spfw x))"
unfolding strong_well_def
apply (rule adml)
apply auto
by (meson is_ub_thelub below_spfw_def cfun_below_iff len_-mono
Inle_.def monofun_def less_Insuc order_trans)

cpodef ('l ,'O) spfs = "{f::('I,'0)spfw . strong_well (Rep_spfw f)}"
apply (metis Rep-spfw_cases mem_Collect.eq strong2weak
strong-spf-exist strong-well_def)
by (simp add: strong-well_adm)
setup_lifting %invisible type_definition_spfs

lemma [simp, cont2cont]:"cont Rep_spfs"
using cont_Rep_spfs cont.id by blast

lift_definition %invisible Rep_spfs_fun::
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"('I,'0)spfs — ('I/\Q—>‘O/K2) "is "\ spfs. Rep_spfw_fun- (Rep_spfs spfs)"
by(intro cont2cont)

lemma spf_strongl:
fixes spf :: "'1'Q— '0Qr
assumes "Asb. lnsuc- (#sb) < # (spf-sb)"
shows "strong_well spf"
by(simp add: strong.well_def assms)

end
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D.2 Composition

(*:maxLinelLen=68:«)
theory SPFcomp

imports bundle.SB SPF
begin

section (General Composition Operators)

fixrec spfComp::" ('11°'Q— '017'Q) — ('12°2— '02\Y)

— ((("I1 U 'I2) - ('01 U '02))"2— ('01 U '02)")" where

"spfComp:spfl-spf2-sbIn = spfl- ((sbIn W\<"sub>- spfComp:spfl-spf2-sbIn)*\<"sub>1)
W spf2- ((sbIn W\<"sub>- spfComp-spfl-spf2-sbIn)*\< sub>2)"

declare %invisible spfComp.simps[simp del]

lemma spfcomp_below1:
"fix- (A sbOut. spfl- (sbIn W\< sub>- sbOutx\<"sub>1) W spf2- (sbIn W\<"sub>- sbOutx\<"sub>2))C
spfComp:spfl-spf2-sbIn"
apply(rule fix_least_-below)
apply simp
by (metis below_refl spfComp.simps)

definition %invisible spfComp2::"('11°Q— '017) — ('12°0— '02/Y)
— ((("I1 U 'I2) - ('01 U '02))"2— ('01 U '02)" )" where
"spfComp2 = A spfl spf2 sbln .
fix- (A sbOut. spfl- (sbIn W\<"sub>- sbOutx\<"sub>1) W spf2-: (sbIn W\< " sub>- sbOut*\< sub>2))"

lemma spfcomp_below2:
"spfComp C
(A spfl spf2 sbIn. fix- (A sbOut. spfl- (sbIn W\< sub>- sbOutx\< sub>1) W spf2- (sbIn W\< " sub>- sbOut*\<"sub>2)))"
apply (subst spfComp.def)
apply(rule fix_-least-below)
apply(rule cfun_belowl)+
apply (subst spfComp2._def[symmetric])
apply simp
apply(subst fix-eq)
by (simp add: spfComp2_def)
hide_const %invisible spfComp2

lemma spfComp._def2:"spfComp =(A spfl spf2 sbln.
fix- (A sbOut. spfl- (sbIn W\<"sub>- sbOutx\<"sub>1) W spf2- (sbIn W\<"sub>- sbOut*\< sub>2)))"
apply(rule below_antisym)
using spfcomp_below2 apply auto[1]
apply(rule cfun_belowl)+
apply simp
by (simp add: spfcomp_below1)

text(The standard abbreviation of the composition operator is (®).)

abbreviation spfComp_abbr::

"1 — 1017 = (11272 — 102\

= ((("I1 U '12) - ("0l U '02))"2— ("0l U '02)”’ )"
(infixr "®@" 70) where "spfl ® spf2 = spfComp-spfl-spf2"

abbreviation spfCompm_abbr (infixr "®\<"sub>x" 70) where
"spfl @\<"sub>*x spf2 = sbTypeCast oo (spfComp-spfl-spf2) oo sbTypeCast"

(» \cite{Buel7} =«)

lemma spfcomp-_unfold:
fixes f::"'fIn Q2 — 'fout”Q"
and g::"'gIn’ Q2 — 'gout” Q"
shows " ((f ® g) -sblIn) =
f-((sbIn W\<"sub>- (f ® g)-sbIn)*x\<"sub>1l) W g- ((sbIn W\< sub>- (f ® g) -sbIn)*\< sub>2)"
apply (simp add: spfComp_def)
by (subst fix_-eq, simp)

lemma spfcomp_.extract.l:

fixes f::"'fIn Q2 — 'fout” Q"
and g::"'gIn’ Q2 — 'gout” Q"
shows " ((sb W (f ® g)-sb)*) = £-((sb W (f ® g) -sb)x)"

apply (subst spfcomp_unfold)
apply (subst sbunion_conv_snd)
apply(simp, blast)

apply (subst sbunion_conv_fst)
apply (simp)

by (simp)
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lemma spfcomp.extract.r:
fixes f::"'fIn\2— 'fout”"
and g::"'gInQ— 'gout” Q"
assumes "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
shows " ((sb W (f ® g)-sb)*) = g-((sb W (£ ® g) -sb)*)"
apply (subst spfcomp_unfold)
apply (subst sbunion_conv_snd)
apply(simp, blast)
apply (subst sbunion_conv_snd)
apply (simp add: assms)
by simp

lemma arg-congsbeq: "x \<triangleg> y==(f-x) \<triangleg> (f-y)"
apply (simp add: sbEQ.def,auto)
by (metis sb._rep_eql sbgetch_insert2)

lemma spfconvert2sbeq:
fixes f::" £1nQ— 'fout’
and g::"'gIn"2— 'gout” Q"
assumes "chDom TYPE ('fIn) = chDom TYPE('gIn)"
and "chDom TYPE('fOut) = chDom TYPE ('gOut)"
shows"f = spfConvert.-g==f \<triangleg>\<"sub>f g"
apply (auto simp add: spfEq.-def assms sbEQ_def spfConvert_def)
apply (subgoal_tac "Asb. f:-sb = ((g- (sbx))x)",auto)
apply(subgoal_-tac "sblx = sb2", auto)
apply(rule sb_eql,simp)
by (metis (full-types) assms(1) sb_eql sbconvert.eq2
sbtypecast_getch)

lemma spfconvert_strict: "lx = 1"
apply (simp add: sbtypecast_insert)
by (simp add: bot.sb)

lemma sbtypecast_self_inverse:
fixes x :: "ra’Qr
assumes "chDom (TYPE ('a)) = chDom (TYPE('b))"
shows " ((xx)::'0/\Y* = x"
by (metis assms sbconvert_eq2)

lemma sbtypecast_fix:

fixes f :: "a"Q= 2on

assumes "cont f"

and "chDom TYPE('b) = chDom TYPE('a)"

shows " (sbTypeCast:: 2N — ) - (w x. £ x) = (u x. sbTypeCast- (f (sbTypeCast-x)))"

apply(induction rule: cont_parallel_fix_.ind)

apply(auto simp add: assms cont.compose spfconvert_strict)
apply (subst sbtypecast.self_inverse)
by (simp_all add: assms)

lemma ubunion_minus_project1:

fixes x::"(('fIn U 'gIn) - 'fout U 'gout)’ Q"
and xa::"('fout U 'gout)" "
shows "x W\<“sub>- xax\<“sub>1 = (x%) W\<"sub>- (xax\< sub>=)x*x\< sub>2"

apply(rule sb_eql)
apply (subst union_minus_nomagfst[symmetric])

apply (subst union_minus_nomagsnd|[symmetric])

apply (rename_tac c)

apply(case_tac "Rep ¢ € chDom (TYPE(('fIn U 'gIn) - ('fOut U 'gOut)))")
apply(subst sbunion_star_getchl, simp)+
apply(simp add: sbgetch_insert)

apply (subst sbunion_star_getchr, auto)+

by(auto simp add: sbgetch_insert)[2]

lemma ubunion_minus_project2:

fixes X::"(('fIn U 'gIn) - 'fout U 'gout)’\Q"
and xa::"('fout U 'gout)’ Q"
shows "x W\<"sub>- xax\<"sub>2 = (xx) W\< sub>- (xax\< sub>=)*\<"sub>1"

apply(rule sb_.eql)
apply(subst union_minus_nomagfst[symmetric])

apply (subst union_-minus_nomagsnd[symmetric])

apply (rename_tac c)

apply(case_tac "Rep c € chDom (TYPE(('fIn U 'gIn) - ('fOut U 'gOut)))")
apply (subst sbunion_star_getchl, simp)+
apply (simp add: sbgetch_insert)

apply (subst sbunion_star_getchr, auto)+

by (auto simp add: sbgetch_insert)[2]

theorem spfcompcommu:
fixes f::"'fIn\2— 'fout”\"
and g::"'gInQ— 'gout”Q"
assumes "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
shows " (f ® g) \<triangleg>\<"sub>f (g ® £f)"
apply(rule spfconvert2sbeq,auto)
apply(rule cfun_eql)
apply (simp add: spfComp.def2 spfConvert_def)
apply (subst sbtypecast_fix)
apply (simp add: Un_commute)+
apply(rule cfun_arg-cong)
apply(rule cfun_eql)
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apply (simp)

apply(subst (3) ubunion.commu)

apply(simp add: assms inf_commute)
apply(rule sbconvert_eq2)

apply(simp add: Un_.commute)+

apply(rule arg.cong2[where f="(w)"])
apply(rule arg.cong[where f="Rep_cfun f"])
apply(rule ubunion_minus_projectt)
apply(rule arg-cong[where f="Rep_cfun g"])
by (rule ubunion_minus_project2)

text(The commutativity theorem needs a disjoint output domain

assumption, because the @{const sbUnion} operator is only

commutative for disjoint domains (see \cref{thm:unioncommu}).

Furthermore, the commutativity is proven using the special equality for

\glspl{spf} ((\<triangleq>\<"sub>f)). Otherwise a type error would occur, because the output
type (('fOut U 'gOut)’Q) is different to (('gOut U 'fOut)’2))

theorem spfcomp_belowl:

fixes foomr eI = fout’Nn
and g ::"'gIn”Q— 'gout/\Qr
assumes "f- (sb W\<“sub>- outx\<"sub>1) C (out*\< sub>1)"
and "g- (sb W\< sub>- outx\<"sub>2) L (outx\<"sub>2)"
shows " (f®qg) -sb C out"
apply (simp add: spfComp.def2)
apply(rule fix_least_below)
apply simp
apply(subst sbunion_belowl2; simp add: assms)
done

(+ More general: f-(sb W\<"sub>x out) C (out*) =)
theorem spfcomp_eql:

fixes foom eI\ - fout’\n

and g :"rgIn’Q2— 'gout”\n

and out::"('fout U 'gout)” Q"

assumes "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"

and "f. (sb W\<"sub>- outx\<“sub>1) =(outx\<“sub>1)"

and "g- (sb W\< sub>- outx\<“sub>2) = (out*\<"sub>2)"

and "Az. £-(sb W\<“sub>x z) = (zx\<"sub>1) A g-(sb W\<"sub>x z) = (zx\< sub>2)==out C z"
shows " ((f®g) -sb) = out"

apply (subst spfComp.def2)

apply(simp add: spfConvert.def)

apply(rule fix_eql)

apply (insert assms,simp_all)

by (metis assms(1) sbunion_fst sbunion_snd)

(» better document this:x)
lemma spfcomp_nofeed1 [simp]:

fixes f::" £1n 2 — 'fout/
and g::"'gIn 2 — 'gout” Q"

assumes (x No self-loops x)

"chDom TYPE ('fOut) N chDom TYPE('fIn) = {}"

and "chDom TYPE ('gOut) M chDom TYPE('gIn) = {}"
(x No feedback between components, only sequential allowed =*)

and "chDom TYPE ('gOut) N chDom TYPE('fIn) = {}"

shows " (f ® g) -sb = f£- (sbx) W g- (sb W\<"sub>x £- (sbx))"
apply (subst spfcomp_unfold)
apply (rule arg.cong2 [where f="(¥)"])
subgoal X
apply(rule arg.cong [where f="Rep_cfun £"])
apply(rule sb_eql, auto)
apply(subst sbunion_minus_getchl2)
using assms apply auto
done
apply(rule arg.cong [where f="Rep_cfun g"])
apply(rule sb_eql, auto)
apply(case_tac "Rep ¢ € chDom TYPE((('fIn U 'gIn) - 'fOut U 'gOut))")
apply auto
apply (metis X sbunion_getchl spfcomp_unfold)
using assms(2) by blast

lemma spfcomp_nofeed2 [simp]:
fixes f::"'fIn 2 — 'fout”Q"
and g::"'gIn’ Q2 — 'gout” Q"
assumes (x No self-loops x)

"chDom TYPE ('fOut) M chDom TYPE('fIn) = {}"

and "chDom TYPE ('gOut) M chDom TYPE('gIn) = {}"
(x No feedback between components, only sequential allowed =*)

and "chDom TYPE ('fOut) N chDom TYPE('gIn) = {}"

shows " (f ® g) -sb = f- (sb W\<"sub>x g- (sbx)) W g- (sbx)"
apply (subst spfcomp_unfold)
apply (rule arg.cong2 [where f="(¥)"])
defer
subgoal X
apply(rule arg_cong [where f="Rep_cfun g"])
apply(rule sb_eql, auto)
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apply (subst sbunion_minus_getchl2)
using assms apply auto
done
apply(rule arg.cong [where f="Rep_cfun £"])
apply(rule sb_eql, auto)
apply(case_tac "Rep ¢ € chDom TYPE((('fIn U 'gIn) - 'fOut U 'gOut))")
apply auto
using assms(1) apply blast
apply (subst spfcomp_unfold)
apply (subst X)
apply (subst sbunion_getchr)
using assms apply blast

lemma spfcomp.seriall:
fixes f::"'fIn 2 — 'fout”Q"
and g::"'gIn’Q2— 'gout” Q"
assumes "chDom TYPE ('fOut) C chDom TYPE ('gIn)"

and "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
and "chDom TYPE ('gOut) N chDom TYPE('gIn) = {}"
and "chDom TYPE ('fOut) M chDom TYPE('fIn) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('fIn) = {}"

shows " (f ® g) -sb = f£- (sbx) W\<"sub>x (g- ((sb W\< sub>% f- (sbx))))"
apply (subst spfcomp_nofeed1)
by (simp_all add: assms)

text(Sequential and feedback compositions are a special cases of the
general composition (spfComp). They are useful to reduce

the complexity since they work without computing the fixpoint.

If the domains of two functions fulfill the sequential composition
assumptions, following theorem can be used for an easier output evaluation.)

theorem spfcomp_serial2:
fixes f::"'fIn\2— 'fout’ Q"

and g::"'gIn"2— 'gout” Q"

assumes "chDom TYPE ('gIn) C chDom TYPE ('fOut)"
and "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('gIn) = {}"
and "chDom TYPE ('fOut) M chDom TYPE('fIn) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('fIn) = {}"

shows " (f ® g)-sb = f- (sbx) W g- (£- (sbx)x)"
apply (subst spfcomp_nofeed1)

apply(simp-all add: assms)

apply (rule arg-cong2 [where f="(¥)"])
apply (rule refl)

apply(rule arg-cong [where f="Rep_cfun g"])
apply(rule sb_eql, auto)

using assms by auto

definition spfCompSeq::" (' 10”2 — 'Intern’2) — ('Intern”2— 'out’\Y)

— ("In"Q— 'out” )" where
"spfCompSeq = A spfl spf2 sb. spf2- (spfl-sb)"

text (In the sequential case the general composition @{const spfComp}
is equivalent to @{const spfCompSeq}. The output of the general
composition is restricted to ('Out), because the general
composition also returns the internal channels.)
theorem spfcomp_to_sequential:
fixes f::"'In 2 — 'Intern” Q"
and g::"'InternQ2— 'out” Q"
assumes "chDom TYPE ('In) M chDom TYPE ('Intern) = {}"
and "chDom TYPE('In) N chDom TYPE ('Out) = {}"
and "chDom TYPE ('Intern) M chDom TYPE('Out) = {}"
shows " (f ® g) - (sbx) | TYPE('Out) = spfCompSeq-f-g-sb"
apply (subst spfcomp_seriall)
using assms apply auto
unfolding spfCompSeq.def
apply simp
apply(rule cfun_arg-cong)
apply(rule sb_eql, auto)
by (subst sb_star21, auto)

theorem spfcomp_parallel:
fixes f::" ' f1nQ— 'fout’
and g::"'gIn" Q2 — 'gout” Q"
assumes "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
and "chDom TYPE ('fOut) M chDom TYPE ('gIn) = {}"
and "chDom TYPE ('fOut) M chDom TYPE ('fIn) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('gIn) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('fIn) = {}"
shows " (f ® g) -sb = f- (sbx) W g- (sb*x)"
apply (subst spfcomp_nofeedt)
by (simp.all add: assms)

definition spfCompPar:: " ('In1"Q— 'out1®) — ('In2"\2— 'out2’Q) —
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("Inl U 'In2)"Q2— ('outl U 'out2)” 2" where
"spfCompPar = A spfl spf2 sb. spfl- (sbx\<"sub>1) W spf2- (sbx\< sub>2)"

lemma cfun_arg_cong2: "x = y=—=w=z=—=f-x-w = f-y-z"
by simp

theorem spfcomp_to_parallel:
fixes f::"'fIn 2 — 'fout’\Q"

and g::"'gIn" Q2 — 'gout” Q"
assumes "chDom TYPE ('fOut) M chDom TYPE ('gOut) = {}"
and "chDom TYPE ('fOut) N chDom TYPE ('gIn) = {}"
and "chDom TYPE ('fOut) M chDom TYPE ('fIn) = {}"
and "chDom TYPE ('gOut) M chDom TYPE('gIn) = {}"
and "chDom TYPE('gOut) M chDom TYPE('fIn) = {}"
shows " (f ® g) - (sbx) | TYPE('fOut U 'gOut) = spfCompPar-f-g-sb"

apply (subst spfcomp_parallel)
using assms apply auto
unfolding spfCompPar_def

apply simp
apply(rule cfun_arg-cong2; subst sb_star21; auto)
done
definition spfCompFeed ::"('In"2— 'out’)) — ('In-'out)’Q2— 'out” Q" where

"spfCompFeed = A spf sb. p sbOut. spf- (sb W\<"sub>- sbout)"

theorem spfcomp_to_feedback:
fixes f::"'fIn 2 — 'fout”Q"
and g::"'gIn Q2 — 'gout” Q"
assumes "chDom TYPE ('gOut) = {}"
shows " (f ® g) - (sbx) | TYPE('fOut) = spfCompFeed-f-sb"
apply (simp only: spfComp.def2 spfCompFeed_def)
apply (simp add: sbunion_emptyr assms)
apply(rule parallel_fix_.ind , auto)
apply (simp add: spfconvert_strict)
apply (subst sb_star21, auto)
apply(rule cfun_arg.cong)
apply(rule sb_eql, auto simp add: sbGetCh.rep.eq sbunion_rep_eq)
using assms by blast

end
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Appendix E

Stream Processing Specification
Theories

(*» :maxLineLen=68:x)

theory SPS

imports spf.SPF
begin

section (Stream Processing Specification)
text(For the definition of \gls{sps} we use the (set) datatype
already included in isabelle. A underspecified component with the input channels
('input) and the output channels ('output) has the signature:
(('input" 2 — 'output’Q) set))

section (SPS Completion)

text (\gls{sps} (S) consists of a set of functions, which each describe

deterministic behaviour of a component. Upon a concrete execution, i.e.
input stream (i) the externally visible behaviour is (f(i)) for an
(fes).)

text (It may happen that for streams (i\<"sub>1,i\<"sub>2) we have (f\<"sub>1(i\<"sub>1) = o\<"sub>1) and
(f\<"sub>2(i\<"sub>2) = o\<"sub>2), but that no "joint" (feS) exists, where (f(i\<"sub>1) = o\<"sub>1) and
(f(i\<"sub>2) = o\<"sub>2). We then speak of an incomplete specification (S). From an

observational point, (S) and (SU{f}) cannot be distinguished, but when refinement

is used to specialize (S), this may become a deficit. )

text (We therefore introduce the completion operator (spsComplete)

to include all possible functions of a component such that the

black-box behaviour of the component does not change.)

definition spsComplete ::" ('11”Q2— '017) set = ('11°Q2— '01'QY) set"
where "spsComplete sps = {spf. Vsb. Jspf2€sps. spf-sb = spf2-sb}"

text (We give a small example for the completion of two components on
the datatype containg just (a) and (b).

\<'item> (spsConst = {[a — a, b — a], [a — b, b — Db]})
\<'item> (spsIiD = {[a — a, b — b], [a — b, b — a]})

text(The first component contains two constant functions which have

the output a or b regardless of the input. The second component

contains the identity function as well as a function that reverses a

and b. Therefore (spsConst) and (spsID) are different components.

However they can not be distinguished by their black-box behaviour:

(spslO spsConst = {(a,a),(a,b),(b,a),(b,b)} = spsID spsConst).

If we complete both sets then both components are equal:

(spsComplete spsConst = spsComplete spsiD =

{[a — a, b — a], [a+— b, b — b], [a+— a, b~ b], [2a+— b, b— al}).)

text (Completion is often used to show that a completed component (S2)
is the extension of another component (S1). By definition this holds
if for every function in (S1) and possible input there is a function
in (S2) with the same output behaviour.)

theorem spscomplete_belowl:
assumes "Aspf sb. spf€Sl=—>3spf2 € S2. spf-sb = spf2-sb"
shows "s1 C spsComplete S2"
unfolding spsComplete_def
using assms by auto
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theorem spscomplete_below: "sps C spsComplete sps"
using spscomplete_belowl by auto

theorem spscomplete_.complete [simp]:

"spsComplete (spsComplete sps) = spsComplete sps"

unfolding spsComplete_def apply auto

by metis

efinition spsisComplete :: " ('11°Q2— '01")) set = bool" where

d

"spsIsComplete sps = (spsComplete sps)

= sps"

theorem spscomplete_empty[simp]: "spsIsComplete {}"
unfolding spsComplete_def spslisComplete_def by auto

theorem spscomplete_one[simp]: "spsIsComplete {£f}"
unfolding spsComplete_.def spsisComplete_def apply auto

by (simp add: cfun_eql)

theorem spscomplete_univ[simp]: "spsIsComplete UNIV"
by (simp add: spslsComplete.def spscomplete_below top.extremum_uniquel)

section (Refinement)

text (The @{const spsComplete} function is monotonic.
Therefore if a component (sps1) refines a second component (sps2)
then this also holds after completion.)

theorem spscomplete_.mono: assumes "spsl C sps2"
shows "spsComplete spsl C spsComplete sps2"
apply(rule spscomplete_belowl)

unfolding spsComplete_def

apply (auto)
by (meson assms in_mono)

end

(*:maxLineLen=68:«)

th

eory SPScomp

imports SPS spf.SPFcomp
begin

section(General Composition of SPSs)

definition spsComp::
"1 = 1017 set = ('12/Q2— '02/Y) set =

((("I1 U 'I2) - '01 U '02)"2— (01 U '02)") set" (infixr Q' 70)
where "spsComp F G = {f ® g |

£ g. fEF A g€G }"

(x TODO: Move to SB.thy if the definitions turns out to be useful x)

definition %invisible sbSameEq: "'cs1’Q= 'cs2’2= bool" where
"sbSameEg sbl sb2 = VcEchDom TYPE ('csl) N chDom TYPE('cs2).

sbl \<“enum>

(Abs c) = sb2 \<"enum> (Abs c) "

lemma " (spsComplete spsl) @ (spsComplete sps2) C
spsComplete (spsl ) sps2)"

proof(rule spscomplete_belowl)

(*

fix spf sb

assume as: "spf€(spsComplete spsl) Q) (spsComplete sps2)"

obtain spfl spf2 where "spf

using as by (auto simp add:

obtain spfl' where spfl'_eqg:

using spfl_def apply (auto

obtain spf2' where spf2'_eq:

using spf2_def apply (auto

= spfl®\<"sub>*spf2"

and spfl_def: "spfl €(spsComplete spsl)"

and spf2_def: "spf2 E€(spsComplete sps2)"

spsComp_def spscomplete_set)

"spfl' - (sbW\< sub>* (spf-sb)) = spfl- (sbW\< sub>x(spf-sb))" and "spfl'Espsl"
simp add: spscomplete_set) by metis

"spf2' - (sbW\< sub>* (spf-sb)) = spf2- (sbW\< sub>x(spf-sb))" and "spf2'Esps2"
simp add: spscomplete_set) by metis
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have " (spfl' ®\<"sub>x spf2') € (spsl ®<”sub>* sps2)"
using spsComp_def (spfl'Espsl) (spf2'Esps2) by blast
moreover have " (spfl' ®\<“sub>x spf2'):-sb = spf:sb"x)
oops

apply (rule spfcomp_eql)
apply ((subst spfl'_eq | subst spf2'_eq), simp add: (spf = spfl®R\< sub>xspf2))
apply (subst spfcomp_1l, simp)
ultimately show "Jspf2€spsl @\< sub>x sps2. spf-sb = spf2-sb"
by (metis)
ged

*)

theorem spscomp_refinement:

fixes Fi:"('117Q— '01Q2) set"
and G::" ('12"Q2— '02\)) set"
and F_ref::"('11°2— '017) set"
and G_ref::"('12'2— '02°)) set"

assumes "F_ref C F"

and "G_ref C G"

shows " (F_ref @ G_ref) C (FQG)"
apply (simp add: spsComp_def)
using assms by blast

text(This important property enables independent modification of the modules
while preserving properties of the overall system. As long as the
modification is a refinement, it does not influence the other components.
The resulting component (F_ref) can simply replace (F) in the composed
system. Since the result is a refinement, the correctness is still

proven.)

text (Properties of the original system (S) directly hold
for the refined version (S'):)
theorem assumes "Vies. p £" and "s' C s"

shows "Vf'es'. P f£'"

using assms(1) assms(2) by auto

definition spslisConsistent :: "('112 — '01")) set = bool" where
"spsIsConsistent sps = (sps # {})"

theorem spscomp-_consistent:
fixes Fi:"('117Q— '01Q2) set"
and G::" (122 — '02/\) set"
assumes "spsIsConsistent F"
and "spsIsConsistent G"
shows "spsIsConsistent (F & G)"
proof -
have f1: "G # {}"
using assms(2) spslsConsistent.def by blast
have "F # {}"
by (metis assms(1) spslsConsistent_def)
then have "{c ® ca Ic ca. ¢c € F A ca € G} # {}"
using f1 by blast
then show ?thesis
by (simp add: spsComp.def spsisConsistent_def)
qed

theorem spscomp_subpred:
fixes P::"'1172= '01"Q= bool"
and H::"' 120 = 02”2 = bool"
assumes "chDom TYPE ('Ol) M chDom TYPE ('02) = {}"
and "VspfesSl. Vsb. P sb (spf-sb)"
and "VspfesS2. Vsb. H sb (spf-sb)"
shows "s1®@s2 C
{g. Vsb.
let all = sb W g-sb in
P (allx) (allx) A H (allx) (allx)
jo
apply (auto simp add: spsComp.def Let_def)
apply (simp add: spfcomp_extract-l)
apply (simp add: assms spfcomp-extract-r)+
done

lemma spscomp_predicate:

fixes P::"'11’Q= '01"Q= bool"

and H:"'12/Q0= '02"Q= bool"
assumes "chDom TYPE ('Ol) N chDom TYPE ('02) = {}"
shows "{p . Vsb. P sb (p-sb)} @ {h . Vsb. H sb (h-sb)} C

{g. Vsb.
let all = sb W g-sb in
P (allx) (allx) A H (allx) (allx)
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po
apply(rule spscomp_subpred)
apply (simp.all add: assms)
done

(x TODO: &dhnliches Lemma mit spsIO *)

lemma spscomp_praedicate2:
fixes P::"'11°0= '01"Q2= bool"
and H::"'12"Q0= '02"2= bool"
assumes "chDom TYPE ('0Ol) N chDom TYPE ('02) = {}"

shows
{g. Vsb.
let all = sb W g-sb in
P (allx) (all%x) A H (allx) (allx)
} C spsComp {p . Vsb. P sb (p-sb)}
{h . Vsb. H sb (h-sb)}" (is "?LHS C ?RHS")
oops
(*
proof
fix g
assume "gE?LHS"
hence "ﬁ@b. P ((sbWg-sb)x) ((sbdg-sb)x)"

by (metis (mono_tags, lifting) mem_Collect_eq)
have "Jdp h. p®h = g" oops*)
(» from this obtain p h where "p®h = g" by auto
have "Asb. P (sb) (p-sb)" oops *)
(+ show "gE?RHS" oops *)

(» Gegenbeispiel ... soweit ich sehe:
P = H = "ist schwachkausal"
bleibt nicht unter der feedbackkomposition erhalten x)

section (Special Composition of SPSs)

definition spsCompSeq :: " ('In"2— 'Intern’)) set = ('Intern”Q2— 'out’\Y)
= ("I’ — 'out’Y) set" where
"spsCompSeq spsl sps2 = {spfCompSeq-spfl-spf2 | spfl spf2.
spfl € spsl A spf2 € sps2}"

theorem spscfcomp_set:
assumes "spfl € spsl"
and "spf2 € sps2"
shows "spfCompSeq-spfl-spf2 € spsCompSeq spsl sps2"
apply (simp add: spsCompSeq_def)
using assms(1) assms(2) by auto

theorem spscfcomp_consistent:
assumes "spsIsConsistent spsl"
and "spsIsConsistent sps2"
shows "spsIsConsistent (spsCompSeq spsl sps2)"
apply(simp add: spslsConsistent.def spsCompSeq-def)
using assms spslsConsistent_.def by (metis neq-emptyD)

theorem spscfcomp.-mono: assumes "spsl_ref C spsl"
and "sps2_ref C sps2"
shows " (spsCompSeq spsl_ref sps2_ref) C (spsCompSeq spsl sps2)"
apply (simp add: spsCompSeq_def)
using assms by blast

definition spsCompPar :: " ('In12— 'out1’Y) set = ('In2"Q2 — 'out2’\Y) set =
(("Inl U 'In2)"Q2— ('outl U 'out2)”?) set" where
"spsCompPar spsl sps2 = {spfCompPar-spfl-spf2 | spfl spf2.
spfl € spsl A spf2 € sps2}"

definition spsCompFeed :: " ('In"2— 'Out’\2)set =
(("In-'out)” 2 — 'out’\2) set" where

"spsCompFeed sps = {spfCompFeed:spf | spf. spf € sps}"
end
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Appendix F

Case Study

(#<%) (*:maxLineLen=68:x*)
theory Datatypes

imports inc.Prelude
begin

default_sort type
(%>%)

paragraph (Channel and Message Datatypes) text(\label{sub:fdata})

text(The case-study consists of three channels. They are named
(cA) (cVcurr) and (cVprev).)

datatype channel = cA | cVcurr | cVprev | cempty

text(Furthermore, the channel (cempty) is added to the datatype,
because there must always be a channel on which nothing can be
transmitted (see \cref{sec:data}).)

text(The messages are all natural numbers. Hence (M) does not
have to be a new datatype, instead it is set to (nat).)
type_synonym M = nat

text(Channel (cempty) may not contain a message. For every other channel
every (nat)-message can be sent. The definition (UNIV) is the set containing all
(nat)-values.)

fun ctype :: "channel = M set" where
"ctype cempty = {}" |
"ctype _ = UNIV"

text(As always, a theorem that confirms the existence of an empty
channel has to be provided for the framework theories.)
theorem ctypeempty.ex: "3c. ctype c = {}"
using ctype.simps(1) by blast
(x<%)
end
(+>%)
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(x<%)
theory Add

imports spf.SPFcomp

begin

(» Could also be in core x)
declare Abs_sb_inverse [simp add]
declare rep-reduction [simp add]
(#>%)

lemma cempty.-eq [simp]: "cEmpty = {cempty}"
unfolding cEmpty_def
using ctype.elims by force

lemma ctype._univ[simp]: "chDom TYPE('cs) # {}==ctype (Rep (c::'cs)) = UNIV"
apply (subgoal_tac "Ac::'cs. (Rep c) # cempty")
apply (meson ctype.elims)
using cnotempty_rule by auto

(» wellformedness is not a problem here x*)

lemma cruiseWell[simp]: fixes f::"'cs = M stream"
assumes "chDom TYPE('cs) # {}"
shows "sb_well f"
apply (subgoal_tac "Ac::'cs. ctype (Rep c) = UNIV")
unfolding sb_well_def apply simp
apply (subgoal_tac "Ac::'cs. (Rep c) # cempty")
apply (meson ctype.elims)
using cnotempty_rule using assms by auto

lemma cruiseSbeWell[simp]: fixes f::"('cs=mM"
assumes "chDom TYPE('cs) # {}"
shows "sbElem well (Some f)"
by(auto simp add: assms)

text (Now we are going to define the signature of the components. The (Add) component
has the signature ({cA,cVprev}'2— {cVcurr}2). The (Prefix0) component has the signature
({cVeurr} 2 — {cVprev}Q). For each of theses sets we create a new type. Since

({cVecurr}2) is both the output of (Add) and the input of (Prefix0) there are only
three definitions.)

typedef addin = "{cvprev, cA}"
by auto

typedef addOut = "{cvcurr}" \<comment> (also (prefixin))
by auto

typedef prefixOut = "{cvVprev}"
by auto

text (To use the datatypes to define bundles, they have to be instantiated in the
(chan) class:)

instantiation addlin::chan

begin
definition Rep.addin_def: "Rep = Rep_addIn"

lemma repadd_range[simp]: "range (Rep::addIn = channel)
= {cVprev, cA}"
apply (subst Rep-addin_def)
using type._definition.Rep_range type_definition_addIn by fastforce

instance %invisible
apply (intro_classes)
apply clarsimp
unfolding Rep.addin_def by (meson Rep.addin_inject injl)
end
text (As mentioned in \cref{sec:data}, each of the types need a representation function (Rep).)
lemma [simp]: "chDom TYPE (addIn) = {cVprev, cA}"
unfolding chDom_def
by auto

instantiation addOut::chan
begin
definition Rep.addOut.def: "Rep = Rep_addout™"

lemma repaddout.range[simp]: "range (Rep::addOut = channel)
= {cVcurr}"
apply (subst Rep_addOut_def)
using type_definition.Rep_range type_definition_.addOut by fastforce

instance %invisible
apply (intro_classes)
apply clarsimp
unfolding Rep-addOut_def by (meson Rep_addOut.inject injl)

end

lemma [simp]: "chDom TYPE (addOut) = {cVcurr}"
unfolding chDom_def
by auto

text (By
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using typedef to define the domain types over channels, a representation function is provided and
can be used.)

instantiation prefixOut::chan
begin
definition Rep.prefixOut.def: "Rep = Rep_prefixOut"

lemma repprefixout_-range[simp]: "range (Rep::prefixOut = channel)
= {cVprev}"
apply (subst Rep.-prefixOut_def)
using type._definition.Rep.range type_definition_prefixOut by fastforce

instance %invisible
apply (intro-classes)
apply clarsimp
unfolding Rep-prefixOut_-def by (meson Rep-prefixOut.-inject injl)

end

lemma [simp]: "chDom TYPE (prefixOut) = {cVprev}"
unfolding chDom_def
by auto

lemma addout.one[simp]: "(c::addOut) = Abs (cVcurr)"

apply(cases ¢, auto)
by (metis Abs_addOut.inverse Rep-addOut.def abs_rep.id singletonl)

lemma prev_one[simp]: "(c::prefixOut) = Abs (cVprev)"
apply(cases ¢, auto)
using Rep_prefixOut.def Rep_prefixOut_.inverse range_eq.singletonD repprefixout.range by fastforce

paragraph(Prefix component)

text(The prefix component is essentially a identity component

with an additional initial output. The

identity component with the signature (addOut"2— prefixOut\Q2)

is definable by renaming the channel

of the input \gls{sb} ((cVcurr)) to the channel the output \gls{sb} ((cVprev)).)

definition prefixRename :: "addout”2 — prefixout”2" where
"prefixRename = sbRename_part [Abs cVcurr > Abs cVprev]"

text (Correct behavior is proven in the following theorem, the output stream is equal to the input
stream.)

theorem prefrename_getch:
"prefixRename-sb \<“enum> (Abs cVprev) = sb \<"enum> (Abs cVcurr)"
unfolding prefixRename.def
apply (subst sbrenamepart_getch.in)
apply auto
apply (metis prev_one)+
apply (metis Rep-addOut.def Rep-addOut.inject empty.iff insert_iff repaddout-range repinrange)+
done

text(Because one initial output element is needed for the prefix component, the initial output
can be represented by a \gls{sbe}. Thus, a lifting function from natural numbers to an output
\gls{sbe} is defined.)

lift_definition initOutput:: "nat = prefixout\/ is
"Ainit. Some (A_. init)"
by simp

text(By appending the initial output \gls{sbe} to an output \gls{sb} of the identity component, the
complete output of the prefix component can be defined.)

definition prefixPrefix:: "M = prefixout”2 — prefixout” Q" where
"prefixPrefix init = sbECons (initOutput init)"

text(Therefore, the prefix component is defined by a sequential composition of the identity component
@{const prefixRename} and the appending component @{const prefixPrefix} with an inital output.)

definition prefixComp'::"nat = addout”2 — prefixout” 2" where
"prefixComp' init = spfCompSeq- prefixRename- (prefixPrefix init)"
text(The same prefix component can also be defined in a more direct manner by outputting a stream
that starts with an initial output and then outputs the input stream from the input \gls{sb}.)
lift_definition prefixComp::"nat = addout”2 — prefixout’ Q" is
"Ainit sb. Abs_sb (A_. Tinit e sb \<"enum> (Abs cVcurr))"

apply(intro cont2cont)

by(rule cruiseWell, simp)

lemma prefix_getch: "prefixComp init- (sb) \<“enum> BAbs cVprev = Tinit e sb \<"enum> (Abs cVcurr)"
by (simp add: prefixComp.rep.eq sbgetch.insert)

lemma [simp]: "sbe2sb (initOutput init) \<"enum> ¢ = tinit"
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by(simp add: sbgetch_insert2 sbe2sb.rep_eq initOutput.rep_eq)

text(Both definitions model the same component. This
is proven in the following theorem:)

theorem "prefixComp init = prefixComp' init"
apply(rule cfun_eql, rule sb_eql, subst sbgetch.insert2)
apply (simp add: prefixComp.rep.eq spfCompSeq-def prefixComp'.def sbECons.def prefixPrefix_def)
using prefrename_getch
by (metis prev.one)

text (In the following, @{const prefixComp} is used to define the
complete system.)

paragraph (Add component)
text(The add component is defined by using an element-wise add function for streams and applying it
to both input streams.)

lift_definition addComp::"addIn"2 — addout”" is
"Asb. Abs_sb (A_. add- (sb \<"enum> Abs cA) - (sb \<“enum> Abs cVprev))"
by(intro cont2cont, simp)

text (The output on channel (cVcurr) follows directly:)
theorem addcomp_getch:
"addComp-sb \<“enum> (Abs cVcurr) = add- (sb \<"enum> Abs cA): (sb \<"enum> Abs cVprev)"

by (simp add: addComp.rep-eq sbgetch.insert2)

text (The length of the output is the minimal length of the two input streams.)

theorem add_len:"# (addComp-sb) = min (#(sb \<“enum> Abs cA)) (#(sb \<“enum> Abs cVprev))"
proof -
have "# (addComp-sb) = #((addComp-sb) \<“enum> Abs cVcurr)"

apply (auto simp add: len_sb_def sblLen_def)
apply(rule Leastl2_wellorder_ex, auto)
by (metis addout-one)
thus ?thesis
by (simp add: addcomp_getch add.def)
qed

lemma [simp]: "cE€{cVprev, cA}=-Abs_addIn ¢ = Abs c"
by (metis Abs_addIn_inverse Rep-addin.def abs_rep.id)

text (Since the lenght over bundles is defined as the minimum, the property can be
simplified:)
theorem "# (addComp-sb) = #sb"

apply(simp add: add-len)

apply(rule sblen_rule[symmetric], auto)

apply(case_tac "c", auto)

by (metis min_def)

(%<%)
declare addcomp_getch [simp]
(x>%)

paragraph (Acc2vel component)

text (The composed components behavior is definable by

outputting the addition of the input element

and the previous output element (or 0 for the initial input element).)

definition streamSum::"nat stream — nat stream" where
"streamSum = sscanl (+) 0"

lemma sscanl_unfold: "sscanl (+) n-s = add-s- (fn e sscanl (+) n-s)"
apply (induction s arbitrary: n rule: ind)
by (simp add: add.commute add-unfold)+

text (Unfolding the definition once leads to the following recursive equation:)
theorem "streamSum-s = add-s- (10 e streamSum-s)"

apply (simp add: streamSum_def)

using sscanl.unfold by auto

lemma getch_nomag: fixes sb::"'cs1/\Qn
assumes "c&chDom TYPE('cs2)"
and "cE€chDom TYPE('csl)"

shows "sb \<“enum>\<"sub>* ((Abs c)::'cs2) = sb \<“enum> (Abs c)"
apply (auto simp add: sbGetCh.rep_eq assms)
done

text (For the composed system unfolding leads to a similar result:)
theorem comp_unfold: " ((addComp ® (prefixComp init))-sb) \<"enum> Abs cVcurr
= add: (sb \<"enum> Abs cA) -
(Tinit e (addComp ® prefixComp init)-sb \<"enum> Abs cVcurr)"
apply (subst spfcomp.unfold, auto)
apply (subst getch-nomag, auto)

apply (subst getch_nomag, auto)
apply(subst (2) getch.nomag, auto)

apply(subst spfcomp_unfold, auto)
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apply (subst (2) getch.nomag, auto)

apply (subst prefix_.getch , auto)
apply (subst (2)getch.nomag, auto)
done

text (While the recursive equations are nearly identical , equality
does not directly follow from it since there might be multiple fixpoints which fulfill
the recursive equation.)

lemma "# (add-sl-s2) = min (#sl) (#s2)"
by (simp add: add.def)

lemma add_slen [simp]: "#(add-x-y) = min (#x) (#y)"
apply (simp add: add.def)
done

lemma smap_srt[simp]: "srt- (smap f-s) = smap f- (srt-s)"
by (metis sdrop.0 sdrop.forw_rt sdrop_smap)

lemma szip_srt[simp]: "srt-(szip-a-s) = szip-(srt-a)-(srt-s)"
by (metis (no-types, hide_lams) sdrop.0 sdrop._-forw_rt szip_sdrop)

lemma rek2sscanl_h: assumes "Fin n <#s"
and "Ainput init. z init-input = add-input: (finit e z init-input)"

shows "snth n (z init-s) = snth n (sscanl (+) init-s)"
using assms(1) proof (induction n arbitrary: s init)
case 0

then show ?case
by (metis add_-commutative add.unfold assms(2) empty_is_shortest shd1 snth_shd sscanl_shd surj.scons)
next
case (Suc n)

have "#(z init-s) = #s"
by (metis add.slen assms(2) min.rek slen_scons)
have "snth (Suc n) (z init-s) = snth n (srt-(z init-s))"

by (simp add: snth_rt)

then show ?case apply(subst assms(2), simp add: add._def snth_rt sscanl_srt)

apply (subst smap_snth_lemma, simp)

apply (metis Suc.prems (#((z::nat = nat stream — nat stream) (init::nat)- (s::nat stream)) = #s)
convert_inductive_.asm leD lel slen_rt_ile_eq)

by (metis Suc.IH Suc.prems (#((z::nat = nat stream — nat stream) (init::nat)- (s::nat stream)) = #s)
add.commute convert_inductive_asm fst_conv not_less slen_rt_ile_eq snd_.conv snth_rt sscanl_snth
sscanl_srt szip.nth)

qed

text(Hence we prove that there is only one fixpoint for the equation.
In the lemma (rek2sscanl) the variable (z) is an arbitrary fixpoint.
The lemma shows that (z) is the only fixpoint and equivalent to (sscanl). )

theorem rek2sscanl:
assumes "Ainput init. z init-input = add-input- (finit e z init-input)"
shows "z init-.-s = sscanl (+) init-s"
apply(rule snths_eq)
apply (metis add_slen assms fair_sscanl min_rek slen_scons)
by (metis add._slen assms min_rek rek2sscanl_h slen_scons)

(%<*)
(» Helper: x)
definition "createInput = A input. (Abs_sb (Ac. input))"

text (Composing both components, applying the resulting \gls{spf} to the created input \gls{sb} and
then obtaining the output stream is done by the following function. The input (init) sets the
initial output of the prefix component.)

definition comp where
"comp init = (A input . ((addComp ® (prefixComp init)) - (createlInput-input)) \<"enum> (Abs cVcurr) )"

lemma comp2sscanl_h: "comp init-input = sscanl (+) init-input"
apply(rule rek2sscanl)
apply (subst comp._def, simp)
apply (subst comp_unfold)
apply (subst sbgetch_insert)
apply (subst createlnput_def)
apply (subst beta_cfun, intro cont2cont; simp)
by (simp add: comp.def)

lemma sb_eql2:
fixes  sb1 sb2::"rcs\n
assumes "Ac. chDom TYPE ('cs) #{}==c€Abs chDom TYPE ('cs)=>sbl \<“enum> c¢ = sb2 \<"enum> c"
shows  "sbl = sb2"
by (metis abs_rep.id assms image._eql sb_empty_eq sb_eql)

lemma creatinput.eq:
fixes sb::"'csQ"
assumes "chDom TYPE ('cs) = {cA}"
shows "sb = createlInput- (sb \<“enum> (Abs cA))"
apply(rule sb_eql2)
apply (auto simp add: assms)
apply (simp add: createlnput-def)
apply (subst beta_cfun, intro cont2cont)
apply (simp add: assms)
by (simp add: assms sbgetch_insert2)
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lemma creatinput_eq2:
fixes sb::m'csn
assumes "chDom TYPE ('cs) = {cA}"
shows "((createlnput-input)::'cs/\ﬂ)\<Aenum>(Abs cA) = input"
apply (subst createlnput_def)
apply (subst beta_cfun, intro cont2cont)
apply(simp add: comp._def assms)
by (simp add: assms sbgetch_.insert2)
(x>%)

text (Following from this statement, the composition of
the (add) and (prefix) component can be
evaluated. )

theorem " (addComp ® (prefixComp init))-sb \<"enum> Abs cVcurr
= sscanl (+) init-(sb \<"enum> Abs cA)"
apply(subst creatinput-eq [where sb="sb"], simp)
apply (subst comp2sscanl_-h[symmetric])
using comp_def apply auto
done

lemma add-unfold1[simp]: "add- (tx) - (Tye ys) = T(x+y)"
by(simp add: add.def)

lemma add_unfold2[simp]: "add: (Txexs) - (Ty) = T(x+y)"
by (simp add: add_def)

text(The composition can also be tested over input streams.)

theorem

" (addComp ® prefixComp 0) - (Abs_sb (Ac. <[1,1,1,0,0,2]>)) \<“enum> Abs cVcurr
=<[1,2,3,3,3,5]>"
apply (subst comp.unfold, subst sbgetch.insert2, simp add: add.unfold)+
by (simp add: numeral_2_eq-2 numeral_3_eq.-3)

paragraph (Non-Deterministic Component)

text(Now we define a non-deterministic component. In

this example the component randomly modifies the output. This is used

to model impreciseness of the actuator. The actuator is unable to exactly
follow the control-command from the (Acc2val) component, instead there
exists a delta. This is modeled in the following definition:)

definition realBehaviour::"nat = nat set" where

"realBehaviour n = if n<50 then {n} else {n-5 .. n+5}"

text (The actuator can perfectly execute the control command for

small values ((n<50)). There is only one reaction: ({n}). But for

greater input, there may exist an error. Here it is a delta of at most (5),
resulting in the possible outputs ({n-5 .. n+5}).)

(x<+) default_sort countable (x>x)

text (Now the (realBehaviour) has to be applied to every element in the
stream. For this we create a general helper-function, similar to the
deterministic @{const smap}. )
definition ndetsmap::"('a = 'b set)
= ('a stream — 'b stream) set" where
"ndetsmap T = gfp (AH. {f | f£. (f-e=¢€)
A (Vm s. 3x g. (f:-(Tmes) = Tx @ g-s) A x€(T m) A g€H)})"

text (The component is a set of stream processing functions. Each function
returns (e) on the input (e). When the input starts with a message (m)
the output one of the possible values described in (T).
The (gfp) operator returns the greatest fixpoint fulfilling the recursive
equation.)

lemma monondetsmap[simp] :"mono (AH. {f | f. (f-e=€) A (Vm s. 3Ix g.
(f- (Tmes) = Tx @ g-s) A x€(T m) A g€H)})"
apply(rule monol)
apply(simp add: prod.case.eq.if ,auto)
by (meson subset_iff)

lemma ndetsmap_unfold:"ndetsmap S = {f |f . f-e = € A
(Vm s. 3x g. £-(Tm ® s) = Tx ® g-s A
x € S m A g€ (ndetsmap S))}"
unfolding ndetsmap-def
apply(subst gfp_unfold)
using monondetsmap by auto

lemma ndetsmap_strict[simp]:"spf € ndetsmap S=—>spf-e=e"
using ndetsmap.unfold[of S] by auto

lemma ndetsmap-elem: assumes "spfl € ndetsmap T"
shows "Jout€(T m). spfl- (Tm) = Tout"
apply (insert assms)
using ndetsmap-unfold[of T] apply auto
by (smt assms mem_Collect.eq ndetsmap._strict sconc_snd_empty)
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lemma ndetsmap_step: assumes "spfl € ndetsmap T"
shows "Jspf2€ (ndetsmap T). JoutE(T m). spfl- (Tmes) = Tout e spf2-s"
apply (insert assms)
using ndetsmap.unfold[of T] apply auto
by fastforce

lemma ndetsmap.srt: assumes "spfl € ndetsmap T"
shows "3spf2€(ndetsmap T). srt: (spfl-(Tm es)) = spf2-s"
proof—
obtain spf2 out where spf2_def:"spfl- (tm es) = fTout e spf2-s"
using ndetsmap.step assms by blast
then show ?thesis
by (metis assms inject-scons ndetsmap.step stream.sel.rews(2)
strictl surj_scons)
qed

(x<%)
lemmas streamind[case_.names adm bottom step,
induct type: stream] = ind

lemmas streamcases [case_names bottom step,
cases type: stream] = scases
(%>%)
lemma ndetsmaplen[simp]:
assumes "spf € ndetsmap A"
shows "# (spf-s) = #s"
using assms
proof(induction s arbitrary: spf)
case adm
then show ?case
by (simp add: len_stream_def)
next
case bottom
then show ?case
using assms ndetsmap-_unfold by auto
next
case (step a s)
then show ?case
by (smt mem_Collect_.eq ndetsmap._unfold slen_scons step.IH
step.prems)
qed

lemma ndetsmap-snth[simp]:
assumes "spf € ndetsmap A"
and "Fin n<#s"
shows "snth n (spf-s) € (A (snth n s))"
using assms
proof(induction n arbitrary: spf s A)
case 0
then show ?case
apply(cases s,auto)
unfolding ndetsmap_def
by (metis (no-types, lifting) "0.prems" (1) ndetsmap.step shd1l)
next
case (Suc n)
then show ?case
apply(cases s,auto)
apply(simp add: snth_rt)
using ndetsmap-srt by metis
qed

lemma nnndetsmap_rule[simp]: (+subset rule without dealing with gfpx)
assumes "S={spf | spf. Vn s. (Fin n < #s—
snth n (spf-s) € (A (snth n s))) A #(spf-s) = #s A spf-e=€}"
shows "s C ndetsmap A"
apply (subst ndetsmap-def)
apply(rule gfp-ordinal_.induct)
using monondetsmap apply blast
apply (auto simp add: assms)

proof—
fix S::"('a stream — 'b stream) set"
and x::"'a stream — 'b stream" and m::'a and s::"'a stream"
assume al:"{uu. Vn s. (Fin n < #s—>

snth n (uu-s) € A (snth n s)) A #(uu-s) = #s A uu-e = €} C s"
assume a2:"gfp (AH. {uu. uu-e = € A

(Vm s. 3x g. uu-(tm @ s) = tx @ g-s Ax EAmA g€ H}) Cs"
assume a3:"Vn s. (Fin n < #s—>

snth n (x-s) € A (snth n s)) A #(x-s) = #s A x-€ = €"
then have hO0:"As. #(x-(Tm @ s)) = lnsuc- (#s)"
by simp
have h2:"Jout. x- (Tm) = fout"

apply(rule_-tac x="shd (x-(tm))" in exl)
by (simp add: a3 snths_eq)
have x:"An s m. Fin n < #(Tm ® s)=—>
snth n (x-(Tm @ s)) € A (snthn (Tm @ s))"
using a3 by auto
then have h1:"Am s. shd (x-(fm e s)) € A m"
using snth_shd
by (metis Fin_02bot a3 gr_0 Inzero.def shd1l slen_scons)
have h3':"An s. Fin n < #(srt-s)
==snth n (srt-(x-s)) € A (snth (Suc n) s)"
apply (simp add: snth_rt)
proof-
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fix n::nat and s::"'a stream"
assume al:"Fin n < #(srt-s)"
obtain out where out._def:"x-s = out"
by simp
then have"An. Fin n < #out=snth n out € A (snth n s)"
using a3 by auto
then have "snth (Suc n) out € A (snth (Suc n) s)"
by (metis a1l a3 dual_order.strict_.implies_order less2eq
linear neq-iff out-def slen_rt.ile_eq)
then show "snth n (srt-(x-s)) € A (snth n (srt-s))"
by(simp add: out-def snth_rt)
qed
then have h3:"An s. Fin n < $s—
snth (Suc n) (x-(fm @ s)) € A (snth n s)"
by (metis (no-types, lifting) a3 empty_-is_shortest hO Inat.sel_-rews(2) snth_rt snth_scons
srt_.decrements_length strictl)
then have h3:"An s. Fin n < #s=>
snth n (srt-(x-(Tm ® s))) € A (snth n s)"
by (simp add: snth_rt)
show"3xa g. x-(Tm @ s) = Txa @ g-s Axa EAmA g€ S"
apply(rule_tac x="shd (x-(Tm e s))" in exl)
apply(rule_tac x="(A s. srt-(x-(Tmes)))" in exl,auto)
apply (metis a3 empty.is_.shortest slen_scons snths_eq
stream.sel_rews(2) strictl surj_scons)
using h1 apply auto[1]
apply (subgoal_tac "(A s. srt-(x-(Tm ® s))) €
{uu. Vn s. (Fin n < #s—>
snth n (uu-s) € A (snth n s)) A #(uu-s) = #s A uu-€ = e}")
using al apply blast
apply auto
using h3 h0 h2 apply auto
by (metis a3 empty.is_shortest Inat.sel_-rews(2) snths_eq srt.decrements_length stream.sel_-rews(2) strictl)
qed

lemma spfinndetsmap[simp]: («Nice Lemmax)
assumes "/\n s. Fin n < #s=>snth n (spf-s) € (T (snth n s))"
and "As. #(spf-s) = #s"
shows "spf€ ndetsmap T"
apply(subgoal_tac "{spf} C {spf |spf. Vn s.
(Fin n < #s—>snth n (spf:s) € T (snth n s)) A #(spf-s) = #s A
spf-e = €}")
using nnndetsmap_rule
apply (metis (mono_tags, lifting) insert.subset subset_iff)
by (auto simp add: assms snths_eq)

lemma ndetsmap2smap: (+Reduce ndet automaton to det automatonx)
assumes"/m. is_singleton (T m)"
and "spf € ndetsmap T"
shows "spf = smap (Ae. SOME x. x€ T e)"
apply(rule cfun_eql)
apply(rule snths_eq,simp)
using assms(2) ndetsmaplen apply blast

apply auto
proof-
fix x::"'a stream" and n::nat

assume al:"Fin n < #(spf-x)"

then obtain out where out_def: "{out} = T (snth n x)"
using assms(1)
by (metis is_singleton_the_elem)

then have "snth n (spf-x) = out"
using al assms(2) ndetsmaplen by auto
moreover have"snth n (smap (le::'a. SOME x::'b. x € T e)-x) = out"

by (metis a1 all_not.in_.conv assms(2) ndetsmaplen out_def
singleton_iff smap-snth_.lemma some.in_eq)
ultimately show "snth n (spf-x) =
snth n (smap (Ae::'a. SOME x::'b. x € T e) -x)"
by simp
qed

lemma ndetsmap_svalue[simp]:
assumes "spf € ndetsmap A"
shows "svalues- (spf-s) C|J (A ~ (sValues-s))"
using assms
proof(induction s arbitrary: spf)
case adm
then show ?case
apply(rule adm_all, rule adm.imp,auto)
apply(rule adml,auto)
apply(simp add: contlub_cfun_arg)
apply(simp add: lub_eq-Union)
by fastforce
next
case bottom
then show ?case
by (simp)
next
case (step a s)
then show ?case
apply simp
using ndetsmap_step[of spf A a s] apply auto
by blast
qed
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(«<») default_sort chan (+>x)

(%<*)
definition randomShift::" (addout”2 — addout”2) set" where
"randomShift = {A sb. Abs_sb (A_. f:(sb \<"enum> Abs cVcurr)) | f .

f € ndetsmap realBehaviour}"
(%>%)

text (The two functions are combined to create the final component:)
definition errorActuator::" (nat stream — nat stream) set" where
"errorActuator = ndetsmap realBehaviour"

text (The component is consistent, there exists a function which
is in the description. For example the identity function ((ID)).)
theorem "ID € errorActuator"
unfolding errorActuator_def
apply(rule spfinndetsmap, auto)
by(auto simp add: realBehaviour_def)

text (The length is not modified by (errorActuator): )
theorem error_len:

assumes "spf € errorActuator"

shows "# (spf-s) = #s"

using assms errorActuator.def ndetsmaplen by blast

text (If the input consists \emph{only} of values less than 50 there is no error.
The actuator perfectly follows the commands.)
theorem assumes "An. n€sValues-s==n<50"
and "spf € errorActuator"
shows "spf-s = s"
apply(rule snths_eq)
using assms(2) errorActuator.def ndetsmaplen apply blast
apply auto
proof —
fix n
assume "Fin n < #(spf-s)"
hence "Fin n < #s"
by (simp add: assms(2) error_len)
hence "snth n s € sValues-s"
by (simp add: snth2sValues)
hence "snth n s < 50"
by (simp add: assms(1))
moreover have "snth n (spf-s) € (realBehaviour (snth n s))"
using (Fin (n::nat) < #(s::nat stream)) assms(2) errorActuator_.def ndetsmap.snth by blast
ultimately show "snth n (spf-s) = snth n s" by(simp add: realBehaviour_def)
qed

text (If the input is larger than 50, errors can occur. Here an example for
the input with an infinite repetition of (n). The output is non-deterministic.
But the values must lie between ({n-5 .. n+5}).)
theorem assumes "50 < n"
and "spf € errorActuator"

shows "svalues: (spf- (sinftimes (tn))) C {n-5 .. n+5}"
proof —
have "svalues- (sinftimes (fn)) = {n}" by simp
hence "svalues- (spf- (sinftimes (tn))) C|J (realBehaviour ~ {n})"

using assms(2) errorActuator_def ndetsmap._svalue by fastforce
thus ?thesis by (auto simp add: realBehaviour_def)
qed

(*<x)
end
(%>%)
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Related Interesting Work from the SE Group, RWTH Aachen

The following section gives an overview on related work done at the SE Group, RWTH Aachen. More de-
tails can be found on the website www.se—-rwth.de/topics/ orin [HMRT19]. The work presented
here mainly has been guided by our mission statement:

Our mission is to define, improve, and industrially apply techniques, concepts, and methods for innova-
tive and efficient development of software and software-intensive systems, such that high-quality products
can be developed in a shorter period of time and with flexible integration of changing requirements. Fur-
thermore, we demonstrate the applicability of our results in various domains and potentially refine these
results in a domain specific form.

Agile Model Based Software Engineering

Agility and modeling in the same project? This question was raised in [Rum04]: “Using an executable,
yet abstract and multi-view modeling language for modeling, designing and programming still allows
to use an agile development process.”, [JWCR18] addresses the question how digital and organizational
techniques help to cope with physical distance of developers and [RRSW17]] addresses how to teach
agile modeling. Modeling will increasingly be used in development projects, if the benefits become
evident early, e.g with executable UML [RumO2] and tests [RumO03]. In [GKRSO06], for example, we
concentrate on the integration of models and ordinary programming code. In [Ruml2] and [Ruml6],
the UML/P, a variant of the UML especially designed for programming, refactoring and evolution, is
defined. The language workbench MontiCore [GKR™06,I(GKR ™08, [HR17] is used to realize the UML/P
[Sch12]. Links to further research, e.g., include a general discussion of how to manage and evolve
models [LRSST0], a precise definition for model composition as well as model languages [HKRT09]
and refactoring in various modeling and programming languages [PRO3]]. In [FHROS] we describe a set
of general requirements for model quality. Finally, [KRV06] discusses the additional roles and activities
necessary in a DSL-based software development project. In [CEG™ 14| we discuss how to improve the
reliability of adaptivity through models at runtime, which will allow developers to delay design decisions
to runtime adaptation.

Artifacts in Complex Development Projects

Developing modern software solutions has become an increasingly complex and time consuming process.
Managing the complexity, size, and number of the artifacts developed and used during a project together
with their complex relationships is not trivial [BGRW17]]. To keep track of relevant structures, artifacts,
and their relations in order to be able e.g. to evolve or adapt models and their implementing code, the
artifact model [GHR17|] was introduced. [BGRW18]] explains its applicability in systems engineering
based on MDSE projects.

An artifact model basically is a meta-data structure that explains which kinds of artifacts, namely
code files, models, requirements files, etc. exist and how these artifacts are related to each other. The
artifact model therefore covers the wide range of human activities during the development down to fully
automated, repeatable build scripts. The artifact model can be used to optimize parallelization during the
development and building, but also to identify deviations of the real architecture and dependencies from
the desired, idealistic architecture, for cost estimations, for requirements and bug tracing, etc. Results can
be measured using metrics or visualized as graphs.



Artificial Intelligence in Software Engineering

MontiAnna is a family of explicit domain specific languages for the concise description of the architec-
ture of (1) a neural network, (2) its training, and (3) the training data [KNP*19]. We have developed
a compositional technique to integrate neural networks into larger software architectures [KRRvW17]]
as standardized machine learning components [KPRS19]]. This enables the compiler to support the sys-
tems engineer by automating the lifecycle of such components including multiple learning approaches
such as supervised learning, reinforcement learning, or generative adversarial networks. According to
[MRR11g] the semantic difference between two models are the elements contained in the semantics of
the one model that are not elements in the semantics of the other model. A smart semantic differencing
operator is an automatic procedure for computing diff witnesses for two given models. Smart semantic
differencing operators have been defined for Activity Diagrams [MRR11a], Class Diagrams [MRR11d],
Feature Models [DKMRI19], Statecharts [DEKR19]], and Message-Driven Component and Connector
Architectures [BKRW17, BKRW19]. We also developed a modeling language-independent method for
determining syntactic changes that are responsible for the existence of semantic differences [KR18]].

We apply logic, knowledge representation and intelligent reasoning to software engineering to perform
correctness proofs, execute symbolic tests or find counterexamples using a theorem prover. And we have
applied it to challenges in intelligent flight control systems and assistance systems for air or road traffic
management [KRRS19, HRR12] and based it on the core ideas of Broy’s Focus theory [RR11, IBRO7].
Intelligent testing strategies have been applied to automotive software engineering [EJK™ 19, [DGH™ 19,
KMS™ 18], or more generally in systems engineering [DGH™ 18]]. These methods are realized for a variant
of SysML Activity Diagrams and Statecharts.

Machine Learning has been applied to the massive amount of observable data in energy management
for buildings [FLP™11a, [KLPRT2|| and city quarters [GLPRT3] to optimize the operation efficiency and
prevent unneeded CO2 emissions or reduce costs. This creates a structural and behavioral system theoret-
ical view on cyber-physical systems understandable as essential parts of digital twins [RW18, BDH™20].

Generative Software Engineering

The UML/P language family [Rum12, Rum11}, Rum16] is a simplified and semantically sound derivate
of the UML designed for product and test code generation. [Schl2|] describes a flexible generator
for the UML/P based on the MontiCore language workbench [KRVT10, [GKR™06, (GKR™08, [HR17].
In [KRVO6], we discuss additional roles necessary in a model-based software development project.
[GKRS06,IGHK ™ 15b] discuss mechanisms to keep generated and handwritten code separated. In [Weil2],
we demonstrate how to systematically derive a transformation language in concrete syntax. [HMSNRW16]
presents how to generate extensible and statically type-safe visitors. In [MSNRR16]], we propose the use
of symbols for ensuring the validity of generated source code. [GMR™16] discusses product lines of
template-based code generators. We also developed an approach for engineering reusable language com-
ponents [HLMSNT 15b, [HLMSNT 154]. To understand the implications of executability for UML, we
discuss needs and advantages of executable modeling with UML in agile projects in [RumO4f], how to
apply UML for testing in [RumO3]], and the advantages and perils of using modeling languages for pro-
gramming in [RumO02].

Unified Modeling Language (UML)

Starting with an early identification of challenges for the standardization of the UML in [KER99|] many
of our contributions build on the UML/P variant, which is described in the books [Ruml6l Ruml7]



respectively [Ruml12, Rum13] and is implemented in [Sch12l]. Semantic variation points of the UML
are discussed in [GR11]]. We discuss formal semantics for UML [BHP* 98| and describe UML seman-
tics using the “System Model” [BCGR09al], [BCGR0O9b], [BCRO7b] and [BCRO7al]. Semantic variation
points have, e.g., been applied to define class diagram semantics [CGRO8]. A precisely defined seman-
tics for variations is applied, when checking variants of class diagrams [MRR11cl] and objects diagrams
[MRRI11e] or the consistency of both kinds of diagrams [MRR11f]. We also apply these concepts to
activity diagrams [MRRI11b]] which allows us to check for semantic differences of activity diagrams
[MRR11a]. The basic semantics for ADs and their semantic variation points is given in [GRR10]. We
also discuss how to ensure and identify model quality [FHROS], how models, views and the system
under development correlate to each other [BGH'98], and how to use modeling in agile development
projects [RumO4], [Rum02|]. The question how to adapt and extend the UML is discussed in [PFR02]
describing product line annotations for UML and more general discussions and insights on how to use
meta-modeling for defining and adapting the UML are included in [EFLR99], [FELR9S] and [SRVK10].

Domain Specific Languages (DSLs)

Computer science is about languages. Domain Specific Languages (DSLs) are better to use, but need
appropriate tooling. The MontiCore language workbench [GKR™06, [KRV10, [Kral0, (GKR™08, [HR17]
allows the specification of an integrated abstract and concrete syntax format [KRV07b, [HR17] for easy
development. New languages and tools can be defined in modular forms [KRV0S| IGKR™07, [V&IT1]
HLMSN™ 15b, [ HLMSN™ 15a, [HRWTS8| IBEK ™ 18a, BEK™ 18b, BEK™19]] and can, thus, easily be reused.
We discuss the roles in software development using domain specific languages in [KRV14]. [Weil2]
presents a tool that allows to create transformation rules tailored to an underlying DSL. Variability in
DSL definitions has been examined in [GR11,I(GMR™16|. [BDL™ 18] presents a method to derive inter-
nal DSLs from grammars. In [BJRW1S]|, we discuss the translation from grammars to accurate meta-
models. Successful applications have been carried out in the Air Traffic Management [ZPK™11] and
television [DHH™20] domains. Based on the concepts described above, meta modeling, model analyses
and model evolution have been discussed in [LRSS10] and [SRVKI10]. DSL quality [FHROS], instruc-
tions for defining views [GHK™07], guidelines to define DSLs [KKP"09] and Eclipse-based tooling for
DSLs [KRV07a] complete the collection.

Software Language Engineering

For a systematic definition of languages using composition of reusable and adaptable language com-
ponents, we adopt an engineering viewpoint on these techniques. General ideas on how to engineer a
language can be found in the GeMoC initiative [CBCRT3] [CCF™15] and the concern-oriented language
development approach [CKM™ 18]]. As said, the MontiCore language workbench provides techniques for
an integrated definition of languages [KRV07b, Kral0, KRV10, HR17,[HRW1S8, BEK™19]. In [SRVKIO]
we discuss the possibilities and the challenges using metamodels for language definition. Modular com-
position, however, is a core concept to reuse language components like in MontiCore for the frontend
[VSI11, [KRVOS, HLMSNT 15bl [HLMSNT 15a, [HMSNRW 16| [HR17, BEK™ 18a, BEK™ 18bl IBEK™" 19]
and the backend [RRRW15,  MSNRR16, I GMR 16, [HR17| BEK'18b]. In [GHK T 15a, (GHK' 15b], we
discuss the integration of handwritten and generated object-oriented code. [KRV 14] describes the roles in
software development using domain specific languages. Language derivation is to our believe a promising
technique to develop new languages for a specific purpose that rely on existing basic languages [HRW18]].
How to automatically derive such a transformation language using concrete syntax of the base language



is described in [HRW 15! Weil2] and successfully applied to various DSLs. We also applied the language
derivation technique to tagging languages that decorate a base language [GLRR15] and delta languages
[HHK™ 15a, [HHK™ 13, where a delta language is derived from a base language to be able to construc-
tively describe differences between model variants usable to build feature sets. The derivation of internal
DSLs from grammars is discussd in [BDL™ 18] and a translation of grammars to accurate metamodels in
[BJRW 18]

Modeling Software Architecture & the MontiArc Tool

Distributed interactive systems communicate via messages on a bus, discrete event signals, streams of
telephone or video data, method invocation, or data structures passed between software services. We use
streams, statemachines and components [BR0O7] as well as expressive forms of composition and refine-
ment [PR99, RW 18] for semantics. Furthermore, we built a concrete tooling infrastructure called Mon-
tiArc [HRR 12| for architecture design and extensions for states [RRW13bf]. In [RRW13a], we introduce
a code generation framework for MontiArc. MontiArc was extended to describe variability [HRR™11]]
using deltas [HRRST1, [HKR™11]] and evolution on deltas [HRRS12]. Other extensions are concerned
with modeling cloud architectures [NPR13|] and with the robotics domain [AHRW17a, IAHRW17b].
[GHK™*07] and [GHK™08a] close the gap between the requirements and the logical architecture and
[GKPROS] extends it to model variants. [MRR14b] provides a precise technique to verify consistency
of architectural views [Rinl4, MRR13] against a complete architecture in order to increase reusabil-
ity. We discuss the synthesis problem for these views in [MRR14a]. Co-evolution of architecture
is discussed in [MMRI10] and modeling techniques to describe dynamic architectures are shown in
[HRROS, BHK 17, [KKR109].

Compositionality & Modularity of Models

[HKRT09] motivates the basic mechanisms for modularity and compositionality for modeling. The
mechanisms for distributed systems are shown in [BR0O7,[RWT8]| and algebraically grounded in [HKR™07]].
Semantic and methodical aspects of model composition [KRVO08] led to the language workbench Monti-
Core [KRV10, HR17|] that can even be used to develop modeling tools in a compositional form [HR17,
HLMSN™ 15b, HLMSN™ 152, [HMSNRWT6, MSNRRT6, [HRWTS| BEK™ 18a, BEK™18b, BEKT19]. A
set of DSL design guidelines incorporates reuse through this form of composition [KKPT09]. [V6IL1]
examines the composition of context conditions respectively the underlying infrastructure of the sym-
bol table. Modular editor generation is discussed in [KRVO7al]. [RRRW 15| applies compositionality to
Robotics control. [CBCRT3] (published in [CCFT15]) summarizes our approach to composition and re-
maining challenges in form of a conceptual model of the “globalized” use of DSLs. As a new form of
decomposition of model information we have developed the concept of tagging languages in [GLRR15]].
It allows to describe additional information for model elements in separated documents, facilitates reuse,
and allows to type tags.

Semantics of Modeling Languages

The meaning of semantics and its principles like underspecification, language precision and detailedness
is discussed in [HRO4]]. We defined a semantic domain called “System Model” by using mathematical
theory in [RKB93, BHP 98] and [GKR96, [KRB96]. An extended version especially suited for the UML
is given in [BCGRO9b] and in [BCGRO9a] its rationale is discussed. [BCR07a, [BCRO7b]| contain detailed



versions that are applied to class diagrams in [CGROS]. To better understand the effect of an evolved de-
sign, detection of semantic differencing as opposed to pure syntactical differences is needed [MRR10].
[MRR11a,IMRR11b] encode a part of the semantics to handle semantic differences of activity diagrams
and [MRR11f, IMRR11f] compare class and object diagrams with regard to their semantics. In [BRO7],
a simplified mathematical model for distributed systems based on black-box behaviors of components
is defined. Meta-modeling semantics is discussed in [EFLR99]. [BGH™97] discusses potential mod-
eling languages for the description of an exemplary object interaction, today called sequence diagram.
[BGHT98] discusses the relationships between a system, a view and a complete model in the context of
the UML. [GR11]] and [CGRO9] discuss general requirements for a framework to describe semantic and
syntactic variations of a modeling language. We apply these on class and object diagrams in [MRR11f]
as well as activity diagrams in [GRR10]. [Ruml2|] defines the semantics in a variety of code and test
case generation, refactoring and evolution techniques. [LRSS10]] discusses evolution and related issues
in greater detail. [RW18]] discusses an elaborated theory for the modeling of underspecification, hierar-
chical composition, and refinement that can be practically applied for the development of CPS.

Evolution and Transformation of Models

Models are the central artifacts in model driven development, but as code they are not initially correct
and need to be changed, evolved and maintained over time. Model transformation is therefore essential
to effectively deal with models. Many concrete model transformation problems are discussed: evolu-
tion [LRSS10, MMRI10, Rum04], refinement [PR99, [KPR97, [PR94], decomposition [PR99, [KRW20],
synthesis [MRR14a], refactoring [Ruml12, [PRO3|], translating models from one language into another
[MRR11c, Ruml12], and systematic model transformation language development [Weil2l]. [RumO4]
describes how comprehensible sets of such transformations support software development and main-
tenance [LRSS10], technologies for evolving models within a language and across languages, and map-
ping architecture descriptions to their implementation [MMR10]]. Automaton refinement is discussed in
[PR94, [KPRO7]|, refining pipe-and-filter architectures is explained in [PR99]]. Refactorings of models
are important for model driven engineering as discussed in [PRO1, [PR0O3,|Rum12]]. Translation between
languages, e.g., from class diagrams into Alloy [MRR11c] allows for comparing class diagrams on a
semantic level.

Variability and Software Product Lines (SPL)

Products often exist in various variants, for example cars or mobile phones, where one manufacturer
develops several products with many similarities but also many variations. Variants are managed in a
Software Product Line (SPL) that captures product commonalities as well as differences. Feature dia-
grams describe variability in a top down fashion, e.g., in the automotive domain [GHK™08al] using 150%
models. Reducing overhead and associated costs is discussed in [GRJA12]. Delta modeling is a bottom
up technique starting with a small, but complete base variant. Features are additive, but also can modify
the core. A set of commonly applicable deltas configures a system variant. We discuss the application
of this technique to Delta-MontiArc [HRRT 11, HRRT11] and to Delta-Simulink [HKM™13]]. Deltas
can not only describe spacial variability but also temporal variability which allows for using them for
software product line evolution [HRRS12]. [HHK™ 13| and [HRW13]| describe an approach to systemat-
ically derive delta languages. We also apply variability modeling languages in order to describe syntactic
and semantic variation points, €.g., in UML for frameworks [PFR02]| and generators [GMR ™ 16]|. Further-
more, we specified a systematic way to define variants of modeling languages [CGRO9], leverage features



for compositional reuse [BEK™18b], and applied it as a semantic language refinement on Statecharts in
[GR11].

Modeling for Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) [KRS12] are complex, distributed systems which control physical enti-
ties. In [RW18]], we discuss how an elaborated theory can be practically applied for the development
of CPS. Contributions for individual aspects range from requirements [GRJA12], complete product lines
[HRRW12], the improvement of engineering for distributed automotive systems [HRR12l], autonomous
driving [BR12a, [KKR19], and digital twin development [BDH™20] to processes and tools to improve
the development as well as the product itself [BBRO7]. In the aviation domain, a modeling language for
uncertainty and safety events was developed, which is of interest for the European airspace [ZPK™11]]. A
component and connector architecture description language suitable for the specific challenges in robotics
is discussed in [RRW13b,IRRW14]. In [RRW13a], we describe a code generation framework for this lan-
guage. Monitoring for smart and energy efficient buildings is developed as Energy Navigator toolset
[KPR12| [FPPR12, [KLPR12].

Model-Driven Systems Engineering (MDSysE)

Applying models during Systems Engineering activities is based on the long tradition on contributing
to systems engineering in automotive [GHK™08b], which culminated in a new comprehensive model-
driven development process for automotive software [KMS™18, [DGH™19]]. We leveraged SysML to
enable the integrated flow from requirements to implementation to integration. To facilitate modeling of
products, resources, and processes in the context of Industry 4.0, we also conceived a multi-level frame-
work for machining based on these concepts [BKL™18]. Research within the excellence cluster Internet
of Production considers fast decision making at production time with low latencies using contextual data
traces of production systems, also known as Digital Shadows (DS) [SHH™20]. We have investigated
how to derive Digital Twins (DTs) for injection molding [BDH™ 20|, how to generate interfaces between
a cyber-physical system and its DT [KMR™20] and have proposed model-driven architectures for DT
cockpit engineering [DMR™20)].

State Based Modeling (Automata)

Today, many computer science theories are based on statemachines in various forms including Petri nets
or temporal logics. Software engineering is particularly interested in using statemachines for modeling
systems. Our contributions to state based modeling can currently be split into three parts: (1) understand-
ing how to model object-oriented and distributed software using statemachines resp. Statecharts [GKR96),
BCRO7b, BCGR0O9b, BCGRO9al], (2) understanding the refinement [PR94, RK96, Rum96, RW 18] and
composition [GRI5LIGKR96,RW 18] of statemachines, and (3) applying statemachines for modeling sys-
tems. In [Rum96, RW 18] constructive transformation rules for refining automata behavior are given and
proven correct. This theory is applied to features in [KPR97|]. Statemachines are embedded in the com-
position and behavioral specification concepts of Focus [GKR96, BRO7]. We apply these techniques,
e.g., in MontiArcAutomaton [RRW13a, [RRW14, RRW13a, RW18] as well as in building management
systems [FLP™11b].



Model-Based Assistance and Information Services (MBAIS)

Assistive systems are a special type of information system: they (1) provide situational support for human
behaviour (2) based on information from previously stored and real-time monitored structural context
and behaviour data (3) at the time the person needs or asks for it [HMR™19]. To create them, we follow
a model centered architecture approach [MMR™17] which defines systems as a compound of various
connected models. Used languages for their definition include DSLs for behavior and structure such as
the human cognitive modeling language [MM13]], goal modeling languages [MRV20] or UML/P based
languages [MNRV19]. [MM15]] describes a process how languages for assistive systems can be created.

We have designed a system included in a sensor floor able to monitor elderlies and analyze impact
patterns for emergency events [LMK™11]. We have investigated the modeling of human contexts for
the active assisted living and smart home domain [MS17] and user-centered privacy-driven systems in
the ToT domain in combination with process mining systems [MKM™ 19], differential privacy on event
logs of handling and treatment of patients at a hospital [MKB™19], the mark-up of online manuals
for devices [SM18] and websites [SM20]], and solutions for privacy-aware environments for cloud ser-
vices [ELRT17]] and in IoT manufacturing [MNRV19]. The user-centered view on the system design
allows to track who does what, when, why, where and how with personal data, makes information about
it available via information services and provides support using assistive services.

Modelling Robotics Architectures and Tasks

Robotics can be considered a special field within Cyber-Physical Systems which is defined by an inher-
ent heterogeneity of involved domains, relevant platforms, and challenges. The engineering of robotics
applications requires composition and interaction of diverse distributed software modules. This usu-
ally leads to complex monolithic software solutions hardly reusable, maintainable, and comprehensi-
ble, which hampers broad propagation of robotics applications. The MontiArcAutomaton language
[RRW13a] extends the ADL MontiArc and integrates various implemented behavior modeling languages
using MontiCore [RRW13b, RRW 14, RRRW 15| [HR17]] that perfectly fit robotic architectural modeling.
The LightRocks [THR™ 13| framework allows robotics experts and laymen to model robotic assembly
tasks. In [AHRW17al IAHRW17b]], we define a modular architecture modeling method for translating
architecture models into modules compatible to different robotics middleware platforms.

Automotive, Autonomic Driving & Intelligent Driver Assistance

Introducing and connecting sophisticated driver assistance, infotainment and communication systems
as well as advanced active and passive safety-systems result in complex embedded systems. As these
feature-driven subsystems may be arbitrarily combined by the customer, a huge amount of distinct vari-
ants needs to be managed, developed and tested. A consistent requirements management that connects
requirements with features in all phases of the development for the automotive domain is described in
[GRJA12]]. The conceptual gap between requirements and the logical architecture of a car is closed
in [GHK™07, (IGHK"08a]. [HKMT 13| describes a tool for delta modeling for Simulink [HKM™ 13].
[HRRW12] discusses means to extract a well-defined Software Product Line from a set of copy and
paste variants. [RSW™15]] describes an approach to use model checking techniques to identify behav-
ioral differences of Simulink models. In [KKR19], we introduce a framework for modeling the dynamic
reconfiguration of component and connector architectures and apply it to the domain of cooperating ve-
hicles. Quality assurance, especially of safety-related functions, is a highly important task. In the Carolo



project [BR12al BR12b]], we developed a rigorous test infrastructure for intelligent, sensor-based func-
tions through fully-automatic simulation [BBRO7||. This technique allows a dramatic speedup in develop-
ment and evolution of autonomous car functionality, and thus enables us to develop software in an agile
way [BR12a]]. [MMR10] gives an overview of the current state-of-the-art in development and evolution
on a more general level by considering any kind of critical system that relies on architectural descriptions.
As tooling infrastructure, the SSElab storage, versioning and management services [HKR12] are essential
for many projects.

Smart Energy Management

In the past years, it became more and more evident that saving energy and reducing CO2 emissions is
an important challenge. Thus, energy management in buildings as well as in neighbourhoods becomes
equally important to efficiently use the generated energy. Within several research projects, we developed
methodologies and solutions for integrating heterogeneous systems at different scales. During the design
phase, the Energy Navigators Active Functional Specification (AFS) [FPPR12,KPR12] is used for tech-
nical specification of building services already. We adapted the well-known concept of statemachines to
be able to describe different states of a facility and to validate it against the monitored values [FLP™ 11b].
We show how our data model, the constraint rules, and the evaluation approach to compare sensor data
can be applied [KLPR12].

Cloud Computing & Enterprise Information Systems

The paradigm of Cloud Computing is arising out of a convergence of existing technologies for web-based
application and service architectures with high complexity, criticality, and new application domains. It
promises to enable new business models, to lower the barrier for web-based innovations and to increase
the efficiency and cost-effectiveness of web development [KRR14]. Application classes like Cyber-
Physical Systems and their privacy [HHK™ 14, [HHK™ 15b], Big Data, App, and Service Ecosystems bring
attention to aspects like responsiveness, privacy and open platforms. Regardless of the application do-
main, developers of such systems are in need for robust methods and efficient, easy-to-use languages and
tools [KRS12[]. We tackle these challenges by perusing a model-based, generative approach [NPR13].
The core of this approach are different modeling languages that describe different aspects of a cloud-
based system in a concise and technology-agnostic way. Software architecture and infrastructure models
describe the system and its physical distribution on a large scale. We apply cloud technology for the
services we develop, e.g., the SSELab [HKR12] and the Energy Navigator [FPPR12| [KPR12] but also
for our tool demonstrators and our own development platforms. New services, e.g., collecting data from
temperature, cars etc. can now easily be developed.

Model-Driven Engineering of Information Systems

Information Systems provide information to different user groups as main system goal. Using our experi-
ences in the model-based generation of code with MontiCore [KRV 10, HR17]], we developed several gen-
erators for such data-centric information systems. MontiGem |[AMNT20] is a specific generator frame-
work for data-centric business applications that uses standard models from UML/P optionally extended
by GUI description models as sources [GMN™20]. While the standard semantics of these modeling lan-
guages remains untouched, the generator produces a lot of additional functionality around these models.
The generator is designed flexible, modular and incremental, handwritten and generated code pieces are



well integrated [GHK™15bl], tagging of existing models is possible [GLRRT3], e.g., for the definition of
roles and rights or for testing [DGHT 18]].
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