
LDL-AURIS:
A computational model, grounded in error-driven learning, for the
comprehension of single spoken words

Elnaz Shafaei-Bajestana, Masoumeh Moradipour-Taria, Peter Uhrigb, and R. Harald
Baayena

aQuantitative Linguistics, Eberhard Karls University of Tübingen, Tübingen, Germany;
bEnglish Linguistics, FAU Erlangen-Nürnberg, Erlangen, Germany

ARTICLE HISTORY
Compiled July 17, 2021

ABSTRACT
A computational model for the comprehension of single spoken words is presented
that enhances the model of Arnold et al. (2017). Real-valued features are extracted
from the speech signal instead of discrete features. Vectors representing word mean-
ings using one-hot encoding are replaced by real-valued semantic vectors. Instead
of incremental learning with Rescorla-Wagner updating, we use linear discrimina-
tive learning, which captures incremental learning at the limit of experience. These
new design features substantially improve prediction accuracy for unseen words,
and provide enhanced temporal granularity, enabling the modeling of cohort-like ef-
fects. Visualization with t-SNE shows that the acoustic form space captures phone-
like properties. Trained on 9 hours of audio from a broadcast news corpus, the
model achieves recognition performance that approximates the lower bound of hu-
man accuracy in isolated word recognition tasks. LDL-AURIS thus provides a
mathematically-simple yet powerful characterization of the comprehension of single
words as found in English spontaneous speech.

KEYWORDS
Spoken word recognition; error-driven learning; Widrow-Hoff learning rule; naive
discriminative learning; linear discriminative learning; authentic media language;
word embeddings; cohort effects

1. Introduction

In linguistics, the hypothesis of the duality of patterning of language (also known as the
dual articulation of language) has attained axiomatic status. Language is considered to
be a symbolic system with a two-level structure. One level concerns how meaningless
sounds pattern together to form meaningful units, the words and morphemes of a
language. The other level is concerned with the calculus of rules that govern how words
and morphemes can be assembled combinatorially into larger ensembles (Chomsky and
Halle, 1968; Hockett and Hockett, 1960; Licklider, 1952; Martinet, 1967).

Accordingly, most cognitive models of spoken word recognition (henceforth SWR)
such as the Trace model (McClelland and Elman, 1986), the Cohort model
(Marslen-Wilson, 1987), the Shortlist model (Norris, 1994), the Neighborhood Acti-
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vation Model (Luce et al., 2000), the Shortlist-b model (Norris and McQueen, 2008),
and the Fine-Tracker model (Scharenborg, 2008), all posit two levels of representa-
tion and processing, a lexical and a prelexical level. The prelexical level is put forward
to enable the system to convert the continuous varying input audio signal into discrete
non-varying abstract units, sequences of which form the lexical units functioning in the
higher-level combinatorics of morphology and syntax. The main motivation for having
an intermediate phone-based representation is that phones are judged to be crucial for
dealing with the huge variability present in the speech signal. Thus, at the prelexical
level, the speech signal is tamed into phones, and it is these phones that can then be
used for lexical access (Diehl et al., 2004; McQueen, 2005; Norris and McQueen, 2008;
Phillips, 2001).

Although traditional SWR models posit a prelexical level with a finite number of
abstract phone units, the psychological reality of an intermediate segmental level of
representation has been long debated (see Pisoni and Luce, 1987, for a review, and Port
and Leary, 2005, for linguistic evidence). Furthermore, the exact nature of these phone
units is admittedly underspecified (McQueen, 2005); unsurprisingly, SWR models de-
fine their prelexical representation in very different ways. Shortlist and Shortlist-
b work with phones and phone probabilities, Trace posits multi-dimensional feature
detectors that activate phones, and Fine-Tracker implements articulatory-acoustic
features. Unfortunately, most models remain agnostic on how their prelexical represen-
tations and phone units can actually be derived from the speech signal. As observed
by Scharenborg and Boves (2010),

“the lack of a (cognitively plausible) process that can convert speech into prelexical
units not only raises questions about the validity of the theory, but also complicates
attempts to compare different versions of the theory by means of computational modelling
experiments.”

Nevertheless, many modelers assume that some intermediate phone level is essential.
Dahan and Magnuson (2006), for instance, motivates the acceptance of a prelexical level
by the theoretical assumption that separation of tasks in a two-stage system engenders
cognitive efficiency because of the restrictions imposed on the amount of information
available for smaller mappings at each stage. The only model that argues against a
mediating role of phones is the Distributed Cohort Model (Gaskell and Marslen-Wilson,
1997, 1999), which is motivated in part by the experimental research of Warren (1970,
1971, 2000), which provides evidence that the awareness of phonemes is a post-access
reconstruction process.1

In many SWR models, word meanings, the ultimate goal of lexical access (Harley,
2014), are represented at a dedicated lexical layer. A review of the different ways in
which meanings have been represented in the literature is given by Magnuson (2017),
here, we focus on two dominant approaches.

Firstly, in localist approaches, as implemented by the Logogen model (Morton,
1969), Trace, Shortlist, Fine-Tracker, Neighborhood Activation Model, Parsyn
(Luce et al., 2000), and Diana (ten Bosch et al., 2015), the mental lexicon provides
a list of lexical units that are either symbolic units or unit-like entries labeled with
specifications of the sequence of phones against which the acoustic signal has to be
matched. Once a lexical unit has been selected, it then provides access to its corre-
sponding meaning.

Secondly, in distributed approaches, adopted by models such as the Distributed

1Chuang et al. (2020) and Hendrix et al. (2019) show how pseudowords can be processed in models without
phones as pivotal units.

2



Cohort Model and Earshot (Magnuson et al., 2020), a word’s meaning is represented
by a numeric vector specifying the coordinates of that word in a high-dimensional
semantic space.2 The status of phone units within these approaches is under debate.
The Distributed Cohort Model argues that distributed recurrent networks obviate the
need for intermediate phone representations, and hence this model does not make
any attempt to link patterns of activation on the hidden recurrent layer of the model
to abstract phones. By contrast, the deep learning model of Magnuson et al. (2020)
explicitly interprets the units on its hidden layer as the fuzzy equivalents in the brain
of the discrete phones of traditional linguistics.

All these very different models of SWR provide theories of the mental lexicon that
have several problematic aspects. First, the input to most models of auditory word
recognition is typically a symbolic approximation of real conversational speech. The
only models that work with real speech are Fine-Tracker (Scharenborg, 2008, 2009),
Diana, and Earshot. Of these models, Fine-Tracker and Diana are given clean
laboratory speech as input, whereas Earshot limits its input to a list of 1000 words
generated by a text-to-speech system. However, normal daily conversational speech is
characterized by enormous variability, and the way in which words are produced often
diverges substantially from their canonical dictionary pronunciation. For instance, a
survey of the Buckeye corpus (Pitt et al., 2005) of spontaneous conversations recorded
at Columbus, Ohio (Johnson, 2004) revealed that around 5% of the words are spoken
with one syllable missing, and that a little over 20% of words have at least one phone
missing, compared to their canonical dictionary forms (see also Ernestus, 2000; Keune
et al., 2005). It is noteworthy that adding entries for reduced forms to the lexicon
has been shown not to afford better overall recognition (Cucchiarini and Strik, 2003).
Importantly, canonical forms do not do justice to how speakers modulate fine phonetic
detail to fine-tune what they want to convey (Hawkins, 2003). Plag et al. (2017) have
documented that the acoustic duration of word-final [s] in English varies significantly
in the mean depending on its inflectional function (see also Tomaschek et al., 2019).
Thus, if the speech signal were to be reduced to just a sequence of categorical units,
such as the canonical phones, then large amounts of information present in the speech
signal would be lost completely. As a consequence, models of SWR have to take on the
challenge of taking real spontaneous speech as input. Only by doing so can the models
truly investigate the cohort effect of lexical processing that assumes the process of
spoken word recognition starts by gradually winnowing out incompatible words with
the incoming stream of audio and succeeds once a uniqueness point in the input is
reached (Marslen-Wilson, 1984; Marslen-Wilson and Welsh, 1978).

Second, models of SWR typically do not consider how their parameter settings are
learned. Models such as Trace and Shortlist make use of connection weights that
are fixed and set by hand. The Bayesian version of Shortlist estimates probabilities
on the basis of a fixed corpus. The parameters of the Hidden Markov Model underlying
Diana are likewise tuned by hand and then frozen. Connectionist models such as
the Distributed Cohort Model and Earshot are trained incrementally, and hence
can be considered learning models. In practice, these models are trained until their
performance is deemed satisfactory, after which the model is taken to characterize an
adult word recognition system. However, vocabulary size is known to increase over
the lifetime (Keuleers et al., 2015; Ramscar et al., 2014) and ideally the dynamics of
life-long learning should be part of a learning model of lexical processing. By contrast,

2The term vector is used throughout the paper from a mathematical perspective to refer to a member of a
vector space over the set of real numbers, assuming that the axioms of vector spaces are satisfied. For simplicity,
one might think of a vector as an ordered list of numbers.
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current deep learning models typically require massive amounts of data. The general
practice to attend to this issue is availing the model of many passes through the
training data, and training is typically terminated when a sweet spot has been found
where prediction accuracy under cross-validation has reached a local maximum. Since
further training would lead to a reduction in accuracy, training is terminated and no
further learning can take place. Importantly, when small and/or simplified datasets are
used for training, they can easily overfit the data and may not generalize well.

Third, all the above models work with a fixed lexicon. When morphologically com-
plex words are included, as for instance in Shortlist-b, no mechanisms are imple-
mented that would allow the model to recognize out-of-vocabulary inflected or derived
words that have in-vocabulary words as their base words. In other words, these models
are all full-listing models (Butterworth, 1983).

Finally, all the above-mentioned models of SWR require complex modeling architec-
tures, minimally requiring three layers, one layer representing speech input, one or more
intermediate layers, and a layer with lexical units. In what follows, we build on a very
different approach to lexical processing (Baayen et al., 2019), in which high-dimensional
representations for words’ forms are mapped directly onto high-dimensional representa-
tions for words’ meanings. Mathematically, this is arguably the simplest way in which
one can model how word forms are understood. An important research question in
this research program is to see how far this very simple approach can take us before
breaking.

A first proposal for modeling auditory comprehension within this general approach
was formulated by Arnold et al. (2017). Several aspects of their and our approach to
auditory word recognition are of special interest from a cognitive perspective. These
authors developed discrete acoustic features from the speech signal that are inspired
by the signal pre-processing that takes place in the cochlea. These features were used
within a naive discriminative learning model (Baayen et al., 2011), which was trained
on the audio of words extracted from a corpus of German spontaneous speech. Model
recognition accuracy for a randomly selected set of 1000 audio tokens was reported
to be similar to the lower bound of human recognition accuracy for the same audio
tokens.

The model of Arnold et al. (2017) has several shortcomings (see, e.g., Nenadić,
2020), which we will discuss in more detail below. In this study, we introduce a new
model, LDL for AUditory word Recognition from Incoming Spontaneous speech (LDL-
AURIS), that enhances the original model in several ways. Our revised model affords
substantially improved prediction accuracy for unseen words. It also provides enhanced
temporal granularity so that now cohort-like effects emerge naturally. Visualization of
the form space using t-SNE (Maaten and Hinton, 2008) shows that the new acoustic
features that we developed better capture phone-like similarities and differences. Thus,
the very simple formalization of the relation between form and meaning given by
LDL-AURIS provides a promising tool for probing human auditory comprehension.
Nonetheless, LDL-AURIS, similar to the model of Arnold et al. (2017), is a model of
single word recognition and receives the audio data of one isolated token at a time.
The words are harvested from real conversational speech to stay as faithful as possible
to how language is used.

As our new model builds on previous modeling work using Naive Discriminative
Learning (NDL; Baayen et al., 2011) and Linear Discriminative Learning (LDL;
Baayen et al., 2019), the next section provides an introduction to these modeling ap-
proaches. Although the present study restricts itself to modeling the comprehension of
uninflected words, handling inflection is a pivotal advantage of the general framework
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of LDL. The subsequent section then describes the changes we implemented in order
to improve both model performance for SWR and to make the model cognitively more
plausible.

2. Previous modeling of SWR with NDL and LDL

2.1. Informal characterization of NDL and LDL

The NDL and LDL models are grounded in error-driven learning as formalized in the
learning rules of Rescorla and Wagner (1972) and Widrow and Hoff (1960). These two
learning rules are closely related, and are actually identical under specific parameter
settings. As we shall see below, both implement a form of incremental multiple linear
regression, and both rules can be also seen as simple artificial neural networks with
an input layer with cues, an output layer with outcomes, and no hidden layers (the
terminology of cues and outcomes is borrowed from Danks, 2003). Cues are sublexical
form features, and outcomes are values on the axes of a high-dimensional semantic
space. Error-driven learning as formalized by Rescorla and Wagner (1972) has proven
to be fruitful for understanding both animal learning (Bitterman, 2000; Gluck and
Myers, 2001; Rescorla, 1988) and human learning (Ellis, 2006; Nixon, 2020; Olejarczuk
et al., 2018; Ramscar et al., 2014; Ramscar and Yarlett, 2007; Ramscar et al., 2010;
Siegel and Allan, 1996).

Statistically, a model trained with the Rescorla-Wagner learning rule is a classifier
that is trained to predict whether or not a specific outcome is present. Naive discrimi-
native learning extends this single-label classifier to a multiple-label classifier by having
the model learn to predict multiple outcomes in parallel. For instance, Baayen et al.
(2011) built a model for Serbian case-inflected nouns, and for the noun ženama taught
the model to predict three labels (classes): woman, plural, and dative (see Sering
et al., 2018, for mathematical details). Naive discriminative learning has been used
successfully for modeling, e.g., unprimed visual lexical decision latencies for both sim-
ple and morphologically complex words (Baayen et al., 2011, 2016a), masked priming
(Milin et al., 2017), non-masked morphological priming (Baayen and Smolka, 2020),
the acoustic duration of English syllable-final [s] (Tomaschek et al., 2019), and early
development of speech perception in infants (Nixon and Tomaschek, 2020, 2021).3

Arnold et al. (2017) and Shafaei-Bajestan and Baayen (2018) used naive discrimi-
native learning to train classifiers for SWR for German and English respectively. Both
models made use of cues that were extracted from the audio signal. Below, we discuss
how this was done in further detail, and in this study we will show how their method
of signal preprocessing can be enhanced. Importantly, both studies took as input the
audio files of words extracted from spontaneous conversational speech.

Linear Discriminative Learning (Baayen et al., 2019) relaxes the assumption made
by Naive Discriminative Learning that outcomes are coded as present (1) or absent (0).
By allowing outcomes to be real numbers, words’ meanings can now be represented us-
ing vector representations from distributional semantics (Landauer and Dumais, 1997;
Mikolov et al., 2013). Mathematically, LDL models are equivalent to multivariate mul-
tiple regression models. Baayen et al. (2019) tested their model on 130,000 words ex-
tracted from 20 hours of speech sampled from the NewsScape English Corpus (Uhrig,
2018a), which is based on the UCLA Library Broadcast NewsScape. Chuang et al.

3For details on how NDL and LDL model the processing of morphologically complex words, see Baayen et al.
(2018), Chuang et al. (2019), and Baayen and Smolka (2020).
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Table 1. Overview of NDL and LDL
NDL LDL

cues discrete (1/0) discrete (1/0)/real valued
outcomes discrete (1/0) real-valued
incremental learning Rescorla-Wagner Widrow-Hoff
endstate of learning Danks equilibrium equations multivariate multiple regression

(2020) trained an LDL model on the audio files of the MALD database (Tucker et al.,
2019), and used this model to predict the acoustic durations and auditory lexical de-
cision latencies to the auditory nonwords in this database.

The Rescorla-Wagner and Widrow-Hoff learning rules implement incremental error-
driven learning that uses gradient descent (for mathematical details, see the next sec-
tion). Alternatively, one can estimate the ‘endstate’ or ‘equilibrium state’ of learning.
This endstate provides the connection strengths between cues and outcomes for an
infinite number of tokens sampled from the training data. Danks (2003) provides equi-
librium equations for the endstate of learning with the Rescorla-Wagner learning rule.
Table 1 provides an overview of how NDL and LDL set up representations and error-
driven learning. How exactly the discrete (NDL, previous LDL models) or real-valued
(LDL, this study) cue vectors are defined is independent of the learning algorithms.
Below, we discuss in further detail the choices made in the present study for repre-
senting form and meaning. In the next section, we provide details on the mathematics
underlying NDL and LDL. Readers who are not interested in the technical details can
proceed to section 2.3.

2.2. Formal model definitions

The error-driven learning algorithms of Rescorla-Wagner, Widrow-Hoff, and LDL re-
gression are supervised learning algorithms that learn the weights on the connections
between cue (input) and outcome (output) values in double-layer artificial neural net-
works with the objective of minimizing the discrepancy between the desired outcome
and the system’s predicted outcome. The first two models achieve this mapping by up-
dating the weights step by step as learning events are presented to the model. The third
algorithm calculates the final state of learning using the matrix algebra of multivariate
multiple regression. We begin with formally defining the task of iterative learning from
a training set.

Definition 2.1. (learning).
Given

• scalars m, n, and p,
• a set C = {ci} for i ∈ [ 1 · ·m ], where ci is a cue,
• a set O = {oj} for j ∈ [ 1 · ·n ], where oj is an outcome,
• a set X = {xt} for t ∈ [ 1 · · p ], where xt is a row vector over C,
• a set Y = {yt} for t ∈ [ 1 · · p ], where yt is a row vector over O,
• a labeled training sequence of learning events T = (et) for t ∈ [ 1 · · p ], where
et = (xt,yt) is a learning event,

compute a mapping P : X → Y such that P (xt) ≈ yt.

We first consider incremental learning. Here, we use a double-layer fully-connected feed-
forward network architecture for learning the mapping P from the training sequence
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Figure 1. A double-layer fully-connected feed-forward neural network during learning at trial t.

T (Figure 1). This network has m neurons in the input layer, n neurons in the output
layer with activation function f , and m × n connections from the input layer to the
output layer. Input vector xt = [xti]1×m stores xti, the value that input neuron ci
assumes at trial t, and output vector yt = [ytj ]1×n stores ytj , the value that output
neuron oj assumes at trial t. The weight on the connection from ci to oj at trial t is
denoted as wtij .

At trial t, an output neuron oj receives m input values xti on afferent connections
with associated weights wtij , and combines the input values into the net input activa-
tion atj

atj =

m∑
i=1

xtiwtij .

In neural networks, a variety of activation functions f are available for further trans-
forming this net input activation. In our model, f is always the identity function, but
f can be chosen to be any Riemann integrable function. Thanks to using the identity
function, in our model, the neuron’s predicted output ŷtj is simply

ŷtj = f(atj) = atj .

The error for a neuron is defined as the difference between the desired target output
and the output produced by the neuron:

Etj = ytj − ŷtj .

The error for the whole network is defined as sum of squared residuals divided by two:

Et =

n∑
j=1

1

2
(ytj − ŷtj)2. (1)

Both the Rescorla-Wagner and the Widrow-Hoff learning rules try to find the minimum
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of the function Et using gradient descent (Hadamard, 1908), an iterative optimization
algorithm for finding a local minimum of a function. The algorithm, at each step, moves
in the direction of the steepest descent at that step. The steepest descent is defined
by the negative of the gradient. Therefore, at each trial, it changes the weight on the
connection from ci to oj ,

wtij = w(t−1)ij + ∆wtij ,

proportional to the negative of the gradient of the function Et:

∆wtij ∝ −
∂Et

∂wtij
.

Thus, assuming a constant scalar η, often referred to as the learning rate, the changes
in weights at time step t are defined as ∆wtij = −η ∂Et

∂wtij
or,

∆wtij = η(ytj − ŷtj)f ′(atj)xti (2)

(see appendix A.1 for a proof of (2), which is known as the Delta rule and as the
Least Mean Square rule). After visiting all learning events in the training sequence,
the state of the network is given by a weight matrix W = [w(t=p)ij ]m×n = [wij ]m×n.
The requested mapping P in definition 2.1 is given by element-wise application of the
activation function f to the net input activations. Since in our model, f is the identity
function, we have that

P (xt) = f ◦ (xtW ) = xtW = ŷt.

Widrow-Hoff learning assumes that xt and yt are real-valued vectors in Rm and Rn

respectively. Rescorla-Wagner learning is a specific case of the general definition of 2.1
in which the cues and outcomes of the model can only take binary values, representing
the presence or absence of discrete features in a given learning event. Rescorla-Wagner
also restricts the activation function f to be the identity function (see appendix A.2
for further details).

Instead of building up the network incrementally and updating the weights for each
successive learning event, we can also estimate the network, or its defining matrixW in
one single step, taking all training data into account simultaneously. To do so, we take
all learning trials together by stacking the input vectors xt in matrixX = [xti]p×m and
stacking the output vectors yt in matrix Y = [ytj ]p×n, for all i, j, t. We are interested
in finding a mapping that transforms the row vectors of X into the row vectors of Y
as accurately as possible. Here, we can fall back on regression modeling. Analogous to
the standard multiple regression model

y = Xβ + ε,

we can define a multivariate multiple regression model

Y = XB +E (3)

with errors ε and E being i.i.d. and following a Gaussian distribution. The multivariate
regression model takes a multivariate predictor vectorXt., weights each predictor value
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by the corresponding weight inB.t, resulting in a vector of predicted values Ŷt.. Assume
that X is an m-by-m square matrix with determinant det(X) 6= 0. Then there exists
a matrix X−1, the inverse X, such that

XX−1 = X−1X = Im,

where Im is the identity matrix of size m. Then, the matrix of coefficients B is given
by

B = X−1Y

(see appendix A.3 for illustration). In practice, X is singular, i.e., its determinant
is 0, and the inverse does not exist. In this case, the Moore-Penrose (Penrose, 1955)
generalized matrix inverse X+ can be used

B = X+Y .

Calculating the Moore-Penrose pseudoinverse is computationally expensive, and to
optimize calculations the system of equations Y = XB can be recast as

Y = XB (4)
(XTX)−1XTY = (XTX)−1XTXB

(XTX)−1XTY = B.

The inverse is now required for the smaller matrix XTX. In this study, we estimate B
using the Moore-Penrose pseudoinverse. Returning to our model for SWR, we replace
the multivariate multiple regression equation (3) with

Y = XW , (5)

where W , the matrix defining the connection weights in the network, replaces the
matrix of coefficients B. We will show below that W provides us with a network that
has reached the endstate of learning, where its performance accuracy is maximal.

The twin models of NDL and LDL can now be characterized mathematically as
follows. NDL’s incremental engine uses Rescorla-Wagner, LDL’s incremental engine
is Widrow-Hoff.4 For the endstate of learning, NDL uses the equilibrium equations
of Danks (2003), which yield exactly the same weight matrix as the one obtained by
solving (5). LDL’s endstate model uses the multivariate multiple regression model
using (4).

Given a trained model with weight matrixW , the question arises of how to evaluate
the model’s predictions. For a learning event et, NDL returns the outcome oj with the
highest value in the predicted outcome vector:

argmax
oj

xtW .

LDL calculates the Pearson correlation coefficients of the predicted outcome vector ŷt
and all gold standard outcome vectors Yt, resulting in a vector of correlations rt =

4For further details and optimized code for incremental learning, including also the Kalman filter, see Milin
et al. (2020).

9



[ r(ŷt,Yt) ]1×p, and returns the word type for the token with the highest correlation
value

argmax
yt

rt.

2.3. Challenges for spoken word recognition with LDL

Previous studies using LDL (Baayen et al., 2019) and NDL (Shafaei-Bajestan and
Baayen, 2018) for English auditory word recognition report good accuracy on the
training data: 34% and 25%, respectively. However, the latter study documents that
accuracy is halved under cross-validation but is still superior to that of Mozilla Deep
Speech.5 It is therefore possible that LDL is substantially overfitting the data and that
its cross-validation accuracy is by far not as good as its accuracy on the training data.
To place this question in perspective, we first note that models for visual word recog-
nition as well as models such as Trace and Shortlist have worked with invariable
symbolic input representations for words’ forms. However, in normal conversational
speech, the wave forms of different tokens of the same linguistic word type are never
identical, and often vary substantially. Thus, whereas models working with symbolic
representations can dispense with cross-validation, models that take real speech as in-
put cannot be evaluated properly without cross-validation on unseen acoustic tokens
of known, previously encountered, linguistic word types. We note here that gauging
model performance on seen data is also of interest, as for a psycholinguistic model the
question of how well the model remembers what it has learned is of intrinsic interest.

A related issue is whether LDL, precisely because it works with linear mappings,
may be too restricted to offer the desired accuracy under cross-validation. Thus, it is an
empirical question whether the hidden layers of deep learning can be truly dispensed
with. If hidden layers are indeed required, then this would provide further support for
the position argued for by Magnuson et al. (2020) that phonemes are essential to SWR
and that they emerge naturally in a deep learning network’s hidden layers (but see
Gaskell and Marslen-Wilson, 1997, 1999, for counterevidence). Furthermore, even if
LDL were to achieve good performance under cross-validation, using a linear mapping
from acoustic features to semantic vectors, then how would the model account for the
evidence for phone-like topological maps in the cortex (see, e.g., Cibelli et al., 2015)?

There is one other aspect of the question concerning potential overfitting that re-
quires further investigation. It is well known that deep learning networks run the risk
of overfitting, too. Often there is a sweet spot as the model is taken through the dataset
repeatedly to optimize its weights, at which accuracy under cross-validation reaches
a local maximum. With further training, accuracy on the training set then increases,
whereas accuracy under cross-validation decreases — the hallmark of overfitting. Weitz
(2019) observed that the loss function for an LSTM network distinguishing between
100 word types in our dataset repeatedly jolts sharply out of local minimum beyond a
threshold for training. This raises the question of whether the endstate of learning, as
used by LDL, is actually optimal when accuracy is evaluated under cross-validation.
If it is suboptimal, then incremental learning in combination with cross-validation is
preferable under the assumption that there is a sweet spot where accuracy on the
training data and on unseen data is properly balanced.

A very different challenge to NDL and LDL comes from classical cognitive models

5See https://github.com/mozilla/DeepSpeech (last accessed June 26, 2020).
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of SWR that provide predictions over time for the support that a target word and
its closest competitors receive from the incoming auditory stimulus (Marslen-Wilson,
1984), irrespective of whether words are considered in isolation as in Trace or in
sentence context as in Shortlist. The temporal granularity of the previous NDL and
LDL models (Arnold et al., 2017; Baayen et al., 2019; Shafaei-Bajestan and Baayen,
2018), however, is too coarse to be able to provide detailed predictions for cohort-
like effects. An important goal of the present study is to develop enhanced acoustic
features that enable the model to predict the time-course of lexical processing with
greater precision.

A final challenge that we address in this study is whether further optimization of
model performance is possible by enhancing the representation of words’ meanings.
Whereas models such as the Distributed Cohort Model and Earshot assign randomly-
generated semantic representations to words, and Diana uses localist representations
for word meanings, Baayen et al. (2019) and Chuang et al. (2020) made use of semantic
vectors (aka word embeddings, see Gaskell and Marslen-Wilson, 1999, for a similar
approach) derived from the Tasa corpus (Ivens and Koslin, 1991; Landauer et al., 1998)
using the algorithm described in Baayen et al. (2019, 2016a).6 The Tasa corpus, with
10 million words, is very small compared to the volumes of texts that standard methods
from machine learning such as word2vec (Mikolov et al., 2013) are trained on (typically
billions of words). Although our Tasa-based semantic vectors perform well (see Long,
2018, for an explicit comparison with word2vec), they may not be as discriminable as
desired, thereby reducing model performance. We therefore investigated several ways
in which the choice of semantic vectors affects model performance.

In what follows, we first address the issues surrounding potential overfitting (sec-
tion 4). We then introduce enhanced acoustic features that afford greater temporal
granularity (section 5). The question of what semantic representations are optimal
is investigated in section 6. Section 7 brings the results from the preceding sections
together and defines and tests our enhanced model for SWR, LDL-AURIS.

3. Data

The data used in the current study is a subset of the UCLA Library Broadcast News-
Scape,7 a massive library of audiovisual TV news recordings along with the correspond-
ing closed captions. Our subset from the year 2016 was taken from the NewsScape
English Corpus (Uhrig, 2018a). It consists mainly of US-American TV news and talk
shows, and includes 500 audio files that are successfully aligned with their closed cap-
tions for at least 97% of their audio word tokens using the Gentle forced aligner.8 The
real success rate is most likely substantially lower than the self-reported 97% but is
still expected to be around 90% for these files. One of the reasons for the lower actual
performance is that closed captions are often not accurate transcripts of the spoken
words. Still, the error rate is an acceptable price to pay for being able to work with a
large authentic dataset. The aligner provides alignment at word and phone level. Subse-
quently, we automatically extracted the relatively clean 30-second long audio stretches
where there is speech with little background noise or music, following Shafaei-Bajestan

6For the importance of working with empirical semantic vectors in computational modeling studies, see Heit-
meier and Baayen (2020).
7See http://newsscape.library.ucla.edu/ and http://tvnews.library.ucla.edu/ (last accessed June 26,

2020).
8See http://lowerquality.com/gentle (last accessed June 26, 2020).
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Figure 2. The dataset shows similar statistical trends to those of the English language’s lexicon.
The left panel shows that word frequency decreases linearly with Zipf word rank in a double logarithmic plane,
a necessary condition for a power law relation. The right panel shows that word duration follows a lognormal
distribution.

and Baayen (2018). 2287 of such segments were randomly sampled to comprise a total
of 20 h of audio including non-speech sounds.

This dataset contains 131 372 uninflected non-compound word tokens of 4741 word
types.9 All words are lower-cased and stop words are retained. The left panel of Figure 2
shows that words in this dataset roughly follow Zipf’s law. The durations of audio word
tokens add up to a total of 9.3 h with an average word duration of 254 ms (SD = 154,
range: 10 − 1480). One-third of the tokens are approximately between 100 to 200 ms
long. The longest audio token belongs to an occurrence of the word ‘spectacular’.
Gentle’s temporal resolution is 10 ms, and sometimes when there are extreme phonetic
reductions or other alignment problems, sounds and thus even monophonemic words
are assigned a duration of 10 ms. In our dataset, instances of the words ‘are’, ‘a’, ‘i’,
‘or’, ‘oh’, ‘eye’, ‘e’, ‘owe’, ‘o’ have been assigned this length. Due to the low overall
number of such cases, they will not receive any separate treatment, even though a
duration of 10 ms is highly implausible. Appendix B provides some examples of such
imperfect alignments.

The right panel of Figure 2 shows that word duration has an approximately lognor-
mal distribution, an observation in accordance with previous findings for the distri-
bution of American-English spoken word lengths (French et al., 1930; Herdan, 1960).
This dataset is employed in all simulations presented throughout the present study. All
models are trained and tested on single word tokens as given by the word boundaries
provided by the aligner.

The choice to model isolated word recognition is motivated primarily by the practi-
cal consideration that modeling word recognition in continuous speech is a hard task,
and that a focus on isolated word recognition makes the task more manageable. It can
be observed that, in general, this task is similar to a multiclass classification problem,
classifying auditory instances into one of the thousands of word types possible. This

9A small percentage of the data comprises inflected forms (6%) and compound words (less than 2%) which
were not detected by our tagging algorithms.
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is not to say that isolated word recognition is a simple task. On the contrary, Pickett
and Pollack (1963) and Pollack and Pickett (1963) demonstrated long ago that spoken
words isolated from conversational speech are difficult to recognize for human listen-
ers: American English speech segments comprising one word with a mean duration of
approximately 200 ms are, on average, correctly identified between 20% to 50% of the
times by native speakers, depending on speaking rate. Arnold et al. (2017) reported
similar recognition accuracy percentages from 20% to 44% for German stimuli with an
average duration of 230 ms. Interestingly, deep learning networks are also challenged
by the task of isolated word recognition. Arnold et al. (2017) reported that the Google
Cloud Speech API correctly identified only 5.4% of their stimuli. Likewise, Shafaei-
Bajestan and Baayen (2018) found that Mozilla Deep Speech, an open-source imple-
mentation of a state-of-the-art speech recognition system, performed with an accuracy
around 6%, lagging behind the accuracy of their NDL model with around 6 − 9%.
However, the lower performance of deep learning is likely to be due to the pertinent
models being trained on much larger datasets; in other words, the NDL models had
the advantage of being fine-tuned to the specific data on which they were evaluated.

A further reason for focusing on isolated words at this stage of model develop-
ment is that, with the exception of the shortlist models (Norris, 1994; Norris and
McQueen, 2008), computational models in psycholinguistics have also addressed single
word recognition. While Weber and Scharenborg (2012) have argued that recognizing
individual words in utterances is a precondition for understanding, we would maintain
that the evidence to the contrary is overwhelming. Besides the obvious problems for
such an approach that arise from the small percentage of identifiable words discussed
in the previous paragraph, Baayen et al. (2016b) have argued that not only is such
segmentation unnecessary for discrimination but that it is also inefficient. Furthermore,
evidence from language acquisition research seems to indicate that entire chunks are
often learned first and understood although the segmentation into words will take place
later in development (see, e.g., Tomasello, 2003).

By focusing on isolated word recognition, we are also setting ourselves the task to
clarify how much information can be extracted from words’ audio signals. Deep learning
models for speech recognition depend heavily on language models, and current deep
learning implementations may, given the above-mentioned results, underestimate the
mileage that can be made by careful consideration of the rich information that is
actually present in the acoustic signal. It is noteworthy that it has been argued that in
human (continuous) SWR the acoustic input has overwhelming priority (Gaskell and
Marslen-Wilson, 2001; Magnuson, 2017) (but see Cooke, 2006, for counterevidence).

4. Learning with Rescorla-Wagner, Widrow-Hoff, and multivariate linear
regression

The aim of this section is to clarify how incremental learning and the endstate of
learning compare. Of specific interest is whether the endstate of learning is suboptimal
compared to some intermediate stage reached through incremental learning. We also
consider how working with discrete semantic vectors (with sparse binary coding of the
presence of lexemes) as opposed to real-valued semantic vectors affects results.
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4.1. Method

For incremental learning with gradient descent training, we need to specify a learning
rate η (set to 0.001 in our simulations) and the number of iterations n through the data
(set to 1 in previous studies using NDL, but varied in the present simulations). There is
no need for choosing η and n when using the matrix inversion technique for estimating
the endstate of learning. Inversion of large matrices can become prohibitively slow for
very large datasets. Fortunately, there have been major developments in optimizing
the algorithms for computations of the pseudo-inverse in computer science (see Horata
et al., 2011; Lu et al., 2015, for example), and for the present data, all pseudo-inverse
matrices are straightforward to calculate.

Table 2 summarizes the four set-ups that we considered by crossing the training
method (incremental vs. endstate of learning) with the method for representing word
meanings (NDL vs. LDL). For all simulations, the acoustic input is represented by
the Frequency Band Summaries (FBS) features developed by Arnold et al. (2017). For
incremental learning with gradient descent for Rescorla-Wagner and Widrow-Hoff we
made use of the Python library pyndl (Sering et al., 2020). For endstate estimation with
matrix inversion, we developed original code packaged in Python library pyLDLauris,
available in the supplementary materials.

The input to pyndl is a sequence of learning events consisting of a set of cues
and a set of outcomes. For NDL, the set of outcomes provides identifiers for the
lexomes realized in the speech signal. Lexomes are defined as identifiers of, or pointers
to, distributional vectors for both content words and grammatical functions such as
plural and past (Baayen et al., 2016a; Milin et al., 2017). Mathematically, the set of
outcome lexomes is represented by means of a binary vector with bits set to 1 for those
lexomes that are present in the word, and set to 0 for all other words (see Baayen
and Smolka, 2020, for further details). Since in the present study we only consider
uninflected monomorphemic words and uninflected derived words, and no compound
words (see Baayen et al., 2019, for further details), the set of lexomic outcomes reduces
to an identifier for a word’s content lexome, and the corresponding semantic vector
reduces to a vector with only 1 bit on (one-hot encoding). For the present dataset, the
lexomic vectors have a dimensionality of 4741 – the number of unique word types.

For simulations using LDL, one-hot encoding is replaced by real-valued semantic
vectors. The word embeddings are supplied to the training algorithms in the form of a
matrix. The word identifier for the lexome in the standard input for the algorithm is
used to extract the appropriate semantic vector from this matrix. The semantic vectors
that we consider here are obtained from a subset of semantic vectors derived from the
Tasa corpus as described in Baayen et al. (2019), comprising 12 571 word types and
morphological functions, each of which is associated with a real-valued vector of length
4609.10 Henceforth, we will refer to this semantic space as the Tasa1 space. It contains
vectors for all of the word types in our dataset.

For both NDL and LDL, we need a matrix specifying the acoustic features for each
of the word tokens in our dataset. From the features extracted for a word from the
audio signal, following Arnold et al. (2017), an input form vector is constructed with 1s
for those acoustic features that are present in the word and 0s for those features that

10Baayen et al. (2019) constructed a semantic vector space by training an NDL network on the Tasa corpus.
The network was trained to predict, for all sentences, all the lexomes (words, inflectional functions such as
plural, and derivational functions such as agent for agents with er) in a sentence from the same lexomes
in that sentence. The row vectors of the resulting lexome-to-lexome weights matrix are the obtained semantic
vectors, after having the main diagonal of the matrix set to zero and retaining the 4609 columns, out of 12 571,
with the highest variances. See section 2 of that paper for more details and validation of the vectors.
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Table 2. The four models considered in the simulations.

Outcomes

Training Method lexomes semantic vectors

gradient descent Rescorla-Wagner (NDL) Widrow-Hoff (LDL)
matrix inversion NDL classifier (Danks, 2003) LDL multivariate multiple regression

are not realized in the word. The form vectors for the dataset (N = 131 372) have a
dimensionality of 40 578 – the number of unique FBS features. Thus, our form vectors
are extremely sparse. Defining vector sparsity as the ratio of zero-valued elements to
the total number of elements in the vector, our form vectors have an average sparsity
of 0.99 (SD = 0.009).

Thus, for both NDL and LDL, we have two matrices, a 131 372 × 40 578 form
matrix C, and a semantic matrix S which is of dimension 131 372 × 4741 for NDL
and of dimension 131 372 × 4609 for LDL, irrespective of whether or not learning is
incremental. For non-incremental learning, the weight matrix (or matrix of coefficients)
is obtained by solving the system of equations defined by C and S as explained in the
preceding section. For incremental learning, learning proceeds step by step through all
the learning events defined by the rows of the matrices. This process is repeated for
each of the n iterations over the data.

4.2. Results

Our first simulation experiment takes as starting point the NDL model of Shafaei-
Bajestan and Baayen (2018), which maps the (discrete) auditory cues onto lexomic
semantic vectors. As this study also considered only uninflected words, the task given
to the model is a straightforward classification task. Figure 3 presents the classification
accuracy on the training data at the endstate of learning by means of a horizontal
dashed line. The solid line presents model accuracy when the Rescorla-Wagner learning
rule is used. The first data point represents accuracy after one iteration, the value
reported by Shafaei-Bajestan and Baayen (2018). Subsequent datapoints represent
accuracy after 100, 200, . . . , 1000 iterations through the dataset. Importantly, the
endstate accuracy emerges as the asymptote of incremental learning. Apparently, it
is not the case that there is a sweet spot at which incremental learning should be
terminated in order to avoid overfitting.

In the second simulation experiment, we replaced one-hot encoding of semantic vec-
tors with the distributional vectors of the Tasa1 semantic space. Figure 4 illustrates
that training with the Widrow-Hoff learning rule to discriminate between words’ se-
mantic vectors also slowly moves towards the endstate asymptote. However, the overall
accuracy of this model is substantially reduced to only 33.7% at equilibrium. Although
again incremental learning with the Widrow-Hoff learning rule is confirmed to be incre-
mental regression, with estimated coefficients asymptoting to those of a multivariate
multiple regression analysis, the drop in accuracy is unfortunate. Why would it be that
moving from one-hot encoded semantic vectors to distributional vectors is so detrimen-
tal to model performance?

A possible reason is that the classification problem with one-hot encoded vectors is
easier. After all, one-hot encoded vectors are all completely orthogonal: the encoding
ensures that each word’s semantic vector is fully distinct and totally uncorrelated with
the semantic vectors of all other words. One-hot encoding should therefore make the
task of the classifier easier, as semantic vectors have been made optimally discriminable.
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With empirical semantic vectors, by contrast, words will be more similar to other words,
and this makes them more difficult to learn. To test this explanation, we replaced the
Tasa1 vectors in the previous experiment by random vectors sampled from a uniform
distribution over [0, 1). The resulting pattern of learning is virtually identical to that
shown in Figure 3 (figure not shown). Thus, as long as semantic vectors are orthogonal,
incremental learning with Rescorla-Wagner and with Widrow-Hoff produces exactly the
same results.

The above simulations quantified accuracy on the training set. To gauge the extent
to which the models overfit, we split the data into a training and a test set with a
9:1 ratio. A weight matrix is trained on the training set using LDL that predicts the
real-valued semantic vectors (of section 6.3) from FBS features. The matrix is applied
once to the training set and another time to the test set. These accuracy numbers are
marked by two horizontal dashed lines in Figure 5. Another weight matrix is trained
incrementally on the training set using Widrow-Hoff that predicts semantic vectors
from FBS features. There were 1000 epochs on the training set in this simulation. We
measured model performance in terms of accuracy after the first epoch, and then after
every 100 epochs, once by applying the matrix to the training set, and another time
by applying it to the test set, visualized by the two curves in Figure 5.

With respect to the test data, we observe the same pattern that characterizes model
performance on the full data: the incremental learning curves monotonically tend to-
ward the end-state accuracy predicted by LDL. However, whereas with more iterations
over the data, accuracy on the training set increases, accuracy on the test set slightly
decreases. With more reiterations over the same input, unsurprisingly, the model tunes
better and better into seen data at the cost of the unseen data. The network handles
this trade-off by gaining more than 35 percentage points in accuracy on the training set
while losing less than 2 percentage points on the test set. The discrepancy between per-
formance on the training data and performance on the test data is, however, substantial
and indicates the model is largely overfitting the data. An important motivation for
the development of LDL-AURIS is to reduce the amount of overfitting.

4.3. Discussion

The four simulation experiments all show that there is no sweet spot for incremental
learning, no matter whether accuracy is evaluated on the training or the test data.
The endstate is the theoretical asymptote for learning when the number of epochs n
through the training data goes to infinity. Our simulations also show that the Widrow-
Hoff and Rescorla-Wagner learning rules produce identical results, as expected given
the mathematics of these learning rules. Furthermore, our simulations clarify that
model performance, irrespective of the estimation method, critically depends on the
orthogonality of the semantic vectors. In section 6, we return to this issue and we
will present a way in which similarity (required for empirical linguistic reasons) and
orthogonality (required for modeling) can be properly balanced. Finally, comparison of
model performance on training data and test data shows that the model is overfitting
the data. The next section starts addressing this problem by attending to the question
of whether the features extracted from the auditory input can be further improved.
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Figure 3. NDL learning curve, using one-hot encoded semantic vectors. NDL accuracy using the
Rescorla-Wagner learning rule approaches the asymptotic equilibrium state of the NDL classifier.
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Figure 4. Widrow-Hoff learning curve, using semantic vectors derived from Tasa. Widrow-Hoff
accuracy approaches the asymptotic state approximated by an LDL model, but accuracy is substantially
reduced compared to Figure 3.
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Figure 5. Comparison of Widrow-Hoff performance on training and test sets. Similar to previous
figures for model accuracy gauged on seen data, no sweet spot is found for incremental learning tested on
unseen data. However, as the accuracy on the training data increases with more iterations on the same data,
the accuracy on the test data decreases.

5. Learning with enhanced auditory features

Thus far, we have used the discrete FBS acoustic features proposed by Arnold et al.
(2017). These features log patterns of change in energy over time at 21 frequency
bands defined on the mel scale, a standard perceptual scale for pitch. These patterns
of change are extracted for stretches of speech bounded by minima in the smoothed
Hilbert envelope of the speech signal’s amplitude (henceforth, chunks), and summarized
using a pre-defined set of descriptive statistics.11 The number of different FBS features
for a word is a multiple of 21 and the total number of features typically ranges between
21 and 84, depending on the number of chunks.

The FBS algorithm is inspired by the properties and functions of the cochlea, and
the basilar membrane in particular. The FBS algorithm decomposes the incoming
continuous signal in the time domain into a sum of simple harmonics through a Fast
Fourier Transform, similar to the basilar membrane’s response to a complex sound with
multiple excited regions corresponding to the sound’s constituent frequencies, which is
enabled by its tonotopic organization. Furthermore, power values present at different
frequencies are summed over a series of filters obtained according to the MEL formula
presented in Fant (1973), similar to the cochlea’s separation of energy in the input signal
by a series of overlapping auditory critical filter banks that jointly are responsible
for the nonlinear relationship between pitch perception and frequency. In addition,
the energy values are then log-transformed, similar to the logarithmic relationship
between loudness perception and intensity. Finally, the algorithm summarizes change
patterns over time in the energy values at different frequency bands by means of discrete

11The complete set contains the frequency band number, the chunk number, the first, the last, the minimum,
the maximum, and the median of the normalized, discretized log MEL energy values.

18



features. An FBS feature extracted from the acoustic input is assumed to correspond
to, at a functional level, a cell assembly that is sensitive to a particular pattern of
change picked up at the basilar membrane and transferred in the ascending auditory
pathway to the auditory cortex.

This approach to signal processing differs from standard approaches, in that the focus
is on horizontal slices of the spectrogram, corresponding to different frequency bands
on the basilar membrane, instead of the vertical slices in the spectrogram that corre-
spond to phones. Although initial results obtained with this approach are promising
(see Arnold et al., 2017; Shafaei-Bajestan and Baayen, 2018, for detailed discussion),
one problem with FBS features is that their temporal resolution is restricted to time
intervals that are of the order of magnitude of the time between minima in the Hilbert
envelope, which correspond roughly to syllable-like units. As a consequence, the model
has insufficient temporal granularity to be able to model cohort effects. Furthermore,
the discretization of patterns of change in the frequency bands, necessitated by the
use of the Rescorla-Wagner learning rule within the framework of NDL, may come
with a loss of precision (see Nenadić, 2020, for a critical discussion of FBS features),
and may also underlie the overfitting observed in the preceding section. We therefore
investigated whether, within the framework of LDL, this approach can be enhanced.
In what follows, we define new features, Continuous Frequency Band Summaries (C-
FBS) features, and we will show that they have better performance than their discrete
counterparts.

5.1. Method

Pseudo-code for C-FBS extraction is given by algorithm 1 (displayed below), which
takes the audio file of a word as input, resamples that using the resample function
from the Python package librosa,12 and returns a feature vector for the word by
concatenation of feature vectors for word’s chunks.13 To assemble a feature vector for
a chunk, algorithm 1 finds the chunking boundaries defined by extrema (minima or
maxima) in the Hilbert envelope using algorithm 2 and calls algorithms 3 and 4 on
each chunk.14 Algorithm 3 performs a spectral analysis on a chunk and returns the
logarithm of energies at MEL-scaled frequency bands using the logfbank function
from the Python package python_speech_features.15 Algorithm 4 summarizes the
spectrogram of a chunk and returns a feature vector for the chunk.

Summarization of a chunk’s energy information over time can be attempted in var-
ious ways. In the present implementation, from the sequence of log-energy values at
a particular frequency band and a particular chunk, we extract 1) frequency band
number, 2) an order-preserving random sample of length 20, and 3) correlation coeffi-
cients of the values at the current frequency band with those of the following bands. In
this way, the correlational structure between the frequency bands of a chunk is made
available for learning. For chunks shorter than 100 ms, which will not have 20 energy
values to sample from (since the FFT window size is 5 ms), zeros are added to the end
of the list of the energy values to increase the length to 20. This procedure results in

12See https://librosa.org/doc/main/index.html (last accessed June 26, 2020).
13We used a sampling rate of 16000, a compromise between audio quality and feasibility of C-FBS feature
extraction.
14In our current implementation, minima and maxima are detected on the entire word. This is however only
an implementation detail. The detection can also be implemented incrementally in such a way that features
become available sequentially in time.
15See https://python-speech-features.readthedocs.io/en/latest/ (last accessed June 26, 2020).
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Figure 6. Distribution of chunk durations. Chunk duration follows lognormal distributions in FBS (left
panel) and C-FBS (right panel). C-FBS produces more and shorter chunks compared to FBS. Logarithms are
to the base of the mathematical constant e.

651-dimensional vectors of real numbers for each chunk.
All feature vectors for words obtained by algorithm 1 are then padded with trailing

zeros to match the length of the feature vector for the word with the largest number
of chunks in the dataset. For the current dataset, zero-padded feature vectors have a
dimensionality of 6510 and average vector sparsity of 0.8 (SD = 0.01).

The C-FBS algorithm, as employed in the present study, identifies chunk bound-
aries in a word at the maxima of the signal’s envelope. The top and middle panels
in Figure 11 (see page 32, where it is discussed in more detail) present the chunking
boundaries for the audio signal of the word captain in the waveform and in the power
spectrum, respectively. The Python implementation of the algorithm, which is also
available in the package pyLDLauris, allows the user to fine-tune the chunking criteria.
For a visual summary of the FBS and the C-FBS algorithms and some examples for
the neighborhood structure of C-FBS feature vectors, see appendix C.

The audio tokens in our dataset are, on average, split into 2.23 chunks (N = 131 372,
SD = 1.07, range: 1−10) by the C-FBS algorithm. There is a strong positive correlation
between the duration of words and the number of chunks detected by the C-FBS
algorithm, r(131372) = 0.85, p < 0.001. The average chunk duration is 114 ms (N =
292 776, SD = 55, range: 10− 561).

The FBS algorithm, on the other hand, cannot extract features for audio tokens that
are shorter than 50 ms, a condition that is true for 4011 audio tokens in the dataset.
Setting these short occurrences aside, the audio tokens for which there is a valid FBS
representation are, on average, split into 1.37 chunks (N = 127 361, SD = 0.68, range:
1 − 8). The average FBS chunk duration is 191 ms (N = 174 289, SD = 95, range:
35− 820).

Figure 6 illustrates and compares the distribution of chunk duration by the FBS and
C-FBS chunking procedures. Both distributions are approximately log-normal. As the
C-FBS algorithm implements more fine-grained smoothing of the Hilbert envelope, it is
able to detect more local extrema and produces more and shorter chunks. See appendix
C for minor differences between the FBS and the C-FBS chunking algorithms.
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Algorithm 1 Steps for C-FBS feature extraction
function GetCFBS(word)

wav, sr ← read the word’s wave data and sampling rate from audio file word
if sr 6= 16000 then resample wav to 16000
end if
chunks cs← GetChunks(wav)
word’s C-FBS vector wv ← empty vector
for all chunk ∈ cs do

chunk’s log MEL energies lme← GetLogMelEnergies(chunk)
chunk’s vector v ← GetSummary(lme)
append v to wv

end for
return wv

end function

Algorithm 2 Steps for chunking a stretch of audio
function GetChunks(wav)

analytic signal a← Hilbert transform of wav
envelope e← modulus of the complex-valued a
window w ← a boxcar window
smoothed window se← the convolution of e and w
indices i← arguments of the maxima for e
chunks c← segments of wav split by i
return c

end function

Algorithm 3 Steps for spectral analysis of a stretch of audio
function GetLogMelEnergies(wav)

STFT← Short-time Fourier transform of wav using non-overlapping 5 ms
Hamming windows and an FFT size of 512

power spectrum ps← modulus of the complex-valued STFT, squared,
divided by the FFT size

filterbank fb← 21 auditory critical bands computed based on the MEL formula
of O’Shaughnessy (1987)

MEL power spectrum mps← apply fb to ps
MEL filterbank energies me← sum mps for each filter in fb
replace zeros in me with ε = 2.22× 10−16

log MEL energies lme← loge(me)
return lme

end function
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Algorithm 4 Steps for summarizing the changes in spectral information into a vector
function GetSummary(lme)

v ← empty vector
for integer i = 1→ 21 do

append i to v
if length(lme[i])≥ 20 then

append an order-preserving random sample of length 20 from lme[i] to v
else

zero-pad lme[i] to length 20 and append it to v
end if
for integer j = i+ 1→ 21 do

append correlation between lme[i] and lme[j] to v
end for

end for
return v

end function

We built two models, one using the FBS features of Arnold et al. (2017), the other
using the new C-FBS features. Word meanings were represented by means of seman-
tic vectors from the vector space extracted from the Tasa corpus with 23 561 word
types and morphological functions constructed by Baayen et al. (2019). Henceforth, we
denote this space as Tasa2.16 Vectors from Tasa2 have dimensionality 4609. Tasa2
contains vectors for 4377 of the total number of 4741 word types in the dataset.

5.2. Results

In order to evaluate the accuracy of the C-FBS features, we evaluated recognition ac-
curacy both on the training data itself, and on held-out data using cross-validation. By
comparing the accuracy values, we gain further insight into the extent to which models
are overfitting the training data. Table 3 presents accuracy in percentage correct for
LDL in recognizing word tokens of the dataset for which a Tasa2 vector is available
(N = 123 719). When LDL is provided with the sparse binary vectors of FBS features,
it learns the training data well (accuracy 38.9%), but accuracy under cross-validation
plummets to 6.9%, a clear warning that the model is overfitting. When LDL is sup-
plied with C-FBS features, its performance on the training data is worse, compared to
the original features, at 16.2%, but performance under cross-validation reduces to only
11.3%, nearly double the performance of the original features, and substantially out-
performing the deep learning network tested by Shafaei-Bajestan and Baayen (2018).
Results are similar, but slightly inferior, when maxima are replaced by minima in the
C-FBS chunking algorithm.

What do the new acoustic features represent, and how should they be interpreted?
Questions such as these are not straightforward to answer for the discrete FBS features.
Since the new C-FBS features are continuous rather than discrete, some insight into
what they represent can be obtained relatively straightforwardly by means of cluster-
ing methods. Following Baayen et al. (2018), we reasoned that if our acoustic features
are understood as the functional equivalent of cell ensembles monitoring for patterns

16The training procedure for Tasa2 was similar to that of Tasa1, only with a larger training set of approx-
imately 10 million tokens. Nevertheless, the training set for Tasa2 is not a superset of the training set for
Tasa1.
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Table 3. Comparison of the performance of LDL using FBS and
C-FBS (accuracy of correct word recognition [%]).

Feature extraction Training Accuracya Testing Accuracyb

FBS 38.9 6.9
C-FBS 16.2 11.3

a Recognition accuracy on training data.
b Mean recognition accuracy on test data over 10 cross-validation
folds.

Table 4. Frequencies for chunks com-
prising one phone used in t-SNE analy-
sis.

Phone in Chunk Chunk Frequency

[b] 2588
[p] 1985
[d] 6603
[t] 11633
[A] 2114
[e] 2600
[i] 6866

of change in cochlear frequency bands, then the question arises of how such ensembles
might be organized in a two-dimensional plane, where this plane is a very rough ap-
proximation of some area of the cortex. Given that some topographical clustering of
phones has been observed in medical studies (see Cibelli et al., 2015, and references
cited there), one may expect phone-like clustering when C-FBS features, which are
high-dimensional vectors, are projected onto a two-dimensional space. We used the t-
SNE dimensionality reduction algorithm (Maaten and Hinton, 2008) as implemented in
the scikit-learn Python library (Pedregosa et al., 2011) to visualize the form space in
2D. Essentially, t-SNE is a non-linear technique that is particularly well suited for the
visualization of high-dimensional data and that is often used for interpreting patterns
of activation in deep learning models.

To obtain a two-dimensional representation of the C-FBS features, we proceeded
as follows. First, we extracted a 651-dimensional C-FBS feature vector for all chunks.
Secondly, we computed the list of phones present in a chunk by aligning the phone
boundaries and the chunk boundaries. If a phone is split between two chunks, the
phone is considered to be contained in the chunk with the longer stretch of the phone’s
audio signal. This resulted in a matrix with for each phone token a 651-dimensional
row vector of the C-FBS feature for the chunk in which that phone was present. This
matrix with phone tokens was then first subjected to a Principal Components Analysis,
resulting in an orthogonalized space that in a final step was presented as input for the
t-SNE.

In what follows, we zoomed in on those chunks that contained one of the phones
[b,p,d,t,A,e,i] and that did not fully contain any other phones. Table 4 reports the
frequency of occurrence for all pertinent chunk-phone combinations. Figure 7 presents
the locations in the t-SNE topographic map of the chunk-phone combinations for [b]
and [d] (left panel) and [p] and [t] (right panel). For both pairs of consonants, we
see some clustering with fractal-like properties. The center-most clusters of points
predominantly represent [d] and [t] respectively, with a subcluster of [b] and [p] in
their respective peripheries. This pattern repeats itself in the smaller satellite clusters.
Comparing the two plots, it is noteworthy that [d] (blue) and [t] (purple) show highly
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Figure 7. Topographic map of stop consonants visualized by t-SNE clustering.

similar clusters, perhaps unsurprisingly given that they only differ in voice onset time.
The isomorphism between [b] and [p] is less clear. This, however, may be due to the
substantially smaller number of data points present for these phones. Overall, the
similarity of the two plots shows that the labial-alveolar contrast is in like manner
captured for both [b]-[d] and [p]-[t]. A similar fractal-like structure emerges for the
vowels [A, e, i], as shown in Figure 8, with recurring leaky separation of [i] from [e] and
[A], and some further separation within the [e] and [A] clusters. The apparent difference
between consonants in Figure 7 and vowels in Figure 8 has not been hand-crafted into
the features, e.g. by representing the input in terms of binary vectors over phonemic
features; instead, it emerges from the structure of the C-FBS feature space.

5.3. Discussion

The FBS features developed by Arnold et al. (2017) cover stretches of speech that are
syllable-like. The temporal granularity of these features is too coarse to allow modeling
of cohort effects in auditory word recognition. A comparison of the distribution of chunk
duration in FBS features with the newly developed C-FBS features revealed that the
C-FBS features cover shorter stretches of speech. We return to the question whether
this provides us with sufficient granularity in time to predict cohort effects using C-FBS
features in section 7.2.

From the LDL simulations using FBS and C-FBS algorithms, we conclude that
the features from C-FBS substantially attenuate the over-fitting problem that char-
acterizes the LDL model when using the FBS features. For generalization, working
with real-valued acoustic features instead of discrete summary features offers a clear
performance improvement. We therefore use the C-FBS features in the simulation ex-
periments presented in section 7.

From the t-SNE analysis of C-FBS features we can conclude that, even though these
features slice the spectrogram horizontally, along cochlear frequency bands instead of
vertically, phone by phone, they nevertheless preserve substantial information about
phone classes. At the same time, the overlap between the consonant maps and the
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Figure 8. Topographic map of peripheral vowels visualized by t-SNE clustering.

vowel map indicates that phones need not be uniquely represented in the map, but
will often share a position in the map with other phones. This makes perfect sense
from a phonetic perspective, as co-articulation is ubiquitous. For the present phones,
for instance, place of articulation of the stops is signaled by the formant transitions in
the vowels they co-occur with. Importantly, even though in our model the theoretical
construct of the phoneme does not play a role, the C-FBS features are sufficiently
rich to capture similarities and dissimilarities between phonemes. These similarities,
in turn, co-determine the mapping from form onto meaning. Thus, in our approach,
phones are not emergent on some hidden layer of a deep learning network, but rather
are implicit in the input vectors.

In the next section, we consider whether the representation of meaning in NDL and
LDL can be enhanced further.

6. Learning with enhanced semantic vectors

In section 4, we observed that semantic vectors derived from the Tasa corpus under-
performed considerably compared to either one-hot encoded semantic vectors or near-
orthogonal vectors of random numbers. This observation suggests that ideally semantic
vectors should strike a balance between being well discriminable (close to orthogonal)
while at the same time reflecting the semantic similarities that native speakers perceive
when judging word pairs (see, e.g., the MEN dataset compiled by Bruni et al., 2014).

Would semantic vectors as constructed by means of machine learning methods in
the computational linguistics community, such as word2vec (Mikolov et al., 2013),17
provide a proper balance? Although these vectors are very good predictors of human-
perceived semantic similarity (r(1176) = 0.76, p < 0.001 for the set of words shared
between the MEN and our speech dataset), they are trained on approximately 100
billion words from the Google NewsTM data. This volume is far more than anyone
will ever encounter in their lifetime. Estimates vary among authors, but we can expect

17Obtained from https://code.google.com/archive/p/word2vec/ (last accessed June 26, 2020)
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that language users’ exposure amounts to roughly 9 to 25 million words per year, so
at best, the training set is equivalent to 4000 years of a single human’s experience; see
Uhrig (2018b, pp. 280-281) for a brief discussion and further references. Thus, from
a cognitive perspective, such vectors are unrealistic, as they are tuned to vastly more
knowledge (including the full Wikipedia) and linguistic experience than anybody can
ever assemble in a lifetime. Thus, while training with massive data may give rise to
semantic vectors that are distinct enough to be both discriminable and faithful to
semantic similarity, we decided against them for reasons of cognitive implausibility.

In what follows, we consider whether Tasa2 semantic vectors trained on ‘only’ 10
million words taken from the Tasa corpus can be enhanced by adding some small
amount of random noise. Technically, the idea is that by adding some noise, the se-
mantic vectors become more discriminable, and therefore can be better predicted from
the acoustic feature vectors. In other words, addition of noise is motivated here first of
all as a data augmentation technique, widely used in machine learning to avoid over-
fitting (see Shorten and Khoshgoftaar, 2019, for noise injection in image processing
and Zhang and Yang, 2018, for noise perturbation of word embeddings.) Adding noise
also implements, however crudely, that words’ meanings are richer, in word-specific
ways, than can be captured from textual data. A growing body of literature shows
that perceptually grounded word embeddings outperform those created from word co-
occurrence information alone (see Shahmohammadi et al., 2021, for state-of-the-art
visually grounded word embeddings).

6.1. Method

We contrasted learning with four semantic spaces. The first two are the semantic
spaces Tasa1 and Tasa2 that we introduced in previous sections. Two additional
vector spaces were built by element-wise addition of 4377 noise vectors with 4609
dimensions to the semantic vectors of Tasa2. Noise vectors were sampled from a
Gaussian distribution with µ = 0 and standard deviations 0.001 (henceforth, small
amount of noise) and 1.0 (large amount of noise) respectively.

We assessed the degree of orthogonality of the resulting four semantic spaces with
two evaluation metrics, the average correlation and the average variance. We computed
the average correlation for a semantic space by taking the average of the Pearson r
correlation coefficients for all pairs of semantic vectors in that space. The lower the
average correlation, the closer to orthogonal the set of vectors in the space is. The
average variance for a semantic space is the average over all semantic vectors in the
space of the variance of these vectors. A higher average variance also implies that the
set of vectors in the space is closer to orthogonal.

The data to which we applied these measures comprised all 4377 word types for
which semantic vectors are available in Tasa and which appear in our speech dataset.
LDL models were trained to discriminate distributional features of the different Tasa
semantic spaces using FBS features. Model accuracy was evaluated on the training set.
The extent to which a semantic space captures the semantic structure of the lexical
representations was examined on the MEN database (Bruni et al., 2014) that provides
for 3000 word pairs crowdsourced ratings of semantic similarity. For 1176 word pairs,
semantic vectors are available in all semantic spaces for both words. For this subset
of words, we evaluated to what extent our semantic vectors matched human-perceived
similarity. The subset is properly representative of all word pairs in MEN. A Wilcoxon
rank-sum test failed to reject the null hypothesis that the distribution of ratings of
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Figure 9. Orthogonality measures, average correlation (left panel) and average variance (right panel), as
predictors of LDL accuracy evaluated on the training data.

word pairs in the subset (Mdn = 26.5) and the distribution of ratings of all pairs
(Mdn = 26) are different (W = 1 374 230, p = 0.14).

6.2. Results

Figure 9 plots the training accuracy of the LDL model against the average correlation
of the semantic space in the left panel, and against the average variance of the semantic
vectors in the right panel. LDL training accuracy increases with lower average correla-
tion and higher average variance, as expected. Tasa1 vectors obtained from a smaller
subset of Tasa have the least discriminated features and are not well discriminated by
LDL. More data in the training of Tasa2 compared to the training of Tasa1, resulted
in a vector space with more distinct vectors, thereby facilitating learning. Adding a
tiny amount of noise boosted accuracy substantially. Increasing the standard deviation
of the noise a thousandfold offered only a minor further improvement.

Table 5 lists the Pearson’s coefficients for the correlation between the MEN ratings
for pairs of words and the semantic similarities of the corresponding two semantic vec-
tors from our semantic spaces. The gain in capturing semantic similarities of words
achieved in Tasa2 compared to Tasa1 is likely due to a larger subset being used
when training the Tasa2 space. Addition of a tiny amount of Gaussian noise brought
down the correlation somewhat while at the same time, as demonstrated above, afford-
ing a substantial boost in prediction accuracy. Addition of substantial noise almost
completely removed lexical similarity structure from the vectors, while offering only a
modest additional accuracy gain.

6.3. Discussion

Addition of a tiny amount of noise to the Tasa2 vectors boosted accuracy, evaluated
on the training data, by about 15 percentage points to 53.8%. When we in addition
consider accuracy for these vectors under 10-fold cross-validation, we also observe an
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Table 5. Similarity structure of semantic spaces.
Pearson’s correlation coefficient r and p-value for the
strength of relationship between the similarity ratings
provided by the MEN dataset and the similarity scores
calculated from the vectors of each semantic space. De-
grees of freedom is 1174 for all tests.

Vector space r p-value

Tasa1 0.24 < 0.0001
Tasa2 0.59 < 0.0001
Tasa2 plus small amount of noise 0.47 < 0.0001
Tasa2 plus large amount of noise 0.02 0.4946

improvement from 6.9% to 11.1%. Interestingly, LDL performance with word2vec vec-
tors was not as good (52.6% accuracy on training data, but only 8.5% averaged on 10
folds of test data). We therefore use the Tasa2 vector space with a tiny amount of noise
added in our final simulations presented in the next section, which introduces our best
and definitive model. The addition of Gaussian noise reduces skewness and kurtosis
of the distributions of semantic vectors, reducing outlier effects, and thus facilitating
learning (see appendix D for further details).

7. Putting it all together

Our final simulation study combines the insights of the preceding sections to define
an improved discriminative model for auditory word recognition that we have named
LDL-AURIS. This model makes use of C-FBS features to represent words’ auditory
forms, it uses empirical, as opposed to simulated random, semantic vectors derived
from Tasa with a small amount of noise added, and it estimates network weights
using multivariate multiple regression.

In what follows, we report on the model’s performance, focusing on two main ques-
tions. First, the accuracy of the new model is of interest, both for the training data
on the one hand, and under 10-fold cross-validation on the other hand. Second, does
the better temporal granularity of the C-FBS features compared to the FBS features,
make it possible to now predict the cohort effects that are known to characterize human
auditory word comprehension?

When assessing model performance, it should be kept in mind that the audio from
which C-FBS features were derived is far from perfect: the automatic alignment has an
error rate of around 12% (Uhrig, 2021), and uses the closed captions which themselves
may not correspond to what speakers exactly said.

7.1. Accuracy

LDL accuracy was 25% on training data and average LDL accuracy under 10-fold
cross-validation was 16%. Compared to the model presented in Baayen et al. (2019), the
model showed an 8 percentage point decrease in training accuracy but an 8 percentage
point increase in test accuracy, considerably reducing the extent of the over-fitting
problem. When we consider the number of target semantic vectors among the top
5 and top 10 words showing the strongest correlations with the predicted semantic
vector, accuracy increases to 57% and 75% on training data and to 37% and 50% on
test data. Thus, model accuracy comes close to the lower bound of the range of human
recognition accuracy documented for single word recognition tasks (Arnold et al., 2017;
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Table 6. Summary of the gam.

A. parametric coefficients Estimate Std. Error t-value p-value
(Intercept) -1.6120 0.0100 -161.2772 < 0.0001

B. smooth terms edf Ref.df F-value p-value
s(logdur) 3.9816 3.9998 15377.9701 < 0.0001
s(logfreq) 3.9902 3.9999 20071.5283 < 0.0001

Pickett and Pollack, 1963; Pollack and Pickett, 1963). The performance of our model
contrasts favorably with the recognition rate of Mozilla Deep Speech, which was roughly
10 percentage points lower (Shafaei-Bajestan and Baayen, 2018). This is not to say that
deep learning methods applied to exactly the same data as we are investigating here
cannot reach the same level, or even a better level, of accuracy, but rather that, given
the complexity of the task and the simplicity of the model, performance of LDL-
AURIS is surprisingly good. In this respect, it is noteworthy that the data on which
we train and test the model comes from many different speakers from a wide range of
backgrounds, and that we did not apply any speaker normalization.

Accuracy numbers reported throughout the paper show that the observed improve-
ment in the performance of the final model is due to both the enhancement of the
feature space in section 5 and the enhancement of the semantic space in section 6.
Model performance on unseen data increased by 5 percentage points when features
were upgraded, by 4 percentage points when semantic vectors were refined, and by 9
percentage points when both were altered. The extent of overfitting to training data,
gauged by the observed difference between model performance on the training and test
sets, decreased by 34 percentage points with modification of features alone, increased
by 11 percentage points with modification of semantic vectors alone, and decreased by
34 percentage points with simultaneous modification of features and semantic vectors.
In other words, the benefits of all changes to the model are perfectly additive.

It is known for human auditory word recognition that higher-frequency words are
recognized more accurately, as well as more quickly (see, e.g., Baayen et al., 2007;
Connine et al., 1993; Seidenberg and McClelland, 1989). We used a generalized addi-
tive model (henceforth, gam) with a logistic link function, using the mgcv package for
R (Wood, 2017), to predict whether LDL-AURIS correctly identified a word token,
using log word frequency and log duration as predictors.18 Partial effects are shown in
Figure 10, and Table 6 provides the summary for the gam. Longer words are recognized
more often by LDL-AURIS, and the same holds for more frequent words. The advan-
tage for longer words, given the negative correlation of frequency and length, shows
that LDL-AURIS does not depend on only frequent use, but is also properly sensitive
to the amount of information in the speech signal. The rightmost panel of Figure 10
shows the frequency effect predicted for auditory lexical decision. Here, we assume that
the time required for making a lexical decision is inversely proportional to the prob-
ability predicted by the gam that LDL-AURIS correctly understands the word. The
nonlinear effect of frequency, with a leveling off for higher frequencies, resembles the
kind of nonlinear effect typically observed in reaction time studies of reading (see, e.g.,
Baayen, 2005; Ramscar et al., 2014). A similar pattern also characterizes the auditory
lexical decision times in the Mald database (Tucker et al., 2019) (model not shown).
Thus, qualitatively, the model provides a good approximation of the shape of the word
frequency effect.

18A model that includes the interaction between length and frequency suffers from substantial concurvity,
rendering it uninterpretable. This model is available in the supplementary materials.
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Figure 10. Partial effects of log word duration (left) and log word frequency (center) on LDL-AURIS
recognition accuracy according to a logistic generalized additive model. The right panel presents the reciprocal
of the probability of identification as a function of frequency, the hypothesis being that words with a greater
probability of identification can be responded to more quickly in a lexical decision task.

7.2. Cohort effects

We observed in section 5 that the temporal granularity of the C-FBS features is more
fine-grained than that of the FBS features. To clarify whether this provides our new
model with sufficient granularity in time to predict cohort effects, we constructed words’
audio vectors incrementally. For a given word with C-FBS vector c, and for each of
its temporally ordered successive chunks 1 through k, we first constructed a feature
vector ci that contained the C-FBS features for the i-th chunk, and zeroes elsewhere.
Importantly,

∑k
i=1 ci = c. We then calculated, for each of the successive chunks at

‘chunk time’ t, the cumulative feature vector ct =
∑t

i=1 ci. Finally, for each cumulative
form vector ct, we calculated the corresponding semantic vector ŝt = Fct. Note that
ŝk = ŝ. In other words, instead of carrying out the matrix multiplication Fc all at once,
this multiplication is carried out staggered over time. Because at each successive chunk
a word’s semantic vector is updated, we obtain a time-ordered sequence of semantic
vectors that can be conceptualized as a path or trajectory in semantic space. This
conceptualization of understanding over time as creating a path in lexical-conceptual
space is indebted to Elman (2009).

The lower panel of Figure 11 illustrates the time course of lexical processing for
the target word captain, comparing the correlation of the predicted semantic vector
with that of captain for three input words, cap, capital, and captain. There are 8, 22,
and 7 audio tokens respectively for these three words in our dataset. From this list of
tokens, we randomly selected one audio token for each word, with as constraint that, for
plotting reasons, the number of chunks in the competitors does not exceed the number
of chunks in the target word. The upper panel of Figure 11 presents the audio signal of
the selected token for captain, together with its Hilbert envelope. The red vertical lines
highlight where the Hilbert envelope of the token captain reaches a local maximum.
The selected audio tokens of cap and capital have their local maxima at 0.17 s and
0.14 s, and have a total duration of 0.37 s and 0.41 s, respectively. The center panel
presents the MEL spectrogram corresponding to the audio token of captain shown in
the top panel, with on the vertical axis the 21 auditory filter banks inspired by the
tonotopy of the basilar membrane in the cochlea.

With respect to the time course of lexical processing, in the beginning, at t = 0, no
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auditory information is present, and the word’s meaning is located at the origin of the
semantic space. On the presentation of the first chunk, the model has detected that all
three candidates approximate the target semantic vector to some extent, with captain
already taking the lead. Since the word cap covers a longer stretch of the signal for
[æ] in its second chunk, it is not a strong competitor at the first chunk. The average
correlation value for all the 55 tokens of 9 types that start with [kæp] is 0.022 at the
end of their first chunks. All seven occurrences of captain are correlated with the target
vector well above the mean at the end of the first chunk (M = 0.041, SD = 0.009). By
the end of chunk two, cap and capital in decline and lose out further to captain. The
arrival of [n] in the final chunk pushes the predicted semantic vector of captain even
closer to the target vector.

Instead of aligning words by time in ms, we can align words by chunks. This enables
straightforward calculation of 95% confidence intervals around the sample means of
semantic similarities to the target word over time computed across different audio
renditions of each word type.

The top left panel of Figure 12 shows the same trend observed in the bottom panel
of Figure 11, now not for one randomly-chosen occurrence for each of the word types,
but instead taking into account all occurrences of captain with 3 chunks (4 tokens), cap
with 2 chunks (8 tokens), and capital with 4 chunks (9 tokens). After the presentation
of the first chunk, error bars are still overlapping. After the presentation of the second
chunk, the semantic similarities to the target word predicted from audio tokens of
captain are well-separated from the similarities of the competitors.

The top right panel of Figure 12 is computed in the same way as the top left panel,
but extends the set of competitors in the cohort for captain from cap, capital, and
captain to all of the words in the database that partially match the beginning of the
word captain according to canonical pronunciations given by CELEX (Baayen et al.,
1995). This includes all of the 439 word types in the database that start with [k]. Of
these, 49 start with [kæ], 8 start with [kæp], 2 start with [kæptI] and 1 starts with
[kæptIn]. The words types have token frequencies from 1 to 196 (M = 6.2, SD = 16.2)
and are split into 1 to 8 chunks (M = 3.3, SD = 1.2). As before, we find that although
after the first chunk the model is already zooming in on its gold standard semantic
vector, there is still strong competition. After the second chunk has become available,
all other competitors are left behind.

The remaining panels of Figure 12 present the time course of lexical processing for
five target words: today with 229 competitor types, president with 356 competitor
types, generation with 66 competitor types, and basketball with 293 competitor types,
with the cohorts of competitors determined by the CELEX pronunciations. In all of
the example plots, the target audio tokens end up closest to the target semantic vector
and wins the competition. For a total of 342 target words for which we carried out
a cohort analysis, the target word was the correct winner in 91% of the cases. There
were 32 target words who lost to a competitor. Of these, 88% still were among the
top 10. Many of the errors made by the model are reasonable. Some of the errors are
homophonous words. For example, the competitor inn is the winner for the target
word in. Generally, defeated target words have fewer chunks and are embedded in a
greater number of carrier words, compared to the winning target words. The target
word see, for example, is the runner-up after the competitor seas. This short word is
acoustically embedded in 20 carrier words, leading to heavy competition (Zhang and
Samuel, 2015). Here, it should be kept in mind that especially for very short words,
the accuracy of the forced aligner used to find word boundaries in the acoustic signal
is lowest.
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Figure 11. Time course of lexical access for the target word captain. Top panel: the waveform for
a token of the word captain in dark gray, and the Hilbert amplitude envelope of the signal in orange. The
red vertical lines indicate chunk boundaries, located at the arguments of local maxima of the Hilbert envelope
at 0.18 s and 0.36 s. The dashed black vertical line at 0.4 s indicates the end of word boundary. Mid panel:
the corresponding log MEL spectrogram split at 21 auditory filter banks shown on the y-axis. Lower panel:
semantic similarity, as measured by Pearson’s correlation coefficient r, to the target word as a function of time,
for the target word captain and two competitors cap and capital. For each word, similarity is calculated as
many times as the word has chunks, with each measurement being made between the target’s semantic vector
and the semantic vector predicted from the partial cue vector available at that point in time. The dashed lines
are the linear interpolants between pairs of measured data points. The color-coded transcripts at the bottom
show the phonemes present in the chunks for the three words. Click on the words below or scan QR codes to
listen to the audio.* See page 20, where this figure was first referenced.

cap capital captain

*The links use the Distributed Little Red Hen Lab’s permalink infrastructure, introduced in Uhrig (2020).
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Figure 12. Evolving proximity to targeted semantic vectors as a function of number of chunks
encountered. Horizontal axes represent time t discretized into C-FBS chunks. Vertical axes present the average
time specific semantic similarity of predicted semantic vectors ŝt with the targeted semantic vector across
different audio tokens of competitor word types. Vertical lines denote 95% confidence intervals. Colored lines
connect data points belonging to the same word type. In the top left panel, the target word is captain and the
competitors, cap, capital, and captain, were selected by hand. In all other panels, the competitors are generated
from the canonical pronunciations available in the CELEX database.
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In classical models of lexical processing, in which words’ forms are accessed in par-
allel, the present time course plot would be understood as demonstrating multiple
access and multiple simultaneous assessment unfolding efficiently in real time. In fact,
Marslen-Wilson (1987) argued that a model of spoken word recognition should meet
three functional requirements. First, models should properly reflect ‘multiple access’.
Our model can be interpreted to indicate that all three words are accessed simultane-
ously, forming a class of potential word candidates compatible with the sensory input.
Second, models should reflect ‘multiple assessment’ of word candidates. Our model
appears to meet this requirement as by the end of the first chunk, where multiple
candidates are compatible with the input, the system already ranks candidates. Third,
models should accommodate multiple access and assessment in real time. Our model
also satisfies this requirement: within about 200 ms from word-onset, the target word is
beginning to be recognized, and as more chunks become available, candidates’ rankings
are recalibrated.

However, the general conceptualization underlying our model differs from that of
Marslen-Wilson (1987). Our model construes understanding as it develops over time
as speech comes in as a path through lexical space (cf. Elman, 2009). There are no
discrete processing stages nor a final state in which a word has been accessed, but rather
a gradual process of uncertainty reduction (see also Baayen et al., 2015; Ramscar, 2013;
Ramscar et al., 2013) that, importantly, does not need to resolve into a winner-take-all
state of absolute certainty. Thus, even though the conceptualization of the process of
“lexical access” is different from that of Trace or Shortlist, our model does show
the kind of temporal dynamics that has been an important explanandum for classical
models.

8. General Discussion

The computational model for auditory word recognition laid out in this study builds
on an earlier model proposed by Arnold et al. (2017), enhancing it in several ways.
First, real-valued feature vectors extracted from the speech signal replaced discrete
binary vectors, while maintaining the important insight that cochlear frequency bands
can inform feature engineering for cognitive modeling. Second, discrete binary vectors
with one-hot encoding for words’ meanings were replaced by real-valued semantic vec-
tors. By adding a small amount of noise to vectors derived from a relatively small
corpus (Tasa) using distributional semantics, semantic vectors were obtained that are
sufficiently discriminable while respecting semantic similarities between words. Third,
instead of using incremental learning using the Rescorla-Wagner learning rule, with
one pass through the data, we estimated the endstate of learning using the mathemat-
ics of multivariate multiple regression, which simulation studies show to offer greater
accuracy. In fact, LDL-AURIS can be seen as a statistical model for auditory compre-
hension, with a fixed algorithm that itself cannot be tweaked, but that can be applied to
different datasets, and that will work better, or worse, depending on, first, how exactly
form and meaning representations are defined, and second, on the quality, quantity,
and nature of the training data (see Heitmeier et al., 2021, for detailed discussion).

Together, these new design features offer the following advantages. First, overfitting
on the training data is substantially reduced, whereas prediction for unseen data, eval-
uated by means of 10-fold cross-validation, improved substantially. The gain in model
performance of our best model is exactly the sum of the gains in performance of simpler
models implementing once upgrade only.
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Second, the new acoustic features provide enhanced temporal granularity, allowing
the model to correctly predict cohort-like effects as the speech signal unfolds over time.

Third, the new acoustic features are better interpretable, as shown by projecting
form vectors onto a two-dimensional plane with t-SNE. In this plane, phone-like clusters
emerge. This shows that even though our acoustic features are based on horizontal
slices from the spectrogram (following cochlear frequency band separation) instead
of on vertical slices representing phones, information about phones is implicit in our
acoustic feature vectors.

The clusters that emerge from the t-SNE projection of acoustic vectors onto a two-
dimensional ‘cortical map’ may shed light on the topological clustering observed for
phones in the cortex (Cibelli et al., 2015). Whereas at first sight, the neuro-anatomical
evidence seems to provide strong evidence that phones, as abstract functional units, are
represented in the brain, under our interpretation, such phone clusters emerge from
the constraints that come with processing high-dimensional vectors in much lower-
dimensional neural tissue. Speculatively, clustering cell assemblies that fire for similar
acoustic feature vectors may reduce the metabolic costs of lexical processing, thanks
to pooling of functionally equivalent connections.

In this study, we considered monomorphemic words, and derived words with
monomorphemic base words, but no inflected variants of these words. However, the
general framework within which the present study is conceived, the ‘discriminative lex-
icon’ as outlined in Baayen et al. (2019), sets up semantic vectors for inflected words
by taking the semantic vector of the base word and adding the semantic vectors of the
pertinent inflectional functions. Within this framework, the comprehension model of
Estonian noun declension presented in Chuang et al. (2019) is reasonably accurate for
unseen forms when it is trained on incomplete paradigms (see also Heitmeier et al.,
2021). A question for further research is whether LDL networks will remain productive
with respect to unseen inflected words when the form vectors using symbolic represen-
tations of form (such as triphones) are replaced by real-valued vectors derived from
the acoustic signal itself.

Model performance was evaluated on real spontaneous speech, by many different
speakers, taken from the NewsScape English Corpus (Uhrig, 2018a). As the automatic
alignments in this corpus are not perfect, especially for very short words, the audio data
that is the input to our model is not noise-free. Nevertheless, comprehension accuracy
under 10-fold cross-validation was at 16%, which is close to the lower bound of human
accuracy on the task of recognizing auditory words presented in isolation. We note
here that this accuracy, which is higher than that obtained by Mozilla Deep Speech
evaluated on the same data, is achieved without speaker normalization.

Our best results are based on the regression approach to estimating the mapping
from form to meaning. However, human learning is incremental, and it is therefore
important that the weights of the regression model can in principle be learned in-
crementally with incremental regression using the Widrow-Hoff learning rule. In this
study, we have seen that incremental learning requires many passes through the data
before it converges to the asymptote provided by standard multivariate multiple re-
gression. This is informative in two ways. First, it clarifies that the endstate of learning
is truly conditional on the training data. From the perspective of incremental learning,
this implies incremental learning on an infinite number of epochs through the training
data. As a consequence, effects of frequency of use are no longer strongly present at the
endstate of learning (see Heitmeier et al., 2021, for further details). Second, as human
learners never experience the same sequence of learning events time and time again,
the endstate of learning is an ideal that is likely to be less idealistic as the amount
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of training data increases. It is currently an open question how the model will per-
form on substantially larger amounts of more variegated training data. What is clear
is that when LDL-AURIS is applied to small amounts of synthesized speech, or to
small amounts of laboratory speech, its performance will be unrealistically high.

Fortunately, the amount of audio offered in the NewsScape corpus is so huge that
we can train the model incrementally on thousands of hours of audio, without ever
having to repeatedly present a specific acoustic word token twice. An important goal
for future research is to clarify how well our new model performs when challenged with
such large volumes of speech.

Another important goal for the present research program is to move from mod-
eling isolated word recognition to the modeling of the understanding of continuous
speech, perhaps along the lines of Baayen et al. (2016b). Our model outperforms on
isolated word recognition two deep learning models that we have explored (see Arnold
et al., 2017; Shafaei-Bajestan and Baayen, 2018, for further details). As isolated word
recognition is a task that humans can do with much higher accuracy, it provides a
useful, challenging test case for deep learning models of speech recognition. It should
be acknowledged, however, that our model is conditional on its — highly restricted
— training data, whereas at the same time the deep learning models show impressive
performance when it comes to the recognition of continuous speech.

In summary, we have presented a mathematically very simple model for the mapping
from acoustics to meaning. Combined with sufficiently rich and sufficiently distinctive
high-dimensional representations for form and meaning, this simple model, trained on
highly variable and somewhat noisy spontaneous English, already succeeds in predict-
ing several central findings in experimental studies of human auditory comprehension.
Thus, it provides further proof of concept that in order for auditory comprehension to
be successful, it is not necessary to first extract phonemes from the speech signal. Of all
computational models in psycholinguistics, only the Distributed Cohort Model (Gaskell
and Marslen-Wilson, 1997) has argued that phonemes are not necessary as mediating
units, but their model contains a hidden layer which might have a functionality in the
network similar to that of phoneme layers in models such as Shortlist-b (Norris and
McQueen, 2008). What our simulation studies with LDL-AURIS suggest, by contrast,
is that even such hidden layers are not strictly necessary. Actual computations in the
brain are much more sophisticated than the simple mappings used by LDL-AURIS.
Nevertheless, at the present high level of mathematical abstraction, these mappings
can be surprisingly simple.
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Appendix A. Lemmas

Lemma A.1. Let the function Et be defined according to equation 1. Then

∂Et

∂wtij
= −(ytj − ŷtj)f ′(atj)xti.
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Proof

∂Et

∂wtij
=
∂
(∑

j
1
2(ytj − ŷtj)2

)
∂wtij

definition of Et

=
∂
(
1
2(ytj − ŷtj)2

)
∂wtij

error for neuron j

=
∂
(
1
2(ytj − ŷtj)2

)
∂ŷtj

∂ŷtj
∂wtij

chain rule

= −(ytj − ŷtj)
∂ŷtj
∂wtij

partial derivative

= −(ytj − ŷtj)
∂ŷtj
∂atj

∂atj
∂wtij

chain rule

= −(ytj − ŷtj)
∂f(atj)

∂atj

∂atj
∂wtij

definition of ŷtj

= −(ytj − ŷtj)f ′(atj)
∂atj
∂wtij

= −(ytj − ŷtj)f ′(atj)
∂(
∑

k xtkwtkj)

∂wtij
definition of atj

= −(ytj − ŷtj)f ′(atj)
∑
k

∂(xtkwtkj)

∂wtij
properties of summation

= −(ytj − ŷtj)f ′(atj)
∂(xtiwtij)

∂wtij
zero for all k 6= i

= −(ytj − ŷtj)f ′(atj)xti. partial derivative

Lemma A.2. Using the variables defined in section 2.2, let xt ∈ {0, 1}m, yt ∈ {0, 1}n.
Let f be the identity function for all oj. Let η = αβ. Then, the learning rule of Rescorla-
Wagner can be written as the following

∆wtij = η(ytj − ŷtj)f ′(ati)xti Equation 2

= η(ytj − ŷtj)
∂ati
∂ati

xti identity function

= η(ytj −
∑
i

xtiwtij)xti. defintion of ŷtj

=

{
η(ytj −

∑
i xtiwtij), if xti = 1;

0, if xti = 0.
xti is binary

=


η(1−

∑
i xtiwtij), if xti = 1 and ytj = 1;

η(0−
∑

i xtiwtij), if xti = 1 and ytj = 0;

0, if xti = 0.

ytj is binary

Lemma A.3. Let X, Y , and W be three matrices such that XW = Y , and let X
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Figure B1. Waveform and Hilbert envelope (in orange) for 4 misaligned words that are too short.

be an m-by-m invertible matrix. Then W = X−1Y

XW = Y

X−1XW = X−1Y left multiply both sides with X−1

ImW = X−1Y X−1X = Im

W = X−1Y ImW = W

Appendix B. Data

Some of the imperfect alignments by the forced aligner are visualized in Figure B1 and
Figure B2.

Appendix C. Auditory features

C.1. Summary of algorithms

Figure C1 and Figure C2 illustrate the auditory processing by the FBS and the C-
FBS procedures, respectively, for one auditory rendition of the word between. The
observed improvement in the granularity of C-FBS features arise from using 1) different
windowing functions in envelope smoothing, 2) different methods for the convolution of
the envelope and the windowing function for smoothing, and 3) different choice of the

44



Figure B2. Waveform and Hilbert envelope (in orange) for 4 words with imperfect alignments. There is a
piece of silence or breathing sound present in the beginning of the signal for each word.

extrema – minima in FBS versus maxima in C-FBS algorithm. The average number
of chunks (N = 131371) is significantly greater in C-FBS chunks split according to
maxima (M = 2.23, SD = 1.07) compared to C-FBS chunks split based on minima
(M = 1.98, SD = 1.05) of the envelope (W = 1726912218.5, p < 0.0001).

C.2. C-FBS neighborhood

As an initial step in investigating the neighborhood structure of the features, we looked
at the top 9 nearest C-FBS feature vectors for some example words. Here we present the
plots for the target words president, price, capital, and soccer in Figure C3. Similarly
sounding words to the target words appear in the list of top 9 nearest neighbors of the
target words’ C-FBS vectors. It can be observed from the lowest subpanel of the top
right panel that, for a particular audio rendition of the target word price, 2 other audio
tokens of the same word and similarly sounding words such as place appear among the
top 9 neighbors.

Appendix D. Semantic vectors

Addition of a small amount of Gaussian noise brought about better statistical proper-
ties for the Tasa2 vectors, making them less dependent on outliers. Figure D1 illus-
trates that the distribution of vector values is closer to the normal distribution after
addition of noise. The first panel, as an example, shows the histogram for the values in
the semantic vector of the word away before and after addition of noise. The remaining
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Figure C1. Auditory processing by the FBS algorithm for one auditory rendition of the word between. The
first panel depicts the waveform, along with the Hilbert envelope and the chunk boundary found by the FBS
chunking procedure. The panel in the middle, which is aligned with the top panel in time, shows the normalized
discretized log MEL energies at different frequency bands. Possible values are integer numbers between 0 and
5. Below that, an FBS feature is presented as an example in magenta that summarizes the energy values in the
seventeenth frequency band of the first chunk. Conceptually, this feature represents one dimension of the FBS
feature vectors. The value of the feature vector at this dimension is toggled from 0 to 1, indicating that the
mentioned feature is present in the current audio token. For our dataset, the FBS vectors have a dimensionality
of 40 578. Click here or scan QR code to listen.
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Figure C2. Auditory processing by the C-FBS algorithm for the same auditory rendition of the word between
in Figure C1. The first panel depicts the waveform, along with the Hilbert envelope and the chunk boundary
found by the C-FBS chunking procedure. The panel in the middle, which is aligned with the top panel in time,
shows the log MEL energies at different frequency bands. Possible values are real numbers less than 0. Take
the seventeenth band of the first chunk, framed in magenta, as an example. From the list of energy values,
an order-preserving random sample of length 20 is taken and added to the C-FBS vector. In addition to the
selected values, the frequency band number, and the correlation of this band with the following bands in the
chunk are also appended to the vector. For our dataset, the C-FBS vectors have a dimensionality of 6510.
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Figure C3. Neighborhood structure of C-FBS features for four target words president (the top left panel),
price (the top right panel), capital (the bottom left panel), and soccer (the bottom right panel). Each of the 4
subpanels in the four panels belongs to a different audio rendition of the corresponding target word. The x-axis
represents the Euclidean distance between the feature vectors of the target audio token and the audio token
of words listed on the y-axis. In all subplots, the first nearest neighbor belongs to the target audio token itself
(with a distance of zero) and is, therefore, not shown. The second nearest neighbor (with smallest distance) to
the ninth nearest neighbor (with largest distance) are ordered from bottom to top on the y-axis.
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Figure D1. Histograms visualizing the distribution of different statistical properties for the Tasa2 vectors,
before and after addition of a small amount of Gaussian noise. Top left panel: distribution of values in the
semantic vector for the word away is closer to the normal distribution after addition of noise. The remaining
panels belong to the distribution of mean, skewness, and kurtosis of all Tasa2 vectors (N = 23 561).

panels show the distribution of different statistical properties for all of the 23 561 vec-
tors in the Tasa2 space. Addition of noise decreases the skewness of vectors from an
average of 12.19 to 0.61 (third panel) and kurtosis from an average of 322.89 to 18.27
(fourth panel) while keeping the mean of vectors exactly at an average of −2× 10−6

(second panel).
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