
f1

NVM Programming Model
Version 1.0.0 Revision 10

Abstract: This SNIA Working Draft defines recommended behavior for software supporting Non-
Volatile Memory (NVM).

Publication of this Working Draft for review and comment has been approved by the NVM
Programming TWG. This draft represents a “best effort” attempt by the NVM Programming TWG
to reach preliminary consensus, and it may be updated, replaced, or made obsolete at any time.
This document should not be used as reference material or cited as other than a “work in
progress.” Suggestions for revision should be directed to http://www.snia.org/feedback/

Working Draft

September 30, 2013

NVM Programming Model Working Draft 2
Version 1.0.0 Revision 10

Revision history 2

Revision 0 3

Date 4
 March 12, 2013 5

Changes incorporated 6
 Reworked as first draft for a single Programming Model specification (based on 4 7
modes) 8

Revision 1 9

Date 10
 March 26, 2013 11

Changes incorporated 12
- Primarily consists of changes discussed at March face-to-face meeting 13
- Added temporary annex with templates for fixmes, actions, … easy to copy-n-paste 14

where needed 15
- Added bibliography 16
- express third state of atomicity outcome as an attribute (tentative) 17
- Changed text talking about saving to media to say persistence domain 18
- Added TRIM and friends to NVM.BLOCK, included moving Walt’s use cases from 19

NVM.PM.FILE 20
- Added Atomic Write to NVM.BLOCK 21
- Added SCAR to NVM.BLOCK (relocated use case here) 22
- Added a minimal placeholder for access hints for NVM.FILE 23
- Added TBD for per-block metadata for NVM.BLOCK 24
- Added discovery of granularities to NVM.BLOCK and NVM.FILE 25
- Added atomic write to NVM/FILE 26
- Extensive changes in NVM.PM.FILE per meeting discussion 27
 28
Revision 2 29

Date 30
 April 16, 2013 31

Changes incorporated 32
- Addressed comments from rev 1 33
- Added Compliance clause, relocated compliance related text from 1.1 and 1.2 34
- Relocated non-Scope content (1.3 to 1.13) to Common Programming Model 35

Behavior clause 36
- Added Block-optimized applications 37
- Added Deferred Behavior annex 38

NVM Programming Model Working Draft 3
Version 1.0.0 Revision 10

- Removed Editorial Help Annex (moving to separate document) 39
 40

Revision 3 41

Date 42
May 8, 2013 43

Changes incorporated 44
- Removed definition for page cache and virtual memory – commonly used external 45

definitions match our usage 46
- Remove Block Programming Overview text and examples 47
- Reworked NVM modes overview as a short description of key behavior from each 48

mode 49
- Reworked NVM.BLOCK and NVM.FILE mode overviews with sub-sections for types 50

of behavior covered (atomicity, granularities, …) 51
- Remove text related to per-block metadata; created annex 52
- NVM.BLOCK: Removed access hints TDB and added access hints for deferred 53

behaviors annex 54
- Another pass at clarifying block-optimized application behavior 55
- Rework of Atomic Write content to address numerous reviewer comments 56
- Simplified description of file system at system startup (6.2) 57
- Relaxed “shall” clause and clarified relationship to other file implementations (10.1) 58
- Added quick reference on new NVM.PM.FILE actions. (10.1) 59
- Clarified reference to CPU cache (10.1) 60
- Changed COPY map option to COPY_ON_WRITE (10.2.3) 61
- Made MAP_SHARED NVM.PM.FILE.MAP option mandatory and deleted 62

MAP_SHARED_CAPABLE attribute. (10.3) 63
- Moved UNCACHED NVM.PM.FILE.MAP option and 64

NVM.PM.FILE.DURABLE.WRITE to future work. (10.2) 65
- Clarified wording of error reporting situation (6.7) 66
- Declared certain permutations of interoperability between PM.FILE and other modes 67

to be unspecified (10.2.4) 68
- Changed ERASE option on NVM.PM.FILE.SET_END_OF_FILE to ZERO (10.2.5) 69
- Simplified description of memory mapping to reference performance characteristics 70

suitable for memory programming models. (1) 71
- Removed Mapping to Native APIs Annex – this was intended to be short-lived 72

Revision 4 73

Date 74
May 21, 2013 75

Changes incorporated 76
- Updates to NVM.PM.BLOCK mode per discussions at May meeting 77

o Add ATOMIC_WRITE action 78

NVM Programming Model Working Draft 4
Version 1.0.0 Revision 10

o ATOMIC_MULTIWRITE action – add attributes describing implementations limits 79
on number of ranges, sizes 80

o ISOLATED_ATOMIC_MULTIWRITE moved to Deferred Behavior annex 81
o BLOCK.DISCARD_IF_YOU_MUST moved to Deferred Behavior annex 82
o Added DISCARD_IMMEDIATELY_RETURNS attribute: values are “zeros” or 83

“unspecified”, reference from DISCARD_IMMEDIATELY 84
o ATOMICITY_ERROR_BEHAVIOR – delete this attribute (clean up “see also” 85

references) 86
o ECC_BLOCK_SIZE description added 87

- Added mandatory/optional info to everything in NVM.BLOCK and NVM.FILE 88
- Updates to NVM.PM.FILE mode per discussions at May meeting 89
- Updated NVM Pointer Annex 90
- Removed Per-block Metadata Annex 91
- Temporarily Removed Persistent Memory Error Handling Annex (updated version 92

being reviewed as separate document) 93

Revision 5 94

Date 95
June 12, 2013 96

Changes incorporated 97
- Updated cover and footer as Working Draft 98
- Updated ACS-2 Reference under Development to clarify this is rev 7 99
- Removed TBDs to add cross-reference to Error Handling Annex (which is not 100

included in this revision) 101
- Spelled out some abbreviations 102
- Increased size of diagrams that were fuzzy in PDFs 103
- Corrected heading level for several use cases 104

Revision 6 105

Date 106
- June 26, 2013 107

Changes incorporated 108
- Simplified Scope section 1 based on comments received on Rev 3. 109
- Added clarifications in NVM.PM.FILE overview section 10.1 regarding relationship to 110

the functionality of existing access methods and specificity to direct access via 111
memory mapping. 112

- Section 10.3.3 - Added PM file mapping exception to native file mapping behavior 113
emulation related to unmapping before synchronization. 114

- Section 10.3.4 – Added text to PM.SYNC reinforcing the notion that multiple 115
implementations may co-reside in a system based on implementation specific 116
mappings of the sync action. 117

NVM Programming Model Working Draft 5
Version 1.0.0 Revision 10

- Removed section 10.4.2 on the ERASE CAPABLE attribute because the action that 118
used the attribute was removed earlier. 119

- Added revised PM Error Handling appendix D and corrected references there-to 120
- Changed NVM.ATTRIBUTE.GET to NVM.COMMON.SET_ATTRIBUTE (similar for 121

GET) for consistency with other action/attribute names 122
- Moved all mandatory/optional designations for attributes/actions to the first line after 123

the heading 124
- Change “required” to “mandatory” in contexts where it’s used as a keyword 125
- Clean up text about common attributes/actions in all four modes 126
- Fix cross references throughout NVM.BLOCK and NVM.FILE 127
- Make text related to EXISTS states more consistent in several places in spec 128
- Changed “system” to “Implementation” in multiple places the text was inadvertently 129

limiting implementation options 130
- Added second version of device model, incorporating comments from TWG. 131

Examples in the device model are not complete 132

Revision 7 133

Date 134
- July 17, 2013 135

Changes incorporated 136
- Reformatted References section; merged in bibliography 137
- Corrected typos in scope section 1 138
- Added ECC block size and offset attributes to NVM.PM.FILE section 139
- Added section 6.2 describing interoperability between NVM.FILE and NVM.PM.FILE 140

modes 141
- Introduced property group lists and reworked references to parallel arrays of action 142

inputs/outputs to use property group lists 143
- Added NVM.BLOCK use cases demonstrating EXISTS/DISCARD actions and 144

SCAR 145
- Updated ECC_BLOCK_SIZE definitions to factor in power protection 146
- Filled in device models 147

Revision 8 148

Date 149
- July 28, 2013 150

Changes incorporated 151
- Added PERFORMACE_BLOCK_SIZE attribute usage to BLOCK “update a record” 152

use case 153
- Filled in NVM.FILE atomic write use case 154
- Filled in some details to deferred behavior annex 155
- Changed ECC_BLOCK_SIZE to FUNDAMENTAL_BLOCK_SIZE and updated 156

related text to clarify that this may apply to other errors that had a “blast radius” 157

NVM Programming Model Working Draft 6
Version 1.0.0 Revision 10

- Simplified working of “conformance with multiple file modes” section 6.2 158
- Added NVM.PM.FILE.OPTIMIZED_FLUSH (section 10.2.5) and 159

NVM.PM.FILE.OPTIMIZED_FLUSH_AND VERIFY (section 10.2.7) and related 160
attributes (section 10.3) 161

- Added NVM.PM.FILE.GET_ERROR_INFO (section 10.2.6) and related error 162
handling descriptions in NVM.PM.FILE.MAP (section 10.2.3) and the PM Error 163
Handling Annex. 164

- Removed text from NVM.PM.FILE.SYNC (section 10.2.4) that implied unintended 165
deviation from the native sync. 166

- Corrected major formatting error that caused displacement of section 10.2.4 in rev 7. 167

Revision 9 168

Date 169
- September 5, 2013 170

Changes incorporated 171
- Removed NVM Device definition and related text in NVM Device Models after 172

discussion at July face-to-face meeting 173
- Add a note to SET_ATTRIBUTE action description saying it’s not used at this time 174
- Remove paragraph from NVM.PM.VOLUME saying management behavior is out-of-175

scope (which is already stated in Scope clause). 176
- Scope clause – clarify that sharing NVM is not in scope. 177
- Incorporated use cases for NVM.PM.FILE, flash-as-cache, and NVM.PM.VOLUME 178
- Incorporated changes related to rev 8 ballot comments 179
- Generalized references to native file actions in NVM.PM.FILE 180
- Removed NVM.PM.FILE overview reference to device model 181
- Removed forward reference to “contained errors” in NVM.PM.FILE.MAP 182
- Generalized reference to “errors” in NVM.PM.FILE.ERROR_EVENT_CAPABLE 183
- Added file to address for error_check and error_clear actions in error handling 184

annex. 185
- Changed “Reasoning about Consistency” to “consistency” 186
- Removed reference to persistent media in 187

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY 188
- Added reference to persistence domain to 189

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY 190
- Changed references to media within NVM.PM use case sections 10.4.3 and 10.4.4 191

to refer to persistence domain 192
- Added an additional indication of error type to the outputs from 193

NVM.PM.FILE.GET_ERROR_INFO 194
- Removed load specific qualifiers from NVM.PM.FILE.GET_ERROR_INFO, enabling 195

(but not mandating) more general use 196
- Redid all images to address poor quality in generated PDF 197

NVM Programming Model Working Draft 7
Version 1.0.0 Revision 10

Revision 10 198

Date 199
- September 30, 2013 200

Changes incorporated 201
- Added Acknowledgements 202
- Changes several occurrences of “this revision of the specification” to “this 203
specification” in preparation for publication 204
- In 6.9 Persistence Domain, rewrote long “Once data…” sentence as two sentences 205
- clarified user of “mapped” (may refer to memory mapped files or non-discarded 206
blocks/ranges) 207
- added “Atomic Sync/Flush action for PM” in deferred behavior 208
- removed text with requirements for file system mount from Device state at system 209
startup 210
- removed gradients from several figures to enhance readability when printed 211
- fixed Word cross references that did not identify the target by section name 212
- fixed spelling of INTERRUPT 213
- removed extraneous space in NVM.PM.FILE. FUNDAMENTAL_ERROR_RANGE 214
- added “layout” to “address space layout randomization” in Annex A 215
- added transactional logging use cases 216
- In Scope, reworked last statement into separate sentences about remote and 217
thread/process sharing. 218
- Section 10.2.7 – changed “read back” to “verified and eliminated text regarding 219
hardware scope. 220
- Section 10.2.7 – changed reporting method of verify failures to an error code 221
- Section 10.3.3 – added attribute NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY 222
- Section 10.3.4 – Added indication that fundamental error offset is not needed 223
- Section 10.4.2 – Clarified that error addresses are in the processor’s logical address 224
space 225
- Added cross-references to section 10. 226

Suggestions for changes or modifications to this document should be submitted at 227
http://www/snia.org/feedback.The SNIA hereby grants permission for individuals to use 228
this document for personal use only, and for corporations and other business entities to 229
use this document for internal use only (including internal copying, distribution, and 230
display) provided that: 231

1. Any text, diagram, chart, table or definition reproduced must be reproduced in its 232
entirety with no alteration, and, 233

2. Any document, printed or electronic, in which material from this document (or any 234
portion hereof) is reproduced must acknowledge the SNIA copyright on that 235
material, and must credit the SNIA for granting permission for its reuse. 236

NVM Programming Model Working Draft 8
Version 1.0.0 Revision 10

Other than as explicitly provided above, you may not make any commercial use of this 237
document, sell any or this entire document, or distribute this document to third parties. 238
All rights not explicitly granted are expressly reserved to SNIA. Permission to use this 239
document for purposes other than those enumerated above may be requested by e-240
mailing tcmd@snia.org. Please include the identity of the requesting individual and/or 241
company and a brief description of the purpose, nature, and scope of the requested 242
use. 243

Copyright © 2013 Storage Networking Industry Association244

NVM Programming Model Working Draft 9
Version 1.0.0 Revision 10

Table of Contents 245

FOREWORD .. 13 246
1 SCOPE .. 15 247
2 REFERENCES .. 16 248
3 DEFINITIONS, ABBREVIATIONS, AND CONVENTIONS 17 249

3.1 DEFINITIONS .. 17 250

3.2 KEYWORDS ... 18 251

3.3 ABBREVIATIONS ... 18 252

3.4 CONVENTIONS ... 19 253

4 OVERVIEW OF THE NVM PROGRAMMING MODEL (INFORMATIVE) 20 254
4.1 HOW TO READ AND USE THIS SPECIFICATION .. 20 255

4.2 NVM DEVICE MODELS .. 20 256

4.3 NVM PROGRAMMING MODES .. 22 257

4.4 INTRODUCTION TO ACTIONS, ATTRIBUTES, AND USE CASES 24 258

5 COMPLIANCE TO THE PROGRAMMING MODEL ... 26 259
5.1 OVERVIEW .. 26 260

5.2 DOCUMENTATION OF MAPPING TO APIS ... 26 261

5.3 COMPATIBILITY WITH UNSPECIFIED NATIVE ACTIONS .. 26 262

5.4 MAPPING TO NATIVE INTERFACES .. 26 263

6 COMMON PROGRAMMING MODEL BEHAVIOR ... 27 264
6.1 OVERVIEW .. 27 265

6.2 CONFORMANCE TO MULTIPLE FILE MODES .. 27 266

6.3 DEVICE STATE AT SYSTEM STARTUP .. 27 267

6.4 SECURE ERASE .. 27 268

6.5 ALLOCATION OF SPACE ... 27 269

6.6 INTERACTION WITH I/O DEVICES .. 28 270

6.7 NVM STATE AFTER A MEDIA OR CONNECTION FAILURE .. 28 271

NVM Programming Model Working Draft 10
Version 1.0.0 Revision 10

6.8 ERROR HANDLING FOR PERSISTENT MEMORY ... 28 272

6.9 PERSISTENCE DOMAIN .. 28 273

6.10 COMMON ACTIONS .. 29 274

6.11 COMMON ATTRIBUTES ... 29 275

6.12 USE CASES .. 30 276

7 NVM.BLOCK MODE ... 32 277
7.1 OVERVIEW .. 32 278

7.2 ACTIONS ... 34 279

7.3 ATTRIBUTES .. 38 280

7.4 USE CASES ... 41 281

8 NVM.FILE MODE .. 46 282
8.1 OVERVIEW .. 46 283

8.2 ACTIONS ... 46 284

8.3 ATTRIBUTES .. 48 285

8.4 USE CASES ... 50 286

9 NVM.PM.VOLUME MODE .. 56 287
9.1 OVERVIEW .. 56 288

9.2 ACTIONS ... 56 289

9.3 ATTRIBUTES .. 59 290

9.4 USE CASES ... 61 291

10 NVM.PM.FILE .. 64 292
10.1 OVERVIEW ... 64 293

10.2 ACTIONS .. 65 294

10.3 ATTRIBUTES ... 71 295

10.4 USE CASES .. 72 296

ANNEX A (INFORMATIVE) NVM POINTERS .. 82 297

NVM Programming Model Working Draft 11
Version 1.0.0 Revision 10

ANNEX B (INFORMATIVE) CONSISTENCY ... 83 298
ANNEX C (INFORMATIVE) PM ERROR HANDLING .. 87 299
ANNEX D (INFORMATIVE) DEFERRED BEHAVIOR .. 91 300

D.1 REMOTE SHARING OF NVM .. 91 301

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP .. 91 302

D.3 NVM.PM.FILE.DURABLE.STORE .. 91 303

D.4 ENHANCED NVM.PM.FILE.WRITE .. 91 304

D.5 MANAGEMENT-ONLY BEHAVIOR ... 91 305

D.6 ACCESS HINTS ... 91 306

D.7 MULTI-DEVICE ATOMIC MULTI-WRITE ACTION ... 91 307

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST ACTION .. 91 308

D.9 ATOMIC WRITE ACTION WITH ISOLATION ... 93 309

D.10 ATOMIC SYNC/FLUSH ACTION FOR PM ... 93 310

D.11 HARDWARE-ASSISTED VERIFY .. 93 311

 312

NVM Programming Model Working Draft 12
Version 1.0.0 Revision 10

Figure 1 Block NVM example .. 21 313
Figure 2 PM example .. 21 314
Figure 3 Block volume using PM HW .. 21 315
Figure 4 NVM.BLOCK and NVM.FILE mode examples .. 22 316
Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples 23 317
Figure 6 NVM.BLOCK mode example... 32 318
Figure 7 SSC in a storage stack .. 42 319
Figure 8 SSC software cache application .. 42 320
Figure 9 SSC with caching assistance .. 43 321
Figure 10 NVM.FILE mode example ... 46 322
Figure 11 NVM.PM.VOLUME mode example ... 56 323
Figure 12 Zero range offset example .. 60 324
Figure 13 Non-zero range offset example ... 60 325
Figure 14 NVM.PM.FILE mode example ... 64 326
Figure 15 Consistency overview ... 83 327
Figure 16 Linux Machine Check error flow with proposed new interface....................... 89 328
 329

NVM Programming Model Working Draft 13
Version 1.0.0 Revision 10

FOREWORD 330
The SNIA NVM Programming Technical Working Group was formed to address the 331
ongoing proliferation of new non-volatile memory (NVM) functionality and new NVM 332
technologies. An extensible NVM Programming Model is necessary to enable an 333
industry wide community of NVM producers and consumers to move forward together 334
through a number of significant storage and memory system architecture changes. 335

This SNIA Working Draft defines recommended behavior between various user space 336
and operating system (OS) kernel components supporting NVM. This specification does 337
not describe a specific API. Instead, the intent is to enable common NVM behavior to be 338
exposed by multiple operating system specific interfaces. 339

After establishing context, the specification describes several operational modes of 340
NVM access. Each mode is described in terms of use cases, actions and attributes that 341
inform user and kernel space components of functionality that is provided by a given 342
compliant implementation. 343

Acknowledgements 344

The SNIA NVM Programming Technical Working Group, which developed and reviewed 345
this standard, would like to recognize the significant contributions made by the following 346
members: 347

Organization Represented Name of Representative 348
EMC Bob Beauchamp 349
Hewlett Packard Hans Boehm 350
NetApp Steve Byan 351
Hewlett Packard Joe Foster 352
Fusion-io Walt Hubis 353
Red Hat Jeff Moyer 354
Fusion-io Ned Plasson 355
Rougs, LLC Tony Roug 356
Intel Corporation Andy Rudoff 357
Microsoft Spencer Shepler 358
Fusion-io Nisha Talagata 359
Hewlett Packard Doug Voigt 360
Intel Corporation Paul von Behren 361
 362
SNIA Web Site 363

Current SNIA practice is to make updates and other information available through their 364
web site at http://www.snia.org 365

http://www.snia.org/

NVM Programming Model Working Draft 14
Version 1.0.0 Revision 10

SNIA Address 366

Requests for interpretation, suggestions for improvement and addenda, or defect 367
reports are welcome. They should be sent via the SNIA Feedback Portal at 368
http://www.snia.org/feedback/ or by mail to the Storage Networking Industry 369
Association, 425 Market Street, Suite 1020, San Francisco, CA 94105, U.S.A. 370

NVM Programming Model Working Draft 15
Version 1.0.0 Revision 10

1 Scope 371
This specification is focused on the points in system software where NVM is exposed 372
either as a hardware abstraction within an operating system kernel (e.g., a volume) or 373
as a data abstraction (e.g., a file) to user space applications. The technology that 374
motivates this specification includes flash memory packaged as solid state disks and 375
PCI cards as well as other solid state non-volatile devices, including those which can be 376
accessed as memory. 377

It is not the intent to exhaustively describe or in any way deprecate existing modes of 378
NVM access. The goal of the specification is to augment the existing common storage 379
access models (e.g., volume and file access) to add new NVM access modes. 380
Therefore this specification describes the discovery and use of capabilities of NVM 381
media, connections to the NVM, and the system containing the NVM that are emerging 382
in the industry as vendor specific implementations. These include: 383

• supported access modes, 384
• visibility in memory address space, 385
• atomicity and durability, 386
• recognizing, reporting, and recovering from errors and failures, 387
• data granularity, and 388
• capacity reclamation. 389

This revision of the specification focuses on NVM behaviors that enable user and kernel 390
space software to locate, access, and recover data. It does not describe behaviors that 391
are specific to administrative or diagnostic tasks for NVM. There are several reasons for 392
intentionally leaving administrative behavior out of scope. 393
• For new types of storage programming models, the access must be defined and 394

agreed on before the administration can be defined. Storage management behavior 395
is typically defined in terms of how it enables and diagnoses the storage 396
programming model. 397

• Administrative tasks often require human intervention and are bound to the syntax 398
for the administration. This document does not define syntax. It focuses only on the 399
semantics of the programming model. 400

• Defining diagnostic behaviors (e.g., wear-leveling) as vendor-agnostic is challenging 401
across all vendor implementations. A common recommended behavior may not 402
allow an approach optimal for certain hardware. 403

 404
This revision of the specification does not address sharing data across computing 405
nodes. This revision of the specification assumes that sharing data between processes 406
and threads follows the native OS behavior. 407

NVM Programming Model Working Draft 16
Version 1.0.0 Revision 10

2 References 408
The following referenced documents are indispensable for the application of this 409
document. 410

For references available from ANSI, contact ANSI Customer Service Department at 411
(212) 642-49004980 (phone), (212) 302-1286 (fax) or via the World Wide Web at 412
http://www.ansi.org. 413

SPC-3 ISO/IEC 14776-453, SCSI Primary Commands – 3 [ANSI INCITS 408-
2005]
Approved standard, available from ANSI.

SBC-2 ISO/IEC 14776-322, SCSI Block Commands - 2 [T10/BSR INCITS 514]
Approved standard, available from ANSI.

ACS-2 ANSI INCITS 482-2012, Information technology - ATA/ATAPI Command
Set -2
Approved standard, available from ANSI.

NVMe 1.1 NVM Express Revision 1.1,
Approved standard, available from http://nvmexpress.org

SPC-4 SO/IEC 14776-454, SCSI Primary Commands - 4 (SPC-4) (T10/1731-D)
Under development, available from http://www.t10.org.

SBC-4 ISO/IEC 14776-324, SCSI Block Commands - 4 (SBC-4) [BSR INCITS
506]
Under development, available from http://www.t10.org.

T10 13-
064r0

T10 proposal 13-064r0, Rob Elliot, Ashish Batwara, SBC-4 SPC-5
Atomic writes
Proposal, available from http://www.t10.org.

ACS-2 r7 Information technology - ATA/ATAPI Command Set – 2 r7 (ACS-2)
Under development, available from http://www.t13.org.

Intel SPG Intel Corporation, Intel 64 and IA-32 Architectures Software Developer's
Manual Combined Volumes 3A, 3B, and 3C: System Programming
Guide, Parts 1 and 2, available from
http://download.intel.com/products/processor/manual/325384.pdf

 414

http://nvmexpress.org/
http://download.intel.com/products/processor/manual/325384.pdf

NVM Programming Model Working Draft 17
Version 1.0.0 Revision 10

3 Definitions, abbreviations, and conventions 415
For the purposes of this document, the following definitions and abbreviations apply. 416

3.1 Definitions 417

3.1.1 durable 418
committed to a persistence domain 419

3.1.2 load and store operations 420
commands to move data between CPU registers and memory 421

3.1.3 memory-mapped file 422
segment of virtual memory which has been assigned a direct byte-for-byte correlation 423
with some portion of a file 424

3.1.4 non-volatile memory 425
any type of memory-based, persistent media; including flash memory packaged as solid 426
state disks, PCI cards, and other solid state non-volatile devices 427

3.1.5 NVM block capable driver 428
driver supporting the native operating system interfaces for a block device 429

3.1.6 NVM volume 430
subset of one or more NVM devices, treated by software as a single logical entity 431

See 4.2 NVM device models 432

3.1.7 persistence domain 433
location for data that is guaranteed to preserve the data contents across a restart of the 434
device containing the data 435

See 6.9 Persistence domain 436

3.1.8 persistent memory 437
storage technology with performance characteristics suitable for a load and store 438
programming model 439

3.1.9 programming model 440
set of software interfaces that are used collectively to provide an abstraction for 441
hardware with similar capabilities 442

NVM Programming Model Working Draft 18
Version 1.0.0 Revision 10

3.2 Keywords 443

In the remainder of the specification, the following keywords are used to indicate text 444
related to compliance: 445

3.2.1 mandatory 446
a keyword indicating an item that is required to conform to the behavior defined in this 447
standard 448

3.2.2 may 449
a keyword that indicates flexibility of choice with no implied preference; “may” is 450
equivalent to “may or may not” 451

3.2.3 may not 452
keywords that indicate flexibility of choice with no implied preference; “may not” is 453
equivalent to “may or may not” 454

3.2.4 need not 455
keywords indicating a feature that is not required to be implemented; “need not” is 456
equivalent to “is not required to” 457

3.2.5 optional 458
a keyword that describes features that are not required to be implemented by this 459
standard; however, if any optional feature defined in this standard is implemented, then 460
it shall be implemented as defined in this standard 461

3.2.6 shall 462
a keyword indicating a mandatory requirement; designers are required to implement all 463
such mandatory requirements to ensure interoperability with other products that 464
conform to this standard 465

3.2.7 should 466
a keyword indicating flexibility of choice with a strongly preferred alternative 467

3.3 Abbreviations 468

ACID Atomicity, Consistency, Isolation, Durability 469

NVM Non-Volatile Memory 470

PM Persistent Memory 471

SSD Solid State Disk 472

NVM Programming Model Working Draft 19
Version 1.0.0 Revision 10

3.4 Conventions 473

The nomenclature used for binary power multiplier values in this standard is based on 474
IEC 60027:2000, Letter symbols to be used in electrical technology - Part 2: 475
Telecommunications and electronics: 476

• one kibibit is 1 Kib is 1,024 bits 477
• one mebibyte is 1 MiB is 1,048 576 bytes 478
• one gebibyte is 1 GiB is 1,073,741,824 bytes 479

Representation of modes in figures 480

Modes are represented by red, wavy lines in figures, as shown below: 481
 482
The wavy lines have labels identifying the mode name (which in turn, identifies a clause 483
of the specification). 484

NVM Programming Model Working Draft 20
Version 1.0.0 Revision 10

4 Overview of the NVM Programming Model (informative) 485

4.1 How to read and use this specification 486

Documentation for I/O programming typically consists of a set of OS-specific Application 487
Program Interfaces (APIs). API documentation describes the syntax and behavior of the 488
API. This specification intentionally takes a different approach and describes the 489
behavior of NVM programming interfaces, but allows the syntax to integrate with similar 490
operating system interfaces. A recommended approach for using this specification is: 491

1. Determine which mode applies (read 4.3 NVM programming modes). 492

2. Refer to the mode section to learn about the functionality provided by the mode 493
and how it relates to native operating system APIs; the use cases provide examples. 494
The mode specific section refers to other specification sections that may be of interest 495
to the developer. 496

3. Determine which mode actions and attributes relate to software objectives. 497

4. Locate the vendor/OS mapping document (see 5.2) to determine which APIs 498
map to the actions and attributes. 499

For an example, a developer wants to update an existing application to utilize persistent 500
memory hardware. The application is designed to bypass caches to assure key content 501
is durable across power failures; the developer wants to learn about the persistent 502
memory programming model. For this example: 503

1. The NVM programming modes section identifies section 10 NVM.PM.FILE mode 504
as the starting point for application use of persistent memory. 505

2. The NVM.PM.FILE mode text describes the general approach for accessing PM 506
(similar to native memory-mapped files) and the role of PM aware file system. 507

3. The NVM.PM.FILE mode identifies the NVM.PM.FILE.MAP and 508
NVM.PM.FILE.SYNC actions and attributes that allow an application to discover support 509
for optional features. 510

4. The operating system vendor’s mapping document describes the mapping 511
between NVM.PM.FILE.MAP/SYNC and API calls, and also provides information about 512
supported PM-aware file systems. 513

4.2 NVM device models 514

4.2.1 Overview 515
This section describes device models for NVM to help readers understand how key 516
terms in the programming model relate to other software and hardware. The models 517
presented here generally apply across operating systems, file systems, and hardware; 518

NVM Programming Model Working Draft 21
Version 1.0.0 Revision 10

but there are differences across implementations. This specification strives to discuss 519
the model generically, but mentions key exceptions. 520

One of the challenges discussing the software view of NVM is that the same terms are 521
often used to mean different things. For example, between commonly used 522
management applications, programming interfaces, and operating system 523
documentation, volume may refer to a variety of things. Within this specification, NVM 524
volume has a specific meaning. 525

An NVM volume is a subset of one or more NVM devices, treated by software as a 526
single logical entity. For the purposes of this specification, a volume is a container of 527
storage. A volume may be block capable and may be persistent memory capable. The 528
consumer of a volume sees its content as a set of contiguous addresses, but the unit of 529
access for a volume differs across different modes and device types. Logical 530
addressability and physical allocation may be different. 531

In the examples in this section, “NVM block device” refers to NVM hardware that 532
emulates a disk and is accessed in software by reading or writing ranges of blocks. “PM 533
device” refers to NVM hardware that may be accessed via load and store operations. 534

4.2.2 Block NVM example 535
Consider a single drive form factor SSD where 536
the entire SSD capacity is dedicated to a file 537
system. In this case, a single NVM block volume 538
maps to a single hardware device. A file system 539
(not depicted) is mounted on the NVM block 540
volume. 541

The same model may apply to NVM block hardware other than an SDD (including flash 542
on PCIe cards). 543
4.2.3 Persistent memory example 544
This example depicts a NVDIMM and PM 545
volume. A PM-aware file system (not depicted) 546
would be mounted on the PM volume. 547

The same model may apply to PM hardware 548
other than an NVDIMM (including SSDs, PCIe 549
cards, etc.). 550

4.2.4 NVM block volume using PM hardware 551
In this example, the persistent memory 552
implementation includes a driver that uses a 553
range of persistent memory (a PM volume) and 554
makes it appear to be a block NVM device in 555
the legacy block stack. This emulated block 556
device could be aggregated or de-aggregated 557

Figure 1 Block NVM example

Figure 2 PM example

Figure 3 Block volume using PM HW

NVM block volume

SSD hardware

NVDIMMs

PM volume

PM hardware

NVM block volume

PM volume

NVM Programming Model Working Draft 22
Version 1.0.0 Revision 10

like legacy block devices. In this example, the emulated block device is mapped 1-1 to 558
an NVM block volume and non-PM file system. 559

Note that there are other models for connecting a non-PM file system to PM hardware. 560

4.3 NVM programming modes 561

4.3.1 NVM.BLOCK mode overview 562
NVM.BLOCK and NVM.FILE modes are used when NVM devices provide block storage 563
behavior to software (in other words, emulation of hard disks). The NVM may be 564
exposed as a single or as multiple NVM volumes. Each NVM volume supporting these 565
modes provides a range of logically-contiguous blocks. NVM.BLOCK mode is used by 566
operating system components (for example, file systems) and by applications that are 567
aware of block storage characteristics and the block addresses of application data. 568

This specification does not document existing block storage software behavior; the 569
NVM.BLOCK mode describes NVM extensions including: 570

• Discovery and use of atomic write and discard features 571
• The discovery of granularities (length or alignment characteristics) 572
• Discovery and use of ability for applications or operating system components to 573

mark blocks as unreadable 574
 575

Figure 4 NVM.BLOCK and NVM.FILE mode examples 576

Application

NVM block capable driver

File system

Application

NVM device NVM device

User space
Kernel space

Native file
API

NVM.BLOCK mode

NVM.FILE mode

 577
4.3.2 NVM.FILE mode overview 578
NVM.FILE mode is used by applications that are not aware of details of block storage 579
hardware or addresses. Existing applications written using native file I/O behavior 580

NVM Programming Model Working Draft 23
Version 1.0.0 Revision 10

should work unmodified with NVM.FILE mode; adding support in the application for 581
NVM extensions may optimize the application. 582

An application using NVM.FILE mode may or may not be using memory-mapped file I/O 583
behavior. 584

The NVM.FILE mode describes NVM extensions including: 585

• Discovery and use of atomic write features 586
• The discovery of granularities (length or alignment characteristics) 587

4.3.3 NVM.PM.VOLUME mode overview 588
NVM.PM.VOLUME mode describes the behavior for operating system components 589
(such as file systems) accessing persistent memory. NVM.PM.VOLUME mode provides 590
a software abstraction for Persistent Memory hardware and profiles functionality for 591
operating system components including: 592

• the list of physical address ranges associated with each PM volume 593
• the capability to determine whether PM errors have been reported 594

 595
Figure 5 NVM.PM.VOLUME and NVM.PM.FILE mode examples 596

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware kernel module

PM device

NVM.PM.VOLUME mode

NVM.PM.FILE mode

 597

4.3.4 NVM.PM.FILE mode overview 598
NVM.PM.FILE mode describes the behavior for applications accessing persistent 599
memory. The commands implementing NVM.PM.FILE mode are similar to those using 600
NVM.FILE mode, but NVM.PM.FILE mode may not involve I/O to the page cache. 601
NVM.PM.FILE mode documents behavior including: 602

• mapping PM files (or subsets of files) to virtual memory addresses 603

NVM Programming Model Working Draft 24
Version 1.0.0 Revision 10

• syncing portions of PM files to the persistence domain 604

4.4 Introduction to actions, attributes, and use cases 605

4.4.1 Overview 606
This specification uses four types of elements to describe NVM behavior. Use cases are 607
the highest order description. They describe complete scenarios that accomplish a goal. 608
Actions are more specific in that they describe an operation that represents or interacts 609
with NVM. Attributes comprise information about NVM. Property Group Lists describe 610
groups of related properties that may be considered attributes of a data structure or 611
class; but the specification allows flexibility in the implementation. 612

4.4.2 Use cases 613
In general, a use case states a goal or trigger and a result. It captures the intent of an 614
application and describes how actions are used to accomplish that intent. Use cases 615
illustrate the use of actions and help to validate action definitions. Use cases also 616
describe system behaviors that are not represented as actions. Each use case includes 617
the following information: 618

• a purpose and context including actors involved in the use case; 619
• triggers and preconditions indicating when a use case applies; 620
• inputs, outputs, events and actions that occur during the use case; 621
• references to related materials or concepts including other use cases that use or 622

extend the use case. 623

4.4.3 Actions 624
Actions are defined using the following naming convention: 625

<context>.<mode>.<verb> 626

The actions in this specification all have a context of “NVM”. The mode refers to one of 627
the NVM models documented herein (or “COMMON” for actions used in multiple 628
modes). The verb states what the action does. Examples of actions include 629
“NVM.COMMON.GET_ATTRIBUTE” and “NVM.FILE.ATOMIC_WRITE”. In some cases 630
native actions that are not explicitly specified by the programming model are referenced 631
to illustrate usage. 632

The description of each action includes: 633

• parameters and results of the action 634
• details of the action’s behavior 635
• compatibility of the action with pre-existing APIs in the industry 636

A number of actions involve options that can be specified each time the action is used. 637
The options are given names that begin with the name of the action and end with a 638

NVM Programming Model Working Draft 25
Version 1.0.0 Revision 10

descriptive term that is unique for the action. Examples include 639
NVM.PM.FILE.MAP_COPY_ON_WRITE and NVM.PM.FILE.MAP_SHARED. 640

A number of actions are optional. For each of these, there is an attribute that indicates 641
whether the action is supported by the implementation in question. By convention these 642
attributes end with the term “CAPABLE” such as 643
NVM.BLOCK.ATOMIC_WRITE_CAPABLE. Supported options are also enumerated by 644
attributes that end in “CAPABLE”. 645

4.4.4 Attributes 646
Attributes describe properties or capabilities of a system. This includes indications of 647
which actions can be performed in that system and variations on the internal behavior of 648
specific actions. For example attributes describe which NVM modes are supported in a 649
system, and the types of atomicity guarantees available. 650

In this programming model, attributes are not arbitrary key value pairs that applications 651
can store for unspecified purposes. Instead the NVM attributes are intended to provide 652
a common way to discover and configure certain aspects of systems based on agreed 653
upon interpretations of names and values. While this can be viewed as a key value 654
abstraction it does not require systems to implement a key value repository. Instead, 655
NVM attributes are mapped to a system’s native means of describing and configuring 656
those aspects associated with said attributes. Although this specification calls out a set 657
of attributes, the intent is to allow attributes to be extended in vendor unique ways 658
through a process that enables those extensions to become attributes and/or attribute 659
values in a subsequent version of the specification or in a vendor’s mapping document. 660

4.4.5 Property group lists 661
A property group is set of property values used together in lists; typically property 662
group lists are inputs or outputs to actions. The implementation may choose to 663
implement a property group as a new data structure or class, use properties in existing 664
data structures or classes, or other mechanisms as long as the caller can determine 665
which collection of values represent the members of each list element. 666

NVM Programming Model Working Draft 26
Version 1.0.0 Revision 10

5 Compliance to the programming model 667

5.1 Overview 668

Since a programming model is intentionally abstract, proof of compliance is somewhat 669
indirect. The intent is that a compliant implementation, when properly configured, can be 670
used in such a way as to exhibit the behaviors described by the programming model 671
without unnecessarily impacting other aspects of the implementation. 672

Compliance of an implementation shall be interpreted as follows. 673

5.2 Documentation of mapping to APIs 674

In order to be considered compliant with this programming model, implementations 675
must provide documentation of the mapping of attributes and actions in the 676
programming model to their counterparts in the implementation. 677

5.3 Compatibility with unspecified native actions 678

Actions and attributes of the native block and file access methods that correspond to the 679
modes described herein shall continue to function as defined in those native methods. 680
This specification does not address unmodified native actions except in passing to 681
illustrate their usage. 682

5.4 Mapping to native interfaces 683

Implementations are expected to provide the behaviors specified herein by mapping 684
them as closely as possible to native interfaces. An implementation is not required to 685
have a one-to-one mapping between actions (or attributes) and APIs – for example, an 686
implementation may have an API that implements multiple actions. 687

NVM Programming Model action descriptions do not enumerate all possible results of 688
each action. Only those that modify programming model specific behavior are listed. 689
The results that are referenced herein shall be discernible from the set of possible 690
results returned by the native action in a manner that is documented with action 691
mapping. 692

Attributes with names ending in _CAPABLE are used to inform a caller whether an 693
optional action or attribute is supported by the implementations. The mandatory 694
requirement for _CAPABLE attributes can be met by the mapping document describing 695
the implementation’s default behavior for reporting unsupported features. For example: 696
the mapping document could state that if a flag with a name based on the attribute is 697
undefined, then the action/attribute is not supported. 698

NVM Programming Model Working Draft 27
Version 1.0.0 Revision 10

6 Common programming model behavior 699

6.1 Overview 700

This section describes behavior that is common to multiple modes and also behavior 701
that is independent from the modes. 702

6.2 Conformance to multiple file modes 703

A single computer system may include implementations of both NVM.FILE and 704
NVM.PM.FILE modes. A given file system may be accessed using either or both modes 705
provided that the implementations are intended by their vendor(s) to interoperate. Each 706
implementation shall specify its own mapping to the NVM Programming Model. 707

A single file system implementation may include both NVM.FILE and NVM.PM.FILE 708
modes. The mapping of the implementation to the NVM Programming Model must 709
describe how the actions and attributes of different modes are distinguished from one 710
another. 711

Implementation specific errors may result from attempts to use NVM.PM.FILE actions 712
on files that were created in NVM.FILE mode or vice versa. The mapping of each 713
implementation to the NVM Programming Model shall specify any limitations related 714
multi-mode access. 715

6.3 Device state at system startup 716

Prior to use, a file system is associated with one or more volumes and/or NVM devices. 717

The NVM devices shall be in a state appropriate for use with file systems. For example, 718
if transparent RAID is part of the solution, components implementing RAID shall be 719
active so the file system sees a unified virtual device rather than individual RAID 720
components. 721

6.4 Secure erase 722

Secure erase of a volume or device is an administrative act with no defined 723
programming model action. 724

6.5 Allocation of space 725

Following native operating system behavior, this programming model does not define 726
specific actions for allocating space. Most allocation behavior is hidden from the user of 727
the file, volume or device. 728

NVM Programming Model Working Draft 28
Version 1.0.0 Revision 10

6.6 Interaction with I/O devices 729

Interaction between Persistent Memory and I/O devices (for example, DMA) shall be 730
consistent with native operating system interactions between devices and volatile 731
memory. 732

6.7 NVM State after a media or connection failure 733

There is no action defined to determine the state of NVM for circumstances such as a 734
media or connection failure. Vendors may provide techniques such as redundancy 735
algorithms to address this, but the behavior is outside the scope of the programming 736
model. 737

6.8 Error handling for persistent memory 738

The handling of errors in memory-mapped file implementations varies across operating 739
systems. Existing implementations support memory error reporting however there is not 740
sufficient similarity for a uniform approach to persistent memory error handling behavior. 741
Additional work is required to define an error handling approach. The following factors 742
are to be taken into account when dealing with errors. 743

• The application is in the best position to perform recovery as it may have access to 744
additional sources of data necessary to rewrite a bad memory address. 745

• Notification of a given memory error occurrence may need to be delivered to both 746
kernel and user space consumers (e.g., file system and application) 747

• Various hardware platforms have different capabilities to detect and report memory 748
errors 749

• Attributes and possibly actions related to error handling behavior are needed in the 750
NVM Programing model 751

A proposal for persistent memory error handling appears as an appendix; see Annex C. 752

6.9 Persistence domain 753

NVM PM hardware supports the concept of a persistence domain. Once data has 754
reached a persistence domain, it may be recoverable during a process that results from 755
a system restart. Recoverability depends on whether the pattern of failures affecting the 756
system during the restart can be tolerated by the design and configuration of the 757
persistence domain. 758

Multiple persistence domains may exist within the same system. It is an administrative 759
act to align persistence domains with volumes and/or file systems. This must be done in 760
such a way that NVM Programming Model behavior is assured from the point of view of 761
each compliant volume or file system. 762

NVM Programming Model Working Draft 29
Version 1.0.0 Revision 10

6.10 Common actions 763

6.10.1 NVM.COMMON.GET_ATTRIBUTE 764
Requirement: mandatory 765

Get the value of one or more attributes. Implementations conforming to the specification 766
shall provide the get attribute behavior, but multiple programmatic approaches may be 767
used. 768

Inputs: 769
• reference to appropriate instance (for example, reference to an NVM volume) 770
• attribute name 771

Outputs: 772
• value of attribute 773

The vendor’s mapping document shall describe the possible errors reported for all 774
applicable programmatic approaches. 775

6.10.2 NVM.COMMON.SET_ATTRIBUTE 776
Requirement: optional 777

Note: at this time, no settable attributes are defined in this specification, but they may be 778
added in a future revision. 779

Set the value of one attribute. Implementations conforming to the specification shall 780
provide the set attribute behavior, but multiple programmatic approaches may be used. 781

Inputs: 782
• reference to appropriate instance 783
• attribute name 784
• value to be assigned to the attribute 785

The vendor’s mapping document shall describe the possible errors reported for all 786
applicable programmatic approaches. 787

6.11 Common attributes 788

6.11.1 NVM.COMMON.SUPPORTED_MODES 789
Requirement: mandatory 790

SUPPORTED_MODES returns a list of the modes supported by the NVM 791
implementation. 792

Possible values: NVM.BLOCK, NVM.FILE, NVM.PM.FILE, NVM.PM.VOLUME 793

NVM Programming Model Working Draft 30
Version 1.0.0 Revision 10

NVM.COMMON.SET_ATTRIBUTE is not supported for 794
NVM.COMMON.SUPPORTED_MODES. 795

6.11.2 NVM.COMMON.FILE_MODE 796
Requirement: mandatory if NVM.FILE or NVM.PM.FILE is supported 797

Returns the supported file modes (NVM.FILE and/or NVM.PM.FILE) provided by a file 798
system. 799

Target: a file path 800

Output value: a list of values: “NVM.FILE” and/or “NVM.PM.FILE” 801

See 6.2 Conformance to multiple file modes. 802

6.12 Use cases 803

6.12.1 Application determines which mode is used to access a file system 804

Purpose/triggers: 805
An application needs to determine whether the underlying file system conforms to 806
NVM.FILE mode, NVM.PM.FILE mode, or both. 807

Scope/context: 808
Some actions and attributes are defined differently in NVM.FILE and NVM.PM.FILE; 809
applications may need to be designed to handle these modes differently. This use case 810
describes steps in an application’s initialization logic to determine the mode(s) 811
supported by the implementation and set a variable indicating the preferred mode the 812
application will use in subsequent actions. This application prefers to use NVM.PM.FILE 813
behavior if both modes are supported. 814

Preconditions: 815
None 816

Inputs: 817
None 818

Success scenario: 819
1) Invoke NVM.COMMON.GET_ATTRIBUTE (NVM.COMMON.FILE_MODE) 820

targeting a file path; the value returned provides information on which modes 821
may be used to access the data. 822

2) If the response includes “NVM.FILE”, then the actions and attributes described 823
for the NVM.FILE mode are supported. Set the preferred mode for this file 824
system to NVM.FILE. 825

NVM Programming Model Working Draft 31
Version 1.0.0 Revision 10

3) If the response includes “NVM.PM.FILE”, then the actions and attributes 826
described for the NVM.PM.FILE mode are supported. Set the preferred mode for 827
this file system to NVM.PM.FILE. 828

Outputs: 829

Postconditions: 830
A variable representing the preferred mode for the file system has been initialized. 831

See also: 832
6.2 Conformance to multiple file modes 833
6.11.2 NVM.COMMON.FILE_MODE 834

NVM Programming Model Working Draft 32
Version 1.0.0 Revision 10

7 NVM.BLOCK mode 835

7.1 Overview 836

NVM.BLOCK mode provides programming interfaces for NVM implementations 837
behaving as block devices. The programming interfaces include the native operating 838
system behavior for sending I/O commands to a block driver and adds NVM extensions. 839
To support this mode, the NVM devices are supported by an NVM block capable driver 840
that provides the command interface to the NVM. This specification does not document 841
the native operating system block programming capability; it is limited to the NVM 842
extensions. 843

Figure 6 NVM.BLOCK mode example 844

Block-aware application

NVM block capable driver

File system

NVM device NVM device

User space

Kernel space

NVM.BLOCK mode

 845

Support for NVM.BLOCK mode requires that the NVM implementation support all 846
behavior not covered in this section consistently with the native operating system 847
behavior for native block devices. 848

The NVM extensions supported by this mode include: 849

• Discovery and use of atomic write and discard features 850
• The discovery of granularities (length or alignment characteristics) 851
• Discovery and use of per-block metadata used for verifying integrity 852
• Discovery and use of ability for applications or operating system components to 853

mark blocks as unreadable 854
 855
7.1.1 Discovery and use of atomic write features 856
Atomic Write support provides applications with the capability to assure that all the data 857
for an operation is written to the persistence domain or, if a failure occurs, it appears 858

NVM Programming Model Working Draft 33
Version 1.0.0 Revision 10

that no operation took place. Applications may use atomic write operations to assure 859
consistent behavior during a failure condition or to assure consistency between multiple 860
processes accessing data simultaneously. 861
 862
7.1.2 The discovery of granularities 863
Attributes are introduced to allow applications to discover granularities associated with 864
NVM devices. 865
 866
7.1.3 Discovery and use of capability to mark blocks as unreadable 867
An action (NVM.BLOCK.SCAR) is defined allowing an application to mark blocks as 868
unreadable. 869
 870
7.1.4 NVM.BLOCK consumers: operating system and applications 871
NVM.BLOCK behavior covers two types of software: NVM-aware operating system 872
components and block-optimized applications. 873

7.1.4.1 NVM.BLOCK operating system components 874
NVM-aware operating system components use block storage and have been enhanced 875
to take advantage of NVM features. Examples include file systems, logical volume 876
managers, software RAID, and hibernation logic. 877

7.1.4.2 Block-optimized applications 878
Block-optimized applications use a hybrid behavior utilizing files and file I/O operations, 879
but construct file I/O commands in order to cause drivers to issue desired block 880
commands. Operating systems and file systems typically provide mechanisms to enable 881
block-optimized application. The techniques are system specific, but may include: 882

• A mechanism for a block-optimized application to request that the file system move 883
data directly between the device and application memory, bypassing the buffering 884
typically provided by the file system. 885

• The operating system or file system may require the application to align requests on 886
block boundaries. 887

The file system and operating system may allow block-optimized applications to use 888
memory-mapped files. 889

7.1.4.3 Mapping documentation 890
NVM.BLOCK operating system components may use I/O commands restricted to kernel 891
space to send I/O commands to drivers. NVM.BLOCK applications may use a 892
constrained set of file I/O operations to send commands to drivers. As applicable, the 893
implementation shall provide documentation mapping actions and/or attributes for all 894
supported techniques for NVM.BLOCK behavior. 895

NVM Programming Model Working Draft 34
Version 1.0.0 Revision 10

The implementation shall document the steps to utilize supported capabilities for block-896
optimized applications and the constraints (e.g., block alignment) compared to 897
NVM.FILE behavior. 898

7.2 Actions 899

7.2.1 Actions that apply across multiple modes 900
The following actions apply to NVM.BLOCK mode as well as other modes. 901

NVM.COMMON.GET_ATTRIBUTE (see 6.10.1) 902
NVM.COMMON.SET_ATTRIBUTE (see 6.10.2) 903

7.2.2 NVM.BLOCK.ATOMIC_WRITE 904
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true 905

Block-optimized applications or operating system components may use 906
ATOMIC_WRITE to assure consistent behavior during a power failure condition. This 907
specification does not specify the order in which this action occurs relative to other I/O 908
operations, including other ATOMIC_WRITE or ATOMIC_MULTIWRITE actions. This 909
specification does not specify when the data written becomes visible to other threads. 910

Inputs: 911
• the starting memory address 912
• a reference to the block device 913
• the starting block address 914
• the length 915
The interpretation of addresses and lengths (block or byte, alignment) should be 916
consistent with native write actions. Implementations shall provide documentation on 917
the requirements for specifying the starting addresses, block device, and length. 918
 919
Output: none 920

Return values: 921
• Success shall be returned if all blocks are updated in the persistence domain 922
• an error shall be reported if the length exceeds 923

ATOMIC_WRITE_MAX_DATA_LENGTH (see 7.3.3) 924
• an error shall be reported if the starting address is not evenly divisible by 925

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 926
• an error shall be reported if the length is not evenly divisible by 927

ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 928
• If anything does or will prevent all of the blocks from being updated in the 929

persistence domain before completion of the operation, an error shall be reported 930
and all the logical blocks affected by the operation shall contain the data that was 931
present before the device server started processing the write operation (i.e., the old 932
data, as if the atomic write operation had no effect). If the NVM and processor are 933

NVM Programming Model Working Draft 35
Version 1.0.0 Revision 10

both impacted by a power failure, no error will be returned since the execution 934
context is lost. 935

• the different errors described above shall be discernible by the consumer and shall 936
be discernible from media errors 937

Relevant attributes: 938
ATOMIC_WRITE_MAX_DATA_LENGTH (see 7.3.3) 939
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.4) 940
ATOMIC_WRITE_LENGTH_GRANULARITY (see 7.3.5) 941
ATOMIC_WRITE_CAPABLE (see 7.3.1) 942

7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE 943
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 944

Block-optimized applications or operating system components may use 945
ATOMIC_MULTIWRITE to assure consistent behavior during a power failure condition. 946
This action allows a caller to write non-adjacent extents atomically. The caller of 947
ATOMIC_MULTIWRITE provides a Property Group List (see 4.4.5) where the properties 948
describe the memory and block extents (see Inputs below); all of the extents are written 949
as a single atomic operation. This specification does not specify the order in which this 950
action occurs relative to other I/O operations, including other ATOMIC_WRITE or 951
ATOMIC_MULTIWRITE actions. This specification does not specify when the data 952
written becomes visible to other threads. 953

Inputs: 954
A Property Group List (see 4.4.5) where the properties are: 955
• memory address starting address 956
• length of data to write (in bytes) 957
• a reference to the device being written to 958
• the starting LBA on the device 959
Each property group represents an I/O. The interpretation of addresses and lengths 960
(block or byte, alignment) should be consistent with native write actions. 961
Implementations shall provide documentation on the requirements for specifying the 962
ranges. 963
Output: none 964

Return values: 965
• Success shall be returned if all block ranges are updated in the persistence domain 966
• an error shall be reported if the block ranges overlap 967
• an error shall be reported if the total size of memory input ranges exceeds 968

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 969
• an error shall be reported if the starting address in any input memory range is not 970

evenly divisible by 971
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 972

NVM Programming Model Working Draft 36
Version 1.0.0 Revision 10

• an error shall be reported if the length in any input range is not evenly divisible by 973
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 974

• If anything does or will prevent all of the writes from being applied to the persistence 975
domain before completion of the operation, an error shall be reported and all the 976
logical blocks affected by the operation shall contain the data that was present 977
before the device server started processing the write operation (i.e., the old data, as 978
if the atomic write operation had no effect). If the NVM and processor are both 979
impacted by a power failure, no error will be returned since the execution context is 980
lost. 981

• the different errors described above shall be discernible by the consumer 982

Relevant attributes: 983
ATOMIC_MULTIWRITE_MAX_IOS (see 7.3.7) 984
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH (see 7.3.8) 985
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY (see 7.3.9) 986
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY (see 7.3.10) 987
ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) 988

7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN 989
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 7.3.17) is true 990

This action notifies the NVM device that some or all of the blocks which constitute a 991
volume are no longer needed by the application. This action is a hint to the device. 992

Although the application has logically discarded the data, it may later read this range. 993
Since the device is not required to physically discard the data, its response is undefined: 994
it may return successful response status along with unknown data (e.g., the old data, a 995
default “undefined” data, or random data), or it may return an unsuccessful response 996
status with an error. 997
 998
Inputs: a range of blocks (starting LBA and length in logical blocks) 999

Status: Success indicates the request is accepted but not necessarily acted upon. 1000

7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY 1001
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 1002

Requires that the data block be unmapped (see NVM.BLOCK.EXISTS 7.2.6) before the 1003
next READ or WRITE reference even if garbage collection of the block has not occurred 1004
yet, 1005

DISCARD_IMMEDIATELY commands cannot be acknowledged by the NVM device 1006
until the DISCARD_IMMEDIATELY has been durably written to media in a way such 1007
that upon recovery from a power-fail event, the block is guaranteed to remain discarded. 1008

Inputs: a range of blocks (starting LBA and length in logical blocks) 1009

NVM Programming Model Working Draft 37
Version 1.0.0 Revision 10

The values returned by subsequent read operations are specified by the 1010
DISCARD_IMMEDIATELY_RETURNS (see 7.3.19) attribute. 1011

Status: Success indicates the request is completed. 1012

See also EXISTS (7.2.6), DISCARD_IMMEDIATELY_RETURNS (7.3.19), 1013
DISCARD_IMMEDIATELY_CAPABLE (7.3.18). 1014

7.2.6 NVM.BLOCK.EXISTS 1015
Requirement: mandatory if EXISTS_CAPABLE (see 9.3.9) is true 1016

An NVM device may allocate storage through a thin provisioning mechanism or one of 1017
the discard actions. As a result, a block can exist in one of three states: 1018
• Mapped: the block has had data written to it 1019
• Unmapped: the block has not been written, and there is no memory allocated 1020
• Allocated: the block has not been written, but has memory allocated to it 1021

The EXISTS action allows the NVM user to determine if a block has been allocated. 1022

Inputs: an LBA 1023

Output: the state (mapped, unmapped, or allocated) for the input block 1024

Result: the status of the action 1025

7.2.7 NVM.BLOCK.SCAR 1026
Requirement: mandatory if SCAR_CAPABLE (see 7.3.13) is true 1027

This action allows an application to request that subsequent reads from any of the 1028
blocks in the address range will cause an error. This action uses an implementation-1029
dependent means to insure that all future reads to any given block from the scarred 1030
range will cause an error until new data is stored to any given block in the range. A 1031
block stays scared until it is updated by a write operation. 1032

Inputs: reference to a block volume, starting offset, length 1033

Outputs: status 1034

Relevant attributes: 1035

NVM.BLOCK.SCAR_CAPABLE (7.3.13) – Indicates that the SCAR action is 1036
supported. 1037

NVM Programming Model Working Draft 38
Version 1.0.0 Revision 10

7.3 Attributes 1038

7.3.1 Attributes that apply across multiple modes 1039
The following attributes apply to NVM.BLOCK mode as well as other modes. 1040

NVM.COMMON.SUPPORTED_MODES (see 6.11.1) 1041

7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE 1042
Requirement: mandatory 1043

This attribute indicates that the implementation is capable of the 1044
NVM.BLOCK.ATOMIC_WRITE action. 1045

7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH 1046
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 1047

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 1048
transferred by an ATOMIC_WRITE action. 1049

7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 1050
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 1051

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 1052
starting memory address for an ATOMIC_WRITE action. Address inputs to 1053
ATOMIC_WRITE shall be evenly divisible by 1054
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 1055

7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY 1056
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 7.3.1) is true. 1057

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data 1058
transferred by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be 1059
evenly divisible by ATOMIC_WRITE_LENGTH_GRANULARITY. 1060

7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE 1061
Requirement: mandatory 1062

ATOMIC_MULTIWRITE_CAPABLE indicates that the implementation is capable of the 1063
NVM.BLOCK.ATOMIC_MULTIWRITE action. 1064

7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS 1065
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 1066

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., 1067
the size of the Property Group List) that can be transferred by an 1068
ATOMIC_MULTIWRITE action. 1069

NVM Programming Model Working Draft 39
Version 1.0.0 Revision 10

7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 1070
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 1071

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can 1072
be transferred by an ATOMIC_MULTIWRITE action. 1073

7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARIT1074
Y 1075

Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 1076

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of 1077
the starting address of ATOMIC_MULTIWRITE inputs. Address inputs to 1078
ATOMIC_MULTIWRITE shall be evenly divisible by 1079
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 1080

7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 1081
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 7.3.6) is true 1082

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 1083
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be 1084
evenly divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 1085

7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 1086
Requirement: mandatory 1087

If a write is submitted of this size or less, the caller is guaranteed that if power is lost 1088
before the data is completely written, then the NVM device shall ensure that all the 1089
logical blocks affected by the operation contain the data that was present before the 1090
device server started processing the write operation (i.e., the old data, as if the atomic 1091
write operation had no effect). 1092

If the NVM device can’t assure that at least one LOGICAL_BLOCKSIZE (see 7.3.14) 1093
extent can be written atomically, WRITE_ATOMICITY_UNIT shall be set to zero. 1094

The unit is NVM.BLOCK.LOGICAL_BLOCKSIZE (see 7.3.14). 1095

7.3.12 NVM.BLOCK.EXISTS_CAPABLE 1096
Requirement: mandatory 1097

This attribute indicates that the implementation is capable of the NVM.BLOCK.EXISTS 1098
action. 1099

7.3.13 NVM.BLOCK.SCAR_CAPABLE 1100
Requirement: mandatory 1101

NVM Programming Model Working Draft 40
Version 1.0.0 Revision 10

This attribute indicates that the implementation is capable of the NVM.BLOCK.SCAR 1102
(see 7.2.7) action. 1103

7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 1104
Requirement: mandatory 1105

LOGICAL_BLOCK_SIZE is the smallest unit of data (in bytes) that may be logically read 1106
or written from the NVM volume. 1107

7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 1108
Requirement: mandatory 1109

PERFORMANCE_BLOCK_SIZE is the recommended granule (in bytes) the caller 1110
should use in I/O requests for optimal performance; starting addresses and lengths 1111
should be multiples of this attribute. For example, this attribute may help minimizing 1112
device-implemented read/modify/write behavior. 1113

7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE 1114
Requirement: mandatory 1115

ALLOCATION_BLOCK_SIZE is the recommended granule (in bytes) for allocation and 1116
alignment of data. Allocations smaller than this attribute (even if they are multiples of 1117
LOGICAL_BLOCK_SIZE) may work, but may not yield optimal lifespan. 1118

7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE 1119
Requirement: mandatory 1120

DISCARD_IF_YOU_CAN_CAPABLE shall be set to true if the implementation supports 1121
DISCARD_IF_YOU_CAN. 1122

7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE 1123
Requirement: mandatory 1124

Returns true if the implementation supports DISCARD_IMMEDIATELY. 1125

7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS 1126
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 7.3.18) is true 1127

The value returned from read operations to blocks specified by a 1128
DISCARD_IMMEDIATELY action with no subsequent write operations. The possible 1129
values are: 1130

• A value that is returned to each read of an unmapped block (see 1131
NVM.BLOCK.EXISTS 7.2.6) until the next write action 1132

NVM Programming Model Working Draft 41
Version 1.0.0 Revision 10

• Unspecified 1133

7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1134
Requirement: mandatory 1135

FUNDAMENTAL_BLOCK_SIZE is the number of bytes that may become unavailable 1136
due to an error on an NVM device. 1137

A zero value means that the device is unable to provide a guarantee on the number of 1138
adjacent bytes impacted by an error. 1139

This attribute is relevant when the device does not support write atomicity. 1140

If FUNDAMENTAL_BLOCK_SIZE is smaller than LOGICAL_BLOCK_SIZE (see 1141
7.3.14), an application may organize data in terms of FUNDAMENTAL_BLOCK_SIZE to 1142
avoid certain torn write behavior. If FUNDAMENTAL_BLOCK_SIZE is larger than 1143
LOGICAL_BLOCK_SIZE, an application may organize data in terms of 1144
FUNDAMENTAL_BLOCK_SIZE to assure two key data items do not occupy an extent 1145
that is vulnerable to errors. 1146

7.4 Use cases 1147

7.4.1 Flash as cache use case 1148

Purpose/triggers: 1149
Use Flash based NVM as a data cache. 1150

Scope/context: 1151
Flash memory’s fast random I/O performance and non-volatile characteristic make it a 1152
good candidate as a Solid State Cache device (SSC). This use case is described in 1153
Figure 7 SSC in a storage stack. 1154

 1155

NVM Programming Model Working Draft 42
Version 1.0.0 Revision 10

Figure 7 SSC in a storage stack 1156

 1157
 1158
A possible software application is shown in Figure 8 SSC software cache application. In 1159
this case, the cache manager employs the Solid State Cache to improve caching 1160
performance and to maintain persistence and cache coherency across power fail. 1161

Figure 8 SSC software cache application 1162

 1163

It is also possible to use an enhanced SSC to perform some of the functions that the 1164
cache manager must normally contend with as shown in Figure 9 SSC with caching 1165
assistance. 1166

NVM Programming Model Working Draft 43
Version 1.0.0 Revision 10

Figure 9 SSC with caching assistance 1167

 1168
In this use case, the Solid State Cache (SSC) provides a sparse address space that 1169
may be much larger than the amount of physical NVM memory and manages the cache 1170
through its own admission and eviction policies. The backing store is used to persist the 1171
data when the cache becomes full. As a result, the block state for each block of virtual 1172
storage in the cache must be maintained by the SSC. The SSC must also present a 1173
consistent cache interface that can persist the cached data across a power fail and 1174
never returns stale data. 1175

In either of these cases, two important extensions to existing storage commands must 1176
be present: 1177

Eviction: An explicit eviction mechanism is required to invalidate cached data in 1178
the SSC to allow the cache manager to precisely control the contents of the SSC. 1179
This means that the SSC must insure that the eviction is durable before 1180
completing the request. This mechanism is generally referred to as a persistent 1181
trim. This is the NVM.BLOCK.DISCARD_IMMEDIATELY functionality. 1182
Exists: The exists operation allows the cache manager to determine the state of 1183
a block, or of a range of blocks, in the SSC. This operation is used to test for the 1184
presence of data in the cache, or to determine which blocks in the SSC are dirty 1185
and need to be flushed to backing storage. This is the NVM.BLOCK.EXISTS 1186
functionality. 1187

NVM Programming Model Working Draft 44
Version 1.0.0 Revision 10

The most efficient mechanism for a cache manager would be to simply read the 1188
requested data from the SSC which would the return either the data or an error 1189
indicated that the requested data was not in the cache. This approach is problematic, 1190
since most storage drivers and software require reads to be successful and complete by 1191
returning data - not an error. Device that return errors for normal read operations are 1192
usually put into an offline state by the system drivers. Further, the data that a read 1193
returns must be consistent from one read operation to the next, provided that no 1194
intervening writes occur. As a result, a two stage process must be used by the cache 1195
manager. The cache manager first issues an exists command to determine if the 1196
requested data is present in the cache. Based on the result, the cache manager decides 1197
whether to read the data from the SSC or from the backing storage. 1198

Preconditions: 1199
N/A 1200

Success scenario: 1201
The requested data is successfully read from or written to the SSC. 1202

See also: 1203
• NVM.BLOCK.DISCARD_IMMEDIATELY 1204
• NVM.BLOCK.EXISTS 1205
• Ptrim() + Exists(): Exposing New FTL Primitives to Applications, David Nellans, 1206

Michael Zappe, Jens Axboe, David Flynn, 2011 Non-Volatile Memory Workshop. 1207
See: http://david.nellans.org/files/NVMW-2011.pdf 1208

• FlashTier: a Lightweight, Consistent, and Durable Storage Cache, Mohit Saxena, 1209
Michael M. Swift and Yiying Zhang, University of Wisconsin-Madison. See: 1210
http://pages.cs.wisc.edu/~swift/papers/eurosys12_flashtier.pdf 1211
HEC: Improving Endurance of High Performance Flash-based Cache Devices, 1212
Jingpei Yang, Ned Plasson, Greg Gillis, Nisha Talagala, Swaminathan 1213
Sundararaman, Robert Wood, Fusion-io, Inc., SYSTOR ’13, June 30 - July 02 1214
2013, Haifa, Israel 1215

• Unioning of the Buffer Cache and Journaling Layers with Non-volatile Memory, 1216
Eunji Lee, Hyokyung Bahn, and Sam H. Noh. See: 1217
https://www.usenix.org/system/files/conference/fast13/fast13-final114_0.pdf 1218

7.4.2 SCAR use case 1219

Purpose/triggers: 1220
Demonstrate the use of the SCAR action 1221

Scope/context: 1222
This generic use case for SCAR involves two processes. 1223
• The “detect block errors process” detects errors in certain NVM blocks, and uses 1224

SCAR to communicate to other processes that the contents of these blocks cannot 1225
be reliably read, but can be safely re-written. 1226

http://david.nellans.org/files/NVMW-2011.pdf
http://pages.cs.wisc.edu/~swift/papers/eurosys12_flashtier.pdf

NVM Programming Model Working Draft 45
Version 1.0.0 Revision 10

• The “recover process” sees the error reported as the result of SCAR. If this process 1227
can regenerate the contents of the block, the application can continue with no error. 1228

For this use case, the “detect block errors process” is a RAID component doing a 1229
background scan of NVM blocks. In this case, the NVM is not in a redundant RAID 1230
configuration so block READ errors can’t be transparently recovered. The “recover 1231
process” is a cache component using the NVM as a cache for RAID volumes. Upon 1232
receipt of the SCAR error on a read, this component evaluates whether the block 1233
contents also reside on the cached volume; if so, it can copy the corresponding volume 1234
block to the NVM. This write to NVM will clear the SCAR error condition. 1235

Preconditions: 1236
The “detect block errors process” detected errors in certain NVM blocks, and used 1237
SCAR to mark these blocks. 1238

Inputs: 1239
None 1240

Success scenario: 1241
1. The cache manager intercepts a read request from an application 1242
2. The read request to the NVM cache returns a status indicating the requested 1243

blocks have been marked by a SCAR action 1244
3. The cache manager uses an implementation-specific technique and determines 1245

the blocks marked by a SCAR are also available on the cached volume 1246
4. The cache manager copies the blocks from the cached volume to the NVM 1247
5. The cache manager returns the requested block to the application with a status 1248

indicating the read succeeded 1249

Postconditions: 1250
The blocks previously marked with a SCAR action have been repaired. 1251

Failure Scenario: 1252
1. In Success Scenario step 3 or 4, the cache manager discovers the 1253

corresponding blocks on the volume are invalid or cannot be read. 1254
2. The cache manager returns a status to the application indicating the blocks 1255

cannot be read. 1256

NVM Programming Model Working Draft 46
Version 1.0.0 Revision 10

8 NVM.FILE mode 1257

8.1 Overview 1258

NVM.FILE mode addresses NVM-specification extensions to native file I/O behavior 1259
(the approach to I/O used by most applications). Support for NVM.FILE mode requires 1260
that the NVM solution ought to support all behavior not covered in this section 1261
consistently with the native operating system behavior for native block devices. 1262

Figure 10 NVM.FILE mode example 1263

NVM block capable driver

File system

Application

NVM.BLOCK mode

NVM device NVM device

User space

Kernel space

NVM.FILE mode

 1264

8.1.1 Discovery and use of atomic write features 1265
Atomic Write features in NVM.FILE mode are available to block-optimized applications 1266
(see 7.1.4.2 Block-optimized applications). 1267

8.1.2 The discovery of granularities 1268
The NVM.FILE mode exposes the same granularity attributes as NVM.BLOCK. 1269

8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD 1270
NVM.FILE mode does not define specific action that cause TRIM/DISCARD behavior. 1271
File systems may invoke NVM.BLOCK DISCARD actions when native operating system 1272
APIs (such as POSIX truncate or Windows SetEndOfFile). 1273

8.2 Actions 1274

8.2.1 Actions that apply across multiple modes 1275
The following actions apply to NVM.FILE mode as well as other modes. 1276

NVM.COMMON.GET_ATTRIBUTE (see 6.10.1) 1277
NVM.COMMON.SET_ATTRIBUTE (see 6.10.2) 1278

NVM Programming Model Working Draft 47
Version 1.0.0 Revision 10

8.2.2 NVM.FILE.ATOMIC_WRITE 1279
Requirement: mandatory if ATOMIC_WRITE_CAPABLE (see 8.3.2) is true 1280

Block-optimized applications may use ATOMIC_WRITE to assure consistent behavior 1281
during a failure condition. This specification does not specify the order in which this 1282
action occurs relative to other I/O operations, including other ATOMIC_WRITE and 1283
ATOMIC_MULTIWRITE actions. This specification does not specify when the data 1284
written becomes visible to other threads. 1285

The inputs, outputs, and error conditions are similar to those for 1286
NVM.BLOCK.ATOMIC_WRITE, but typically the application provides file names and file 1287
relative block addresses rather than device name and LBA. 1288

Relevant attributes: 1289

ATOMIC_WRITE_MAX_DATA_LENGTH 1290
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 1291
ATOMIC_WRITE_LENGTH_GRANULARITY 1292
ATOMIC_WRITE_CAPABLE 1293

8.2.3 NVM.FILE.ATOMIC_MULTIWRITE 1294
Requirement: mandatory if ATOMIC_MULTIWRITE_CAPABLE (see 8.3.6) is true 1295

Block-optimized applications may use ATOMIC_MULTIWRITE to assure consistent 1296
behavior during a failure condition. This action allows a caller to write non-adjacent 1297
extents atomically. The caller of ATOMIC_MULTIWRITE provides properties defining 1298
memory and block extents; all of the extents are written as a single atomic operation. 1299
This specification does not specify the order in which this action occurs relative to other 1300
I/O operations, including other ATOMIC_WRITE and ATOMIC_MULTIWRITE actions. 1301
This specification does not specify when the data written becomes visible to other 1302
threads. 1303

The inputs, outputs, and error conditions are similar to those for 1304
NVM.BLOCK.ATOMIC_MULTIWRITE, but typically the application provides file names 1305
and file relative block addresses rather than device name and LBA. 1306

Relevant attributes: 1307
ATOMIC_MULTIWRITE_MAX_IOS 1308
ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 1309
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 1310
ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 1311
ATOMIC_MULTIWRITE_CAPABLE 1312

NVM Programming Model Working Draft 48
Version 1.0.0 Revision 10

8.3 Attributes 1313

Some attributes share behavior with their NVM.BLOCK counterparts. NVM.FILE 1314
attributes are provided because the actual values may change due to the 1315
implementation of the file system. 1316

8.3.1 Attributes that apply across multiple modes 1317
The following attributes apply to NVM.FILE mode as well as other modes. 1318

NVM.COMMON.SUPPORTED_MODES (see 6.11.1) 1319
NVM.COMMON.FILE_MODE (see 6.11.2) 1320

8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE 1321
Requirement: mandatory 1322

This attribute indicates that the implementation is capable of the 1323
NVM.BLOCK.ATOMIC_WRITE action. 1324

8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH 1325
Requirement: mandatory 1326

ATOMIC_WRITE_MAX_DATA_LENGTH is the maximum length of data that can be 1327
transferred by an ATOMIC_WRITE action. 1328

8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY 1329
Requirement: mandatory 1330

ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY is the granularity of the 1331
starting memory address for an ATOMIC_WRITE action. Address inputs to 1332
ATOMIC_WRITE shall be evenly divisible by 1333
ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 1334

8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY 1335
Requirement: mandatory 1336

ATOMIC_WRITE_LENGTH_GRANULARITY is the granularity of the length of data 1337
transferred by an ATOMIC_WRITE action. Length inputs to ATOMIC_WRITE shall be 1338
evenly divisible by ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY. 1339

8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE 1340
Requirement: mandatory 1341

This attribute indicates that the implementation is capable of the 1342
NVM.FILE.ATOMIC_MULTIWRITE action. 1343

NVM Programming Model Working Draft 49
Version 1.0.0 Revision 10

8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS 1344
Requirement: mandatory 1345

ATOMIC_MULTIWRITE_MAX_IOS is the maximum length of the number of IOs (i.e., 1346
the size of the Property Group List) that can be transferred by an 1347
ATOMIC_MULTIWRITE action. 1348

8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH 1349
Requirement: mandatory 1350

ATOMIC_MULTIWRITE_MAX_DATA_LENGTH is the maximum length of data that can 1351
be transferred by an ATOMIC_MULTIWRITE action. 1352

8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY 1353
Requirement: mandatory 1354

ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY is the granularity of 1355
the starting address of ATOMIC_MULTIWRITE inputs. Address inputs to 1356
ATOMIC_MULTIWRITE shall be evenly divisible by 1357
ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY. 1358

8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY 1359
Requirement: mandatory 1360

ATOMIC_MULTIWRITE_LENGTH_GRANULARITY is the granularity of the length of 1361
ATOMIC_MULTIWRITE inputs. Length inputs to ATOMIC_MULTIWRITE shall be 1362
evenly divisible by ATOMIC_MULTIWRITE_LENGTH_GRANULARITY. 1363

8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT 1364
See 7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT 1365

8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE 1366
See 7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE 1367

8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE 1368
See 7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE 1369

8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE 1370
See 7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE 1371

8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE 1372
See 7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE 1373

NVM Programming Model Working Draft 50
Version 1.0.0 Revision 10

8.4 Use cases 1374

8.4.1 Block-optimized application updates record 1375
Update a record in a file without using a memory-mapped file 1376

Purpose/triggers: 1377
An application using block NVM updates an existing record. The application requests 1378
that the file system bypass cache; the application conforms to native API requirements 1379
when bypassing cache – this may mean that read and write actions must use multiples 1380
of a page cache size. For simplicity, this application uses fixed size records. The record 1381
size is defined by application data considerations, not disk or page block sizes. The 1382
application factors in the PERFORMANCE_BLOCK_SIZE granularity to avoid device-1383
side inefficiencies such as read/modify/write. 1384

Scope/context: 1385
Block NVM context; this shows basic behavior. 1386

Preconditions: 1387
- The administrator created a file and provided its name to the application; this name is 1388
accessible to the application – perhaps in a configuration file 1389
- The application has populated the contents of this file 1390
- The file is not in use at the start of this use case (no sharing considerations) 1391

Inputs: 1392
The content of the record, the location (relative to the file) where the record resides 1393

Success scenario: 1394
1) The application uses the native OPEN action, passing in the file name and 1395

specifying appropriate options to bypass the file system cache 1396
2) The application acquires the device’s optimal I/O granule size by using the 1397

GET_ATTRIBUTE action for the PERFORMANCE_BLOCK_SIZE. 1398
3) The application allocates sufficient memory to contain all of the blocks occupied by 1399

the record to be updated. 1400
a. The application determines the offset within the starting block of the record 1401

and uses the length of the block to determine the number of partial blocks. 1402
b. The application allocates sufficient memory for the record plus enough 1403

additional memory to accommodative any partial blocks. 1404
c. If necessary, the memory size is increased to assure that the starting address 1405

and length read and write actions are multiples of 1406
PERFORMANCE_BLOCK_SIZE. 1407

4) The application uses the native READ action to read the record by specifying the 1408
starting disk address and the length (the same length as the allocated memory 1409

NVM Programming Model Working Draft 51
Version 1.0.0 Revision 10

buffer). The application also provides the allocated memory address; this is where 1410
the read action will put the record. 1411

5) The application updates the record in the memory buffer per the inputs 1412
6) The application uses the native write action to write the updated block(s) to the same 1413

disk location they were read from. 1414
7) The application uses the native file SYNC action to assure the updated blocks are 1415

written to the persistence domain 1416
8) The application uses the native CLOSE action to clean up. 1417

Failure Scenario 1: 1418
The native read action reports a hardware error. If the unreadable block corresponds to 1419
blocks being updated, the application may attempt recovery (write/read/verify), or 1420
preventative maintenance (scar the unreadable blocks). If the unreadable blocks are 1421
needed for a read/modify/write update and the application lacks an alternate source; the 1422
application may inform the user that an unrecoverable hardware error has occurred. 1423

Failure Scenario 2: 1424
The native write action reports a hardware error. The application may be able to recover 1425
by rewriting the block. If the rewrite fails, the application may be able to scar the bad 1426
block and write to a different location. 1427

Outputs: 1428
None 1429

Postconditions: 1430
The record is updated. 1431

8.4.2 Atomic write use case 1432

Purpose/triggers: 1433
Used by a block-optimized application (see Block-optimized applications) striving for 1434
durability of on-disk data 1435

Scope/context: 1436
Assure a record is written to disk in a way that torn writes can be detected and rolled 1437
back (if necessary). If the device supports atomic writes, they will be used. If not, a 1438
double write buffer is used. 1439

Preconditions: 1440
The application has taken steps (based on NVM.BLOCK attributes) to assure the record 1441
being written has an optimal memory starting address, starting disk LBA and length. 1442

Inputs: 1443
None 1444

NVM Programming Model Working Draft 52
Version 1.0.0 Revision 10

Success scenario: 1445
• Use GET_ATTRIBUTE to determine whether the device is 1446

ATOMIC_WRITE_CAPABLE (or ATOMIC_MULTIWRITE_CAPABLE) 1447
• Is so, use the appropriate atomic write action to write the record to NVM 1448
• If the device does not support atomic write, then 1449

o Write the page to the double write buffer 1450
o Wait for the write to complete 1451
o Write the page to the final destination 1452

• At application startup, if the device does not support atomic write 1453
• Scan the double write buffer and for each valid page in the buffer check if the 1454

page in the data file is valid too. 1455

Outputs: 1456
None 1457

Postconditions: 1458
After application startup recovery steps, there are no inconsistent records on disk after a 1459
failure caused the application (and possibly system) to restart. 1460

8.4.3 Block and File Transaction Logging 1461

Purpose/Triggers: 1462
An application developer wishes to implement a transaction log that maintains data 1463
integrity through system crashes, system resets, and power failures. The underlying 1464
storage is block-granular, although it may be accessed via a file system that simulates 1465
byte-granular access to files. 1466

Scope/Context: 1467
NVM.BLOCK or NVM.FILE (all the NVM.BLOCK attributes mentioned in the use case 1468
are also defined for NVM.FILE mode). 1469

For notational convenience, this use case will use the term “file” to apply to either a file 1470
in the conventional sense which is accessed through the NVM.FILE interface, or a 1471
specific subset of blocks residing on a block device which are accessed through the 1472
NVM.BLOCK interface. 1473

Inputs: 1474
• A set of changes to the persistent state to be applied as a single transaction. 1475
• The data and log files. 1476

Outputs: 1477
• An indication of transaction commit or abort. 1478

NVM Programming Model Working Draft 53
Version 1.0.0 Revision 10

Postconditions: 1479
• If an abort indication was returned, the data was not committed and the previous 1480

contents have not been modified. 1481
• If a commit indication was returned, the data has been entirely committed. 1482
• After a system crash, reset, or power failure followed by system restart and 1483

execution of the application transaction recovery process, the data has either 1484
been entirely committed or the previous contents have not been modified. 1485

Success Scenario: 1486
The application transaction logic uses a log file in combination with its data file to 1487
atomically update the persistent state of the application. The log may implement a 1488
before-image log or a write-ahead log. The application transaction logic should 1489
configure itself to handle torn or interrupted writes to the log or data files. 1490

8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1 1491
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is one or greater, then writes of a single 1492
logical block cannot be torn or interrupted. 1493

In this case, if the log or data record size is less than or equal to the 1494
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application need not handle torn or 1495
interrupted writes to the log or data files. 1496

If the log or data record size is greater than the NVM.BLOCK.LOGICAL_BLOCK_SIZE, 1497
the application should be prepared to detect a torn write of the record and either discard 1498
or recover such a torn record during the recovery process. One common way of 1499
detecting such a torn write is for the application to compute hash of the record and 1500
record the hash in the record. Upon reading the record, the application re-computes the 1501
hash and compares it with the recorded hash; if they do not match, the record has been 1502
torn. Another method is for the application to insert the transaction identifier within each 1503
logical block. Upon reading the record, the application compares the transaction 1504
identifiers in each logical block; if they do not match, the record has been torn. Another 1505
method is for the application to use the NVM.BLOCK.ATOMIC_WRITE action to 1506
perform the writes of the record. 1507

8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0 1508
If the NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero, then writes of a single logical 1509
block can be torn or interrupted and the application should handle torn or interrupted 1510
writes to the log or data files. 1511

In this case, if a logical block were to contain data from more than one log or data 1512
record, a torn or interrupted write could corrupt a previously-written record. To prevent 1513
propagating an error beyond the record currently being written, the application aligns 1514
the log or data records with the NVM.BLOCK. LOGICAL _BLOCK_SIZE and pads the 1515
record size to be an integral multiple of NVM.BLOCK. LOGICAL _BLOCK_SIZE. This 1516

NVM Programming Model Working Draft 54
Version 1.0.0 Revision 10

prevents more than one record from residing in the same logical block and therefore a 1517
torn or interrupted write may only corrupt the record being written. 1518

8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= 1519
NVM.BLOCK.LOGICAL_BLOCK_SIZE 1520

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is greater than or equal to the 1521
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle an 1522
interrupted write. An interrupted write results when the write of a single 1523
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit is interrupted by a system crash, 1524
system reset, or power failure. As a result of an interrupted write, the NVM device may 1525
return an error when any of the logical blocks comprising the 1526
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit are read. (See also SQLite.org, 1527
Powersafe Overwrite, http://www.sqlite.org/psow.html.) This presents a danger to the 1528
integrity of previously written records that, while residing in differing logical blocks, share 1529
the same fundamental block. An interrupted write may prevent the reading of those 1530
previously written records in addition to preventing the read of the record in the process 1531
of being written. 1532

One common way of protecting previously written records from damage due to an 1533
interrupted write is to align the log or data records with the 1534
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE and pad the record size to be an integral 1535
multiple of NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE. This prevents more than one 1536
record from residing in the same fundamental block. The application should be prepared 1537
to discard or recover the record if the NVM device returns an error when subsequently 1538
reading the record during the recovery process. 1539

8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < 1540
NVM.BLOCK.LOGICAL_BLOCK_SIZE 1541

If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is less than the 1542
NVM.BLOCK.LOGICAL_BLOCK_SIZE, the application should be prepared to handle 1543
both interrupted writes and torn writes within a logical block. 1544

 As a result of an interrupted write, the NVM device may return an error when the logical 1545
block containing the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit which was 1546
being written at the time of the system crash, system reset, or power failure is 1547
subsequently read. The application should be prepared to discard or recover the record 1548
in the logical block if the NVM device returns an error when subsequently reading the 1549
logical block during the recovery process. 1550

A torn write results when an integral number of 1551
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE units are written to the NVM device but 1552
the entire NVM.BLOCK.LOGICAL_BLOCK_SIZE has not been written. In this case, the 1553
NVM device may not return an error when the logical block is read. The application 1554
should therefore be prepared to detect a torn write of a logical block and either discard 1555
or recover such a torn record during the recovery process. One common way of 1556
detecting such a torn write is for the application to compute a hash of the record and 1557

http://www.sqlite.org/psow.html

NVM Programming Model Working Draft 55
Version 1.0.0 Revision 10

record the hash in the record. Upon reading the record, the application re-computes the 1558
hash and compares it with the recorded hash; if they do not match, a logical block within 1559
the record has been torn. Another method is for the application to insert the transaction 1560
identifier within each NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit. Upon reading 1561
the record, the application compares the transaction identifiers in each 1562
NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE unit; if they do not match, the logical 1563
block has been torn. 1564

8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0 1565
If the NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE is zero, the application lacks 1566
sufficient information to handle torn or interrupted writes to the log or data files. 1567

Failure Scenarios: 1568
Consider the recovery of an error resulting from an interrupted write on a device where 1569
the NVM.BLOCK.WRITE_ATOMICITY_UNIT is zero. This error may be persistent and 1570
may be returned whenever the affected fundamental block is read. To repair this error, 1571
the application should be prepared to overwrite such a block. 1572

One common way of ensuring that the application will overwrite a block is by assigning 1573
it to the set of internal free space managed by the application, which is never read and 1574
is available to be allocated and overwritten at some point in the future. For example, the 1575
block may be part of a circular log. If the block is marked as free, the transaction log 1576
logic will eventually allocate and overwrite that block as records are written to the log. 1577

Another common way is to record either a before-image or after-image of a data block 1578
in a log. During recovery after a system crash, system reset, or power failure, the 1579
application replays the records in the log and overwrites the data block with either the 1580
before-image contents or the after-image contents. 1581

See also: 1582
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 1583
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 1584
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 1585

http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

NVM Programming Model Working Draft 56
Version 1.0.0 Revision 10

9 NVM.PM.VOLUME mode 1586

9.1 Overview 1587

NVM.PM.VOLUME mode describes the behavior to be consumed by operating system 1588
abstractions such as file systems or pseudo-block devices that build their functionality 1589
by directly accessing persistent memory. NVM.PM.VOLUME mode provides a software 1590
abstraction (a PM volume) for persistent memory hardware and profiles functionality for 1591
operating system components including: 1592

• list of physical address ranges associated with each PM volume, 1593
• capability to determine whether PM errors have been reported 1594

The PM volume provides memory mapped capability in a fashion that traditional CPU 1595
load and store operations are possible. This PM volume may be provided via the 1596
memory channel of the CPU or via a PCIe memory mapping or other methods. Note 1597
that there should not be a requirement for an operating system context switch for 1598
access to the PM volume. 1599

Figure 11 NVM.PM.VOLUME mode example 1600

PM Device PM Device PM Device. . .

Load/store

User space

Kernel space

GET_RANGESET, ...

PM-aware kernel component

NVM PM capable driver

NVM.PM.VOLUME mode

 1601

9.2 Actions 1602

9.2.1 Actions that apply across multiple modes 1603
The following actions apply to NVM.PM.VOLUME mode as well as other modes. 1604

NVM.COMMON.GET_ATTRIBUTE (see 6.10.1) 1605
NVM.COMMON.SET_ATTRIBUTE (see 6.10.2) 1606

NVM Programming Model Working Draft 57
Version 1.0.0 Revision 10

9.2.2 NVM.PM.VOLUME.GET_RANGESET 1607
Requirement: mandatory 1608

The purpose of this action is to return a set of processor physical address ranges (and 1609
relate properties) representing all of the content for the identified volume. 1610

When interpreting the set of physical addresses as a contiguous, logical address range; 1611
the data underlying that logical address range will always be the same and in the same 1612
sequence across PM volume instantiations. 1613

Due to physical memory reconfiguration, the number and sizes of ranges may change in 1614
successive get ranges calls, however the total number of bytes in the sum of the ranges 1615
does not change, and the order of the bytes spanning all of the ranges does not 1616
change. The space defined by the list of ranges can always be addressed relative to a 1617
single base which represents the beginning of the first range. 1618

Input: a reference to the PM volume 1619

Returns a Property Group List (see 4.4.5) where the properties are: 1620

• starting physical address (byte address) 1621
• length (in bytes) 1622
• connection type – see below 1623
• sync type – see below 1624

For this revision of the specification, the following values (in text) are valid for 1625
connection type: 1626

• “memory”: for persistent memory attached to a system memory channel 1627
• “PCIe”: for persistent memory attached to a PCIe extension bus 1628

For this revision of the specification, the following values (in text) are valid for sync type: 1629

• “none”: no device-specific sync behavior is available – implies no entry to 1630
NVM.PM.VOLUME implementation is required for flushing 1631

• “VIRTUAL_ADDRESS_SYNC”: the caller needs to use VIRTUAL_ADDRESS_SYNC 1632
(see 9.2.3) to assure sync is durable 1633

• “PHYSICAL_ADDRESS_SYNC”: the caller needs to use 1634
PHYSICAL_ADDRESS_SYNC (see 9.2.4) to assure sync is durable 1635

9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC 1636
Requirement: optional 1637

The purpose of this action is to invoke device-specific actions to synchronize persistent 1638
memory content to assure durability and enable recovery by forcing data to reach the 1639
persistence domain. VIRTUAL_ADDRESS_SYNC is used by a caller that knows the 1640
addresses in the input range are virtual memory addresses. 1641

NVM Programming Model Working Draft 58
Version 1.0.0 Revision 10

Input: virtual address and length (range) 1642

See also: PHYSICAL_ADDRESS_SYNC 1643

9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC 1644
Requirement: optional 1645

The purpose of this action is to synchronize persistent memory content to assure 1646
durability and enable recovery by forcing data to reach the persistence domain. This 1647
action is used by a caller that knows the addresses in the input range are physical 1648
memory addresses. 1649

See also: VIRTUAL_ADDRESS_SYNC 1650

Input: physical address and length (range) 1651

9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN 1652
Requirement: mandatory if DISCARD_IF_YOU_CAN_CAPABLE (see 9.3.6) is true 1653

This action notifies the NVM device that the input range (volume offset and length) are 1654
no longer needed by the caller. This action may not result in any action by the device, 1655
depending on the implementation and the internal state of the device. This action is 1656
meant to allow the underlying device to optimize the data stored within the range. For 1657
example, the device can use this information in support of functionality like thin 1658
provisioning or wear-leveling. 1659

9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY 1660
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 1661

This action notifies the NVM device that the input range (volume offset and length) are 1662
no longer needed by the caller. Similar to DISCARD_IF_YOU_CAN, but the 1663
implementation is required to unmap the range before the next READ or WRITE action, 1664
even if garbage collection of the range has not occurred yet. 1665

9.2.7 NVM.PM.VOLUME.EXISTS 1666
Requirement: mandatory if EXISTS_CAPABLE (see 7.3.12) is true 1667

A PM device may allocate storage through a thin provisioning mechanism or one of the 1668
discard actions. As a result, memory can exist in one of three states: 1669
• Mapped: the range has had data written to it 1670
• Unmapped: the range has not been written, and there is no memory allocated 1671
• Allocated: the range has not been written, but has memory allocated to it 1672

The EXISTS action allows the NVM user to determine if a range of bytes has been 1673
allocated. 1674

NVM Programming Model Working Draft 59
Version 1.0.0 Revision 10

Inputs: a range of bytes (starting byte address and length in bytes) 1675

Output: a Property Group List (see 4.4.5) where the properties are the starting address, 1676
length and state. State is a string equal to “mapped”, “unmapped”, or “allocated”. 1677

Result: the status of the action 1678

9.3 Attributes 1679

9.3.1 Attributes that apply across multiple modes 1680
The following attributes apply to NVM.PM.VOLUME mode as well as other modes. 1681
NVM.COMMON.SUPPORTED_MODES (see 6.11.1) 1682
 1683
9.3.2 NVM.PM.VOLUME.VOLUME_SIZE 1684
Requirement: mandatory 1685

VOLUME_SIZE is the volume size in units of bytes. This shall be the same as the sum 1686
of the lengths of the ranges returned by the GET_RANGESETS action. 1687

9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY 1688
Requirement: mandatory 1689

INTERRUPTED_STORE_ATOMICITY indicates whether the device supports power fail 1690
atomicity of store actions. 1691

A value of true indicates that after a store interrupted by reset, power loss or system 1692
crash; upon restart the contents of persistent memory reflect either the state before the 1693
store or the state after the completed store. A value of false indicates that after a store 1694
interrupted by reset, power loss or system crash, upon restart the contents of memory 1695
may be such that subsequent loads may create exceptions depending on the value of 1696
the FUNDAMENTAL_ERROR_RANGE attribute (see 9.3.4). 1697

9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE 1698
Requirement: mandatory 1699

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become 1700
unavailable due to an error on an NVM device. 1701

This attribute is relevant when the device does not support write atomicity. 1702

A zero value means that the device is unable to provide a guarantee on the number of 1703
adjacent bytes impacted by an error. 1704

A caller may organize data in terms of FUNDAMENTAL_ERROR_RANGE to avoid 1705
certain torn write behavior. 1706

NVM Programming Model Working Draft 60
Version 1.0.0 Revision 10

9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET 1707
Requirement: mandatory 1708

The number of bytes offset from the beginning of a volume range (as returned by 1709
GET_RANGESET) before FUNDAMENTAL_ERROR_RANGE_SIZE intervals apply. 1710

A fundamental error range is not required to start at a byte address evenly divisible by 1711
FUNDAMENTAL_ERROR_RANGE. FUNDAMENTAL_ERROR_RANGE_OFFSET shall 1712
be set to the difference between the starting byte address of a fundamental error range 1713
rounded down to a multiple of FUNDAMENTAL_ERROR_RANGE. 1714

Figure 12 Zero range offset example depicts an implementation where fundamental 1715
error ranges start at bye address zero; the implementation shall return zero for 1716
FUNDAMENTAL_ERROR_RANGE_OFFSET. 1717

Figure 12 Zero range offset example 1718

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZE

 1719

Figure 13 Non-zero range offset example depicts an implementation where fundamental 1720
error ranges start at a non-zero offset; the implementation shall return the difference 1721
between the starting byte address of a fundamental error range rounded down to a 1722
multiple of FUNDAMENTAL_ERROR_RANGE. 1723

Figure 13 Non-zero range offset example 1724

PM range

FUNDAMENTAL_RANGE_SIZE

Byte Address Zero

PM range

FUNDAMENTAL_RANGE_SIZE

PM range

FUNDAMENTAL_RANGE_SIZENon-zero
FUNDAMENTAL

RANGE
OFFSET

 1725

9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE 1726
Requirement: mandatory 1727

Returns true if the implementation supports DISCARD_IF_YOU_CAN. 1728

9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE 1729
Requirement: mandatory 1730

Returns true if the implementation supports DISCARD_IMMEDIATELY. 1731

NVM Programming Model Working Draft 61
Version 1.0.0 Revision 10

9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS 1732
Requirement: mandatory if DISCARD_IMMEDIATELY_CAPABLE (see 9.3.7) is true 1733

The value returned from read operations to bytes specified by a 1734
DISCARD_IMMEDIATELY action with no subsequent write operations. The possible 1735
values are: 1736

• A value that is returned to each load of bytes in an unmapped range until the next 1737
store action 1738

• Unspecified 1739

9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE 1740
Requirement: mandatory 1741

This attribute indicates that the implementation is capable of the 1742
NVM.PM.VOLUME.EXISTS action. 1743

9.4 Use cases 1744

9.4.1 Initialization steps for a PM-aware file system 1745

Purpose/triggers: 1746
Steps taken by a file system when a PM-aware volume is attached to a PM volume. 1747

Scope/context: 1748
NVM.PM.VOLUME mode 1749

Preconditions: 1750
• The administrator has defined a PM volume 1751
• The administrator has completed one-time steps to create a file system on the 1752

PM volume 1753

Inputs: 1754
• A reference to a PM volume 1755
• The name of a PM file system 1756

Success scenario: 1757
1. The file system issues a GET_RANGESET action to retrieve information about 1758

the ranges comprised by the PM volume. 1759
2. The file system uses the range information from GET_RANGESET to determine 1760

physical address range(s) and offset(s) of the file system’s primary metadata (for 1761
example, the primary superblock), then loads appropriate metadata to determine 1762
no additional validity checking is needed. 1763

NVM Programming Model Working Draft 62
Version 1.0.0 Revision 10

3. The file system sets a flag in the metadata indicating the file system is mounted 1764
by storing the updated status to the appropriate location 1765

a. If the range containing this location requires VIRTUAL_ADDRESS_SYNC 1766
or PHYSICAL_ADDRESS_SYNC is needed (based on 1767
GET_RANGESET’s sync mode property), the file system invokes the 1768
appropriate SYNC action 1769

Postconditions: 1770
The file system is usable by applications. 1771

9.4.2 Driver emulates a block device using PM media 1772

Purpose/triggers: 1773
The steps supporting an application write action from a driver that emulates a block 1774
device using PM as media. 1775

Scope/context: 1776
NVM.PM.VOLUME mode 1777

Preconditions: 1778
PM layer FUNDAMENTAL_SIZE reported to driver is cache line size. 1779

Inputs: 1780
The application provides: 1781

• the starting address of the memory (could be volatile) memory containing the 1782
data to write 1783

• the length of the memory range to be written, 1784
• an OS-specific reference to a block device (the virtual device backed by the PM 1785

volume), 1786
• the starting LBA within that block device 1787

Success scenario: 1788
1. The driver registers with the OS-specific component to be notified of errors on the 1789

PM volume. PM error handling is outside the scope of this specification, but may be 1790
similar to what is described in (and above) Figure 16 Linux Machine Check error flow 1791
with proposed new interface. 1792

2. Using information from a GET_RANGESET response, the driver splits the write 1793
operating into separate pieces if the target PM addresses (corresponding to 1794
application target LBAs) are in different ranges with different “sync type” values. For 1795
each of these pieces: 1796

NVM Programming Model Working Draft 63
Version 1.0.0 Revision 10

a. Using information from a GET_RANGESET response, the driver determines 1797
the PM memory address corresponding to the input starting LBA, and 1798
performs a memory copy operation from the callers input memory to the PM 1799

b. The driver then performs a platform-specific flush operation 1800
c. Using information from a GET_RANGESET response, the driver invokes the 1801

PHYSICAL_ADDRESS_SYNC or VIRTUAL_ADDRESS_SYNC action as 1802
needed 1803

3. No PM errors are reported by the PM error component, the driver reports that the 1804
write action succeeded. 1805

Alternative Scenario 1: 1806
In step 3 in the Success Scenario, the PM error component reports a PM error. The 1807
driver verifies that this error impacts the PM range being written and returns an error to 1808
the caller. 1809

Postconditions: 1810
The target PM range (i.e., the block device LBA range) is updated. 1811

See also: 1812
4.2.4 NVM block volume using PM hardware 1813

NVM Programming Model Working Draft 64
Version 1.0.0 Revision 10

10 NVM.PM.FILE 1814

10.1 Overview 1815

The NVM.PM.FILE mode access provides a means for user space applications to 1816
directly access NVM as memory. Most of the standard actions in this mode are intended 1817
to be implemented as APIs exported by existing file systems. An NVM.PM.FILE 1818
implementation behaves similarly to preexisting file system implementations, with minor 1819
exceptions. This section defines extensions to the file system implementation to 1820
accommodate persistent memory mapping and to assure interoperability with 1821
NVM.PM.FILE mode applications. 1822

Figure 14 NVM.PM.FILE mode example shows the context surrounding the point in a 1823
system (the bold red line) where the NVM.PM.FILE mode programming model is 1824
exposed by a PM-aware file system. A user space application consumes the 1825
programming model as is typical for current file systems. This example is not intended 1826
to preclude the possibility of a user space PM-aware file system implementation. It 1827
does, however presume that direct load/store access from user space occurs within a 1828
memory-mapped file context. The PM-aware file system interacts with an NVM PM 1829
capable driver to achieve any non-direct-access actions needed to discover or configure 1830
NVM. The PM-aware file system may access NVM devices for purposes such as file 1831
allocation, free space or other metadata management. The PM-aware file system 1832
manages additional metadata that describes the mapping of NVM device memory 1833
locations directly into user space. 1834
Figure 14 NVM.PM.FILE mode example 1835

 1836

Application

PM device PM device PM device. . .

User space

Kernel space

MMU
MappingsPM-aware file system

NVM PM capable driver

Load/store
Native file

APINVM.PM.FILE mode

NVM Programming Model Working Draft 65
Version 1.0.0 Revision 10

Once memory mapping occurs, the behavior of the NVM.PM.FILE mode diverges from 1837
NVM.FILE mode because accesses to mapped memory are in the persistence domain 1838
as soon as they reach memory. This is represented in Figure 14 NVM.PM.FILE mode 1839
example by the arrow that passes through the “MMU Mappings” extension of the file 1840
system. As a result of persistent memory mapping, primitive ACID properties arise from 1841
CPU and memory infrastructure behavior as opposed to disk drive or traditional SSD 1842
behavior. Note that writes may still be retained within processor resident caches or 1843
memory controller buffers before they reach a persistence domain. As with 1844
NMV.FILE.SYNC, the possibility remains that memory mapped writes may become 1845
persistent before a corresponding NVM.PM.FILE.SYNC action. 1846

The following actions have behaviors specific to the NVM.PM.FILE mode: 1847

NVM.PM.FILE.MAP – Add a subset of a PM file to application's address space for 1848
load/store access. 1849

NVM.PM.FILE.SYNC – Synchronize persistent memory content to assure 1850
durability and enable recovery by forcing data to reach the persistence domain. 1851

10.2 Actions 1852

The following actions are mandatory for compliance with the NVM Programming Model 1853
NVM.PM.FILE mode. 1854

10.2.1 Actions that apply across multiple modes 1855
The following actions apply to NVM.PM.FILE mode as well as other modes. 1856

NVM.COMMON.GET_ATTRIBUTE (see 6.10.1) 1857
NVM.COMMON.SET_ATTRIBUTE (see 6.10.2) 1858

10.2.2 Native file system actions 1859
Native actions shall apply with unmodified syntax and semantics provided that they are 1860
compatible with programming model specific actions. This is intended to support 1861
traditional file operations allowing many applications to use PM without modification. 1862
This specifically includes mandatory implementation of the native synchronization of 1863
mapped files. As always, specific implementations may choose whether or not to 1864
implement optional native operations. 1865

10.2.3 NVM.PM.FILE.MAP 1866
Requirement: mandatory 1867

The mandatory form of this action shall have the same syntax found in a pre-existing file 1868
system, preferably the operating system's native file map call. The specified subset of a 1869
PM file is added to application's address space for load/store access. The semantics of 1870
this action are unlike the native MAP action because NVM.PM.FILE.MAP causes direct 1871
load/store access. For example, the role of the page cache might be reduced or 1872
eliminated. This reduces or eliminates the consumption of volatile memory as a staging 1873

NVM Programming Model Working Draft 66
Version 1.0.0 Revision 10

area for non-volatile data. In addition, by avoiding demand paging, direct access can 1874
enable greater uniformity of access time across volatile and non-volatile data. 1875

PM mapped file operation may not provide the access time and modify time behavior 1876
typical of native file systems. 1877

PM mapped file operation may not provide the normal semantics for the native file 1878
synchronization actions (e.g., POSIX fsync and fdatasync and Win32 FlushFileBuffers). 1879
If a file is mapped at the time when the native file synchronization action is invoked, the 1880
normal semantics apply. However if the file had been mapped, data had been written to 1881
the file through the map, the data had not been synchronized by use of the 1882
NVM.PM.FILE.SYNC action or the native mapped file sync action, and the mapping had 1883
been removed prior to the execution of the native file synchronization action, the action 1884
is not required to synchronize the data written to the map. 1885

Requires NVM.PM.FILE.OPEN 1886

Inputs: align with native operating system's map 1887

Outputs: align with native operating system's map 1888

Relevant Options: 1889

All of the native file system options should apply. 1890

NVM.PM.FILE.MAP_SHARED (Mandatory) – This existing native option shall be 1891
supported by the NVM.PM.FILE.MAP action. This option indicates that user 1892
space processes other than the writer can see any changes to mapped memory 1893
immediately. 1894

NVM.PM.FILE.MAP_COPY_ON_WRITE (Optional)– This existing native option 1895
indicates that any write after mapping will cause a copy on write to volatile 1896
memory, or PM that is discarded during any type of restart. The copy is only 1897
visible to the writer. The copy is not folded back into PM during the sync 1898
command. 1899

Relevant Attributes: 1900

NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE (see 10.3.2) - Native 1901
operating system map commands make a distinction between MAP_SHARED 1902
and MAP_COPY_ON_WRITE. Both are supported with native semantics under 1903
the NVM Programming Model. This attribute indicates whether the 1904
MAP_COPY_ON_WRITE mapping mode is supported. All NVM.PM.FILE.MAP 1905
implementations shall support the MAP_SHARED option. 1906

Error handing for mapped ranges of persistent memory is unlike I/O, in that there is no 1907
acknowledgement to a load or store instruction. Instead processors equipped to detect 1908
memory access failures respond with machine checks. These can be routed to user 1909

NVM Programming Model Working Draft 67
Version 1.0.0 Revision 10

threads as asynchronous events. With memory-mapped PM, asynchronous events are 1910
the primary means of discovering the failure of a load to return good data. Please refer 1911
to NVM.PM.FILE.GET_ERROR_INFO (section 10.2.6) for more information on error 1912
handling behavior. 1913

Depending on memory configuration, CPU memory write pipelines may effectively 1914
preclude application level error handling during memory accesses that result from store 1915
instructions. For example, errors detected during the process of flushing the CPU’s write 1916
pipeline are more likely to be associated with that pipeline than the NVM itself. Errors 1917
that arise within the CPU’s write pipeline generally do not enable application level 1918
recovery at the point of the error. As a result application processes may be forced to 1919
restart when these errors occur (see PM Error Handling Annex C). Such errors should 1920
appear in CPU event logs, leading to an administrative response that is outside the 1921
scope of this specification. 1922

Applications needing timely assurance that recently stored data is recoverable should 1923
use the NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action to verify data from 1924
NVM after it is flushed (see 10.2.7). Errors during verify are handled in the manner 1925
described in this annex. 1926

10.2.4 NVM.PM.FILE.SYNC 1927
Requirement: mandatory 1928

The purpose of this action is to synchronize persistent memory content to assure 1929
durability and enable recovery by forcing data to reach the persistence domain. 1930

The native file system sync action may be supported by implementations that also 1931
support NVM.PM.FILE.SYNC. The intent is that the semantics of NVM.PM.FILE.SYNC 1932
match native sync operation on memory-mapped files however because persistent 1933
memory is involved, NVM.PM.FILE implementations need not flush full pages. Note that 1934
writes may still be subject to functionality that may mask whether stored data has 1935
reached the persistence domain (such as caching or buffering within processors or 1936
memory controllers). NVM.PM.FILE.SYNC is responsible for insuring that data within 1937
the processor or memory buffers reaches the persistence domain. 1938

A number of boundary conditions can arise regarding interoperability of PM and non-PM 1939
implementation components. An annex to this specification is being proposed to 1940
address this. The following limitations apply: 1941

• The behavior of an NVM.PM.FILE.SYNC action applied to a range in a file that was 1942
not mapped using NVM.PM.FILE.MAP is unspecified. 1943

• The behavior of NVM.PM.FILE.SYNC on non-persistent memory is unspecified. 1944

In both the PM and non-PM modes, updates to ranges mapped as shared can and may 1945
become persistent in any order before a sync requires them all to become persistent. 1946
The sync action applied to a shared mapping does not guarantee write atomicity. The 1947
byte range referenced by the sync parameter may have reached a persistence domain 1948

NVM Programming Model Working Draft 68
Version 1.0.0 Revision 10

prior to the sync command. The sync action guarantees only that the range referenced 1949
by the sync action will reach the persistence domain before the successful completion 1950
of the sync action. Any atomicity that is achieved is not caused by the sync action itself. 1951

Requires: NVM.PM.FILE.MAP 1952

Inputs: Align with native operating system's sync with the exception that alignment 1953
restrictions are relaxed. 1954

Outputs: Align with native operating system's sync with the addition that it shall return 1955
an error code. 1956

Users of the NVM.PM.FILE.SYNC action should be aware that for files that are mapped 1957
as shared, there is no requirement to buffer data on the way to the persistence domain. 1958
Although data may traverse a processor’s write pipeline and other buffers within 1959
memory controllers these are more transient than the disk I/O buffering that is common 1960
in NVM.FILE implementations. 1961

Error handling related to this action is expected to be derived from ongoing work that 1962
begins with Annex C (Informative) PM error handling. 1963

10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH 1964
Requirement: mandatory if NVM.PM.OPTIMIZED_FLUSH_CAPABLE is set. 1965

The purpose of this action is to synchronize multiple ranges of persistent memory 1966
content to assure durability and enable recovery by forcing data to reach the 1967
persistence domain. This action has the same effect as NVM.PM.FILE.SYNC however it 1968
is intended to allow additional implementation optimization by excluding options 1969
supported by sync and by allowing multiple byte ranges to be synchronized during a 1970
single action. Page oriented alignment constraints imposed by the native definition are 1971
lifted. Because of this, implementations might be able to use underlying persistent 1972
memory more optimally than they could with the native sync. In addition some 1973
implementations may enable this action to avoid context switches into kernel space. 1974
With the exception of these differences all of the content of the NVM.PM.FILE.SYNC 1975
action description also applies to NVM.PM.FILE.OPTIMIZED_FLUSH. 1976

Inputs: Identical to NVM.PM.FILE.SYNC except that an array of byte ranges is specified 1977
and options are precluded. A reference to the array and the size of the array are input 1978
instead of a single address and length. Each element of the array contains an address 1979
and length of a range of bytes to be synchronized. 1980

Outputs: Align with native OS's sync with the addition that it shall return an error code. 1981

Relevant attributes: NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE – Indicates whether 1982
this action is supported by the NVM.PM.FILE implementation (see 10.3.5). 1983

NVM Programming Model Working Draft 69
Version 1.0.0 Revision 10

NVM.PM.FILE.OPTIMIZED_FLUSH provides no guarantee of atomicity within or across 1984
the synchronized byte ranges. Neither does it provide any guarantee of the order in 1985
which the bytes within the ranges of the action reach a persistence domain. 1986

In the event of failure the progress of the action is indeterminate. Various byte ranges 1987
may or may not have reached a persistence domain. There is no indication as to which 1988
byte ranges may have been synchronized. 1989

10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO 1990
Requirement: mandatory if NVM.PM.ERROR_EVENT_CAPABLE is set. 1991

The purpose of this action is to provide a sufficient description of an error event to 1992
enable recovery decisions to be made by an application. This action is intended to 1993
originate during an application event handler in response to a persistent memory error. 1994
In some implementations this action may map to the delivery of event description 1995
information to the application at the start of the event handler rather than a call made by 1996
the event handler. The error information returned is specific to the memory error that 1997
caused the event. 1998

Inputs: It is assumed that implementations can extract the information output by this 1999
action from the event being handled. 2000

Outputs: 2001

1 – An indication of whether or not execution of the application can be resumed from the 2002
point of interruption. If execution cannot be resumed then the process running the 2003
application should be restarted for full recovery. 2004

2 – An indication of error type enabling the application to determine whether an address 2005
is provided and the direction of data flow (load/verify vs. store) when the error was 2006
detected. 2007

3 – The memory mapped address and length of the byte range where data loss was 2008
detected by the event. 2009

Relevant attributes: 2010

NVM.PM.FILE.ERROR_EVENT_CAPABLE – Indicates whether load error event 2011
handling and this action are supported by the NVM.PM.FILE implementation (see 2012
10.3.6). 2013

This action is used to obtain information about an error that caused a machine check 2014
involving memory mapped persistent memory. This is necessary because with 2015
persistent memory there is no opportunity to provide error information as part of a 2016
function call or I/O. The intent is to allow sophisticated error handling and recovery to 2017
occur before the application sees the event by allowing the NVM.PM.FILE 2018
implementation to handle it first. It is expected that after NVM.PM.FILE has completed 2019

NVM Programming Model Working Draft 70
Version 1.0.0 Revision 10

whatever recovery is possible, the application error handler will be called and use the 2020
error information described here to stage subsequent recovery actions, some of which 2021
may occur after the application’s process is restarted. 2022

In some implementations the same event handler may be used for many or all memory 2023
errors. Therefore this action may arise from memory accesses unrelated to NVM. It is 2024
the application event handler’s responsibility to determine whether the memory range 2025
indicated is relevant for recovery. If the memory range is irrelevant then the event 2026
should be ignored other than as a potential trigger for a restart. 2027

In some systems, errors related to memory stores may not provide recovery information 2028
to the application unless and until load instructions attempt to access the memory 2029
locations involved. This can be accomplished using the 2030
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY action (section 10.2.7). 2031

For more information on the circumstances which may surround this action please refer 2032
to PM Error Handling Annex C. 2033

10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY 2034
Requirement: mandatory if 2035
NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE is set. 2036

The purpose of this action is to synchronize multiple ranges of persistent memory 2037
content to assure durability and enable recovery by forcing data to reach the 2038
persistence domain. Furthermore, this action verifies that data was written correctly by 2039
verifying it. The intent is to supply a mechanism whereby the application can receive 2040
data integrity assurance on writes to memory-mapped PM prior to completion of this 2041
action. This is the PM equivalent to the POSIX definition of synchronized I/O which 2042
clarifies that the intent of synchronized I/O data integrity completion is "so that an 2043
application can ensure that the data being manipulated is physically present on 2044
secondary mass storage devices”. 2045

Except for the additional verification of flushed data, this action has the same effect as 2046
NVM.PM.FILE.OPTIMIZED_FLUSH. 2047

Inputs: Identical to NVM.PM.FILE.OPTIMIZED_FLUSH. 2048

Outputs: Align with native OS's sync with the addition that it shall return an error code. 2049
The error code indicates whether or not all data in the indicated range set is readable. 2050

Relevant attributes: 2051

NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE – Indicates whether this 2052
action is supported by the NVM.PM.FILE implementation (see 10.3.7). 2053

OPTIMIZED_FLUSH_AND_VERIFY shall assure that data has been verified to be 2054
readable. Any errors discovered during verification should be logged for administrative 2055

NVM Programming Model Working Draft 71
Version 1.0.0 Revision 10

attention. Verification shall occur across all data ranges specified in the action 2056
regardless of when they were actually flushed. Verification shall complete prior to 2057
completion of the action. 2058

In the event of failure the progress of the action is indeterminate. . 2059

10.3 Attributes 2060

10.3.1 Attributes that apply across multiple modes 2061
The following attributes apply to NVM.PM.FILE mode as well as other modes. 2062

NVM.COMMON.SUPPORTED_MODES (see 6.11.1) 2063
NVM.COMMON.FILE_MODE (see 6.11.2) 2064

10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE 2065
Requirement: mandatory 2066

This attribute indicates that MAP_COPY_ON_WRITE option is supported by the 2067
NVM.PM.FILE.MAP action. 2068

10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY 2069
Requirement: mandatory 2070

INTERRUPTED_STORE_ATOMICITY indicates whether the volume supports power 2071
fail atomicity of aligned store operations on fundamental data types. To achieve failure 2072
atomicity, aligned operations on fundamental data types reach NVM atomically. 2073
Formally “aligned operations on fundamental data types” is implementation defined. See 2074
Annex B(Informative) Consistency. 2075

A value of true indicates that after an aligned store of a fundamental data type is 2076
interrupted by reset, power loss or system crash; upon restart the contents of persistent 2077
memory reflect either the state before the store or the state after the completed store. A 2078
value of false indicates that after a store interrupted by reset, power loss or system 2079
crash, upon restart the contents of memory may be such that subsequent loads may 2080
create exceptions. A value of false also indicates that after a store interrupted by reset, 2081
power loss or system crash; upon restart the contents of persistent memory may not 2082
reflect either the state before the store or the state after the completed store. 2083

The value of this attribute is true only if it’s true for all ranges in the file system. 2084

10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE 2085
Requirement: mandatory 2086

FUNDAMENTAL_ERROR_RANGE is the number of bytes that may become 2087
unavailable due to an error on an NVM device. 2088

NVM Programming Model Working Draft 72
Version 1.0.0 Revision 10

An application may organize data in terms of FUNDAMENTAL_ERROR_RANGE to 2089
assure two key data items are not likely to be affected by a single error. 2090

Unlike NVM.PM.VOLUME, NVM.PM.FILE does not associate an offset with the 2091
FUNDAMENTAL_ERROR_RANGE (see section 9.3.5). because the file system is 2092
expected to handle any volume mode offset transparently to the application. The value 2093
of this attribute is the maximum of the values for all ranges in the file system. 2094

10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE 2095
Requirement: mandatory 2096

This attribute indicates that the OPTIMIZED_FLUSH action is supported by the 2097
NVM.PM.FILE implementation. 2098

10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE 2099
Requirement: mandatory 2100

This attribute indicates that the NVM.PM.FILE implementation is capable of handling 2101
error events in such a way that, in the event of data loss, those events are subsequently 2102
delivered to applications. If error event handling is supported then 2103
NVM.PM.FILE.GET_ERROR_INFO action shall also be supported. 2104

10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE 2105
Requirement: mandatory 2106

This attribute indicates that the OPTIMIZED_FLUSH_AND_VERIFY action is supported 2107
by the NVM.PM.FILE implementation. 2108

10.4 Use cases 2109

10.4.1 Update PM File Record 2110
Update a record in a PM file. 2111

Purpose/triggers: 2112
An application using persistent memory updates an existing record. For simplicity, this 2113
application uses fixed size records. The record size is defined by application data 2114
considerations. 2115

Scope/context: 2116
Persistent memory context; this use case shows basic behavior. 2117

Preconditions: 2118
• The administrator created a PM file and provided its name to the application; this 2119

name is accessible to the application – perhaps in a configuration file 2120
• The application has populated the PM file contents 2121

NVM Programming Model Working Draft 73
Version 1.0.0 Revision 10

• The PM file is not in use at the start of this use case (no sharing considerations) 2122

Inputs: 2123
The content of the record, the location (relative to the file) where the record resides 2124

Success scenario: 2125
1) The application uses the native OPEN action, passing in the file name 2126
2) The application uses the NVM.PM.FILE.MAP action, passing in the file descriptor 2127

returned by the native OPEN. Since the records are not necessarily page aligned, 2128
the application maps the entire file. 2129

3) The application registers for memory hardware exceptions 2130
4) The application stores the new record content to the address returned by 2131

NVM.PM.FILE.MAP offset by the record’s location 2132
5) The application uses NVM.PM.FILE.SYNC to flush the updated record to the 2133

persistence domain 2134
a. The application may simply sync the entire file 2135
b. Alternatively, the application may limit the range to be sync’d 2136

6) The application uses the native UNMAP and CLOSE actions to clean up. 2137

Failure Scenario: 2138
While reading PM content (accessing via a load operation), a memory hardware 2139
exception is reported. The application’s event handler is called with information about 2140
the error as described in NVM.PM.FILE.GET_ERROR_INFO. Based on the information 2141
provided, the application records the error for subsequent recovery and determines 2142
whether to restart or continue execution. 2143

Outputs: 2144
None 2145

Postconditions: 2146
The record is updated. 2147

10.4.2 Direct load access 2148

Purpose/triggers: 2149
An application developer wishes to retrieve data from a persistent memory-mapped file 2150
using direct memory load instruction access with error handling for uncorrectable errors. 2151

Scope/context: 2152
NVM.PM.FILE 2153

Inputs: 2154
• Virtual address of the data. 2155

NVM Programming Model Working Draft 74
Version 1.0.0 Revision 10

Outputs: 2156
• Data from persistent memory if successful 2157
• Error code if an error was detected within the accessed memory range. 2158

Preconditions: 2159
• The persistent memory file must be mapped into a region of virtual memory. 2160
• The virtual address must be within the mapped region of the file. 2161

Postconditions: 2162
• If an error was returned, the data may be unreadable. Future load accesses may 2163

continue to return an error until the data is overwritten to clear the error condition 2164
• If no error was returned, there is no postcondition. 2165

Success and Failure Scenarios: 2166
Consider the following fragment of example source code, which is simplified from the 2167
code for the function that reads SQLite’s transaction journal: 2168

retCode = pread(journalFD, magic, 8, off); 2169
if (retCode != SQLITE_OK) return retCode; 2170
 2171
if (memcmp(magic, journalMagic, 8) != 0) 2172
 return SQLITE_DONE; 2173

This example code reads an eight-byte magic number from the journal header into an 2174
eight-byte buffer named magic using a standard file read call. If an error is returned from 2175
the read system call, the function exits with an error return code indicating that an I/O 2176
error occurred. If no error occurs, it then compares the contents of the magic buffer 2177
against the expected magic number constant named journalMagic. If the contents of the 2178
buffer do not match the expected magic number, the function exits with an error return 2179
code. 2180

An equivalent version of the function using direct memory load instruction access to a 2181
mapped file is: 2182

volatile siginfo_t errContext; 2183
... 2184
int retCode = SQLITE_OK; 2185
 2186
TRY 2187
{ 2188
 if (memcmp(journalMmapAddr + off, journalMagic, 8) != 0) 2189
 retCode = SQLITE_DONE; 2190
} 2191
CATCH(BUS_MCEERR_AR) 2192
{ 2193
 if ((errContext.si_code == BUS_MCEERR_AR) && 2194
 (errContext.si_addr >= journalMmapAddr) && 2195
 (errContext.si_addr < (journalMmapAddr + journalMmapSize))){ 2196
 retCode = SQLITE_IOERR; 2197
 } else { 2198

NVM Programming Model Working Draft 75
Version 1.0.0 Revision 10

 signal(errContext.si_signo, SIG_DFL); 2199
 raise(errContext.si_signo); 2200
 } 2201
} 2202
ENDTRY; 2203
 2204
if (retCode != SQLITE_OK) return retCode; 2205

The mapped file example compares the magic number in the header of the journal file 2206
against the expected magic number using the memcmp function by passing a pointer 2207
containing the address of the magic number in the mapped region of the file. If the 2208
contents of the magic number member of the file header do not match the expected 2209
magic number, the function exits with an error return code. 2210

The application-provided TRY/CATCH/ENDTRY macros implement a form of exception 2211
handling using POSIX sigsetjmp and siglongjmp C library functions. The TRY macro 2212
initializes a sigjmp_buf by calling sigsetjmp. When a SIGBUS signal is raised, the signal 2213
handler calls siglongjmp using the sigjmp_buf set by the sigsetjmp call in the TRY 2214
macro. Execution then continues in the CATCH clause. (Caution: the code in the TRY 2215
block should not call library functions as they are not likely to be exception-safe.) Code 2216
for the Windows platform would be similar except that it would use the standard 2217
Structured Exception Handling try-except statement catching the 2218
EXCEPTION_IN_PAGE_ERROR exception rather than application-provided 2219
TRY/CATCH/ENDTRY macros. 2220

If an error occurs during the read of the magic number data from the mapped file, a 2221
SIGBUS signal will be raised resulting in the transfer of control to the CATCH clause. 2222
The address of the error is compared against the range of the memory-mapped file. In 2223
this example the error address is assumed to be in the process’s logical address space. 2224
If the error address is within the range of the memory-mapped file, the function returns 2225
an error code indication that an I/O error occurred. If the error address is outside the 2226
range of the memory-mapped file, the error is assumed to be for some other memory 2227
region such as the program text, stack, or heap, and the signal or exception is re-raised. 2228
This is likely to result in a fatal error for the program. 2229

See also: 2230
• Microsoft Corporation, Reading and Writing From a File View (Windows), 2231

available from 2232
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 2233

10.4.3 Direct store access 2234

Purpose/triggers: 2235
An application developer wishes to place data in a persistent memory-mapped file using 2236
direct memory store instruction access. 2237

Scope/context: 2238
NVM.PM.FILE 2239

NVM Programming Model Working Draft 76
Version 1.0.0 Revision 10

Inputs: 2240
• Virtual address of the data. 2241
• The data to store. 2242

Outputs: 2243
• Error code if an error occurred. 2244

Preconditions: 2245
• The persistent memory file must be mapped into a region of virtual memory. 2246
• The virtual address must be within the mapped region of the file. 2247

Postconditions: 2248
• If an error was returned, the state of the data recorded in the persistence domain 2249

is indeterminate. 2250
• If no error was returned, the specified data is either recorded in the persistence 2251

domain or an undiagnosed error may have occurred. 2252

Success and Failure Scenarios: 2253
Consider the following fragment of example source code, which is simplified from the 2254
code for the function that writes to SQLite’s transaction journal: 2255

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 2256
if (ret != SQLITE_OK) return ret; 2257
ret = write32bits(journalFD, off + dbPgSize, cksum); 2258
if (ret != SQLITE_OK) return ret; 2259
ret = fdatasync(journalFD); 2260
if (ret != SQLITE_OK) return ret; 2261

This example code writes a page of data from the database cache to the journal using a 2262
standard file write call. If an error is returned from the write system call, the function 2263
exits with an error return code indicating that an I/O error occurred. If no error occurs, 2264
the function then appends the checksum of the data, again using a standard file write 2265
call. If an error is returned from the write system call, the function exits with an error 2266
return code indicating that an I/O error occurred. If no error occurs, the function then 2267
invokes the fdatasync system call to flush the written data from the file system buffer 2268
cache to the persistence domain. If an error is returned from the fdatasync system call, 2269
the function exits with an error return code indicating that an I/O error occurred. If no 2270
error occurs, the written data has been recorded in the persistence domain. 2271

An equivalent version of the function using direct memory store instruction access to a 2272
memory-mapped file is: 2273

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 2274
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 2275
 2276
store32bits(journalMmapAddr + off + dbPgSize, cksum); 2277
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 2278
 2279

NVM Programming Model Working Draft 77
Version 1.0.0 Revision 10

ret = PM_optimized_flush(dirtyLines, dirtyLinesCount); 2280
 2281
if (ret == SQLITE_OK) dirtyLinesCount = 0; 2282
 2283
return ret; 2284

The memory-mapped file example writes a page of data from the database cache to the 2285
journal using the memcpy function by passing a pointer containing the address of the 2286
page data field in the mapped region of the file. It then appends the checksum using 2287
direct stores to the address of the checksum field in the mapped region of the file. 2288

The code calls the application-provided PM_track_dirty_mem function to record the 2289
virtual address and size of the memory regions that it has modified. The 2290
PM_track_dirty_mem function constructs a list of these modified regions in the 2291
dirtyLines array. 2292

The function then calls the PM_optimized_flush function to flush the written data to the 2293
persistence domain. If an error is returned from the PM_optimized_flush call, the 2294
function exits with an error return code indicating that an I/O error occurred. If no error 2295
occurs, the written data is either recorded in the persistence domain or an undiagnosed 2296
error may have occurred. Note that this postcondition is weaker than the guarantee 2297
offered by the fdatasync system call in the original example. 2298

See also: 2299
• Microsoft Corporation, Reading and Writing From a File View (Windows), 2300

available from 2301
http://msdn.microsoft.com/en-us/library/windows/desktop/aa366801.aspx 2302

10.4.4 Direct store access with synchronized I/O data integrity completion 2303

Purpose/triggers: 2304
An application developer wishes to place data in a persistent memory-mapped file using 2305
direct memory store instruction access with synchronized I/O data integrity completion. 2306

Scope/context: 2307
NVM.PM.FILE 2308

Inputs: 2309
• Virtual address of the data. 2310
• The data to store. 2311

Outputs: 2312
• Error code if an error occurred. 2313

Preconditions: 2314
• The persistent memory file must be mapped into a region of virtual memory. 2315
• The virtual address must be within the mapped region of the file. 2316

NVM Programming Model Working Draft 78
Version 1.0.0 Revision 10

Postconditions: 2317
• If an error was returned, the state of the data recorded in the persistence domain 2318

is indeterminate. 2319
• If no error was returned, the specified data is recorded in the persistence domain. 2320

Success and Failure Scenarios: 2321
Consider the following fragment of example source code, which is simplified from the 2322
code for the function that writes to SQLite’s transaction journal: 2323

ret = pwrite(journalFD, dbPgData, dbPgSize, off); 2324
if (ret != SQLITE_OK) return ret; 2325
ret = write32bits(journalFD, off + dbPgSize, cksum); 2326
if (ret != SQLITE_OK) return ret; 2327
 2328
ret = fdatasync(journalFD); 2329
if (ret != SQLITE_OK) return ret; 2330

This example code writes a page of data from the database cache to the journal using a 2331
standard file write call. If an error is returned from the write system call, the function 2332
exits with an error return code indicating that an I/O error occurred. If no error occurs, 2333
the function then appends the checksum of the data, again using a standard file write 2334
call. If an error is returned from the write system call, the function exits with an error 2335
return code indicating that an I/O error occurred. If no error occurs, the function then 2336
invokes the fdatasync system call to flush the written data from the file system buffer 2337
cache to the persistence domain. If an error is returned from the fdatasync system call, 2338
the function exits with an error return code indicating that an I/O error occurred. If no 2339
error occurs, the written data has been recorded in the persistence domain. 2340

An equivalent version of the function using direct memory store instruction access to a 2341
memory-mapped file is: 2342

memcpy(journalMmapAddr + off, dbPgData, dbPgSize); 2343
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off, dbPgSize); 2344
 2345
store32bits(journalMmapAddr + off + dbPgSize, cksum); 2346
PM_track_dirty_mem(dirtyLines, journalMmapAddr + off + dbPgSize, 4); 2347
 2348
ret = PM_optimized_flush_and_verify(dirtyLines, dirtyLinesCount); 2349
 2350
if (ret == SQLITE_OK) dirtyLinesCount = 0; 2351
 2352
return ret; 2353

The memory-mapped file example writes a page of data from the database cache to the 2354
journal using the memcpy function by passing a pointer containing the address of the 2355
page data field in the mapped region of the file. It then appends the checksum using 2356
direct stores to the address of the checksum field in the mapped region of the file. 2357

The code calls the application-provided PM_track_dirty_mem function to record the 2358
virtual address and size of the memory regions that it has modified. The 2359

NVM Programming Model Working Draft 79
Version 1.0.0 Revision 10

PM_track_dirty_mem function constructs a list of these modified regions in the 2360
dirtyLines array. 2361

The function then calls the PM_optimized_flush_and_verify function to flush the written 2362
data to the persistence domain. If an error is returned from the 2363
PM_optimized_flush_and_verify call, the function exits with an error return code 2364
indicating that an I/O error occurred. If no error occurs, the written data has been 2365
recorded in the persistence domain. Note that this postcondition is equivalent to the 2366
guarantee offered by the fdatasync system call in the original example. 2367

See also: 2368
• Microsoft Corp, FlushFileBuffers function (Windows), 2369

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx 2370
• Oracle Corp, Synchronized I/O section in the Programming Interfaces Guide, 2371

available from 2372
http://docs.oracle.com/cd/E19683-01 /816-5042/chap7rt-57/index.html 2373

• The Open Group, “The Open Group Base Specification Issue 6”, section 3.373 2374
“Synchronized Input and Output”, available from 2375
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#ta2376
g_03_373 2377

10.4.5 Persistent Memory Transaction Logging 2378

Purpose/Triggers: 2379
An application developer wishes to implement a transaction log that maintains data 2380
integrity through system crashes, system resets, and power failures. The underlying 2381
storage is byte-granular persistent memory. 2382

Scope/Context: 2383
NVM.PM.VOLUME and NVM.PM.FILE 2384

For notational convenience, this use case will use the term “file” to apply to either a file 2385
in the conventional sense which is accessed through the NVM.PM.FILE interface, or a 2386
specific subset of memory ranges residing on an NVM device which are accessed 2387
through the NVM.BLOCK interface. 2388

Inputs: 2389
• A set of changes to the persistent state to be applied as a single transaction. 2390
• The data and log files. 2391

Outputs: 2392
• An indication of transaction commit or abort. 2393

http://msdn.microsoft.com/en-us/library/windows/desktop/aa364439.aspx
http://docs.oracle.com/cd/E19683-01%20/816-5042/chap7rt-57/index.html
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373
http://pubs.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap03.html#tag_03_373

NVM Programming Model Working Draft 80
Version 1.0.0 Revision 10

Postconditions: 2394
• If an abort indication was returned, the data was not committed and the previous 2395

contents have not been modified. 2396
• If a commit indication was returned, the data has been entirely committed. 2397
• After a system crash, reset, or power failure followed by system restart and 2398

execution of the application transaction recovery process, the data has either 2399
been entirely committed or the previous contents have not been modified. 2400

Success Scenario: 2401
The application transaction logic uses a log file in combination with its data file to 2402
atomically update the persistent state of the application. The log may implement a 2403
before-image log or a write-ahead log. The application transaction logic should 2404
configure itself to handle torn or interrupted writes to the log or data files. 2405

Since persistent memory may be byte-granular, torn writes may occur at any point 2406
during a series of stores. The application should be prepared to detect a torn write of 2407
the record and either discard or recover such a torn record during the recovery process. 2408
One common way of detecting such a torn write is for the application to compute a hash 2409
of the record and record the hash in the record. Upon reading the record, the application 2410
re-computes the hash and compares it with the recorded hash; if they do not match, the 2411
record has been torn. 2412

10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true 2413
If the NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true, then writes which 2414
are interrupted by a system crash, system reset, or power failure occur atomically. In 2415
other words, upon restart the contents of persistent memory reflect either the state 2416
before the store or the state after the completed store. 2417

In this case, the application need not handle interrupted writes to the log or data files. 2418

10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false 2419
NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false, then writes which are 2420
interrupted by a system crash, system reset, or power failure do not occur atomically. In 2421
other words, upon restart the contents of persistent memory may be such that 2422
subsequent loads may create exceptions depending on the value of the 2423
FUNDAMENTAL_ERROR_RANGE attribute. 2424

In this case, the application should be prepared to handle an interrupted write to the log 2425
or data files. 2426

10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0 2427
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is greater than zero, the 2428
application should align the log or data records with the 2429
NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE and pad the record size to be an 2430
integral multiple of NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE. This prevents 2431

NVM Programming Model Working Draft 81
Version 1.0.0 Revision 10

more than one record from residing in the same fundamental error range. The 2432
application should be prepared to discard or recover the record if a load returns an 2433
exception when subsequently reading the record during the recovery process. (See also 2434
SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html.) 2435

10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0 2436
If the NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE is zero, the application lacks 2437
sufficient information to handle interrupted writes to the log or data files. 2438

Failure Scenarios: 2439
Consider the recovery of an error resulting from an interrupted write on a persistent 2440
memory volume or file system where the 2441
NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false. This error may be 2442
persistent and may be returned whenever the affected fundamental error range is read. 2443
To repair this error, the application should be prepared to overwrite such a range. 2444

One common way of ensuring that the application will overwrite a range is by assigning 2445
it to the set of internal free space managed by the application, which is never read and 2446
is available to be allocated and overwritten at some point in the future. For example, the 2447
range may be part of a circular log. If the range is marked as free, the transaction log 2448
logic will eventually allocate and overwrite that range as records are written to the log. 2449

Another common way is to record either a before-image or after-image of a data range 2450
in a log. During recovery after a system crash, system reset, or power failure, the 2451
application replays the records in the log and overwrites the data range with either the 2452
before-image contents or the after-image contents. 2453

See also: 2454
• SQLite.org, Atomic Commit in SQLite, http://www.sqlite.org/atomiccommit.html 2455
• SQLite.org, Powersafe Overwrite, http://www.sqlite.org/psow.html 2456
• SQLite.org, Write-Ahead Logging, http://www.sqlite.org/wal.html 2457

http://www.sqlite.org/psow.html
http://www.sqlite.org/atomiccommit.html
http://www.sqlite.org/psow.html
http://www.sqlite.org/wal.html

NVM Programming Model Working Draft 82
Version 1.0.0 Revision 10

Annex A (Informative) NVM pointers 2458
Pointers are data types that hold virtual addresses of data in memory. When 2459
applications use pointers with volatile memory, the value of the pointer must be re-2460
assigned each time the program is run (a consequence of the memory being volatile). 2461
When applications map a file (or a portion of a file) residing in persistent memory to 2462
virtual addresses, it may or may not be assigned the same virtual address. If not, then 2463
pointers to values in that mapped memory will not reference the same data. There are 2464
several possible solutions to this problem: 2465
1) Relative pointers 2466
2) Regions are mapped at fixed addresses 2467
3) Pointers are relocated when region is remapped 2468

All three approaches are problematic, and involve different challenges that have not 2469
been fully addressed. 2470

None, except perhaps the third one, handles C++ vtable pointers inside persistent 2471
memory, or pointers to string constants, where the string physically resides in the 2472
executable, and not the memory-mapped file. Both of those issues are common. 2473

Option (1) implies that no existing pointer-containing library data structures can be 2474
stored in NVM, since pointer representations change. Option (2) requires careful 2475
management of virtual addresses to ensure that memory-mapped files that may need to 2476
be accessed simultaneously are not assigned to the same address. It may also limit 2477
address space layout randomization. Option (3) presents challenges in, for example, a 2478
C language environment in which pointers may not be unambiguously identifiable, and 2479
where they may serve as hash table indices or the like. Pointer relocation would 2480
invalidate such hash tables. It may be significantly easier in the context of a Java-like 2481
language. 2482

NVM Programming Model Working Draft 83
Version 1.0.0 Revision 10

Annex B (Informative) Consistency 2483
Persistent memory as defined in the NVM.PM.VOLUME and NVM.PM.FILE modes of 2484
the SNIA NVM Programming Model must exhibit certain data consistency properties in 2485
order to enable applications to operate correctly. Directly mapped load/store accessible 2486
NVM must have the following properties. 2487

• Usable as ordinary (not just Durable) memory 2488
• Consistent and Durable even after a failure 2489

The context for providing these properties is illustrated in Figure 15 Consistency 2490
overview. 2491

Figure 15 Consistency overview 2492

 2493

For the purpose of this annex, CPU’s and I/O devices are data producers whose write 2494
data passes through volatile buffers on the way to non-volatile memory. Generally 2495
transmission involves a CPU memory bus where typical transfer sizes are determined 2496
by either a fundamental data type of the machine or the CPU’s cache line size. All 2497
references to cache in this annex refer to the CPU’s cache. The Nonvolatile memory 2498
block illustrated here is referred to in the NVM Programming Model specification as a 2499
“Persistence Domain”. 2500
Implementations vary as to the level of fault tolerance although in general power failures 2501
must be tolerated but site scale catastrophes are not addressed at this level of the 2502
system. 2503

When persistence behavior is ignored, memory mapped NVM must appear to operate 2504
like ordinary memory. Normally compiled code without durability expectations should 2505
continue to run correctly. This includes the following. 2506
• Accessible through load/store/atomic read/modify/write. 2507
• Subject to existing processor cache coherency and “uncacheable” models 2508

NVM Programming Model Working Draft 84
Version 1.0.0 Revision 10

• Load/store/atomic read/modify/write retain their current semantics. 2509
o Even when accessed from multiple threads. 2510
o Even if locks or lock-protected data lives in NVM. 2511

• Able to use existing code (e.g., sort function) on NVM data. 2512
• Holds for all data producers: CPU and, where relevant, I/O. 2513
• “Execute In Place” capability 2514
• Supports pointers to NVM data structures 2515

At the implementation level, Fences in thread libraries etc. must have usual semantics, 2516
and usual thread visibility rules must be obeyed. 2517

In order to be consistent and durable even after failure, two properties are mandatory. 2518
• Atomicity. Some stores are all-or-nothing: They can’t be partly visible even after a 2519

failure. 2520
• Strict Write ordering relative to NVM.PM.FILE.SYNC (). 2521

For example, consider the following code segment where msync implements 2522
NVM.PM.FILE.SYNC: 2523

// a, a_end in NVM 2524
a[0] = foo(); 2525
msync(&(a[0]), …); 2526
a_end = 0; 2527
msync(&a_end, …); 2528
. . . 2529
n = a_end + 1; 2530
a[n] = foo(); 2531
msync(&(a[n]), …); 2532
a_end = n; 2533
msync(&a_end, …); 2534

For correctness of this code the following assertions must apply: 2535

• a[0 .. a_end] always contains valid data, even after a failure in this code. 2536
• a_end must be written atomically to NVM, so that the second store to a_end occurs 2537

no earlier than the store to a[n]. 2538

To achieve failure atomicity, Aligned operations on fundamental data types reach NVM 2539
atomically. After a failure (allowed by the failure model), each such store is fully 2540
reflected in the resulting NVM state or not at all. Formally “aligned operations on 2541
fundamental data types” is implementation defined. These are usually exactly the same 2542
operations that under normal operation become visible to other threads/data producers 2543
atomically. They are already well-defined for most settings: 2544

• Instruction Set Architectures already define them. 2545

o E.g., for x86, MOV instructions with naturally aligned operands of at most 64 2546
bits qualify. 2547

NVM Programming Model Working Draft 85
Version 1.0.0 Revision 10

• They’re generated by known high-level language constructs, e.g.: 2548

o C++11 lock-free atomic<T>, C11 _Atomic(T), Java & C# volatile, OpenMP 2549
atomic directives. 2550

The fundamental data types that enable atomicity generally fit within CPU cache lines. 2551

At least two facilities may be useful to achieve strict ordering relative to msync(): 2552
• msync: Wait for all writes in a range to complete. 2553
• optimization using an intra-cache-line ordering guarantee. 2554

To elaborate on these, msync(address_range) must ensure that if any effects from code 2555
following the call are visible, then so are all NVM stores to the address_range preceding 2556
it. While this low-level least-common-denominator primitive can be used to implement 2557
logging, etc., high level code often does not know what address range needs to be 2558
flushed. 2559

Intra-cache-line ordering requires that “thread-ordered” stores to a single cache line 2560
become visible in NVM in the order in which they are issued. The term “thread-ordered” 2561
refers to certain stores that are already known in today’s implementations to reach 2562
coherent cache in order, such as the following. 2563

• E.g., x86 MOV 2564
• some C11, C++11 atomic stores 2565
• Java & C# volatile stores. 2566
The CPU core and compiler may not reorder these. Within a single cache line, this order 2567
is normally preserved when the lines are evicted to NVM. This last point is a critical 2568
consideration as the preservation of thread-ordered stores during eviction to NVM is 2569
sometimes not guaranteed for posted I/O. 2570

Posted I/O (or Store) refers to any write I/O (or Store) that returns a commitment to the 2571
application before the data has reached a persistence domain. Posted I/O does not 2572
provide any ordering guarantee in the face of failures. Write-back caching is analogous 2573
to posted I/O. On some architectures write-through caching may preserve thread 2574
ordering during eviction if constrained to a single path to a single persistence domain. If 2575
better performance than write-through caching is desired or if consistency is mandatory 2576
over multiple paths and/or multiple persistence domains, then additional mechanisms 2577
such as synchronous snapshots or write-ahead logging must be used. 2578

PCIe has the synchronization primitives for software to determine that memory mapped 2579
writes make it to a persistence domain. Specifically, Reads and Writes cannot pass 2580
(other) Writes 2581

 within the same logical channel 2582

 …and if relaxed ordering is not enabled 2583

NVM Programming Model Working Draft 86
Version 1.0.0 Revision 10

The following pseudo-code illustrates a means of creating non-posted store behavior 2584
with write-back cacheable persistent memory on PCIe. 2585

For a list of sequentially executed writes which don’t individually 2586
cross a cache line { 2587
 Execute the first write in the list 2588
 for the remaining list of writes { 2589
 if the write is not the same cache line as the previous write{ 2590
 flush previous cache line 2591
 } 2592
 Execute the new write 2593
 } 2594
 Flush previous cache line; 2595
 If commit is desired { 2596
 read an uncacheable location from the PCIe device 2597
 } 2598
} 2599

This example depends on the strict ordering of writes within a cache line, which is 2600
characteristic of current processor architectures. It is not clear whether this is viewed as 2601
a hard requirement by processor vendors. Other approaches to guaranteed ordering in 2602
persistence domains exist, some of which are specific to hardware implementations 2603
other than PCIe. 2604

NVM Programming Model Working Draft 87
Version 1.0.0 Revision 10

Annex C (Informative) PM error handling 2605
Persistent memory error handing for NVM.PM.FILE.MAP ranges is unique because 2606
unlike I/O, there is no acknowledgement to a load or store instruction. Instead 2607
processors equipped to detect memory access failures respond with machine checks. In 2608
some cases these can be routed to user threads as asynchronous events. 2609

This annex only describes the handling of errors resulting from load instructions that 2610
access memory. As will be described later in this annex, no application level recovery is 2611
enabled at the point of a store error. These errors should appear in CPU event logs, 2612
leading to an administrative response that is outside the scope of this annex. 2613

Applications needing timely assurance that recently stored data is recoverable should 2614
use the NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY (see 10.2.7) action to read 2615
data back from NVM after it is flushed. Errors during verify are handled in the manner 2616
described in this annex. 2617

There are several scenarios that can arise in the handling of machine checks related to 2618
persistent memory errors while reading data from memory locations such as can occur 2619
during “load” instructions. Concepts are introduced here in an attempt to advance the 2620
state of the art in persistent memory error handling. The goal is to provide error 2621
reporting and recovery capability to applications that is equivalent to the current practice 2622
for I/O. 2623

We need several definitions to assist in reasoning about asynchronous events. 2624

- Machine check: an interrupt. In this case interrupts that result from memory errors 2625
are of specific interest. 2626

- Precise machine check – an interrupt that allows an application to resume at the 2627
interrupted instruction 2628

- Error containment – this is an indication of how well the system can determine the 2629
extent of an error. This enables a range of memory affected by an error that caused 2630
an interrupt to be returned to the application. 2631

- Real time error recovery – This refers to scenarios in which the application can 2632
continue execution after an error as opposed to being restarted. 2633

- Asynchronous event handler – This refers to code provided by an application that 2634
runs in response to an asynchronous event, in this case an event that indicates a 2635
memory error. An application’s event handler uses information about the error to 2636
determine whether execution can safely continue from within the application or 2637
whether a partial or full restart of the application is required to recover from the error. 2638

The ability to handle persistent memory errors depends on the capability of the 2639
processor and memory system. It is useful to categorize error handling capability into 2640
three levels: 2641

- No memory error detection – the lowest end systems have little or no memory error 2642
detection or correction capability such as ECC, CRC or parity. 2643

NVM Programming Model Working Draft 88
Version 1.0.0 Revision 10

- Non-precise or uncontained memory error detection – these systems detect memory 2644
errors but they do not provide information about the location of the error and/or fail to 2645
offer enough information to resume execution from the interrupted instruction. 2646

- Precise, contained memory error detection – these systems detect memory errors 2647
and report their locations in real time. These systems are also able to contain many 2648
errors more effectively. This increases the range of errors that allowing applications 2649
to continue execution rather than resetting the application or the whole system. This 2650
capability is common when using higher RAS processors. 2651

Only the last category of systems can, with appropriate operating system software 2652
enhancement, meet the error reporting goal stated above. The other two categories of 2653
systems risk scenarios where persistent memory errors are forced to repeatedly reset 2654
threads or processors, rendering them incapable of doing work. Unrecovered persistent 2655
memory errors are more problematic than volatile memory errors because they are less 2656
likely to disappear during a processor reset or application restart. 2657

Systems with precise memory error detection capability can experience a range of 2658
scenarios depending on the nature of the error. These can be categorized into three 2659
types. 2660

- Platform can’t capture error 2661
• Perhaps application or operating system dies 2662
• Perhaps hardware product include diagnostic utilities 2663

- Platform can capture error, considered fatal 2664
• Operating system crashes 2665
• Address info potentially stored by operating system or hardware/firmware 2666
• Application could use info on restart 2667

- Platform can capture error & deliver to application 2668
• Reported to application using asynchronous “event” 2669
• Example: SIGBUS on UNIX w/address info 2670

If the platform can’t capture the error then no real time recovery is possible. The system 2671
may function intermittently or not at all until diagnostics can expose the problem. The 2672
same thing happens whether the platform lacks memory error detection capability or the 2673
platform has the capability but was unable to use it due to a low probability error 2674
scenario. 2675

If the platform can capture the error but it is fatal then real time recovery is not possible, 2676
however then the system may make information about the error available after system 2677
or application restart. For this scenario, actions are proposed below to obtain error 2678
descriptions. 2679

If the platform can deliver the error to the application then real time recovery may be 2680
possible. An action is proposed below to represent the means that the application uses 2681
to obtain error information immediately after the failure. 2682

NVM Programming Model Working Draft 89
Version 1.0.0 Revision 10

As stated at the beginning of this annex, only errors during load are addressed by this 2683
annex. As with other storage media, little or no error checking occurs during store 2684
instructions (aka writes). In addition, memory write pipelines within CPU’s effectively 2685
preclude error handling during memory accesses that result from store instructions. For 2686
example, errors detected during the process of flushing the CPU’s write pipeline are 2687
more likely to be associated with that pipeline than the NVM itself. Errors that arise 2688
within the CPU’s write pipeline are generally not contained so no application level 2689
recovery is enabled at the point of the error. 2690

Continuing to analyze the real time error delivery scenario, the handling of errors on 2691
load instructions is sufficient in today’s high RAS systems to avoid the consumption of 2692
erroneous data by the application. Several enhancements are required to meet the goal 2693
of I/O-like application recoverability. 2694

Using Linux running on the Intel architecture as an example, memory errors are 2695
reported using Intel’s Machine Check Architecture (MCA). When the operating system 2696
enables this feature, the error flow on an uncorrectable error is shown by the solid red 2697
arrow (labeled ②) in Figure 16 Linux Machine Check error flow with proposed new 2698
interface, which depicts the mcheck component getting notified when the bad location in 2699
PM is accessed. 2700

Figure 16 Linux Machine Check error flow with proposed new interface 2701

 2702

As mentioned above, sending the application a SIGBUS (a type of asynchronous event) 2703
allows the application to decide what to do. However, in this case, remember that the 2704
NVM.PM.FILE manages the PM and that the location being accessed is part of a file on 2705
that file system. So even if the application gets a signal preventing it from using 2706
corrupted data, a method for recovering from this situation must be provided. A system 2707
administrator may try to back up rest of the data in the file system before replacing the 2708
faulty PM, but with the error mechanism we’ve described so far, the backup application 2709
would be sent a SIGBUS every time it touched the bad location. What is needed in this 2710
case is a way for the NVM.PM.FILE implementation to be notified of the error so it can 2711
isolate the affected PM locations and then continue to provide access to the rest of the 2712

NVM Programming Model Working Draft 90
Version 1.0.0 Revision 10

PM file system. The dashed arrows in the figure above show the necessary modification 2713
to the machine check code in Linux. On start-up, the NVM.PM.FILE implementation 2714
registers with the machine code to show it has responsibility for certain ranges of PM. 2715
Later, when the error occurs, NVM.PM.FILE gets called back by the mcheck component 2716
and has a chance to handle the error. 2717

This suggested machine check flow change enables the file system to participate in 2718
recovery while not eliminating the ability to signal the error to the application. The 2719
application view of errors not corrected by the file system depends on whether the error 2720
handling was precise and contained. Imprecise error handling precludes resumption of 2721
the application, in which case the one recovery method available besides restart is a 2722
non-local go-to. This resumes execution at an application error handling routine which, 2723
depending on the design of the application, may be able to recover from the error 2724
without resuming from the point in the code that was interrupted. 2725

Taking all of this into account, the proposed application view of persistent memory 2726
errors is as described by the NVM.PM.FILE.MAP action (section 10.2.3) and the 2727
NVM.PM.FILE.GET_ERROR_INFO action (section 10.2.6). 2728

The following actions have been proposed to provide the application with the means 2729
necessary to obtain error information after a fatal error. 2730

• PM.FILE.ERROR_CHECK(file, offset, length): Discover if range has any outstanding 2731
errors. Returns a list of errors referenced by file and offset. 2732

• PM.FILE.ERROR_CLEAR(file, offset, length): Reset error state (and data) for a 2733
range: may not succeed 2734

The following attributes have been proposed to enable application to discover the error 2735
reporting capabilities of the implementation. 2736

• NVM.PM.FILE.ERROR_CHECK_CAPABLE - System supports asking if range is in 2737
error state 2738

NVM Programming Model Working Draft 91
Version 1.0.0 Revision 10

Annex D (Informative) Deferred behavior 2739
This annex lists some behaviors that are being considered for future specifications. 2740

D.1 Remote sharing of NVM 2741

This version of the specification talks about the relationship between DMA and 2742
persistent memory (see 6.6 Interaction with I/O devices) which should enable a network 2743
device to access NVM devices. But no comprehensive approach to remote share of 2744
NVM is addressed in this version of the specification. 2745

D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP 2746

This would enable memory mapped ranges to be either cached or uncached by the 2747
CPU. 2748

D.3 NVM.PM.FILE.DURABLE.STORE 2749

This might imply that through this action things become durable and visible at the same 2750
time, or not visible until it is durable. Is there a special case for atomic write that, by the 2751
time the operation completes, it is both visible and durable? The prospective use case is 2752
an opportunity for someone with a hardware implementation that does not require 2753
separation of store and sync. This is not envisioned as the same as a file system write. 2754
It still implies a size of the store. The use case for NVM.FILE.DURABLE.STORE is to 2755
force access to the persistence domain. 2756

D.4 Enhanced NVM.PM.FILE.WRITE 2757

Add an NVM.PM.FILE.WRITE action where the only content describes error handling. 2758

D.5 Management-only behavior 2759

Several management-only behaviors have been discussed, but deferred to a future 2760
revision; including: 2761

• Secure Erase 2762
• Behavior enabling management application to discover PM devices (and 2763

behavior to fill gaps in the discovery of block NVM attributes) 2764
• Attribute exposing flash erase block size for management of disk partitions 2765

D.6 Access hints 2766

Allow applications to suggest how data is placed on storage 2767

D.7 Multi-device atomic multi-write action 2768

Perform an atomic write to multiple extents in different devices. 2769

D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action 2770

The text below was partially developed, before being deferred to a future revision. 2771

NVM Programming Model Working Draft 92
Version 1.0.0 Revision 10

10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST 2772
Proposed new name MARK_DISCARDABLE 2773

Purpose - discard blocks to prevent write amplification 2774

This action notifies the NVM device that some or all of the blocks which constitute a 2775
volume are no longer needed by the application, but the NVM device should defer 2776
changes to the blocks as long as possible. This action is a hint to the device. 2777

If the data has been retained, a subsequent read shall return “success” along with the 2778
data. Otherwise, it shall return an error indicating the data does not exist (and the data 2779
buffer area for that block is undefined). 2780

Inputs: a range of blocks (starting LBA and length in logical blocks) 2781

Status: Success indicates the request is accepted but not necessarily acted upon. 2782

Existing implementations of TRIM may work this way. 2783

10.4.7 DISCARD_IF_YOU_MUST use case 2784

Purpose/triggers: 2785
An NVM device may allocate blocks of storage from a common pool of storage. The 2786
device may also allocate storage through a thin provisioning mechanism. In each of 2787
these cases, it is useful to provide a mechanism which allows an application or NVM 2788
user to notify the NVM storage system that some or all of the blocks which constitute 2789
the volume are no longer needed by the application. This allows the NVM device to 2790
return the memory allocated for the unused blocks to the free memory pool and make 2791
the unused blocks available for other consumers to use. 2792

DISCARD_IF_YOU_MUST operation informs the NVM device that that the specified 2793
blocks are no longer required. DISCARD_IF_YOU_MUST instructs the NVM device to 2794
release previously allocated blocks to the NVM device’s free memory pool. The NVM 2795
device releases the used memory to the free storage pool based on the specific 2796
implementation of that device. If the device cannot release the specified blocks, the 2797
DISCARD_IF_YOU_MUST operation returns an error. 2798

Scope/context: 2799
This use case describes the capabilities of an NVM device that the NVM consumer can 2800
determine. 2801

Inputs: 2802
The range to be freed. 2803

Success scenario: 2804
The operation succeeds unless an invalid region is specified or the NVM device is 2805
unable to free the specified region. 2806

NVM Programming Model Working Draft 93
Version 1.0.0 Revision 10

Outputs: 2807
The completion status. 2808

Postconditions: 2809
The specified region is erased and released to the free storage pool. 2810

See also: 2811
DISCARD_IF_YOU_CAN 2812

EXISTS 2813

D.9 Atomic write action with Isolation 2814

Offer alternatives to ATOMIC_WRITE and ATOMIC_MULTIWRITE that also include 2815
isolation with respect to other atomic write actions. Issues to consider include whether 2816
order is required, whether isolation applies across multiple paths, and how isolation 2817
applies to file mapped I/O. 2818

D.10 Atomic Sync/Flush action for PM 2819

The goal is a mechanism analogous to atomic writes for persistent memory. Since 2820
stored memory may be implicitly flushed by a file system, defining this mechanism may 2821
be more complex than simply defining an action. 2822

D.11 Hardware-assisted verify 2823

Future PM device implementations may provide a capability to perform the verify step of 2824
OPTIMIZED_FLUSH_AND_VERIFY without requiring an explicit load instruction. This 2825
capability may require the addition of actions and attributes in NVM.PM.VOLUME mode; 2826
this change is deferred until we have examples of this type of device. 2827

	Foreword
	1 Scope
	2 References
	3 Definitions, abbreviations, and conventions
	3.1 Definitions
	3.1.1 durable
	3.1.2 load and store operations
	3.1.3 memory-mapped file
	3.1.4 non-volatile memory
	3.1.5 NVM block capable driver
	3.1.6 NVM volume
	3.1.7 persistence domain
	3.1.8 persistent memory
	3.1.9 programming model

	3.2 Keywords
	3.2.1 mandatory
	3.2.2 may
	3.2.3 may not
	3.2.4 need not
	3.2.5 optional
	3.2.6 shall
	3.2.7 should

	3.3 Abbreviations
	3.4 Conventions

	4 Overview of the NVM Programming Model (informative)
	4.1 How to read and use this specification
	4.2 NVM device models
	4.2.1 Overview
	4.2.2 Block NVM example
	4.2.3 Persistent memory example
	4.2.4 NVM block volume using PM hardware

	4.3 NVM programming modes
	4.3.1 NVM.BLOCK mode overview
	4.3.2 NVM.FILE mode overview
	4.3.3 NVM.PM.VOLUME mode overview
	4.3.4 NVM.PM.FILE mode overview

	4.4 Introduction to actions, attributes, and use cases
	4.4.1 Overview
	4.4.2 Use cases
	4.4.3 Actions
	4.4.4 Attributes
	4.4.5 Property group lists

	5 Compliance to the programming model
	5.1 Overview
	5.2 Documentation of mapping to APIs
	5.3 Compatibility with unspecified native actions
	5.4 Mapping to native interfaces

	6 Common programming model behavior
	6.1 Overview
	6.2 Conformance to multiple file modes
	6.3 Device state at system startup
	6.4 Secure erase
	6.5 Allocation of space
	6.6 Interaction with I/O devices
	6.7 NVM State after a media or connection failure
	6.8 Error handling for persistent memory
	6.9 Persistence domain
	6.10 Common actions
	6.10.1 NVM.COMMON.GET_ATTRIBUTE
	6.10.2 NVM.COMMON.SET_ATTRIBUTE

	6.11 Common attributes
	6.11.1 NVM.COMMON.SUPPORTED_MODES
	6.11.2 NVM.COMMON.FILE_MODE

	6.12 Use cases
	6.12.1 Application determines which mode is used to access a file system

	7 NVM.BLOCK mode
	7.1 Overview
	7.1.1 Discovery and use of atomic write features
	7.1.2 The discovery of granularities
	7.1.3 Discovery and use of capability to mark blocks as unreadable
	7.1.4 NVM.BLOCK consumers: operating system and applications
	7.1.4.1 NVM.BLOCK operating system components
	7.1.4.2 Block-optimized applications
	7.1.4.3 Mapping documentation

	7.2 Actions
	7.2.1 Actions that apply across multiple modes
	7.2.2 NVM.BLOCK.ATOMIC_WRITE
	7.2.3 NVM.BLOCK.ATOMIC_MULTIWRITE
	7.2.4 NVM.BLOCK.DISCARD_IF_YOU_CAN
	7.2.5 NVM.BLOCK.DISCARD_IMMEDIATELY
	7.2.6 NVM.BLOCK.EXISTS
	7.2.7 NVM.BLOCK.SCAR

	7.3 Attributes
	7.3.1 Attributes that apply across multiple modes
	7.3.2 NVM.BLOCK.ATOMIC_WRITE_CAPABLE
	7.3.3 NVM.BLOCK.ATOMIC_WRITE_MAX_DATA_LENGTH
	7.3.4 NVM.BLOCK.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	7.3.5 NVM.BLOCK.ATOMIC_WRITE_LENGTH_GRANULARITY
	7.3.6 NVM.BLOCK.ATOMIC_MULTIWRITE_CAPABLE
	7.3.7 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_IOS
	7.3.8 NVM.BLOCK.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	7.3.9 NVM.BLOCK.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	7.3.10 NVM.BLOCK.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	7.3.11 NVM.BLOCK.WRITE_ATOMICITY_UNIT
	7.3.12 NVM.BLOCK.EXISTS_CAPABLE
	7.3.13 NVM.BLOCK.SCAR_CAPABLE
	7.3.14 NVM.BLOCK.LOGICAL_BLOCK_SIZE
	7.3.15 NVM.BLOCK.PERFORMANCE_BLOCK_SIZE
	7.3.16 NVM.BLOCK.ALLOCATION_BLOCK_SIZE
	7.3.17 NVM.BLOCK.DISCARD_IF_YOU_CAN_CAPABLE
	7.3.18 NVM.BLOCK.DISCARD_IMMEDIATELY_CAPABLE
	7.3.19 NVM.BLOCK.DISCARD_IMMEDIATELY_RETURNS
	7.3.20 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE

	7.4 Use cases
	7.4.1 Flash as cache use case
	7.4.2 SCAR use case

	8 NVM.FILE mode
	8.1 Overview
	8.1.1 Discovery and use of atomic write features
	8.1.2 The discovery of granularities
	8.1.3 Relationship between native file APIs and NVM.BLOCK.DISCARD

	8.2 Actions
	8.2.1 Actions that apply across multiple modes
	8.2.2 NVM.FILE.ATOMIC_WRITE
	8.2.3 NVM.FILE.ATOMIC_MULTIWRITE

	8.3 Attributes
	8.3.1 Attributes that apply across multiple modes
	8.3.2 NVM.FILE.ATOMIC_WRITE_CAPABLE
	8.3.3 NVM.FILE.ATOMIC_WRITE_MAX_DATA_LENGTH
	8.3.4 NVM.FILE.ATOMIC_WRITE_STARTING_ADDRESS_GRANULARITY
	8.3.5 NVM.FILE.ATOMIC_WRITE_LENGTH_GRANULARITY
	8.3.6 NVM.FILE.ATOMIC_MULTIWRITE_CAPABLE
	8.3.7 NVM.FILE.ATOMIC_MULTIWRITE_MAX_IOS
	8.3.8 NVM.FILE.ATOMIC_MULTIWRITE_MAX_DATA_LENGTH
	8.3.9 NVM.FILE.ATOMIC_MULTIWRITE_STARTING_ADDRESS_GRANULARITY
	8.3.10 NVM.FILE.ATOMIC_MULTIWRITE_LENGTH_GRANULARITY
	8.3.11 NVM.FILE.WRITE_ATOMICITY_UNIT
	8.3.12 NVM.FILE.LOGICAL_BLOCK_SIZE
	8.3.13 NVM.FILE. PERFORMANCE_BLOCK_SIZE
	8.3.14 NVM.FILE.LOGICAL_ALLOCATION_SIZE
	8.3.15 NVM.FILE.FUNDAMENTAL_BLOCK_SIZE

	8.4 Use cases
	8.4.1 Block-optimized application updates record
	8.4.2 Atomic write use case
	8.4.3 Block and File Transaction Logging
	8.4.3.1 NVM.BLOCK.WRITE_ATOMICITY_UNIT >= 1
	8.4.3.2 NVM.BLOCK.WRITE_ATOMICITY_UNIT = 0
	8.4.3.2.1 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE >= NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.2 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE < NVM.BLOCK.LOGICAL_BLOCK_SIZE
	8.4.3.2.3 NVM.BLOCK.FUNDAMENTAL_BLOCK_SIZE = 0

	9 NVM.PM.VOLUME mode
	9.1 Overview
	9.2 Actions
	9.2.1 Actions that apply across multiple modes
	9.2.2 NVM.PM.VOLUME.GET_RANGESET
	9.2.3 NVM.PM.VOLUME.VIRTUAL_ADDRESS_SYNC
	9.2.4 NVM.PM.VOLUME.PHYSICAL_ADDRESS_SYNC
	9.2.5 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN
	9.2.6 NVM.PM.VOLUME.DISCARD_IMMEDIATELY
	9.2.7 NVM.PM.VOLUME.EXISTS

	9.3 Attributes
	9.3.1 Attributes that apply across multiple modes
	9.3.2 NVM.PM.VOLUME.VOLUME_SIZE
	9.3.3 NVM.PM.VOLUME.INTERRUPTED_STORE_ATOMICITY
	9.3.4 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE
	9.3.5 NVM.PM.VOLUME.FUNDAMENTAL_ERROR_RANGE_OFFSET
	9.3.6 NVM.PM.VOLUME.DISCARD_IF_YOU_CAN_CAPABLE
	9.3.7 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_CAPABLE
	9.3.8 NVM.PM.VOLUME.DISCARD_IMMEDIATELY_RETURNS
	9.3.9 NVM.PM.VOLUME.EXISTS_CAPABLE

	9.4 Use cases
	9.4.1 Initialization steps for a PM-aware file system
	9.4.2 Driver emulates a block device using PM media

	10 NVM.PM.FILE
	10.1 Overview
	10.2 Actions
	10.2.1 Actions that apply across multiple modes
	10.2.2 Native file system actions
	10.2.3 NVM.PM.FILE.MAP
	10.2.4 NVM.PM.FILE.SYNC
	10.2.5 NVM.PM.FILE.OPTIMIZED_FLUSH
	10.2.6 NVM.PM.FILE.GET_ERROR_EVENT_INFO
	10.2.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY

	10.3 Attributes
	10.3.1 Attributes that apply across multiple modes
	10.3.2 NVM.PM.FILE.MAP_COPY_ON_WRITE_CAPABLE
	10.3.3 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY
	10.3.4 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE
	10.3.5 NVM.PM.FILE.OPTIMIZED_FLUSH_CAPABLE
	10.3.6 NVM.PM.FILE.ERROR_EVENT_CAPABLE
	10.3.7 NVM.PM.FILE.OPTIMIZED_FLUSH_AND_VERIFY_CAPABLE

	10.4 Use cases
	10.4.1 Update PM File Record
	10.4.2 Direct load access
	10.4.3 Direct store access
	10.4.4 Direct store access with synchronized I/O data integrity completion
	10.4.5 Persistent Memory Transaction Logging
	10.4.5.1 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is true
	10.4.5.2 NVM.PM.FILE.INTERRUPTED_STORE_ATOMICITY is false
	10.4.5.2.1 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE > 0
	10.4.5.2.2 NVM.PM.FILE.FUNDAMENTAL_ERROR_RANGE = 0

	Annex A (Informative) NVM pointers
	Annex B (Informative) Consistency
	Annex C (Informative) PM error handling
	Annex D (Informative) Deferred behavior
	D.1 Remote sharing of NVM
	D.2 MAP_CACHED OPTION FOR NVM.PM.FILE.MAP
	D.3 NVM.PM.FILE.DURABLE.STORE
	D.4 Enhanced NVM.PM.FILE.WRITE
	D.5 Management-only behavior
	D.6 Access hints
	D.7 Multi-device atomic multi-write action
	D.8 NVM.BLOCK.DISCARD_IF_YOU_MUST action
	10.4.6 NVM.BLOCK.DISCARD_IF_YOU_MUST
	10.4.7 DISCARD_IF_YOU_MUST use case

	D.9 Atomic write action with Isolation
	D.10 Atomic Sync/Flush action for PM
	D.11 Hardware-assisted verify

