

Smart Data Accelerator Interface
(“SDXI”) Specification

Version 1.0.3-rev5

ABSTRACT: Smart Data Accelerator Interface (SDXI) is a standard for a memory-to-
memory data mover and acceleration interface.

Publication of this Working Draft for review and comment has been approved by the SDXI TWG This
draft represents a “best effort” attempt by the SDXI TWG to reach preliminary consensus, and it may
be updated, replaced, or made obsolete at any time. This document should not be used as reference
material or cited as other than a “work in progress.” Suggestions for revisions should be directed to
http://www.snia.org/feedback/.

Working Draft

October 24, 2024

http://www.snia.org/feedback/

2 Working Draft SNIA SDXI Specification
 Version 1.0.3

USAGE
Copyright © 2024 SNIA. All rights reserved. All other trademarks or registered trademarks are the property
of their respective owners.
The SNIA hereby grants permission for individuals to use this document for personal use only, and for
corporations and other business entities to use this document for internal use only (including internal
copying, distribution, and display) provided that:

1. Any text, diagram, chart, table or definition reproduced shall be reproduced in its entirety with no
alteration, and,

2. Any document, printed or electronic, in which material from this document (or any portion hereof) is
reproduced shall acknowledge the SNIA copyright on that material, and shall credit the SNIA for
granting permission for its reuse.

Other than as explicitly provided above, you may not make any commercial use of this document or any
portion thereof, or distribute this document to third parties. All rights not explicitly granted are expressly
reserved to SNIA.
Permission to use this document for purposes other than those enumerated above may be requested by
e-mailing tcmd@snia.org. Please include the identity of the requesting individual and/or company and a
brief description of the purpose, nature, and scope of the requested use.
All code fragments, scripts, data tables, and sample code in this SNIA document are made available under
the following license:

BSD 3-Clause Software License
Copyright (c) 2024, The Storage Networking Industry Association.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of The Storage Networking Industry Association (SNIA) nor the names of
its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SNIA SDXI Specification Working Draft 3
 Version 1.0.3

DISCLAIMER
The information contained in this publication is subject to change without notice. The SNIA makes no
warranty of any kind with regard to this specification, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The SNIA shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance, or use of
this specification.

Revision History

Revision Date Comments

1.0.3 October 3, 2024 #102, #149, #157, #159, #163, #169, #171, #176, #177, #178,
#179, #181

1.0.2 Jan 18, 2024 Removed any forced values of rb field in descriptors

1.0.1 Nov 10.2023 #160,161,158,147,157

1.0 November 28, 2022 Official Release

0.9.7-rev0 November 20, 2022 Approved by SNIA membership

0.9.7 September 5, 2022 Public Review

0.9 July 2021 First Public Preview

0.7 September 2020 Starting point Draft Contribution to SNIA SDXI TWG

Suggestions for revisions should be directed to https://www.snia.org/feedback/.

https://www.snia.org/feedback/

4 Working Draft SNIA SDXI Specification
 Version 1.0.3

SDXI TWG 1.0.3-rev5 Contributors

Curtis Ballard, HPE
Beau Beachamp, MemVerge
Richard Brunner, VMware
Michael Chacko, Microsoft
Xiangping Chen, Dell
Don Dutile, IBM
Paul Hartke, AMD
Shyam Iyer, Dell Inc
Travis Hamilton, Arm
Brian Hirano, Micron
Frederick Knight, NetApp
Santosh Kumar, SK Hynix
James Leighton, Western Digital
Bill Martin, Samsung
John Maroney, Micron
J Metz, AMD
William Moyes, AMD
Philip Ng, AMD
Murali Ravirala, Microsoft
Dwight Riley, HPE
Alexandre Romana, Arm
Glen Sescila, Dell Inc
Paul Von Stamwitz, Fujitsu
Jason Wohlgemuth, Microsoft

SNIA SDXI Specification Working Draft 5
 Version 1.0.3

Table of Contents

1 SDXI: OVERVIEW .. 9
1.1 SCOPE ... 9
1.2 DOCUMENTATION CONVENTIONS .. 9

 Shall, Should, May, and Can ... 9
 Normative vs. Informative .. 9
 Reserved ... 9
 Developer Notes .. 9
 Abbreviations and Terminology ... 10
 Other Clarifying Notes ... 11

1.3 REFERENCES ... 11
1.4 DOCUMENT CONSTANTS ... 12

2 BACKGROUND .. 13
2.1 ARCHITECTED PLATFORM DATA MOVER .. 14

 SDXI Descriptor Ring ... 15
 Virtualization Support ... 16

2.2 DMA ADDRESSING MODES ... 16
 Address Space Identifier Control ... 16
 SDXI Function Groups ... 17
 Unpinned Memory Access ... 17

2.3 ADDRESS SPACE CONTROL EXAMPLES ... 17
 Single-Function, Single Address Space Example ... 18
 Single-Function, User Mode Access Example .. 19
 Single-Function, Multiple Address Space Example ... 20
 Cross-Function Transfer Example ... 21

2.4 MODULARITY AND EXPANDABILITY .. 23
2.5 ENDIAN FORMAT SUPPORT ... 23

3 SYSTEM MEMORY DATA STRUCTURES .. 24
3.1 OVERVIEW ... 24
3.2 CONTEXT DATA STRUCTURES... 27

 Context Level 2 Table .. 28
 Context Level 1 Table .. 28
 Context Control (CXT_CTL) .. 31
 Context Status (CXT_STS) ... 33
 Access Key (AKey) Table Entry (AKEY_ENT) .. 34

3.3 SDXI CROSS-FUNCTION ACCESS ... 36
 SDXI Function Group ... 36
 Receiver Access Key (RKey) Table .. 38
 RKey Table Entry ... 39
 Receiver Access Key (RKey) Processing .. 41

3.4 ERROR LOG ... 42
 Error Log Header Entry (ERRLOG_HD_ENT) .. 45
 Error Log Initialization .. 49
 Error Log Processing by Software ... 49

3.5 ADMINISTRATIVE CONTEXT (CONTEXT 0) ... 50

6 Working Draft SNIA SDXI Specification
 Version 1.0.3

3.6 DATA STEERING HINTS (DSH) .. 50

4 SDXI FUNCTION AND CONTEXT STATE... 51
4.1 SDXI FUNCTION STATE .. 51

 G0: GSV_STOP State ... 52
 G1: GSV_INIT State .. 52
 G2: GSV_ACTIVE State .. 52
 G3: GSV_STOPG_SF ("Soft Stopping") State .. 52
 G4: GSV_STOPG_HD ("Hard Stopping") State .. 53
 G5: GSV_ERROR State .. 53
 Function Reset and Outstanding DMA Requests .. 53
 Activation of the SDXI Function by Software ... 54
 Stopping of the SDXI Function by Software .. 54

4.2 SDXI CONTEXT STATE ... 56
 S1: CXTV_INVALID State ... 57
 S2: CXTV_STOP_[SW, FN] States ... 57
 S3: CXTV_ERR_FN .. 58
 S4: CXTV_RUN.[RDY, EXEC] States ... 59
 S5: CXTV_STOPG_[SW, FN] States .. 60
 Context-Undefined Operation (CXTV_UNDEF) .. 61

4.3 FUNCTION AND CONTEXT OPERATIONS ... 62
 SDXI Memory-Based Data-Structure Hierarchy and Caching ... 62
 Check Valid Context .. 66
 Doorbell Register and Context Signaling ... 67
 Starting A Context and Context Signaling ... 68
 Function and Context Stop Actions ... 69
 Context Ring Submission Hint ... 73

4.4 ATOMIC OPERATION SUPPORT.. 73
 Completion-Status Capabilities ... 74
 Completion-Status Modes ... 75

5 SDXI DESCRIPTOR RING OPERATION ... 77
5.1 DESCRIPTOR OPERATIONS ... 79
5.2 ENQUEUING ONE OR MORE DESCRIPTORS ... 81

 Multi-Producer Enqueue .. 84
5.3 DESCRIPTOR PROCESSING ... 84
5.4 DESCRIPTOR ORDERING AND PARALLEL EXECUTION ... 86
5.5 DESCRIPTOR COMPLETION ... 87
5.6 MEMORY CONSISTENCY MODEL ... 87
5.7 DESCRIPTOR CHAINING .. 89

 Extended Descriptors .. 89
5.8 DESCRIPTOR DRIVEN INTERRUPTS .. 89

6 SDXI DESCRIPTOR AND OPERATION SPECIFICATION ... 90
6.1 DESCRIPTOR FORMAT FOR SDXI OPERATIONS ... 92

 Common Header and Footer ... 92
 Completion Status Block .. 94
 Attribute Field ... 95

6.2 DMA BASE OPERATIONS GROUP (DMABASEGRP) .. 96

SNIA SDXI Specification Working Draft 7
 Version 1.0.3

 DmaBaseGrp: DSC_DMAB_NOP ... 96
 DmaBaseGrp: DSC_DMAB_WRT_IMM Operation ... 97
 DmaBaseGrp: DSC_DMAB_COPY Operation .. 99
 DmaBaseGrp: DSC_DMAB_REPCOPY Operation .. 101

6.3 EXPANDED DMA GROUP .. 103
 ExpDmaGrp: DSC_XDMA_FILL_IMM Operation .. 103
 ExpDmaGrp: DSC_XDMA_CMP Operation .. 105
 ExpDmaGrp: DSC_XDMA_CMP_IMM Operation ... 106

6.4 ATOMIC OPERATION GROUP (ATOMICGRP) ... 108
6.5 INTRGRP OPERATION GROUP ... 112

 IntrGrp DSC_INTR Operation .. 112
6.6 ADMINISTRATIVE OPERATION GROUP (ADMINGRP) .. 113

 Accessing Contexts, Akey Tables, and RKey Table by Index ... 113
 Targeting Multiple Contexts with A Single Administrative Operation .. 115
 AdminGrp DSC_CXT_START_[NM, RS] Operations ... 116
 AdminGrp DSC_CXT_STOP Operation .. 119
 AdminGrp DSC_AKEY_UPD Operation .. 122
 AdminGrp DSC_CXT_UPD Operation .. 124
 AdminGrp: DSC_FN_UPD Operation .. 127
 AdminGrp DSC_RKEY_UPD Operation .. 129
 AdminGrp DSC_SYNC Operation ... 131

 AdminGrp DSC_ADM_INTR Operation ... 134
 AdminGrp DSC_DISC Operation .. 135

6.7 DOUBLE COPY GROUP (DBLCOPYGRP) .. 136
 DblCopyGrp: DSC_DBLCOPY Operation ... 137

6.8 CRC MODE1 OPERATION GROUP (CRCM1GRP) ... 138

7 RECOMMENDED SEQUENCES FOR FUNCTION MANAGEMENT .. 150
7.1 FUNCTION LEVEL RESOURCES .. 150

 Context Level 2 Table Base (MMIO_CXT_L2) Modification .. 150
7.2 CONTEXT LEVEL RESOURCES ... 151

 Context Level 2 Table Entry (CXT_L2_ENT) Modification .. 151

8 SDXI PCI-EXPRESS DEVICE ARCHITECTURE ... 152
8.1 SDXI FUNCTION CONFIGURATION SPACE REGISTERS ... 152

 Class Code .. 153
 BAR Configuration ... 153
 Required Capabilities and Extended Capabilities ... 153

8.2 MAPPING SFUNC VALUES TO PCIE REQUESTER ID VALUES ... 153
8.3 MAPPING SDXI DSH TO PCIE TLP PROCESSING HINTS (PCIE TPH) ... 154
8.4 PCIE ATOMIC CAPABILITIES DISCOVERY AND ENABLEMENT ... 154
8.5 ADDRESS SPACE PRIVILEGE IN PCIE .. 154

9 MMIO CONTROL REGISTERS .. 156
9.1 GENERAL CONTROL AND STATUS REGISTERS ... 158
9.2 CONTEXT AND RKEY TABLE REGISTERS ... 163
9.3 ERROR LOGGING CONTROL AND STATUS REGISTERS .. 164
9.4 MBOX MAILBOX REGISTERS .. 167

8 Working Draft SNIA SDXI Specification
 Version 1.0.3

9.5 PF MAILBOX DATA REGISTERS ... 168
9.6 VF MAILBOX DATA REGISTERS ... 170
9.7 DOORBELL SECTIONS AND REGISTERS ... 171

SNIA SDXI Specification Working Draft 9
 Version 1.0.3

1 SDXI: Overview

This document describes SDXI, an architectural data-mover device for server platforms. SDXI aims to
provide a variety of benefits including architectural stability, modularity, virtualization-friendly programming
interface, both user and kernel mode support, and new capabilities designed to accelerate virtualized
workloads.

1.1 Scope

1.2 Documentation Conventions
This specification adheres to various conventions found in the "IEEE Standards Board Operations Manual
– Clause 6" at "https://standards.ieee.org/about/policies/opman/sect6/". A few are described here.

 Shall, Should, May, and Can
• The word "shall" is used to indicate mandatory requirements strictly to be followed in order to

conform to the Specification and from which no deviation is permitted ("shall" equals "is required to").
• The use of the word "must" is deprecated and shall not be used when stating mandatory

requirements; "must" is used only to describe unavoidable situations.
• The use of the word "will" is deprecated and shall not be used when stating mandatory

requirements; will is only used in statements of fact.
• The word "should" is used to indicate that among several possibilities one is recommended as

particularly suitable, without mentioning or excluding others; or that a certain course of action is
preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited (should equals is recommended that).

• The word "may" is used to indicate a course of action permissible within the limits of the
Specification (may equals is permitted).

• The word "can" is used for statements of possibility and capability, whether material, physical, or
causal ("can" equals "is able to").

 Normative vs. Informative
Normative material is information required to implement the standard and is therefore officially part of the
standard. Informative material is provided for information only and is therefore not officially part of the
standard.
All sections in this document are normative, unless they are explicitly indicated to be informative at the
beginning of each section.

 Reserved
The following applies to the term "Reserved", "rsvd", and "rsv":

• The contents, state, or information are not specified at this time.
• Any field, feature, capability, etc. marked "Reserved", "rsvd", or "rsv" is subject to change.
• We may use these terms interchangeably.

 Developer Notes

https://standards.ieee.org/about/policies/opman/sect6/

10 Working Draft SNIA SDXI Specification
 Version 1.0.3

Developer Notes do not specify normative or optional requirements. They are included for clarification and
illustration only. These notes are delineated by:

Developer Note: This is such a note …

 Abbreviations and Terminology

Term Definition

Administrative
Context

A context that supports the use of administrative operations used for managing SDXI
Functions and their contexts.

AKey Access Key. See "3.2.5, Access Key (AKey) Table Entry (AKEY_ENT)".

ATS Address Translation Services. Defined in the PCI Express Base Specification.

Context A Context refers to a descriptor ring used for executing operations, along with all associated
memory data structures such as control and status information

Cross-Function An operation where the SDXI Function owning the target resource differs from the requesting
SDXI Function.

DMA Direct Memory Access

DSH Data Steering Hint See "3.6, Data Steering Hints (DSH)".

Function Group A collection of SDXI functions that may access each other's memory and interrupt resources.

GPA Guest Physical Address

GVA Guest Virtual Address

HPA Host Physical Address

HVA Host Virtual Address

IO Input Output

IOMMU IO Memory Management Unit

SNIA SDXI Specification Working Draft 11
 Version 1.0.3

Term Definition

Local Local or Local Space (referenced in various structures by an "sfunc" field of "0") corresponds
to the SDXI function hosting the context and descriptor.

MMIO Memory mapped IO

MMU Memory Management Unit

P2V An administrative command from a Physical Function that targets a Virtual Function.

PASID Process Address Space Identifier. The combination of PASID and Requester ID identifies the
address space used by a transaction on the PCIe bus.

PRI Page Request Interface. Defined in the PCI Express Base Specification.

Remote May be used by an SDXI Function owning a target resource to refer to a separate requesting
SDXI Function. May also be used by a requesting SDXI Function to refer to a target resource
owned by a different SDXI Function. Also see Cross-Function.

Requester ID The PCIe bus, device and function number used by PCIe SDXI Functions as part of DMA,
interrupt and address translation operations.

RKey Receiver Access Key. See "3.3.2, Receiver Access Key (RKey) Table".

SDXI Function A device that implements the SDXI specification. This may be either a physical or virtual
function.

sfunc An opaque SDXI Function identifier that maps uniquely to an SDXI function. For example, in
a PCIe implementation of SDXI, "sfunc" could map to a PCIe Requester ID. This is used
when accessing AKey-referenced data structures. The value of "0" is defined to reference
the local hosting SDXI function; all other encodings refer to other non-local SDXI functions.

 Other Clarifying Notes

1.2.6.1 Index
Index as used in this specification refers to a table index to a table-specific entry. In order to address the
corresponding table entry in memory, the index is multiplied by the size of the table-specific entry and
added to the beginning address of the table. For example, if a table starting at address 0x1000 has entries
that are 64 bytes in size, then an index into that table needs to be multiplied by 64 and added to 0x1000 to
determine the correct memory location of the entry.

1.3 References
• PCI Express Base Specification, Revision 5.0

12 Working Draft SNIA SDXI Specification
 Version 1.0.3

1.4 Document Constants
These are defined solely for tooling scripts related to the document.

Table 1–1: Document CONSTANTS[^0]
Constant Value Description
DOC_REVISION 1.0.3 Document Revision. Must be entered manually here.

SNIA SDXI Specification Working Draft 13
 Version 1.0.3

2 Background

(The entirety of this chapter is informative.)
The concept of a Direct Memory Access (DMA) data mover device to offload software-based copy loops is
well-known. Such offloading is desirable to free up CPU execution cycles. But adoption has been mostly
limited to specific privileged software and I/O use cases employing very device-specific interfaces that are
not forward compatible. The current limitations make user-mode application usage challenging in a non-
virtualized environment and nearly impossible in a multi-tenant virtualized environment. The figure below
shows a vision for such an architectural data mover.

Figure 2-1: Architectural Data Mover

MMIO (Memory
Mapped I/ O)

SCM (Storage
Class Memory)

Fabric
Attached
Memory

SDXI

System Physical
Address space• Accelerate Data

Movement (CPU
offloaded)

• Secure
• Architectural, Stable

Interfaces

SW context isolation layers

Application(Context A) Application(Context B)

1. Leverage a standard
specification

Direct
User
mode

2. Innovate around
the spec

3. Add incremental
Data acceleration

features

GPU

FPGA

SMART IO

CPU Family B SDXI

SDXI

SDXI

SDXI

CPU CPU Family A

DRAM
(Context A)

DRAM
(Context B)DRAM (Context B)

DRAM (Context A)

embedded

We have developed the SDXI Platform Data Mover (aka "SDXI") to provide an architectural interface to
address these limitations:

• An extensible, forward-compatible interface that is independent of actual data mover
implementations and underlying I/O interconnect technology.

• A standard interface for user-mode address-space to address-space data movement without the
need of mediation by privileged software once a connection has been established.

• A standard interface for privileged software to control the data mover including connection
management and data movement between multiple address spaces

• An interface that can be abstracted or virtualized by privileged software to allow greater compatibility
of workloads or virtual machines across different servers.

• A well-defined capability to quiesce, suspend, and resume the architectural state of a per-address-
space data mover to allow "live" workload or virtual machine migration between servers.

• A forward compatible interface that ensures pre-existing software drivers including user-mode
drivers can operate on future hardware implementations without modification.

• The ability to incorporate additional offloads in the future without modification to the architectural
interface.

14 Working Draft SNIA SDXI Specification
 Version 1.0.3

2.1 Architected Platform Data Mover
The basic SDXI architecture consists of some number of Smart Data accelerators that are enumerated as
one or more SDXI functions. Each function may support 1 or more contexts with each context having a
single descriptor ring. SR-IOV is optionally supported.

Figure 2-2: Basic SDXI Architecture

SDXI Device

IOMMU

System Memory

SDXI Data Mover

PF0VF0_0VF0_n

VF
0_

0C
nt

xt
0

DataDataData

VF
0_

0C
nt

xt
m

-1

PF
0C

nt
xt

n-
1

PF
0C

nt
xt

0

VF
0_

nC
nt

xt
0

VF
0_

nC
nt

xt
m

-1

embedded

SNIA SDXI Specification Working Draft 15
 Version 1.0.3

 SDXI Descriptor Ring
An SDXI descriptor is a naturally aligned 64-byte entry that instructs an SDXI function to perform a given
operation. Descriptors are placed in a circular ring that starts at a specified address (ds_ring_ptr). The ring
is contiguous at the translation level configured for the SDXI function. The ring is configured to contain a
given number of descriptor ring entries (ds_ring_sz). The number of bytes allocated in memory for the ring
is: (ds_ring_sz * 64).
A set of related operations form an operations group. An operation requires a particular descriptor format
to indicate parameters for the operation.
The ring and all of its related system memory data structures comprise a "context". SDXI uses a 2-level
hierarchy of context tables (Context Table Level 2, Context Table Level 1) to enumerate the components
of the context. The concatenation of the offsets used to enumerate a context in both Context tables yields
the 16-bit "context_number" that is associated with the context. (Note that the Context Tables point to a
context but are not themselves part of the context.)

Figure 2-3: SDXI Descriptor Ring

sdxi-figures-F003

A circular ring requires "start" and "end" indicators. Rather than using memory pointers to track these, an
SDXI descriptor ring uses 64-bit *unsigned* logical indices to indicate the start (Read_Index) and end
(Write_Index) of the descriptor ring. This simplifies various calculations for SW and HW alike. The logical

ds_ring_ptr
 + (N-1) * 64

ds_ring_ptr
 + (1) * 64

ds_ring_ptr

Entry
Addresses

(Wraps every
N * 64 bytes)

Index = 0, N, 2*N, ...
Index =

N-1, 2*N-1, 3*N-1, ...
Index =

1, N+1, 2*N+1, ...

Indices
(Do not Wrap)

Read_Index:

Write_Index-1:

Write_Index:

Valid
Entry

Free
Entry

Free
Entry

Free
Entry

Free
Entry

Valid
Entry

Ring starts at memory location ds_ring_ptr
N = ds_ring_sz (Number of entries in Queue)

Indices are from 0 to (2^64)-1

EntryAddress = ds_ring_ptr + ((Index % ds_ring_sz) << 6)
Write_Index – Read_Index <= ds_ring_sz

Where consumer can
start reading enqueued
entries

Index of last enqueued entry
to be read by Consumer

Where producer can
start enqueueing

more entries

16 Working Draft SNIA SDXI Specification
 Version 1.0.3

indices need only be mapped onto descriptor ring addresses when writing or reading a ring entry at a
given Index. All rings use the same mechanism to communicate between producer and consumer.
From the perspective of software, SDXI has two kinds of descriptor rings:

• A software producer ring. Software writes descriptors on to the ring, increments Write_Index, and
writes to the doorbell to signal the SDXI function that a new descriptor has been written. The SDXI
function reads from the ring, increments Read_Index, and performs the requested operation. With a
few exceptions noted in the next list item, all rings are software producer rings.

• A software consumer ring. The SDXI function writes log messages (using the format of descriptors)
on to the ring, increments Write_Index, and can be configured to generate an interrupt to signal that
a new message has been written. Software reads from the log ring, increments Read_Index, and
processes the requested message. The Error Log is an example of this kind of ring.

 Virtualization Support
SDXI is architected specifically to allow operation within a virtualized environment.
Live migration is supported through a variety of accommodations in the programming model. During live
migration, a real hardware SDXI implementation may be stopped by the Hypervisor. Once stopped, there
is no hidden state. All critical state is located in either MMIO registers or in system memory. Another
instance may be configured with this state and restarted. It is possible to arbitrarily transition between
hardware and software emulated implementations.
The programming model allows a Hypervisor to hide features from newer implementations and
specifications from a VM. This facilitates migration of a VM built around older versions of the specification
onto newer hardware.
Specific use cases around virtualized environments may be accelerated by SDXI. See "2.3, Address
Space Control Examples".
An assignable entity is a portion of an SDXI device which may be assigned to a VM. An individual SDXI
Function, regardless of its device model, represents an assignable entity. For example, in a PCIe SR-IOV
implementation of SDXI, each Physical Function (PF) and Virtual Function (VF) would represent separate
SDXI Functions. In general, it is assumed that a Hypervisor will control SDXI PFs and allow SDXI VFs to
be directly assigned into VMs.

2.2 DMA Addressing Modes
SDXI Functions generate DMA requests with address space identifiers that allow a platform-specific
IOMMU to map the associated addresses. Depending on the overall configuration of the SDXI Function
and the IOMMU, DMA addresses may be treated as Guest Virtual, Guest Physical or Host Physical for
translation purposes.
SDXI provides granular control over the address space identifier used when accessing various SDXI
memory data structures (ex. descriptor ring) and each data buffer. These controls allow a single SDXI
operation to reference multiple address spaces. For example, an SDXI copy operation may copy data from
one address space to another.
DMA requests may be generated with a PASID value, or without PASID as a part of the address space
identifier. Additionally, SDXI utilizes the SDXI Function identifier as part of the address space identifier.
For example, an SDXI Function constructed as a PCIe SR-IOV VF would use the VF's PCIe Requester ID
as the Function identifier when making DMA requests to data structures owned by the VF.

 Address Space Identifier Control
SDXI provides control over the address space identifier used when accessing various control structures in
memory. Specifically, the PASID portion is controlled, depending on the structure, through either an mmio

SNIA SDXI Specification Working Draft 17
 Version 1.0.3

register or a memory data structure (Context Level 1 Table Entry). The SDXI Function identifier used when
accessing control structures is always that of the Function owning the control structures and executing the
descriptor.
SDXI determines the address space of each data buffer using an AKey value provided in the descriptor,
which is used to look up an AKey table entry in memory. An AKey table entry contains PASID controls
which help form the address space identifier used to access the data buffer. Additionally, an AKey table
entry contains a tgt_sfunc value which also helps form the data buffer's address space identifier. The
sfunc value is an opaque handle used to abstract the SDXI Function identifier.
Use of the tgt_sfunc mechanism to access a data buffer owned by a different SDXI Function than the one
executing the descriptor is referred to as a Cross-Function operation. Two or more SDXI Functions are
involved. This mechanism may be used, for example, to perform a transfer of data from one VM to
another.
Cross-Function operations utilize an additional RKey mechanism to authorize the data buffer access. (See
"3.3, SDXI Cross-Function Access" for more details).
SDXI allows privileged software to indicate if an address space is privileged. It is platform specific what a
“privileged” address space is. A common example of a privileged address space is kernel-mode memory
in an operating system whose page tables indicate address space privilege through a user/supervisor bit.
Privileged software may indicate if an address space is privileged by setting a “Privileged” bit present at
MMIO_CTL0.fn_pr, CXT_L1_ENT.pr, AKEY_ENT.pr, or RKEY_ENT.pr. For PCIe implementations, SDXI
functions indicate support for requesting privileged address space for a PASID through the PCIe
Privileged Mode Supported bit in the PCIe PASID Capability Register. See “8.5 Address Space Privilege
in PCIe” for more details.

 SDXI Function Groups
Cross-Function operations are only supported between SDXI Functions that reside within the same SDXI
function group. An SDXI PF and its associated VFs always belong to the same function group. A function
group may contain multiple PFs and VFs. A system may contain multiple disconnected function groups.
Function groups are discovered using the MMIO_GRP_ENUM register (see "3.3.1, SDXI Function Group"
for details). The method of communication between SDXI functions within a function group is outside the
scope of this specification.

 Unpinned Memory Access
SDXI supports the use of unpinned memory. For example this can be accomplished in an PCIe
implementation through the use of the PCIe-defined ATS and PRI features. The SDXI programming model
does not explicitly identify whether data structures reside in unpinned memory. If the PCIe ATS and PRI
features are enabled within a function, an SDXI implementation must assume that any memory accesses
associated with that function's address spaces may target unpinned memory.

2.3 Address Space Control Examples
The address space identifier controls in SDXI enable a wide range of capabilities for accessing data in
memory. The following sub-sections describe several example usage models.

18 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Single-Function, Single Address Space Example
In this example, a single SDXI Function is utilized. All control and data structures are located in the same
address space. This may, for example, represent a case where SDXI is controlled by a kernel driver and is
accessing kernel data structures within a VM or a bare metal OS.

Figure 2-4 Single Address Space Example

System Memory

Bare Metal OS or VM

Kernel Space

Context
(Context Control, AKey Table,

Descriptor Ring etc.)

Data

Function Level Control Structures
(RKey Table, Context L2 Table etc.)

SDXI Device

IOMMU

Assignable Entity 0
(SDXI Function X)

SNIA SDXI Specification Working Draft 19
 Version 1.0.3

 Single-Function, User Mode Access Example
In this example, control of the SDXI Function is split between a kernel mode driver and a user mode
driver. The kernel mode driver manages function level control structures and a portion of each SDXI in
kernel memory. The user mode driver manages descriptors in user space memory and accesses data
buffers in the same user space.

Figure 2-5 User Mode Access Example

IOMMU

System Memory

Bare Metal OS or VM

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

SDXI Device

Assignable Entity 0
(SDXI Function X)

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

20 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Single-Function, Multiple Address Space Example
Building on the prior example, this case moves one of the data buffers into a different address space. This
may be used, for example, to copy data between different user spaces or between kernel and user space.

Figure 2-6 Multiple Address Space Transfer Example

IOMMU

System Memory

Bare Metal OS

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

SDXI Device

Assignable Entity 0
(SDXI Function X)

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

Kernel Data

SNIA SDXI Specification Working Draft 21
 Version 1.0.3

 Cross-Function Transfer Example
In this example there are multiple SDXI Functions. SDXI Function Cntl is mapped to VM0, SDXI Function
Src is mapped to VM1 and SDXI Function Dst is mapped to VM2. SDXI Function Cntl is executing
descriptors from a user process in VM0 and is instructed to perform a Cross-Function copy of data using
Function Src to access the source buffer and Function Dst to access the destination buffer. Additionally,
the address space controls point the source buffer to a user process in VM1 and the destination buffer to a
user process in VM2. As with the prior examples, data buffers may be located in kernel or user space
within each of the VMs. "Figure 2-4 Single Address Space Example" shows the example data flow where
all of the SDXI functions reside within the same SDXI device. "Figure 2-5 User Mode Access Example"
shows a similar example where the SDXI functions reside within 2 different SDXI devices.

Figure 2-4 Cross-Function Transfer Example Within Single SDXI Device
embedded

IOMMU

System Memory

VM0

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

SDXI Device

Assignable Entity 0
(SDXI Function Cntl)

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

VM1

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

VM2

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

Assignable Entity 1
(SDXI Function Src)

Assignable Entity 2
(SDXI Function Dst)

Source Buffer Destination BufferDescriptor Fetch

22 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 2-5 Cross-Function Transfer Between SDXI Devices Example

IOMMU

System Memory

VM0

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

SDXI Device 0

Assignable Entity 0
(SDXI Function Cntl)

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

VM1

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

VM2

Kernel Space

Kernel Context
(Context Control,

Akey Table)

Function Level
Control Structures

(RKey Table,
Context L2 Table

etc.)

User
Space B

User Context
(Descriptor Ring

etc.)

User Space Data

User
Space A

User Context
(Descriptor Ring

etc.)

User Space Data

Assignable Entity 1
(SDXI Function Src)

Assignable Entity 2
(SDXI Function Dst)

Source Buffer Destination BufferDescriptor Fetch

SDXI Device 1

SDXI Function Group comprised of 2 SDXI devices

embedded

SNIA SDXI Specification Working Draft 23
 Version 1.0.3

2.4 Modularity and Expandability
SDXI is architected as a modular and expandable framework for offload functions. While the initial
specification is focused on copy operations, additional offloads may be defined and added to newer
versions of the specification, as well as newer implementations. All new features shall be explicitly
discovered and enabled by supporting software. Implementations may choose to implement different sets
of offload capabilities.
In general, all SDXI OS/VM and user-level software is expected to operate transparently on any hardware
implementation that supports the same or newer version of the specification that the software was
designed for, as long as all of the expected offload capabilities are present.

2.5 Endian Format Support
The SDXI specification is written assuming a little-endian architecture. Support for other endian formats is
outside the scope of this specification.

24 Working Draft SNIA SDXI Specification
 Version 1.0.3

3 System Memory Data Structures

3.1 Overview
The SDXI architecture is independent of the underlying I/O interconnect. However, the SDXI specification
includes a PCIe binding and PCIe is frequently used for examples throughout this specification. The
following figure depicts all of the memory-addressed data structures used by an SDXI function. In order to
facilitate efficient software-based virtualization, the majority of an SDXI function's architectural state
resides in system memory and is described in this chapter. The remaining state resides in a small number
of MMIO control registers (described in "9, MMIO Control Registers") and PCI Function configuration
space registers (described in "8, SDXI PCI-Express Device Architecture"). This layout of memory
structures is designed to facilitate selective trapping by privileged software.

Figure 3-1: Memory-Addressed Data Structures

sdxi-figures-F006

cxt_pasid

User or Kernel Space

Function MMIO

Descriptor Ring

CXT_STS

Buffer0

Buffer1

Context

state
Read_Index

Write_Index

Completion
Status

Fn access using
CXT_L1_ENT.cxt_pasid

Descriptor

. . .

System Memory

Kernel Space

MMIO Regs

MMIO_CXT_L2

fn_pasid
MMIO_CTL1

MMIO_CTL2

MMIO_STS0

MMIO_CAP0

MMIO_CAP1

MMIO_RKEY

MMIO_ERR_CTL
MMIO_ERR_STS

MMIO_ERR_CFG

MMIO_ERR_WRT

MMIO_ERR_RD

MMIO_MBX regs

MMIO_CTL0

CXT_L1 Table
cxt_ctl_ptr

akey_ptr

RKey Table

(Optional)

Error Log

User or Kernel
Space

Doorbel ls

. . .
CXT_L2 Table

lv01_ptr

. . .

Function-Scope Resources
Context-Level Resources

AKey Table
AKEY_ENT
. . .

Fn access using
MMIO_CTL0.fn_pasid

Fn access using
AKEY_ENT.pasid

CXT_L1_ENT

. . .

RKEY_ENT
. . .

LOG_ENT
. . .

CXT_CTL
ds_ring_ptr

write_index_ptr
cxt_sts_ptr

SNIA SDXI Specification Working Draft 25
 Version 1.0.3

Software shall ensure that the SDXI function has the required read and write access for each memory
structure as shown in "Table 3–1: Memory Structure Summary".

Table 3–1: Memory Structure Summary

Structure

Req"d
SDXI FN
Access Alignment Maximum Structure Size

Entry
Size PASID Used

CXT_L2 Table R 4 KByte 4 KBytes 8
Bytes

Derived from
MMIO_CTL0.

If fn_pasid_vl == 1,
then fn_pasid is

used.

CXT_L1 Table R 4 KByte 4 KBytes 32
Bytes

CXT_CTL R 64 Byte 64 Bytes n/a

Error Log W 4-KByte Let sz = MMIO_CAP1.max_errlog_sz;
 0 <= sz <= 9;
 size = 2**(23 + sz)
 max_size = 2**32 bytes.

64
Bytes

AKey Table R 4 KByte Let sz = MMIO_CAP1.max_akey_sz;
 0 <= sz <= 8;
 size = 2**(12 + sz)
 max_size = 2**20 bytes.

16
Bytes

RKey Table R 4 KByte Let sz = MMIO_RKEY.tbl_sz;
 0 <= sz <= 8;
 size = 2**(12 + sz)
 max_size = 2**20 bytes.

16
Bytes

Descriptor Ring R/W 64 Byte Let sz = MMIO_CAP0.max_ds_ring_sz;
 0 <= sz <= 22;
 size = 2**(16 + sz)
 max_size = 2**38 bytes.

64
Bytes

Derived from
CXT_L1_ENT.

If pv == "1", then
cxt_pasid is used.

CXT_STS R/W 16 Byte 16 Bytes n/a

(CXT_STS.)
Read_Index

R/W 8 Byte 8 Bytes n/a

Write_Index R 8 Byte 8 Bytes n/a

Completion
Status Block
(CST_BLK)

R/W 32-Byte 32 Bytes n/a

Atomic Return
Data

R/W Operand size is 4 or 8 bytes. Naturally aligned. n/a

Data Buffer R or R/W
(see

Note 1
below)

n/a Let sz = MMIO_CAP1.max_buffer;
 0 <= sz <= 11;
 size = 2**(21 + sz)
 max_size = 2**32 bytes.

n/a Derived from
AKEY_ENT.

If pv == 1 AND
tgt_sfunc == 0,

then pasid is used.

Notes:
1. The function must be given read and write access to any data buffer that must be written by an

operation, such as destination data buffers for storing operation results. This is necessary because
in some cases the function is required to explicitly flush writes to data buffers and some

26 Working Draft SNIA SDXI Specification
 Version 1.0.3

interconnect technologies require reads to the buffer for flushing. For data buffers that only need to
be read by an operation, such as source data buffers for the operation, the function need only be
given read access.

SNIA SDXI Specification Working Draft 27
 Version 1.0.3

3.2 Context Data Structures
An SDXI context represents the memory structures needed to directly monitor or control the operation of a
descriptor ring. An SDXI context consists of a descriptor ring, and the associated Context Control
(CXT_CTL), Context Status (CXT_STS), AKey Table, and Write_Index structures. Memory buffers,
completion signals, and atomic results which descriptor ring entries operate upon are not considered part
of the SDXI function context; however, they are an important part of the additional corresponding state that
software manages directly in order to use the descriptor ring.
SDXI uses a 2-level hierarchy of context tables (Context Table Level 2, Context Table Level 1) to
enumerate the components of the context. The concatenation of the 9-bit Level 2 offset with the 7-bit Level
1 offset yields the 16-bit "context_number" that is associated with the context. (Note that the Context
Tables point to a context but are not themselves part of the context.) MMIO_CAP1.max_cxt indicates the
maximum context number supported by the function. Software may further reduce the available contexts
by programming a smaller value into MMIO_CTL2.max_cxt.
An SDXI function shall not access portions of the context tables associated with context numbers greater
than MMIO_CTL2.max_cxt. See the example below.

Figure 3-2: MMIO_CTL2.max_cxt Example

sdxi-figures-F007

The SDXI specification uses 64-bit pointers. When data structures are required to be aligned to a certain
size, the lower bits of the pointer may be used for other purposes. This may result in the pointer field of a
data structure or register being less than 64-bits.

Context Level 1 Table

Lvl 1 Ptr for contexts 0 to 127
Lvl 1 Ptr for contexts 128 to 255

. . .
Other Entries Are Ignored

Context 128: CXT_CTL, AKey Ptrs
. . .
. . .

Other Entries Are Ignored

Context 0: CXT_CTL, AKey Ptrs
Context 1: CXT_CTL, AKey Ptrs

. . .
Other Entries Are Valid

Context 127: CXT_CTL, AKey Ptrs

Context Level 1 Table

Context Level 2 Table

Example: MMIO_CTL2.max_cxt = 128

. . .

28 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Context Level 2 Table
The Context Base Table register points to the 4KB level 2 table containing an array of level 2 table entries
described below. Each of those entries is a pointer to a level 1 table. A level 2 table contains 512 level 1
pointers.

Figure 3-3: Context Level 2 Table Entry (CXT_L2_ENT)

sdxi-structures--cxt_l2_ent

Table 3–2: Context Level 2 Table Entry (CXT_L2_ENT[^3])
Field Bits Subfield Description

u64 lv01_ptr; 000 vl Valid. When 1, indicates the other bits in this data structure are valid.
When 0, all other bits in this data structure shall be ignored.

011:001 rsvd Shall be set to zero.
063:012 lv01_ptr Pointer to the start of a Context Level 1 table. This points to an

aligned 4K region of memory.

 Context Level 1 Table
Each of the level 1 table structures is a 4K naturally aligned piece of memory containing an array of
context level 1 table entries described below. A Context level 1 table has 128 entries.

Figure 3-4: Context Level 1 Table Entry (CXT_L1_ENT)

sdxi-structures-cxt_l1_ent

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
pr pv ka vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

eev + 0x18

+ 0x1C

cxt_pasidmax_bufferrsv
opb_000_enb

rsvext_enb_ptr

rsv cxt_ctl_ptr

akey_szrsvakey_ptr

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vl + 0x00

+ 0x04

rsvlv01_ptr

SNIA SDXI Specification Working Draft 29
 Version 1.0.3

Table 3–3: Context Level 1 Table Entry (CXT_L1_ENT[^3])
Field Bits Subfield Description

u64 cxt_ctl_ptr; 000 vl Valid. When 1, indicates the other bits in this data structure
are valid. When 0, all other bits in this data structure shall be
ignored.

001 ka Keep-Active-Hint. Hint to the SDXI function. Does not affect
context state.
When "1", the function operates the context normally and should
execute new descriptors. This should be set to "1" by privileged
software when it starts the context.
When "0", the function may choose to stop executing new
descriptors in anticipation that software will soon stop the
context. This may reduce the time that software must wait for
stopping the context later.

002 pv PASID Valid. Indicates the cxt_pasid field is valid.
004:003 rsvd Shall be set to zero.

005 pr 1 = Indicates that the address spaces of the Descriptor Ring,
Completion Status, Write_Index, and Context Status memory
structures are privileged if the underlying bus supports
conveying privileged address information.
0 = Indicates that the memory structures are not in privileged
address space.

063:006 cxt_ctl_ptr Pointer to the Context Control (CXT_CTL). This points to a
64B aligned region of memory.

u64 akey_ptr; 067:064 akey_sz AKey Table Size. Indicates the size of the AKey table referenced
by akey_ptr. The table size is encoded as 2**(akey_sz+12) bytes
or 2**(akey_sz+8) entries. Encodings greater than 0x8 are
reserved.

075:068 rsvd Shall be set to zero.
127:076 akey_ptr Pointer to the start of an AKey table. This points to a 4Kbyte

aligned region of memory.
u32 misc0; 147:128 cxt_pasid If pv=1, indicates the PASID value used to access the

Write_Index, CXT_STS, CST_BLK, Atomic Return Data, and
Descriptor Ring.
If pv=0, this field is not used and the Write_Index, CXT_STS,
CST_BLK and Descriptor Ring are accessed without a PASID.

151:148 max_buffer Indicates the maximum data buffer size supported by this
context. The size is encoded as 2**(max_buffer+21). Descriptor
type or the size of the buffer length field within certain types of
descriptors may further limit the maximum data buffer size for
certain types of operations.
This field should not be set to exceed MMIO_CTL2.max_buffer

159:152 rsvd Shall be set to zero.
u32 opb_000_enb; 191:160 Provides enables for opcode type encodings 0-31. When a bit is

set to a "1" the corresponding opcode type encoding is enabled
within this context; when "0" it is not. See "5.1, Descriptor
Operations" and "Chapter 6, SDXI Descriptor and Operation
Specification" for more details.

u64 ext_enb_ptr; 192 eev When 1, indicates ext_enb_ptr is valid. When 0, opcode type
encodings 32-2047 are disabled for this context. SDXI
functions that do not use opcode type encodings 32-2047
may ignore eev and ext_enb_ptr.

30 Working Draft SNIA SDXI Specification
 Version 1.0.3

199:193 rsvd Shall be set to zero
255:200 ext_enb_ptr Pointer to the extended enables array. The extend enables

array provides enable bits for opcode type encodings 32-
2047. The array is a 256 byte naturally aligned structure,
where the first 32-bits are unused. When a bit is set to a "1"
the corresponding opcode type encoding is enabled, when
"0" it is not. See "5.1, Descriptor Operations" and "Chapter 6,
SDXI Descriptor and Operation Specification" for more details.
SDXI functions that do not use opcode type encodings 32-
2047 may ignore eev and ext_enb_ptr.

SNIA SDXI Specification Working Draft 31
 Version 1.0.3

 Context Control (CXT_CTL)
The Context Control contains control information for a single descriptor ring.
Software shall expose the memory containing the Context Control as readable to the SDXI function
hosting the context. Refer to "Table 3–1: Memory Structure Summary" for further requirements on how
software shall expose the structures pointed to by CXT_CTL to the SDXI function. This structure is
intended to be controlled by privileged software.

Figure 3-5: Context Control (CXT_CTL)

sdxi-structures-cxt_ctl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
csa se rsv vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

+ 0x38

+ 0x3C

rsv

ds_ring_sz
rsv

rsv cxt_sts_ptr

rsv write_index_ptr

qos ds_ring_ptr

32 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 3–4: Context Control (CXT_CTL[^3])
Field Bits Subfield Description

u64 ds_ring_ptr; 000 vl Valid. When 1, indicates the other bits in this data structure
are valid. When 0, all other bits in this data structure shall be
ignored.

001 rsvd Shall be set to zero.
003:002 qos Quality of service indicator. The usage of this field is

implementation specific.
Value Definition
00b Urgent
01b High
10b Medium
11b Low

004 se Sequential Consistency Hint. 1=Descriptor ring is expected to
set the S bit in most descriptors.

005 csa Completion-Status Mode Availability. See "4.4.2, Completion-
Status Modes" for details. This field is informational only; the
SDXI function takes no action on it.
0 = Both atomic completion-status mode and simple

completion-status mode are available to the context.
1 = The context shall only use simple completion-status

mode.
063:006 ds_ring_ptr Pointer to the start of the descriptor ring. This points to a 64-

byte aligned region of memory
u32 ds_ring_sz; 095:064 Indicates the maximum unsigned number of descriptors that

can be placed in the descriptor ring. The size of the descriptor
ring in bytes is calculated as (ds_ring_sz * 64). A value of zero
is illegal – a ring must have at least one descriptor. A value of
0xFFFF_FFFF indicates a maximum of (2**32)-1 descriptors.
Software shall ensure that:
- Let max_ds = 2**(MMIO_CAP0.max_ds_ring_sz + 10)
- Then CXT_CTL.ds_ring_sz <= min((2**32)-1, max_ds)

u8 rsvd_0[4]; 127:096 Shall be set to zero.

u64 cxt_sts_ptr; 131:128 rsvd Shall be set to zero.
191:132 cxt_sts_ptr Pointer to the Context Status (CXT_STS) data structure which

includes the read index value. This points to a 16B aligned
region of memory.

u64 write_index_ptr; 194:192 rsvd Shall be set to zero.

255:195 write_index_ptr Pointer to descriptor ring write index. This points to an 8B
aligned region of memory.

u8 rsvd_1[32]; 511:256 Shall be set to zero.

SNIA SDXI Specification Working Draft 33
 Version 1.0.3

 Context Status (CXT_STS)
The Context Status contains status information for a single descriptor Context. Privileged software may
expose it to non-privileged software as a read-only structure. When creating the context, software shall
initialize the status entry to all-zero prior to making the context valid. Software shall expose the memory
containing the Context Status as read-write to the SDXI function using the context address space.

Figure 3-6: Context Status (CXT_STS)

sdxi-structures-cxt_sts

Table 3–5: Context Status (CXT_STS[^3])
Field Bits Subfield Description

u8 state; 003:000 state Context State. See Table "Table 3–6: CXT_STS.state Encoding" for
encodings. See section "4.3.1" for when this field may be modified.

007:004 rsvd This reserved field may be read and written by the SDXI function when it
accesses bits [3:0] of the same byte.

u8 misc0; 008 rsh This hint bit is written only by privileged software to indicate to other
software if new descriptors should (rsh = 1) or should not (rsh = 0) be
submitted to the context when the ContextState is CXTV_STOPG_SW
or CXTV_STOP_SW. See "4.3.6, Context Ring Submission Hint" for
more details. The SDXI function shall not use nor write this bit. Software
shall write this bit with a byte-sized access only.

015:009 rsvd Shall be set to zero.

u8 rsvd0_[6]; 063:016 Shall be set to zero.
u64 read_index; 127:064 Descriptor ring read index.

Table 3–6: CXT_STS.state Encoding
Value Definition
0000b CXTV_STOP_SW : Stopped by software using a local-function DSC_CXT_STOP operation on

the context.
0001b CXTV_RUN : Running.
0010b CXTV_STOPG_SW : Stopping in response to software using a local-function DSC_CXT_STOP

operation on the context.
0100b CXTV_STOP_FN : Stopped either by a transition of the function state from GSV_ACTIVE, or a

(PF-to-VF) P2V.DSC_CXT_STOP operation.
0110b CXTV_STOPG_FN : Stopping in response to the function or a P2V.DSC_CXT_STOP operation.

The function stopping causes are: an error detected in the function; an error in context processing
or execution; or a transition of the function state out of GSV_ACTIVE.

1111b CXTV_ERR_FN : Stopped in response to an error detected in the function, an error in context
processing, or an error in context execution.

All other values reserved.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rsh + 0x00

+ 0x04

+ 0x08

+ 0x0C

read_index

statersvrsvrsv

34 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Access Key (AKey) Table Entry (AKEY_ENT)
The AKey table is a 4-Kbyte aligned contiguous memory structure composed of AKey table entries. The
table may be any power-of-2 size from 4-Kbytes up to 1-Mbyte. Software controls the size of the table
through the context level 1 entry structure.
A descriptor may reference any AKey associated with the same ring context. The AKey table entries
encode all of the valid address spaces, PASIDs and interrupts available to the context.
The AKey entry's tgt_sfunc field specifies the target function within the SDXI function group which owns
data buffers and interrupts associated with the AKey table entry. The tgt_sfunc field is set to the target
function's value of MMIO_CAP0.sfunc. For PCIe implementations, the tgt_sfunc field is an opaque
identifier for the target SDXI function which is used when accessing the data buffer and issuing MSI or
MSI-X interrupts.
The tgt_sfunc encoding of 0 is used to indicate the target resource belongs to the same function executing
the descriptor. Only the 0 encoding may be used to access local resources.
A non-zero tgt_sfunc value indicates that a remote function owns the target resource. See "3.3.1, SDXI
Function Group" for more details.

Figure 3-7: AKEY_ENT

sdxi-structures-akey_ent

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rsv ste pv iv vl + 0x00

pr + 0x04

+ 0x08

+ 0x0C rkeyrsv

intr_numtgt_sfunc
pasidrsvph

stagrsv

SNIA SDXI Specification Working Draft 35
 Version 1.0.3

Table 3–7: AKey Table Entry (AKEY_ENT[^3])
Field Bits Subfield Description

u16 intr_num; 000 vl Valid. When 1, indicates the other bits in this data structure are valid.
When 0, all other bits in this data structure shall be ignored.

001 iv Interrupt Valid. When 1 and tgt_sfunc = 0, the intr_num field is valid.
When tgt_sfunc ≠ 0 this bit is reserved and must be set to 0

002 pv PASID Valid. When 1 and tgt_sfunc = 0, the PASID field contains valid
information. When tgt_sfunc ≠ 0 this bit is reserved and must be set to 0

003 ste Steering Enable. When 1 and tgt_sfunc = 0, memory requests
referencing this AKey table entry are enabled to include Data Steering
Hint (DSH) information when requested through the descriptor
attr.coh_ctl field.
When 0 and tgt_sfunc = 0, DSH is disabled for memory requests
referencing this AKey table entry even when requested through the
descriptor attr.coh_ctl field.
When tgt_sfunc ≠ 0 this bit is reserved and must be set to 0.
See "3.6, Data Steering Hints (DSH)" for more details.

014:004 intr_num Interrupts generated using this AKey table entry are issued using the
MSI or MSI-X entry corresponding to intr_num. When tgt_sfunc ≠ 0 this
field is reserved, and the Target Function's RKey entry specifies which
MSI or MSI-X entry to use

015 rsvd Shall be set to zero.
u16 tgt_sfunc; 031:016 tgt_sfunc, see above discussion.

u32 pasid; 051:032 pasid PASID value used for requests using this AKey table entry.
060:052 rsvd Shall be set to zero.

061 pr 1 = Indicates that the address space of this AKEY is privileged so that
buffers using this AKEY entry will be marked as privileged if the
underlying bus supports conveying privileged address information.
0 = Indicates that the AKEY entry buffers are not in privileged address
space

063:062 ph Processing Hint. When ste is "1", tgt_sfunc = 0, this field supplies
information used as part of DSH.
When tgt_sfunc ≠ 0 this field is reserved and must be set to 0. The
Target Function's RKey table entry is used to supply DSH information.
See "3.6, Data Steering Hints (DSH)" for more details.

u16 stag; 079:064 Steering Tag. When ste is "1", tgt_sfunc = 0, this field supplies
information used as part of DSH.
When tgt_sfunc ≠ 0 this field is reserved and must be set to 0. The
Target Function's RKey table entry is used to supply DSH information.
See "3.6, Data Steering Hints (DSH)" for more details.

u8 rsvd_0[2]; 095:080 Shall be set to zero.
u16 rkey; 111:096 Specifies the RKey value used to access another function's data buffer

or interrupt. This field is only valid if tgt_sfunc is non-zero. See above
discussion for more details.

u8 rsvd_1[2]; 127:112 Shall be set to zero.

36 Working Draft SNIA SDXI Specification
 Version 1.0.3

3.3 SDXI Cross-Function Access
There can be multiple interacting SDXI functions in a system if supported by the SDXI implementation.
Typically, a PCIe function can only access address spaces mapped using its own Requester ID. A unique
capability of an SDXI function is the optional ability to access address spaces mapped by the Requestor
ID of another SDXI function.
When executing a descriptor operation, the SDXI function determines the address space for each
specified data buffer or interrupt target by using the associated AKey value to reference an AKey table
entry. This entry provides the tgt_sfunc which identifies another SDXI function within the same SDXI
Function Group. When the tgt_sfunc field is non-zero, the target resource belongs to a remote function
whose MMIO_CAP0.sfunc register value matches tgt_sfunc.
The Receiver Access Key (RKey) mechanism described in "3.3.2, Receiver Access Key (RKey) Table"
provides access control over cross-function requests.

 SDXI Function Group
When an SDXI Function returns MMIO_CAP1.rkey_cap as "1", the function supports SDXI cross-function
access and the RKey protection mechanism; otherwise, these mechanisms are not supported. Note that
SDXI cross-function access when supported is only possible between SDXI functions that belong to the
same SDXI Function Group. An SDXI PF and its associated VFs always belong to the same SDXI function
group. An SDXI function group may contain multiple PFs and VFs. A system may contain multiple disjoint
SDXI function groups. Software may enumerate SDXI Function groups using the MMIO_GRP_ENUM
register in each SDXI function; this mechanism only supports a single thread of enumeration. An example
of the enumeration flow is given in “Figure 3-8: Function Group Enumeration Example”. Further methods
of coordination and configuration between SDXI functions within an SDXI function group are outside the
scope of this specification.
In a cross-function implementation of SDXI, all functions connected within an SDXI function group reflect
the same MMIO_GRP_ENUM.probe value written into any group member's copy of this register. Provided
that software first initializes all probe fields to "0", software may identify all functions within a function group
by writing "1" into MMIO_GRP_ENUM.probe field in one PF, determining that the write has propagated,
and then scanning for the same value in other SDXI functions. Software may assign an ID to each function
group and record it in the MMIO_CTL0.fn_grp_id field of each associated PF separately for later use; the
fn_grp_id field does not propagate among functions. In a VF, the field is read-only and reflects the value of
the associated PF.
When the MMIO_GRP_ENUM register is written in one PF, the value of its "probe" field shall subsequently
be propagated and reflected in the MMIO_GRP_ENUM.probe field of all other PFs within the same
function group within an implementation-specific period of time. Until the "probe" field fully propagates,
reading of the the probe field in any other function within the group may return the old or new value of the
field.
The SDXI function provides the MMIO_GRP_ENUM.busy field to determine write propagation. Software
shall write the "busy" field to a 1 when writing to the MMIO_GRP_ENUM register. An SDXI function may
ignore propagating the probe field if the busy field is written as "0"; software shall avoid and not rely upon
such behavior. The SDXI function shall clear the "busy" field of that PF when the write of the "probe" field
has fully propagated to all other functions within the function group. Software determines the write has
propagated by looping on the value of that PF's "busy" field until it is read as "0". The "busy" field itself
does not propagate.
When software writes MMIO_GRP_ENUM in one PF, it should not write the same register in any other
SDXI function until the first write fully propagates.
The MMIO_GRP_ENUM register is only used to identify functions within the same SDXI function group. It
is not referenced by other SDXI registers or data structures. In a VF, the field is read-only and reflects the
value of the associated PF.

SNIA SDXI Specification Working Draft 37
 Version 1.0.3

Figure 3-8: Function Group Enumeration Example

/* SDXI Fn Group Enumeration Example Pseudo-code

Let PF_LIST be an array of fn_struct, one for each PF. Let VF_LIST be an array of fn_struct, one for each VF.
This can be determined for each SDXI using MMIO_CAP0.vf. In practice, a real OS would use something
different. Let each fn_struct have the fn's requestor_id, mmio_base_ptr, pf_flag (if pf then 1 else 0), and the SW
assigned grp_id.
Let read & write of a fn's mmio space be done by the functions: get_fn_mmio(fn_struct, offset) -- returns the
location value; and set_fn_mmio(fn_struct, offset, value) -- writes the location.
Let ID_LIST contain a list of all known GRP_ID values. Let clear_ids(id_list) clear the list and add_id(id_list, id)
add to the list. Define get_new_id(id, id_list) to return a new unique 32-bit grp_id.

*/

set_grp_enum(fn, probe){
 // Good Hygiene: Wait for probe-propagating to be false
 while (get_fn_mmio(fn, MMIO_GRP_ENUM) & 1);
 set_fn_mmio(fn, MMIO_GRP_ENUM, (probe << 1) | 1);
 // Wait for probe-propagating to be false
 while (get_fn_mmio(fn, MMIO_GRP_ENUM) & 1);
}

set_grp_id(fn, id){
 id = (get_fn_mmio(fn, MMIO_CTL0) & 0xFFFF_FFFF) | (id << 32);
 set_fn_mmio(fn, MMIO_CTL0, id);
}

get_grp_id(fn){
 return get_fn_mmio(fn, MMIO_CTL0) >> 32;
}

// S0: Initialize PFs and tracking info
clear_ids(ID_LIST);

for (i = 0; i < NUMBER_OF_PF; i++){
 pf = PF_LIST[i];
 pf.grp_id = 0;
 set_grp_id(pf, 0);
 set_grp_enum(pf, 0);
}

// S1: Init VF data and add Grp_IDs from VFs not of PFs in PF_LIST
for (i = 0; i < NUMBER_OF_VF; i++){
 vf = VF_LIST[i];
 vf.grp_id = get_grp_id(vf);
 if (vf.grp_id != 0){ add_id(ID_LIST, vf.grp_id); }
}

38 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 3-9: Function Group Enumeration Example (cont)

// S2: Probe through all PFs and assign GRP IDs
for (i = 0; i < NUMBER_OF_PF; i++){
 pf0 = PF_LIST[i];
 if (pf0.grp_id != 0){ continue; } // pf already enumerated

 // S3: pf is not yet enumerated, assign new grp_id & probe
 pf0.grp_id = get_new_id(ID_LIST);
 set_grp_id(pf0, pf0.grp_id);
 set_grp_enum(pf0, 1);

 // S4: Probe remaining PFs for FN Grp membership
 for (j = i+1; j < NUMBER_OF_PF; j++){
 pf1 = PF_LIST[j];
 if (pf1.grp_id != 0){ continue; } // Already enumerated

 // S5: If probe detected, must be part of the current group
 if (get_fn_mmio(pf1, MMIO_GRP_ENUM) & 0b10){
 pf1.grp_id = pf0.grp_id;
 set_grp_id(pf1, pf0.grp_id);
 }
 }

 // S6: This group is probed, clear the probe bit
 set_grp_enum(pf0, 0);
}

// S7: Scan for VFs of PFs in PF_LIST and record grp_id
for (i = 0; i < NUMBER_OF_VF; i++){
 vf = VF_LIST[i];
 if (vf.grp_id == 0){ vf.grp_id = get_grp_id(vf); }
}

 Receiver Access Key (RKey) Table
A (local) SDXI function uses RKey table entries to control remote requesting functions' access to local
function resources such as memory and interrupts. Software may use RKey table entries in combination
with IOMMU page tables to selectively expose data buffers and interrupts to different requesting functions.
The RKey table is a 4-Kbyte aligned contiguous memory structure composed of RKey table entries. The
table may be any power-of-2 size from 4-Kbytes up to 1 Mbyte. Software controls the size of the table
through MMIO_RKEY.tbl_sz.
A connection manager specification is proposed for development by the SNIA SDXI TWG post publication
of Smart Data Accelerator Interface ("SDXI") Specification v1.0. Please refer to it for mechanisms to
allocate, configure, and exchange RKeys between functions.

SNIA SDXI Specification Working Draft 39
 Version 1.0.3

 RKey Table Entry
Each RKey table entry is an aligned 16-byte structure with the following format.

Figure 3-10: RKey Table Entry

sdxi-structures-rkey_ent

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rsv ste pv iv vl + 0x00

pr + 0x04

+ 0x08

+ 0x0C

intr_numreq_sfunc
pasidrsvph

stagrsv

40 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 3–8: RKey Table Entry (RKEY_ENT[^3])
Field Bits Subfield Description
u16 intr_num; 000 vl Valid. When 1, indicates the other bits in this data structure are

valid. When 0, all other bits in this data structure shall be ignored
and remote requesting functions may not use the RKey value
associated with this entry to access data buffers or issue
interrupts owned by this function.

001 iv Interrupt Valid. When 1, Requesting functions referencing this
RKey table entry are permitted to generate interrupt requests via
this function. When 0, interrupt requests generated by referencing
this RKey table entry are aborted.

002 pv PASID Valid. When 1, the PASID field contains valid information.
003 ste Steering Enable. When 1, memory requests referencing this

RKey table entry are enabled to include DSH information when
requested through the descriptor attr.coh_ctl field.
When 0, DSH is disabled for memory requests referencing this
RKey table entry even when requested through the descriptor
attr.coh_ctl field. See "3.6, Data Steering Hints (DSH)" for more
details.

014:004 intr_num Interrupts generated using this RKey table entry are issued using
the target function's MSI or MSI-X entry corresponding to
intr_num. When valid, intr_num may be used as part of PCIe
TPH. See "8.3, Mapping SDXI DSH to PCIe TLP Processing Hints
(PCIe TPH)" for more details.

015 rsvd Shall be set to 0.
u16 req_sfunc; 031:016 req_sfunc specifies the "sfunc" value of the remote requesting

function expected to reference this RKey table entry.
u32 pasid; 051:032 pasid PASID value used to access data buffers using this RKey entry

060:052 rsvd Shall be set to zero.

061 pr 1 = Indicates that the address space of this RKEY is privileged so
that traffic originating from this RKEY entry will be marked as
privileged if the underlying bus supports conveying privileged
address information.
0 = Indicates that the RKEY does not access privileged address
space

063:062 ph Processing Hint. When "ste" is "1", this field supplies information
used as part of DSH. When "ste" is "0", this field is reserved. See
"3.6, Data Steering Hints (DSH)" for more details.

u16 stag; 079:064 Steering Tag. When ste is "1", this field supplies information used
as part of DSH. When "ste" is "0", this field is reserved. See "3.6,
Data Steering Hints (DSH)" for more details.

u8 rsvd_0[6]; 127:080 Shall be set to zero.

SNIA SDXI Specification Working Draft 41
 Version 1.0.3

 Receiver Access Key (RKey) Processing
When an operation's AKey table entry specifies a "tgt_sfunc" value of zero (i.e. the access is within a
function), RKey processing for that access or interrupt is skipped. When "tgt_sfunc" is non-zero (i.e. the
access is Cross-Function), RKey processing is attempted using the following checks below.

1. If the Target function does not belong to the same function group as the requesting function, abort
the remote access or interrupt.

2. Requesting function passes its own MMIO_CAP0.sfunc value along with the AKey table entry's
RKey value to the target function indicated by "tgt_sfunc".

3. If the target function has MMIO_CAP1.rkey_cap as "0", abort the remote access or interrupt.
4. Target function uses the supplied RKey value as an index into its RKey table to obtain the

associated RKey table entry. If the RKey table is not enabled (MMIO_RKEY.tbl_en is "0"), or the
RKey table entry is not valid, abort the remote access or interrupt.

5. Target function checks if the RKey table entry req_sfunc matches the requester "sfunc". If not, abort
the remote access or interrupt.

6. For an interrupt operation, the target function checks if the RKey table entry has "iv" as "1". If not,
abort the remote interrupt. When "iv" is "1", the intr_num field in the RKey table entry specifies
which MSI or MSI-X index in the target function is used.

7. For a memory access operation, if the RKey table entry has "pv" as "0", the associated memory
accesses are issued by the target function with no PASID applied. When "pv" is "1", the associated
memory accesses are issued by the target function with a PASID applied using the "pasid" field from
the RKey table entry.

8. For a memory access operation, if the RKey table entry has "se" as "0", the associated memory
accesses are issued with no SteeringTag or PH applied. When "se" is "1", a SteeringTag and PH
are applied to the associated memory accesses using the "stag" and "ph" fields in the RKey table
entry.

The requesting SDXI function will log failed remote accesses as Data Buffer errors (ERRV_DSC_BUF)
regardless of the reason for the failure. The requesting SDXI function may use any appropriate value for
the error sub-step, including 0 (‘Other’). Data Buffer failures will stop the requesting context. Examples of
such failures include communication errors between the requester and target, the target being off-line,
access rights failures at the target, address translation errors at the target, or data access errors at the
target.
The target SDXI function will not log problems with received requests such as: illegal or disabled RKey
indexes; mismatched sfunc values; or attempted accesses while the function or RKey processing is
disabled. The target SDXI function also will not log issues encountered while accessing data buffers on
behalf of a remote requester such as address translation, poison consumption, or time out errors. Instead,
these issues are logged in the requesting function.
If a target SDXI function encounters the following type of error trying to access its own RKey table then the
SDXI function will log a “ERRV_FN_RKEY” error and continue execution: an address translation error;
poisoned RKey table entry; and illegal data within an Rkey entry with the “vl” bit set to 1. If an SDXI remote
request is rejected due to the RKey lookup failure, the requestor will also log the failure as a
ERRV_DSC_BUF, and will halt the impacted context.

42 Working Draft SNIA SDXI Specification
 Version 1.0.3

3.4 Error Log
Whenever the SDXI function detects a function-wide or context-specific error, it performs specific actions
to contain the error, reports it to software through an entry in the function's Error Log message ring, and
signals an error in an associated descriptor's completion status block if relevant. A summary of the type of
errors, their logging, and the associated error containment actions follows.

1. Invalid Context (Invalid:Cxt): the function has evaluated a context that is in CXTV_INVALID state.
The function shall skip further operation on the context. Unless explicitly required by an action or
operation to suppress or signal an error, an SDXI implementation should suppress signaling errors
for Invalid:Cxt. See "4.2.1, S1: CXTV_INVALID State" for more details.

2. Logging A Context Error (LogErr:Cxt): the function generates an error log entry when it detects a
context error which can include DescrErr:Cxt and SignalErr:Cxt errors. After the error log entry is
globally visible, the function shall signal an interrupt if MMIO_ERR_CTL.intr_en is set. This action
can start in any order or in parallel with DescrStatus:Cxt, SignalErr:Cxt, and StopErr:Cxt but shall
complete before StopErr:Cxt does. See "Figure 3-11: Context Descriptor Or Operation Error Flow"
for an overall flow of the error handling.

3. Updating CST_BLK.er (DescrErr:Cxt): If the CST_BLK is enabled for a descriptor ("np" is "0") and
a descriptor error is detected in processing or executing a descriptor, then CST_BLK.er is set and
made globally visible before the function updates CST_BLK.signal. (Note, errors encountered in
updating CST_BLK for this action do not start any additional actions.) This action can start in any
order or in parallel with LogErr:Cxt, SignalErr:Cxt, and StopErr:Cxt but shall complete before
StopErr:Cxt does. See "Figure 3-11: Context Descriptor Or Operation Error Flow" for an overall flow
of the error handling.

4. Error In Updating CST_BLK.signal (SignalErr:Cxt): If an error occurs when updating
CST_BLK.signal, then the SDXI function shall set CST_BLK.er, if not already set, and make it
globally visible. (Note, an error in setting CST_BLK.er for this action does not start any additional
actions.) This action will also start in any order or in parallel LogErr:Cxt and StopErr:Cxt actions, if
not already started. This action shall complete before StopErr:Cxt does. See "Figure 3-11: Context
Descriptor Or Operation Error Flow" for an overall flow of the error handling.

5. Stopping A Context Due to Error (StopErr:Cxt): the function initiates a background context stop
action for a context in the CXTV_RUN state in response to an Invalid:Cxt (when indicated),
DescrErr:Cxt, or SignalErr:Cxt. The stop action terminates processing of new descriptors and waits
for existing ones to complete. Once the context is stopped, the function serializes Read_Index and
then transitions the context to CXTV_ERR_FN state. This action starts in any order or in parallel with
LogErr:Cxt, DescrErr:Cxt, and SignalErr:Cxt but shall be completed only after them. This completion
order ensures that when software sees the context in CXTV_ERR_FN state, all relevant error log
records and CST_BLK entries are updated and globally visible. See "Figure 3-11: Context Descriptor
Or Operation Error Flow" for an overall flow of the error handling.

6. Function-Wide Error (HaltErr:Fn): the function initiates an error halt action in response to an
uncorrectable error that prevents further safe operation of the function across all of its associated
contexts. Examples include the detection of invalid configuration of MMIO registers (due to
privileged software) as well as internal logic errors inside the function that lead to a HltErr:Fn action.
For this action the function does the following ordered steps.

a. In any order or in parallel: the function halts itself; and makes best effort to log a function error
(LogErr:Fn) and make it globally visible. It is implementation dependent if the function
performs any context-specific state changes or stop actions when halting the function;
software shall not rely upon it.

b. When the above completes, the function changes MMIO_STS0.fn_gsv to GSV_ERROR. This
order ensures that when software reads the error log immediately after detecting the transition
to GSV_ERROR, it will receive all available information.

7. Logging A Function Error (LogErr:Fn): the function attempts to generate an error log entry when
an error halt action (HaltErr:Fn) is initiated.

SNIA SDXI Specification Working Draft 43
 Version 1.0.3

Figure 3-11: Context Descriptor Or Operation Error Flow

sdxi-structures-F016

Note that as a consequence of the above error flow for a context error, the SDXI function shall ensure that
the error's effect upon the error log, the descriptor's CST_BLK, Read_Index serialization, and the context's
state are synchronized when the context state transitions to CXTV_ERR_FN -- not before. Therefore, it is
important that regardless of the manner software first becomes aware of a context error, it should wait for
the context to enter the CXTV_FN_ERROR state before examining error information.
Each SDXI function supports a single, function-wide error log message ring in memory for all the contexts
of that function; the ring is configured through MMIO space. The error log and its indexes are structured
similar to an SDXI descriptor ring and operate in the manner below.

1. MMIO_ERR_CFG points to the base of the error log. Each error log index corresponds to an aligned
64-byte entry in the error log ring.

a. For a given error log index, its address in memory is given by
i. log_sz = 2**(MMIO_ERR_CFG.sz +12);
ii. log_bs = MMIO_ERR_CFG & ~0xFFF;
iii. address = log_bs + ((index * 64) % log_sz);

b. The indices are not expected to reach or exceed (2**64) - 1 in practice.
2. MMIO_ERR_WRT indicates the next available error log index that can be written by the function.
3. MMIO_ERR_RD indicates the index of the first error log entry not yet consumed by software. As

software consumes error log entries, it advances the index in MMIO_ERR_RD. For each error log
entry consumed, software takes appropriate remediation action. As the ring is finite in size, software
shall consume error log entries in a timely manner lest the error log overflows.

Descr Execution
 Error Detected?

Descr Execution Done

Set CST_BLK.er**

Parallel

Update CST_BLK.signal**

Update CST_BLK.signal

If not set, set CST_BLK.er**

Error updating .signal?

YES

Parallel

Update Error Log and
make globally visible

If MMIO_ERR_CTL.intr_en
set, generate Interrupt

CXT transitions to
CXTV_ERR_FN

CXT transitions to
CXTV_STOPG_FN

Serialize Read_Index** DONE

StopErr:Cxt

LogErr:Cxt

DescrErr:Cxt

SignalErr:Cxt

YES

Descr.np == 0 ?

YES

YES

NO

NO

DONE NO

DONE NO

** = raise no additional error if unsucessful

Descr.np == 0 ?

Join

44 Working Draft SNIA SDXI Specification
 Version 1.0.3

4. As the function writes more error log entries, it advances the index in MMIO_ERR_WRT. The error
log is empty when MMIO_ERR_WRT is equal to MMIO_ERR_RD.

5. For each error detected when the error log is enabled, the SDXI function writes a 64-byte aligned
error log entry.

a. If there is insufficient space in the error log for the function to write an error log entry, the error
log shall overflow.

b. When an overflow event occurs, the MMIO_ERR_STS.ovf bit shall be set, MMIO_ERR_WRT
shall not advance, and error logging shall be stopped. Contexts may continue to run even
when the error log is full or in the overflow state, however detailed error information for new
errors will be lost.

c. Note that the error log can overflow even if there are available entries in the log when the
number of entries in an error log sequence exceed the available entries.

6. After writing an error log entry successfully, MMIO_ERR_WRT will be advanced by 1,
MMIO_ERR_STS.sts will be set to “1”, and an error log interrupt shall be generated if
MMIO_ERR_CTL.intr_en is set to "1". If MSI or MSI-X are enabled, vector 0 will be used for the error
log interrupt.

When the function logs a context descriptor error (LogErr:Cxt), it sets ERRLOG_HD_ENT.cv to "1". During
descriptor processing and before execution, errors may be detected and logged at different processing
steps for a single descriptor resulting in multiple error logs. Only one error may be logged for errors
occurring during the execution phase of the descriptor operation. Refer to "5.3, Descriptor Processing" for
more details.
Even though descriptors may reference data buffers in different address spaces and may detect errors
when accessing those buffers, the errors are logged with the function hosting the context.
Note that the function may simultaneously consume and execute multiple descriptors from multiple
contexts. The order in which errors are detected and their error log entries are written is implementation-
dependent. However, each error log entry sequence shall be written by the function in its entirety
indivisibly with respect to other error log entries.
Errors may be reported on DMA write operations. While DMA writes are posted in PCI-Express and do not
return any status, write response status may be available in implementations that do not connect using a
physical PCIe link.

SNIA SDXI Specification Working Draft 45
 Version 1.0.3

 Error Log Header Entry (ERRLOG_HD_ENT)
The SDXI function reports the details of a specific error event by writing an error log header entry
(ERRLOG_HD_ENT) to the error log. Error log header entries are formatted as described in “Table 3-9:
Error Log Header Entry (ERRLOG_HD_ENT[^3])” and shown in “Figure 3-12: Error Log Header Entry
(ERRLOG_ENT)”. (The entry format is similar to an SDXI descriptor but is made distinct by a “type” field
value of “0x7F7”.) The SDXI function constructs the error log entry in the following way.

1. The SDXI function shall set the “vl” field to “1” and the “type” field to “0x7F7”.
2. The SDXI function shall set the “re” field, which indicates whether the error was serious enough to

stop a context or the entire SDXI function.
3. The function shall set the “step” field to allow system software to quickly distinguish between errors

resulting from the producer and errors likely resulting from system software, the SDXI function,
memory, or other hardware components. The “step” field encodings are shown in “Table 3-10:
(Flagged) Processing Step”.

4. The function should set the “sub_step” field to the appropriate value whenever this information is
known; however, the function may report “0” (“other”) otherwise.

5. When relevant (see table 3-10), the function should identify the failing context number by setting the
“cxt_num” field and setting the “cv” field to “1”.

6. When relevant (see table 3-10), the function should identify the failing descriptor index by setting the
“dsc_index” field and setting the “div” field to “1”.

7. When relevant (see table 3-10), the function should identify one of the failing buffers or AKEYs by
setting the “buf” field and setting the “bv” field to “1”.

8. To assist in offline debug analysis, the function may provide an error class (“err_class”) and vendor
specific information (“vendor”) applicable to the detected error. The code value returned is
implementation dependent and not intended for use by system software for online remediation. The
error class codes form a hierarchy as described in “Table 3 11: Error Class Hierarchy”. Although, an
SDXI function implementation may choose to always return a code of ‘Generic Error’ (0), it is
recommended that the function make best effort to return something more meaningful.

Figure 3-12: Error Log Header Entry (ERRLOG_ENT)

sdxi-structures-errlog_hd_ent

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
vl + 0x00

rsv rsv rsv bv div cv + 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

+ 0x38

+ 0x3C

err_classrsv
vendor

dsc_index

rsv

rsvsteprsvtypersv
bufsub_steprecxt_num

46 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 3-9: Error Log Header Entry (ERRLOG_HD_ENT[^3])
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. When 1, indicates the other bits in this data structure are valid. When

0, all other bits in this data structure shall be ignored.
007:001 rsvd Shall be set to "0"
013:008 step Identifies the SDXI function processing step that encountered an error. See

“Table 3-10: (Flagged) Processing Step”
015:014 rsvd Shall be set to 0.

026:016 type=0x7F7 Descriptor type 0x7F7 = ERRLOG_ENT. See section "6.1.1".

031:027 rsvd Shall be set to 0.
u16 misc0; 32 cv Indicates if the cxt_num field is valid. See See “Table 3-10: (Flagged)

Processing Step” for when “cv” must be set.
33 div Indicates if the dsc_index field is valid. See See “Table 3-10: (Flagged)

Processing Step” for when “div” must be set.
34 bv Buffer Valid: indicates if the “buf” field is valid. See See “Table 3-10:

(Flagged) Processing Step” for when “bv” must be set.
35 rsvd Shall be set to 0.

38:36 buf For SDXI descriptors with multiple Buffers or Akey indexes, identifies which
instance was involved in the error. If an SDXI function implementation
detects more than one akey/buffer failure while processing a descriptor, the
implementation shall choose one of them to log.
0 = Buffer0 or Akey0
1 = Buffer1 or Akey1
2-7 = reserved for future use

39 rsvd Shall be set to 0.
43:40 sub_step Identifies the specific sub-step that failed

0 = Other (or Internal Error) (May be used when sub-step is unknown)
1 = Address Translation Failure
2 = Data Access Failure (i.e. Read/Write/Atomic Access)
3 = Data Validation Failure (i.e. data content is invalid)
-15 = reserved for future use

46:44 re SDXI Function Reaction to the Error
0 = Informative Entry, nothing stopped
1 = SDXI Context Stopped (“cv” and “cxt_num” shall be valid).
2 = SDXI Function Stopped

 3-7 = Reserved for future use
47 rsvd Shall be set to 0.

u16 cxt_num; 063:048 Context number associated with the error log entry when cv = “1”.

u64 dsc_index; 127:064 Descriptor index of descriptor that failed when "div" ="1".
 u8 rsvd_0[28]; 351:128 Shall be set to 0.

u16 err_class; 367:352 Provides an error classification code for offline debug analysis. See
discussion above.

u8 rsvd 1[2]; 383:368 Shall be set to 0.
u32 vendor[4]; 511:384 These fields are available for SDXI functions to record additional vendor

defined debugging information relating to the error, such as telemetry
relating to internal errors.

SNIA SDXI Specification Working Draft 47
 Version 1.0.3

Table 3-10: (Flagged) Processing Step
Encoding (Enc) & Types Req’d Fields

SDXI Function Action (Response)
Enc Processing Step cv div bv

0 reserved n/a n/a n/a n/a

1 Internal Error (ERRV_INT) X 0 0 Function Stop or Context Stop (‘cv’
shall be 1 if Context Stop).

2 Context Level 2 Table Entry – Translate,
Read, Validate. (ERRV_CXT_L2)

1 0 0 Function Stop or Context Stop.

3 Context Level 1 Table Entry – Translate,
Read, Validate. (ERRV_CXT_L1)

1 0 0 Function Stop or Context Stop.

4 Context Control – Translate, Read,
Validate. (ERRV_CXT_CTL)

1 0 0 Function Stop or Context Stop.

5 Context Status – Translate, Access,
Validate. (ERRV_CXT_STS)

1 0 0 Function Stop or Context Stop.

6 Write_Index – Translate, Read, Validate.
(ERRV_WRT_IDX)

1 0 0 Context Stop.

7 Descriptor Entry – Translate, Access,
Validate. (ERRV_DSC_GEN)

1 1 0 Context Stop.

8 Descriptor CST_BLK – Translate, Access,
Validate. (ERRV_DSC_CSB)

1 1 0 Context Stop.

9 Atomic Return Data – Translate, Access.
(ERRV_ATOMIC)

1 1 0 Context Stop.

10 Descriptor: Data Buffer – Translate,
Access. (ERRV_DSC_BUF)

1 1 1 Context Stop.

11 Descriptor AKey Lookup – Translate,
Access, Validate. (ERRV_DSC_AKEY)

1 1 1 Context Stop.

12 Function RKey Lookup – Translate, Read,
Validate. (ERRV_FN_RKEY)

0 0 0 Informative Entry, nothing stopped

13-63 reserved n/a n/a n/a n/a

48 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 3-11: Error Class Hierarchy
Bit layout and definitions for err_class
[15:12] [11:08] [07:04] [03:00]

0x0000 Generic SDXI Error

0x1000 SDXI Internal Function Error

0x2000 Generic Logical Error

0x2100 Unsupported Field Encoding

0x2200 Non-zero reserved field used

0x2300 Specification, Implementation, or instance limit exceeded

0x2310 max_buffer limit exceeded

0x2320 illegal or invalid AKey Index

0x2330 illegal or invalid context index

0x2340 illegal or invalid descriptor ring size

0x2350 illegal values for Read_Index or Write_Index (overflow or underflow)

0x2360 illegal PASID (implementation limit or format)

0x2370 illegal intr_num (implementation limit or format)

0x2400 Unsupported descriptor type/subtype encoding

0x2500 Time-out waiting for descriptor vl bit to become set

0x3000 Generic Memory Access Error

0x3100 Memory Access Permission Error

0x3110 PCIe Unsupported Request Error

0x3120 PCIe Completer Abort Error

0x3200 Memory Access Data Poison Error

0x3300 Memory Access Time-out

0x3400 Memory Translation Error

0x3410 PCIe Translation Completion Unsupported Request Error

0x3420 PCIe Translation Completion Completer Abort Error

0x3500 Page Request Error or Time-out

0x3510 PCIe PRG Invalid Request Response Error

0x3520 PCIe PRG Failure Response Error

All other encoding reserved

SNIA SDXI Specification Working Draft 49
 Version 1.0.3

 Error Log Initialization
To initialize or re-initialize the error log, the following procedure shall be used by software.

1. Clear MMIO_ERR_CFG.en to "0".
2. Clear MMIO_ERR_STS to "0".
3. To hold the error log, allocate a 4-KB aligned contiguous memory buffer whose size is a power-of-

two of at least 4-KB. Initialize the buffer to zero.
4. Set MMIO_ERR_CTL.intr_en to "1" if interrupts on errors are desired.
5. Clear MMIO_ERR_WRT and MMIO_ERR_RD to "0".
6. Program MMIO_ERR_CFG:

a. Program MMIO_ERR_CFG.ptr to point to the start of the error log memory region.
b. Program MMIO_ERR_CFG.sz to the appropriate size of the error log.
c. Set MMIO_ERR_CFG.en to "1" to enable the error log mechanism.

 Error Log Processing by Software
Software may use the following set of steps to process the error log.

1. Check MMIO_ERR_STS and perform any required remediation.
2. If MMIO_ERR_STS.sts is "1", then compute read_index; otherwise exit this set of steps.

• read_index = MMIO_ERR_RD;
3. Clear MMIO_ERR_STS to "0". This clears all error log overflow, error, and status flags. If using an

edge triggered interrupt mechanism, the system should be ready to accept another interrupt without
loss before this MMIO write to MMIO_ERR_STS.

4. Compute write_index. The MMIO read of MMIO_ERR_WRT must follow step 3 to ensure that either
software is working with the latest value of MMIO_ERR_WRT or another interrupt will occur after
software completes this entire set of steps.

• write_index = MMIO_ERR_WRT;
5. If read_index == write_index exit this set of steps.
6. If read_index < write_index, then proceed to the next step; otherwise go to step 11.
7. Compute the following:

• log_sz = 2**(MMIO_ERR_CFG.sz +12);
• log_bs = MMIO_ERR_CFG & ~0xFFF;

8. Process the error log entry at this address:
• address = log_bs + ((read_index * 64) % log_sz);

9. Advance read_index.
10. Loop back to step 6.
11. Write read_index to MMIO_ERR_RD.

50 Working Draft SNIA SDXI Specification
 Version 1.0.3

3.5 Administrative Context (Context 0)
Administrative operations are used by privileged software to manage the SDXI function and are only
supported in Context 0 ("Administrative" Context) within each function. Software shall ensure context 0 is
the first context started and the last stopped to ensure proper operation. When context 0 goes into an
undefined or error state, software shall stop and restart the function to ensure correct operation.
An SDXI function may only cache private copies of all LVL_L2 data (see "4.3.1, SDXI Memory-Based
Data-Structure Hierarchy and Caching") associated with context 0 when the context is at the CXTV_RUN
state.
An Administrative Context only supports AdminGrp, ConnectGrp and other specified administrative
operations; no other operation groups including the DmaBaseGrp operations are supported. A VF
Administrative Context may be used to manage contexts associated with that VF. A PF Administrative
Context may be used to manage contexts hosted by the PF or contexts hosted by any VF associated with
the PF. If a VF encounters a failure while processing a P2V administrative operation, the error will be
logged by the VF.

3.6 Data Steering Hints (DSH)
An SDXI Function may allow for the inclusion of DSH on data buffer accesses. One potential use of DSH
is to provide a cache injection hint that allows the data buffer to be injected into a CPU cache. The actual
encoding, propagation, and use of DSH information is platform specific and outside the scope of this
specification.
The mapping of DSH information onto device architecture mechanisms is specific to those architectures.
For details on how DSH information maps onto PCIe, please refer to "8.3, Mapping SDXI DSH to PCIe
TLP Processing Hints (PCIe TPH)".
The context producer may request the inclusion of DSH information on a data buffer access by setting the
data buffer's "attr.coh_ctl" field to "10b" in the descriptor.
DSH information is only included when all of the following conditions are true:

• All required bus/device mechanisms to support DSH are present and enabled
• The data buffer's "attr.coh_ctl" field is "10b"
• If the data buffer's "AKEY_ENT.sfunc" field is zero, the "AKEY_ENT.ste" field is set to 1
• If the data buffer's "AKEY_ENT.sfunc" field is non-zero, the data buffer's "RKEY_ENT.ste" field is set

to 1
A 2-bit ph field and 16-bit stag field are provided through the data buffer's AKey or RKey table entry.
SDXI implementations are free to apply the requested DSH information on all, some, or none of the
accesses to the referenced data buffer.
Software is responsible for ensuring that the target of a request containing DSH information supports
receiving DSH information. Software is also responsible for ensuring that the bus infrastructure between
the requesting SDXI Function and the data buffer target supports the propagation of DSH information.
The reaction of a target to receiving unexpected DSH information or encodings is outside the scope of this
specification.

SNIA SDXI Specification Working Draft 51
 Version 1.0.3

4 SDXI Function and Context State

4.1 SDXI Function State
An SDXI function operates serially within a number of basic states indicated by the MMIO_STS0.fn_gsv
register and shown in the figure below. Software may use the MMIO_CTL0.fn_gsr register to help
transition the function between the various states.

Figure 4-1: SDXI Function States and State Transitions

sdxi-figures-F008

MMIO_STS0.fn_gsv values
0b000 GSV_STOP
0b001 GSV_INIT
0b010 GSV_ACTIVE
0b011 GSV_STOPG_SF
0b100 GSV_STOPG_HD
0b101 GSV_ERROR
All Others Reserved

MMIO_CTL0.fn_gsr
0b00 GSRV_RESET
0b01 GSRV_STOP_SF
0b10 GSRV_STOP_HD
0b11 GSRV_ACTIVE

SW: fn_gsr GSRV_RESET

SW: fn_gsr ! GSRV_RESET

FN: At least one context will not stop
 or HaltErr:Fn

FN: All Contexts Stopped w/o Error
SW: fn_gsr GSRV_STOP_SF

SW: fn_gsr GSRV_RESET or
FN: HaltErr:Fn

G0: GSV_STOP

G5: GSV_ERROR

SW: fn_gsr ! GSRV_STOP_HD
SW: fn_gsr X

SW: fn_gsr GSRV_ACTIVE

SW: fn_gsr ! GSRV_ACTIVE or
FN: HaltErr:Fn

G4: GSV_STOPG_HD
FN: Activation Complete

SW: fn_gsr GSRV_ACTIVE

G1: GSV_INIT

SW: fn_gsr GSRV_ACTIVE

G3: GSV_STOPG_SF

FN: RESET

G2: GSV_ACTIVE

SW: fn_gsr GSRV_STOP_HD

52 Working Draft SNIA SDXI Specification
 Version 1.0.3

 G0: GSV_STOP State
The function is idle and not enabled to process any memory data structures or perform DMA operations.
All DMA operations from remote functions targeting this function's local address spaces are aborted.
From the GSV_STOP state, software may set MMIO_CTL0.fn_gsr to GSRV_ACTIVE to start the function.
The function will attempt to transition through the GSV_INIT state into the GSV_ACTIVE state. Software
shall program MMIO_CXT_L2 prior to setting MMIO_CTL0.fn_gsr to GSRV_ACTIVE. Writing any other
value to MMIO_CTL0.fn_gsr is ignored.

 G1: GSV_INIT State
Upon receiving the GSRV_ACTIVE request while in the GSV_STOP state, the function shall transition into
the GSV_INIT state to perform any necessary self-initialization. All DMA operations from remote functions
targeting this function's local address spaces are aborted in this state.
If initialization is successful, the function transitions to the GSV_ACTIVE state. As part of the initialization,
the SDXI function may validate the contents of the following MMIO registers.

• MMIO_CTL0 and MMIO_CTL2.

The SDXI function initializes the contents of the following MMIO registers.
• MMIO_STS0.

While in this state, if an error occurs during the initialization that prevents the processing of all contexts or
software sets MMIO_CTL0.fn_gsr to any value other than GSRV_ACTIVE, the function shall initiate a
HaltErr:Fn action, which includes transitioning MMIO_STS0.fn_gsv to the GSV_ERROR state. Illegally
writing GSRV_RESET to MMIO_CTL0.fn_gsr may cause the SDXI function to immediately begin
transitioning out of the GSV_ERROR state upon the completion of the HaltErr:Fn action.

 G2: GSV_ACTIVE State
In the GSV_ACTIVE state, the function is enabled to process contexts and descriptors. From this state,
privileged software may request the function to stop by writing MMIO_CTL0.fn_gsr to GSRV_STOP_HD to
request a hard stop or to GSRV_STOP_SF to request a soft stop.
While in this state, if an error occurs that prevents the processing of all contexts or software sets
MMIO_CTL0.fn_gsr to GSRV_RESET, the function shall initiate a HaltErr:Fn action, which includes
transitioning MMIO_STS0.fn_gsv to the GSV_ERROR state. If HaltErr:Fn was triggered due to SW writing
GSRV_RESET to MMIO_CTL0.fn_gsr, then once HaltErr:Fn completes, the function may immediately
begin transitioning out of GSV_ERROR to GSV_STOP.

 G3: GSV_STOPG_SF ("Soft Stopping") State
In the GSV_STOPG_SF state, the function shall stop processing new descriptors and wait until all
outstanding descriptors complete naturally or until an implementation-defined timeout period has expired
at which point any remaining descriptors are aborted. The function shall log errors as necessary for each
aborted descriptor. See "4.3.5, Function and Context Stop Actions".
When all contexts have reached their final state, and all previously received MMIO doorbells are fully
evaluated (i.e. there are no outstanding data structure reads due to a prior doorbell), the function
transitions to the GSV_STOP state.
While in this state, if an error occurs that prevents one or more contexts from stopping, the function shall
initiate a HaltErr:Fn action, which includes transitioning MMIO_STS.fn_gsv to the GSV_ERROR state.
Descriptor errors including aborts alone do not drive a transition to the GSV_ERROR state.

SNIA SDXI Specification Working Draft 53
 Version 1.0.3

Writing GSRV_STOP_HD to MMIO_CTL0.fn_gsr transitions MMIO_STS.fn_gsv to the GSV_STOPG_HD
state. Writing any other value to MMIO_CTL0.fn_gsr is ignored.

 G4: GSV_STOPG_HD ("Hard Stopping") State
In the GSV_STOPG_HD state, the function stops processing new descriptors and waits less patiently for
all outstanding descriptors to complete; and aborts outstanding descriptors more aggressively to speed up
the completion wait. The function shall log errors as necessary for each aborted descriptor. See "4.3.5,
Function and Context Stop Actions". Used as a last resort to stop the function.
When all contexts have reached their final state, and all previously received MMIO doorbells are fully
evaluated (i.e. there are no outstanding data structure reads due to a prior doorbell), the function
transitions to the GSV_STOP state.
While in this state, if an error occurs that prevents one or more contexts from stopping, the function shall
initiate a HaltErr:Fn action, which includes transitioning MMIO_STS0.fn_gsv to the GSV_ERROR state.
Writing any value to MMIO_CTL0.fn_gsr is ignored.

 G5: GSV_ERROR State
If an uncorrectable error prevents further safe operation of a function across all of its associated contexts,
the function shall initiate a HaltErr:Fn action, which includes transitioning MMIO_STS0.fn_gsv to the
GSV_ERROR state. If MMIO_CTL0.fn_err_intr_en is "1", an interrupt to software is generated upon
entering this state.
All DMA operations from remote functions targeting this function's local address spaces are aborted in this
state. It is implementation-dependent if the function cleans up any outstanding DMA operations in this
state.
It is implementation dependent if the function performs any context-specific state changes or stop actions
when it enters this state; software shall not rely upon it. Software may return the function to the
GSV_STOP state by performing one these actions.

1. Set MMIO_CTL0.fn_gsr to GSRV_RESET and wait until MMIO_STS0.fn_gsv is GSV_STOP. It is
implementation dependent what the contents of context-specific state are after a GSRV_RESET is
requested.

2. Perform a function-level reset at the device level.
Writing any value other than GSRV_RESET to MMIO_CTL0.fn_gsr is ignored.

 Function Reset and Outstanding DMA Requests
When a device-level reset is being performed on an SDXI function, there may be outstanding DMA
requests from this specific function to both local and remote address spaces. This function may also
receive DMA from other SDXI functions targeting this function's local address spaces. Those remote
functions may continue to issue new DMA requests attempting to access this function's local address
spaces while this function is resetting.
An SDXI function shall terminate all processing (descriptor ingest, descriptor execution, incoming RKey-
based access, error reporting, etc.) and expeditiously clear (complete or cleanly abort) any outstanding
external interactions. When complete, the function shall be stopped and MMIO_STS0.fn_gsv shall equal
GSV_STOP.
It is privileged software's responsibility to notify the remote software contexts that the target function is
being reset. It shall also ensure either orderly or unorderly removal of all associated connections prior to
re-enabling the function that was reset.

54 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Activation of the SDXI Function by Software
Software shall activate the SDXI function from the GSV_STOP state by performing the following steps.

1. Configure Capabilities:
a. Read MMIO_CAP0 and MMIO_CAP1 to discover the supported SDXI features. If restoring

saved function content, verify that the function's capabilities match the requirements of the
saved function content.

b. Write MMIO_CTL2 to configure the SDXI features set exposed to driver software.
2. Context Level 2 Table Setup:

a. Allocate an aligned 4KB region of memory for the Context Level 2 Table
b. Initialize all Context Level 2 Table entries to "0" or restore them from the saved function

content and adjust accordingly.
c. Program the MMIO_CXT_L2 register to point to the Context Level 2 Table location in memory.

i. If guest virtual addressing is required, set MMIO_CTL0.fn_pasid and
MMIO_CTL0.fn_pasid_vl to appropriate values.

3. Context Level 1 Table Setup:
a. Allocate an aligned 4KB region of memory for the first Context Level 1 Table (contexts 0 to

127). Other Context Level 1 Tables may also be allocated at this step.
b. Initialize these Context Level 1 Table entries to "0" or restore them the saved function content

and adjust accordingly.
c. Initialize the Context level 2 table to point to the Context Level 1 tables allocated above.

4. Administrative Context:
a. Recommended: if not restoring a saved administrative context, software should create the

function's administrative context (context 0) and all associated structures.
b. The context's CXT_STS.state value should be set to "CXTV_RUN" to allow the context to be

jump started, see step 10b.
5. Mailbox: If present, initialize the mailbox registers
6. If restoring saved function and context state, restore and adjust the state as appropriate.
7. Error Log: Initialize or restore the Error Log. Refer to "3.4.2, Error Log Initialization" for more details.
8. Software may also need to configure and enable additional PCIe standards-based features such as

enabling PCIe "AtomicOp Requester Enable" (PCIe Device Control 2 Register), MSI/MSI-X, ATS,
PRI, and TPH based on the desired use cases.

9. Set MMIO_CTL0.fn_gsr to GSRV_ACTIVE.
a. Wait until MMIO_STS0.fn_gsv is GSV_ACTIVE or GSV_ERROR before performing any other

actions on the function.
b. If the function state becomes GSV_ERROR, software shall use the procedures described in

"4.1.6, G5: GSV_ERROR State" to transition the function to GSV_STOP.
10. Once the function is at GSV_ACTIVE state, software may start the created and restored contexts

using one of the methods below.
a. From the PF, the contexts of a VF can be started using a P2V.DSC_CXT_START_RS

operation.
b. From the local function, context 0 can be "jump started" (See "4.3.4, Starting A Context and

Context Signaling"); then a LOC.DSC_CXT_START_RS operation can be issued from that
context to start the remaining ones.

 Stopping of the SDXI Function by Software
Software shall transition the SDXI function from GSV_ACTIVE to GSV_STOP state by performing the
following steps.

SNIA SDXI Specification Working Draft 55
 Version 1.0.3

1. Set MMIO_CTL0.fn_gsr to GSRV_STOP_[SF, HD].
a. This will cause the function to enter GSV_STOPG_[SF, HD] and prevent any new operations

from being processed in all contexts of the function.
2. Wait until MMIO_STS0.fn_gsv is GSV_STOP or GSV_ERROR.

a. If the function is at GSV_STOPG_SF and is taking longer than acceptable to stop, software
can Set MMIO_CTL0.fn_gsr to GSRV_STOP_HD to change the completion policy to hard-
stop; note, this may cause more outstanding descriptors to be aborted.

3. If the function state becomes GSV_ERROR, software shall use the procedures described in "4.1.6,
G5: GSV_ERROR State" to transition the function to GSV_STOP.

4. Once the function is at GSV_STOP, software may save the set of all current function contents
including the error log, and optionally restore a different set of function contents.

56 Working Draft SNIA SDXI Specification
 Version 1.0.3

4.2 SDXI Context State
An SDXI context operates serially within a number of basic states determined by the CXT_STS.state
location in memory, the context valid bits (CXT_L2_ENT.vl, CXT_L1_ENT.vl, and CXT_CTL.vl), and the
function state.

Figure 4-2: SDXI Context States and Basic State Transitions

sdxi-figures-F009
CXT_STS.state
0b0000 CXTV_STOP_SW
0b0001 CXTV_RUN
0b0010 CXTV_STOPG_SW
0b0100 CXTV_STOP_FN
0b0110 CXTV_STOPG_FN
0b1111 CXTV_ERR_FN

Key in {Set} The value of "key" is within the values belonging to "Set"
{Gsv_Run} The set containing the values GSV_ACTIVE and GSV_STOPG_[SF, HD]
Cs CXT_STS.state
fn_gsv Target Function's MMIO_STS0.fn_gsv
----SW: ---- Software Initiated State Transition
----FN:---- Function Initiated State Transition
----nnn---- Software Initated State Transition causing CXTV_UNDEF.

!value For booleans, "!1" = "0" and "!0" = "1". For non-booleans, maps to any other allowed attribute value that is not "value".
key = value Indicates that a state attribute ("key") is "value". When used in a state transition, the statement must be true.
key value A transition of a state attribute ("key") to "value".
Cv Aggregate of (CXT_L2_ENT.vl and CXT_L1_ENT.vl and CXT_CTL.vl). Cv = 1 means all valid bits are "1". Cv = 0 means at

least one valid bit is "0". Cv n, means one or more valid bits have been changed such that Cv = n.
Fi* Implementations may transition into CXTV_RUN.EXEC state without receiving a doorbell write by reading Write_Index and

Read_Index from memory. Regardless, Software shall always issue doorbell writes in order to ensure correct operation.
Not shown: Regardless if an Administrative Descriptor is issued by the PF or the Local function (target), the target function's Gsv is used in
determining its state transitions

Cs = CXTV_STOP [SW, FN]

FN: fn_gsv GSV_ACTIVE

S4: CXTV_RUN:
fn_gsv = GSV_ACTIVE & Cv = 1 & Cs = CXTV_RUN

Fd

S4b: CXTV_RUN.EXEC

SW: Cv 0

SW: Cv 0

All outstanding Descrs
complete or aborted

SW: LOC.DS_STOP_CXT
(Cs CXTV_STOPG_SW)

Cs = CXTV_STOPG [SW, FN] or
 Reserved Cs encoding

Cs = CXTV_ERR_FN

(Cs CXTV_STOP_SW)
FN: No errors & Cs = CXTV_STOPG_SW

(Cs CXTV_STOP_FN)
FN: No errors & Cs = CXTV_STOPG_FN

 SW: Cv 1

S1: CXTV_INVALID:
fn_gsv = GSV_ACTIVE
 & Cv = 0 & Cs = X

FN: Errors detected

S5: CXTV_STOPG [SW, FN]:
fn_gsv in {Gsv_Run} & Cv = 1

 & Cs = CXTV_STOPG_[SW, FN]

Cv = 1Cv = 0
CXTV_UNDEF

Operation

S3: CXTV_ERR_FN:
fn_gsv in {Gsv_Run} & Cv = 1

 & Cs = Error
SW: Cs CXTV_STOP_[SW, FN]

SW: Cs X or Cv 0

SW: Cs X or Cv 0

S2: CXTV_STOP [SW, FN]:
fn_gsv in {Gsv_Run} & Cv = 1
 & Cs = CXTV_STOP [SW, FN]

SW: (Doorbell reg write or DS_START_CXT_[NM, RS])
 & doorbell_value > Read_Index
 & doorbell_value <= Write_Index

Fi*

CXTV_INVALID
CXTV_UNDEF

CXTV_UNDEF

Cs = CXTV_RUN

SW: Cs ! CXTV_STOP_[SW, FN]
 & ! CXTV_ERR_FN

S4a: CXTV_RUN.RDY

All known work completed

SW: (DS_START_CXT [NM, RS]
 or Cs CXTV_RUN)
 & fn_gsv = GSV_ACTIVE

FN: StopErr:Cxt or fn_gsv GSV_STOPG
or SW: P2V.DS_STOP_CXT

(Cs CXTV_STOPG_FN)SW: Cs ! CXTV_STOP_[SW, FN]
 & ! CXTV_RUN

SNIA SDXI Specification Working Draft 57
 Version 1.0.3

 S1: CXTV_INVALID State
The SDXI function is in GSV_ACTIVE state and managing the context; but the context is invalid because
one or more of the following attributes are not "1": CXT_L2_ENT.vl, CXT_L1_ENT.vl, and CXT_CTL.vl. In
this state, the function does not process descriptors and does not respond to doorbell writes for the
context. This state can be entered from the following.

• CXTV_STOP_[SW, FN] or CXTV_ERR_FN when software changes one or more of the context valid
bits to "0".

• When the function transitions to GSV_ACTIVE and one or more of the context valid bits are "0".

This state can transition to the following.

• CXTV_RUN, CXTV_ERR_FN, or CXTV_STOP_[SW, FN] based on the value of CXT_STS.state
when the function is at GSV_ACTIVE and software changes one or more of the context valid bits
such that all are at "1".

• CXTV_UNDEF when the function is at GSV_ACTIVE, software changes one or more of the context
valid bits such that all are at "1", and CXT_STS.state is not CXTV_RUN, CXTV_ERR_FN, or
CXTV_STOP_[SW, FN].

Unless explicitly required by an action or operation to suppress or signal an error, an implementation of an
SDXI function should suppress signaling errors on a context in CXT_INVALID state. However, the
implementation may not be able to suppress the signaling of these errors in all cases. As a result, software
shall expect and dispose of unexpected errors on a context in CXT_INVALID state.

 S2: CXTV_STOP_[SW, FN] States
In these states the function does not process descriptors and does not respond to doorbell writes for the
context. The target context shall be stopped at a descriptor boundary. This state can be entered from the
following.

• CXTV_STOPG_[SW, FN] by the function when it detects that no error occurred in context
processing and context execution.

• CXTV_ERR_FN when software changes CXT_STS.state to CXTV_STOP_[SW, FN]. (It is
recommended that software resolve the error before making this change.)

• CXTV_INVALID when the function is at GSV_ACTIVE, CXT_STS.state is CXTV_STOP_[SW, FN],
and all context valid bits are "1".

If context 0 (Administrative context) enters this state, the function shall invalidate and exclude all privately
cached copies of LVL_L2 data associated with context 0 until the context is once again at CXTV_RUN.
(See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching")
This state can transition to the following.

• CXTV_RUN when the function is at GSV_ACTIVE and software performs either a successful
DSC_CXT_START_[NM, RS] operation or a change of CXT_STS.state to "CXTV_RUN (see "4.3.4,
Starting A Context and Context Signaling").

• CXTV_INVALID when software changes one or more of the context valid bits to "0".
• CXTV_UNDEF when software changes CXT_STS.state to values other than CXTV_STOP_[SW,

FN] and CXTV_RUN.

4.2.2.1 CXTV_STOP_SW State

58 Working Draft SNIA SDXI Specification
 Version 1.0.3

The context was stopped by software using a local-function DSC_CXT_STOP operation on the context.

4.2.2.2 CXTV_STOP_FN State
The context was stopped either by a transition of the function state from GSV_ACTIVE or a
P2V.DSC_CXT_STOP operation.

 S3: CXTV_ERR_FN
This is the context error state; the function does not process descriptors and does not respond to doorbell
writes for the context. The target context shall be stopped at a descriptor boundary. In response, software
shall diagnose and correct any underlying error conditions. Once the error has been resolved, software
may transition the target context to CXTV_STOP_[SW, FN]. This state can be entered from the following.

• CXTV_STOPG_[SW, FN] when the function detects an error in context processing or context
execution.

• CXTV_INVALID when the function is at GSV_ACTIVE, CXT_STS.state is CXTV_ERR_FN, and all
context valid bits are "1".

If context 0 (Administrative context) enters this state, the function shall invalidate and exclude all privately
cached copies of LVL_L2 data associated with context 0 until the context is once again at CXTV_RUN.
(See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching")
This state can transition to the following.

• CXTV_STOP_[SW, FN] when software changes CXT_STS.state to CXTV_STOP_[SW, FN].
• CXTV_INVALID when software changes one or more of the context valid bits to "0".
• CXTV_UNDEF when software changes CXT_STS.state to values other than CXTV_ERR_FN and

CXTV_STOP_[SW, FN].

SNIA SDXI Specification Working Draft 59
 Version 1.0.3

 S4: CXTV_RUN.[RDY, EXEC] States
In this state, the context has been enabled to process descriptors and responds to doorbell writes. This
state can be entered from the following.

• CXTV_STOP_[SW, FN] when the function is at GSV_ACTIVE and software performs either a
successful DSC_CXT_START_[NM, RS] operation or a change of CXT_STS.state to CXTV_RUN.

• CXTV_INVALID when the function is at GSV_ACTIVE, CXT_STS.state is CXTV_RUN, and all
context valid bits are "1".

Entry to this state always enters the CXTV_RUN.RDY substate.
The CXTV_RUN state can transition to the following.

• CXTV_STOPG_FN when the function detects an error in context processing or context execution.
• CXTV_STOPG_FN when the function transitions to GSV_STOPG.
• CXTV_STOPG_FN by a software-initiated, PF-to-VF-function, administrative DSC_CXT_STOP

operation.
• CXTV_STOPG_SW by a software-initiated, local-function, administrative DSC_CXT_STOP

operation.
• CXTV_UNDEF when software changes CXT_STS.state to any value or one or more of the context

valid bits to "0".

4.2.4.1 S4a: CXTV_RUN.RDY State
In this substate of CXTV_RUN, the context is enabled ("ready") to process descriptors, all previous context
descriptors have been completed, and the function is evaluating whether new descriptors are available.
The context may remain in this state until the function determines that there are available descriptors.
The SDXI function may transition the context to the CXTV_RUN.EXEC (S4b) state to process available
descriptors when the following conditions are true.

1. The context is in CXTV_RUN.RDY.
2. The context's Doorbell register is updated externally or internally with a doorbell_value as described

in "4.3.3, Doorbell Register and Context Signaling"
3. The doorbell_value is greater than Read_Index and the doorbell_value is less than or equal to

Write_Index.

4.2.4.2 S4b: CXTV_RUN.EXEC State
In this substate, the context is actively processing new descriptors. The function may return the context to
CXTV_RUN.RDY state when the last known doorbell_value equals Write_Index.

60 Working Draft SNIA SDXI Specification
 Version 1.0.3

 S5: CXTV_STOPG_[SW, FN] States
In these states, the function stops processing new descriptors for the context and waits for outstanding
context descriptors to complete based on the completion wait policy.

• Soft-Stop (SF) Wait: The function shall wait until all outstanding descriptors complete naturally or
until an implementation-defined timeout period has expired at which point any remaining descriptors
are aborted.

• Hard-Stop (HD) Wait: The function waits less patiently for all outstanding descriptors to complete;
and may abort outstanding descriptors more aggressively to speed up the completion wait. This
policy can be applied by an initial stop action on the context or by later stop actions on the same
context. Once applied, the completion policy cannot be relaxed while in the context is in this state.

Refer to CXTV_STOPG_SW and CXTV_STOPG_FN for more details.

4.2.5.1 CXTV_STOPG_SW State
This state can be entered from the following.

• CXTV_RUN by a software-initiated, local-function, administrative DSC_CXT_STOP operation.

This state can transition to the following.

• CXTV_STOP_SW by the function when it detects that no error occurred in context processing and
context execution.

• CXTV_ERR_FN when the function detects an error in context processing or context execution.
• CXTV_UNDEF when software changes CXT_STS.state to any value or one or more of the context

valid bits to "0".

4.2.5.2 CXTV_STOPG_FN State
This state can be entered from the following.

• CXTV_RUN when the function detects an error in context processing or context execution.
• CXTV_RUN when the function transitions to GSV_STOPG.
• CXTV_RUN by a software-initiated, PF-to-VF-function, administrative DSC_CXT_STOP operation.

This state can transition to the following.

• CXTV_STOP_FN by the function when it detects that no error occurred in context processing and
context execution.

• CXTV_ERR_FN when the function detects an error in context processing or context execution.
• CXTV_UNDEF when software changes CXT_STS.state to any value or one or more of the context

valid bits to "0".

SNIA SDXI Specification Working Draft 61
 Version 1.0.3

 Context-Undefined Operation (CXTV_UNDEF)
When privileged software directly and illegally modifies a context's CXT_STS.state or context valid bits
(CXT_L2_ENT.vl, CXT_L1_ENT.vl, and CXT_CTL.vl) in memory, the context operation is architecturally
undefined. Because the SDXI function may cache context control state and may still be executing
outstanding operations issued before the illegal modification, the inconsistent or stale context control state
may result in unexpected context operation. This can include the use of stale data, logged context errors,
and an unexpected change of CXT_STS.state due to context errors or previous outstanding administrative
operations on the context.
Note that the effects of such undefined context operation are limited to only the results that may be
produced by any valid context state. Furthermore, no other context nor the SDXI function shall be affected
when a particular context has undefined operation.
Although correctly written privileged software shall never cause context-undefined operation, there is no
method for software to detect it after the fact. In addition, for the benefit of performant SDXI
implementations, the SDXI architecture does not require nor recommend that an SDXI function attempt to
detect context-undefined operation caused by incorrect privileged software.
Context-undefined operation is exited when the context is stopped by any operation including
DSC_CXT_STOP operations, function stop operations, and StopErr:Cxt (context or descriptor error
actions).

62 Working Draft SNIA SDXI Specification
 Version 1.0.3

4.3 Function and Context Operations

 SDXI Memory-Based Data-Structure Hierarchy and Caching
SDXI-defined memory-based data structures are organized into a hierarchy of levels for the purposes of
function and software management. The validity of a data structure is based on its explicit "valid (vl)" field
in memory, if present, and its inherited validity derived from the validity of all higher levels in the hierarchy
that point to it. A structure lacks inherited validity if any of these higher levels are invalid. (For example, a
context level 1 entry can only be considered valid if its explicit CXT_L1_ENT.vl is "1", its associated higher
level CXT_L2_ENT.vl is "1", and the SDXI function is at GSV_ACTIVE or GSV_STOPG_[SF, HD].)
The SDXI function may cache these memory-based data structures using private caches that are not
coherent with respect to processor caches. Data in both the valid and invalid states may be cached in this
manner across all contexts within the function.
The memory-based data-structure hierarchy (smallest to largest) and its suitability for caching is shown
below.

1. Lowest-Level, Non-Cached Data: the Write_Index value and descriptors not located between
Read_Index and Write_Index in the context descriptor ring. The validity of these structures is
inherited from the validity of their associated CXT_CTL.

2. Lowest Level, Cached Data: May be cached by the SDXI implementation.
a. LVL_CXT_STS: Single Context Status (CXT_STS) entries and their fields. May be cached

only when CXT_STS.state is CXTV_RUN or CXTV_STOPG_[SW, FN]. The validity of the
structure is inherited from the validity of its CXT_CTL.

b. LVL_AKEY: Single AKey Table Entries. The validity of this structure is derived from its explicit
"valid" field and the validity of its associated CXT_L1_ENT.

c. LVL_RKEY: Single RKey Table Entries. The validity of this structure is derived from its explicit
"valid" field and the validity of LVL_FN.

d. LVL_DESCR: descriptors with the valid (vl) field set to "1" that are located between
Read_Index and Write_Index. The validity of such descriptors is further qualified by the validity
of the associated CXT_CTL.

3. LVL_CXT_CTL: Single Context Control (CXT_CTL) entries and all subsidiary structures. This
includes LVL_CXT_STS and LVL_DESCR. These structures may be cached. The validity of this
level is derived from the explicit CXT_CTL.vl field and the validity of its associated CXT_L1_ENT.

4. LVL_L1: Single CXT_L1_ENT entries and all subsidiary structures. This includes the
LVL_CXT_CTL and all LVL_AKEY associated with the CXT_L1_ENT. These structures may be
cached. The validity of this level is derived from the explicit CXT_L1_ENT.vl field and the validity of
its associated CXT_L2_ENT.

5. LVL_L2: Single CXT_L2_ENT entries and all subsidiary structures. This includes all LVL_L1
associated with the CXT_L2_ENT. These structures may be cached. The validity of this level is
derived from the explicit CXT_L2_ENT.vl field and the validity of its associated LVL_FN.

6. LVL_FN: All memory-based fields of the function. This includes all LVL_L2 and LVL_RKEY. These
structures may be cached as described above. Explicitly valid when the SDXI function is at
GSV_ACTIVE or GSV_STOPG_[SF, HD].

SNIA SDXI Specification Working Draft 63
 Version 1.0.3

4.3.1.1 SDXI Update Operations for Modified Data Structures
When software has modified a memory-based data structure that may be privately cached by the function,
software shall appropriately signal the function to update its internal copies of that data structure, if any.
The SDXI signaling operations and mechanisms used by software for this purpose are described in the list
below. The software procedures using these operations are described in "4.3.1, SDXI Memory-Based
Data-Structure Hierarchy and Caching"

1. DSC_UPD_[CXT, AKEY, RKEY, FN] descriptor operations. These signal the function to start the
updating of all internal copies of a memory-based data structure and its subsidiary structures. The
operations are scoped to match the hierarchy of memory-based data-structures described in "4.3.1,
SDXI Memory-Based Data-Structure Hierarchy and Caching".

a. The SDXI implementation may perform the update by re-acquiring a copy of the data from
system memory or by simply invalidating all internal copies of the data in its private caches.
Software shall not rely upon how the update is performed.

b. Note that a successful completion of a DSC_UPD operation only indicates that background
update actions shall be started; it does not indicate that the update actions have completed
nor that their effects are visible. Software shall use the DSC_SYNC operation to ensure that
the background update actions have completed.

2. DSC_SYNC.[CXT, AKEY, RKEY, FN] descriptor operation. This operation synchronizes with the
completion of the appropriately scoped background update actions initiated by previous DSC_UPD
operations. Once the function completes a DSC_SYNC operation, the function shall have performed
all associated updates.

3. Context Stop. Whenever a context is stopped, the SDXI function shall invalidate all internal copies of
the context's CXT_STS and ensure that the function excludes re-acquiring a copy of CXT_STS until
the context is once again at CXTV_RUN.

4. A local DSC_CXT_STOP operation with cxt_start = 0 and cxt_end = 0 shall invalidate all LVL_L2
data associated with context 0 and ensure that the function excludes re-acquiring a copy of the
LVL_L2 data until context 0 is once again at CXTV_RUN.

Note, that for any requested level of the memory-based data-structure hierarchy to update, an SDXI
implementation may update (or invalidate and exclude) any associated higher level of the hierarchy.

64 Working Draft SNIA SDXI Specification
 Version 1.0.3

4.3.1.2 Software Procedure For Modifying Memory-Based Data Structures
When software modifies a memory-based data structure that can be privately cached by the SDXI
function, it shall follow the procedures described in this section to ensure that the modification is
performed correctly.

Procedure For Modifying A Memory-Based Data Structure:
1. If the data structure is not allowed to be cached by the SDXI function, software may modify it without

restriction and no additional steps are required.
2. If a data structure does not currently possess inherited validity, software may modify it without

restriction. Software then proceeds to step 5 in this flow.
a. If a hierarchy of structures are being transitioned from invalid to valid, software should update

the hierarchy from the smallest scope to the largest to benefit from this fact.
3. If a data structure with an explicit valid field has inherited validity and the modification will transition

the explicit field from "invalid" to "valid", software shall ensure that only the last (terminal) write to the
structure causes the transition. Furthermore, software shall ensure that all earlier writes to the
structure, if any, are made globally visible before such a terminal write. Software then proceeds to
step 5 in this flow.

a. Example: for a valid context, transitioning an unused AKEY entry from invalid to valid.
4. The following steps apply to a data structure that is considered valid -- it has inherited validity and its

explicit valid field, if present, is true. (See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and
Caching").

a. If the data structure is encompassed by LVL_CXT_CTL and the CXT_CTL is explicitly valid,
software shall only modify the structure when the associated CXT_STS.state is
CXTV_STOP_[SW, FN] or CXTV_ERR_FN. Software then proceeds to step 5 in this flow.

i. Example: modifying CXT_CTL.cxt_sts_ptr for a valid context.
b. For all other data structures, if the-structure lacks an explicit valid field, software shall only

modify it after software has properly invalidated the data structure that points to it (the
hierarchy level above it). Software then proceeds to step 5 in this flow.

i. Example: modifying CXT_L1_ENT.cxt_ctl_ptr for a valid context requires that
CXT_L1_ENT.vl be set to invalid.

c. For all other data structures, if the structure has an explicit valid field set to "valid", and
software ensures that the structure is not actively in use by any context nor the SDXI function,
software shall ensure that the first write to the structure transitions it to an invalid state before
further modification. Furthermore, software shall ensure that this write shall be made globally
visible before any subsequent write to the structure. Software then proceeds to step 5 in this
flow. Further notes below.

i. A software mechanism must exist for how software ensures that a data structure outside
of LVL_CXT_CTL is not in use. That mechanism is outside the scope of this
specification.

ii. Example: invalidating a valid CXT_L1_ENT requires that software ensure that it is not in
use before the invalidation.

iii. Example: invalidating a valid AKEY_ENT requires that software ensure that it is not in
use before the invalidation.

SNIA SDXI Specification Working Draft 65
 Version 1.0.3

Update and Synchronization Of A Modified Memory-Based Data Structure:
5. Software shall issue a DSC_UPD operation targeting the modified data-structure hierarchy level.

Software may target a higher level for the update, but shall never target a lower level below the
actual modified data structure.

a. Example: For a valid CXT_L2_ENT, modifying a member CXT_L1_ENT requires software to
issue at least a DSC_CXT_UPD.L1 operation, but DSC_CXT_UPD.L2 is also allowed.

b. Example: For a valid CXT_L1_ENT, modifying a member AKEY_ENT requires software to
issue at least a DSC_AKEY_UPD operation, but DSC_CXT_UPD.L1 and DSC_CXT_UPD.L2
are also allowed.

6. Software shall then issue a DSC_SYNC operation targeting the modified data-structure hierarchy
level and wait for its completion. Software may target a higher level for the update but, shall never
target a lower level below the actual modified data structure.

a. Example: For a valid CXT_L2_ENT, modifying a member CXT_L1_ENT requires software to
issue at least a DSC_SYNC.CXT operation, but DSC_SYNC.FN is also allowed.

b. Example: For a valid CXT_L1_ENT, modifying a member AKEY_ENT requires software to
issue at least a DSC_SYNC.AKEY operation, but DSC_SYNC.CXT and DSC_SYNC.FN are
also allowed.

66 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Check Valid Context
When an SDXI function is starting or stopping a context, the function shall check that the key memory data
structures of the context are read accessible, and enabled or valid. This check is referred to as the
"ChkValid:Cxt" action. When the check fails in the flow below, no further steps in the flow are performed,
and the fail signature returned shall be either LogErr:Cxt or Invalid:Cxt (see "3.4, Error Log" for details.)

1. The function ensures the following; if any are not true, then the check fails with LogErr:Cxt and these
set of steps are exited.

a. MMIO_CTL2.max_cxt is less than or equal to MMIO_CAP1.max_cxt.
b. The context number is less than or equal to MMIO_CTL2.max_cxt.

2. The function shall ensure that it is not using stale values of the following context structures:
a. Context Status (which includes ContextState and Read_Index) and Write_Index.

3. The function shall access and validate the following list of structures. The function shall use
naturally-aligned atomic accesses to read these structures from memory if not cached. If the function
cannot access a specified structure, then the check fails with LogErr:Cxt and these set of steps are
exited.

a. Access the valid bit for the context level 2 table entry (CXT_L2_ENT.vl) that corresponds to
the context number; if CXT_L2_ENT.vl is "0" then the check fails with Invalid:Cxt and these set
of steps are exited.

b. If CXT_L2_ENT.vl is "1", access CXT_L2_ENT.Lvl_1_ptr and use it to access the valid bit for
the context level 1 table entry (CXT_L1_ENT.vl) that corresponds to the context number. If
CXT_L1_ENT.vl is "0" then the check fails with Invalid:Cxt and these set of steps are exited.

c. If CXT_L1_ENT.vl is "1", access CXT_L1_ENT.pv, CXT_L1_ENT.cxt_pasid, and
CXT_L1_ENT.cxt_ctl_ptr. Use these to access the valid bit for the Context Control
(CXT_CTL.vl). If CXT_CTL.vl is "0" then the check fails with Invalid:Cxt and these set of steps
are exited.

d. If CXT_CTL.vl is "1", verify access to these memory locations:
i. The starting memory address pointed to by CXT_CTL.ds_ring_ptr,
ii. The starting memory address pointed to by CXT_CTL.cxt_sts_ptr,
iii. The starting memory address pointed to by write_index_ptr.
iv. If CXT_CTL.vl is "1", read CXT_STS.state; if it is a reserved encoding then the check

fails with LogErr:Cxt and these set of steps are exited.
If the check fails, the function shall invalidate and exclude the caching of the context's Context Status
(CXT_STS) and take other operation-specific actions as required.

SNIA SDXI Specification Working Draft 67
 Version 1.0.3

 Doorbell Register and Context Signaling
As new descriptors are written to a descriptor ring, software updates the context's Write_Index location in
system memory as appropriate. Because the SDXI function operates asynchronously with respect to a
context and the Write_Index location is in system memory, software shall directly signal the function after
updating Write_Index and the descriptor ring to ensure new descriptors are evaluated. Software signals
the function by ensuring the update of the final Write_Index value, the doorbell_value, to a per-context,
MMIO-mapped, architectural Doorbell register when the context is in CXTV_RUN. (See "9.7, Doorbell
Sections and Registers".) The Doorbell register may be updated by software by the following mechanisms.

• Externally updated when the context is in CXTV_RUN and software writes a doorbell_value to the
context's Doorbell register.

• Internally updated when the context is transitioned to the CXTV_RUN state by software issuing for
the target context a DSC_CXT_START_[NM, RS] operation that specifies a doorbell_value.

The Doorbell register may also be internally updated by the function when the context is in CXTV_RUN
and an SDXI implementation optionally chooses to read Write_Index and Read_Index from memory.
Regardless of the SDXI implementation, software shall always issue Doorbell register writes when
updating Write_Index in order to ensure correct operation.
The SDXI function evaluates a doorbell_value by the following ordered steps.

1. If the context is not in CXTV_RUN state at the time the Doorbell register is implicitly or explicitly
written, the doorbell_value is ignored and the function logs no error and takes no action based on it;
no further steps are done. Otherwise, proceed to the next step.

2. If the doorbell_value is supplied by a DSC_CXT_START_[NM, RS] operation and the value is
0xFFFF_FFFF_FFFF_FFFF, then the function shall discard this value and fetch the doorbell_value
from the context's Write Index location.

3. If the doorbell_value is supplied by any other method, then it is implementation-dependent if the
function uses the supplied doorbell_value or discards it and fetches doorbell_value from the
context's Write Index location.

4. If the doorbell value is less than or equal to previous valid doorbell_value values received since the
context was started, the function ignores the doorbell_value and takes no action. (This determination
is reset every time the context is started.)

5. If the doorbell_value is less than or equal to the context's Read_Index value, it is implementation-
dependent whether the function accesses the context's descriptor ring.

6. If the doorbell_value is greater than the context's Read_Index value, the function will examine the
context's descriptor ring starting at Read_Index for descriptors to execute.

7. It is implementation-dependent whether the function uses cached values of context data structures
in determining the location of the Read_Index and Write_Index locations in memory.

8. It is implementation-dependent whether the function logs an error if any part of the context needed
to access the Read_Index and Write_Index locations is invalid or inaccessible.

There is no time requirement as to when the function acts on a supplied doorbell_value supplied by the
above methods.
Software shall make no assumptions as to the implementation of the Doorbell register.

68 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Starting A Context and Context Signaling
A context must be in the CXTV_RUN state for an SDXI function to evaluate it for new descriptors to
execute. Furthermore, because of the asynchronous nature of an SDXI function, the function must be
signaled when a CXTV_RUN context has new descriptors to execute. Each of these is an independent
mechanism.

• Starting a Context: this is the mechanism of transitioning a valid context's CXT_STS.state to
CXTV_RUN. Starting a context does not ensure that the function evaluates it for new descriptors to
execute.

• Context Signaling: this is the mechanism of signaling the function that a context should be evaluated
for new descriptors to execute using the specified doorbell_value. The signaling does not imply that
the context is valid or at CXTV_RUN; the SDXI function will determine this independently and take
appropriate action.

Building on the above concepts, there are several methods for software to start a target context within a
target function and ensure that new descriptors are evaluated thereafter in a timely manner. Each of these
may be combined with context signaling to ensure that new descriptors are evaluated by the function

1. Software issues a DSC_CXT_START_[NM, RS] operation from the function's administrative context
to start a context in the same function using an appropriate doorbell_value. (See "6.6.3, AdminGrp
DSC_CXT_START_[NM, RS] Operations") This is the preferred method for all contexts except
context 0, the administrative context.

2. From the PF, software issues a DSC_CXT_START_[NM, RS] operation targeting another function's
context with an appropriate doorbell_value. This method is intended primarily for hypervisor usage.

3. "Jump Start 1": set the target context's CXT_STS.state in memory to CXTV_RUN when in the
appropriate state (See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching") and
then write an appropriate doorbell_value to the context's Doorbell register. (See "4.3.3, Doorbell
Register and Context Signaling") This is the recommended way within a function to start context 0,
the administrative context.

Using the DSC_CXT_START_[NM, RS] operation ensures that the function is not using stale values of
key context structures. (See "6.6.3, AdminGrp DSC_CXT_START_[NM, RS] Operations")
Using a "Jump Start" method requires that software explicitly ensure there are no in-flight doorbell writes
before changing CXT_STS.state to CXTV_RUN, and that there is no stale context data before writing the
doorbell register. Stale context data for a valid context may be avoided by using DSC_UPD and
DSC_SYNC operations against the function or specific context (see "6.6.9, AdminGrp DSC_SYNC
Operation"). In the case of context 0, stopping the SDXI function ensures stale context and in-flight
doorbells are flushed (see "3.5, Administrative Context (Context 0)"). When a function transitions from
GSV_STOP to GSV_ACTIVE state, the function shall have no stale context data cached for that context.
Software shall ensure that the function's context 0, the administrative context, is started before operating
on other function contexts.

SNIA SDXI Specification Working Draft 69
 Version 1.0.3

 Function and Context Stop Actions
An SDXI function uses context stop actions to stop processing of new descriptors and to wait for
previously issued descriptors to complete for targeted contexts. A stop action shall complete in a timely
manner so that further administrative operations on the targeted contexts may be performed. The following
SDXI context-stop actions are defined below.

1. LOC.DSC_CXT_STOP.[SF, HD]: This is a software-initiated, local-function, administrative
DSC_CXT_STOP operation. The operation's Hard Stop (HS) bit indicates "SF" when HS = 0, and
"HD" when HS = 1. The function shall invalidate and exclude the caching of the Context Status
(LVL_CXT_STS). See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching".

2. P2V.DSC_CXT_STOP.[SF, HD]: This is a software-initiated, PF-to-VF-function, administrative
DSC_CXT_STOP operation. The operation's Hard Stop (HS) bit indicates "SF" when HS = 0, and
"HD" when HS = 1. The function shall invalidate and exclude the caching of the Context Status
(LVL_CXT_STS). See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching".

3. StopErr:Cxt: The function detects an error: in processing or executing a descriptor; or in context
operation. In this case the function shall initiate a background context stop action (StopErr:Cxt) and
log a descriptor error (LogErr:Cxt). If the error relates to a specific descriptor, the function shall
signal an error in the descriptor's completion status block (Signal_Err_Csb). The function shall
invalidate and exclude the caching of the Context Status (LVL_CXT_STS).

4. Stop[SF, HD]:Fn : The function performs a stop action in response to a software-initiated stop of
the function. (Software initiates stopping the function by writing GSRV_STOP_[SF, HD] to
MMIO_CTL0.fn_gsr.) The function shall invalidate all cached memory-based data (LVL_FN). The
function state will change based on this action; it is discussed in "4.1.1, G0: GSV_STOP State".

Note: HaltErr:Fn is a function-initiated halt and abort of all function activity in response to a function-
wide error; it is not a stop-action. See "4.1.6, G5: GSV_ERROR State" for more details.

Stop actions apply one of the below completion-wait policies to each target context.

• Soft-Stop (SF) Wait: The function shall wait until all outstanding descriptors complete naturally or
until an implementation-defined timeout period has expired at which point any remaining descriptors
are aborted. The DSC_CXT_STOP.SF, StopSF:Fn, and StopErr:Cxt actions apply this policy

• Hard-Stop (HD) Wait: The function waits less patiently for all outstanding descriptors to complete;
and may abort outstanding descriptors more aggressively to speed up the completion wait. Used as
a last resort to stop the context. The DSC_CXT_STOP.HD and StopHD:Fn actions apply this
policy.

When an outstanding descriptor is aborted because of a context stop action: its completion status
indicates an error; an error is logged; and CXT_STS.state shall be set to CXTV_ERR_FN.
Because of the asynchronous nature of the SDXI function, the function may be performing multiple
background stop actions concurrently against the same context or across different contexts. Some
examples follow.

• Software may initiate a subsequent stop operation with hard-stop completion if a previous stop
operation with soft-stop completion is not making acceptable forward progress.

• All of the following can be concurrent on the same context: a StopErr:Cxt initiated by the function; a
LOC.DSC_CXT_STOP operation submitted by software administering a VF; and a Stop:Fn action
requested by a hypervisor managing the function.

70 Working Draft SNIA SDXI Specification
 Version 1.0.3

Unless these actions are explicitly synchronized by software, the SDXI function enforces no ordering
among them. However, for a single context, the function ensures the following.

• If the context is already at CXTV_ERR_FN or CXTV_STOP_[SW, FN], subsequent stop actions are
ignored.

• If the context is already at CXTV_STOPG_[SW, FN], future stopping actions may only strengthen
the completion wait policy to hard-stop.

• Only one stop action can transition a context from CXTV_RUN to CXTV_STOPG_[SW, FN].

For each context targeted by a given stop-action operation, the function executes the following ordered set
of steps below; the steps are also shown in "Figure 4-3: Context Stop Action Flow".

K0. The function records the requested completion-wait policy (req_wait) specified by the stop action.
a. The function records req_wait as "SF", if the stop action is DSC_CXT_STOP.SF, StopSF:Fn,

or StopErr:Cxt.
b. The function records req_wait as "HD", if the stop action is DSC_CXT_STOP.HD or

StopHD:Fn.
K1. The function shall perform a Check Valid Context action (ChkValid:Cxt) described in "4.3.2, Check

Valid Context".
K2. If the check fails, the function shall end this stop action on the context and take further action

described below.
a. If the stop action is Stop[SF, HD]:Fn, take no further action.
b. If the stop action is a StopErr:Cxt, initiate a HaltErr:Fn -- because the function should not

initiate a StopErr:Cxt on a context that fails ChkValid:Cxt.
c. If the stop action is a DSC_CXT_STOP with a ChkValid:Cxt failure signature of LogErr:Cxt,

then log the appropriate error.
d. If the stop action is a DSC_CXT_STOP with a ChkValid:Cxt failure signature of Invalid:Cxt,

take no further action.
K3. If the context is already at CXTV_STOP_[SW, FN] or CXTV_ERR_FN, the function shall end this

stop action on the context.
K4. If the context is not yet at CXTV_STOPG_[SW, FN] (which means that another stop-action has not

yet reached this context), the function shall proceed to step K6. Otherwise, the function shall
continue to the following step.

K5. The function shall set the current completion-wait policy (curr_wait) to the requested completion-
wait policy (req_wait) as described below, and end this stop action on the context.
a. If req_wait is "HD" (hard completion wait), the function shall ensure that curr_wait is set to

"HD".
b. If req_wait is "SF" (soft completion wait), the function shall not change curr_wait. (Thus, once

a hard completion wait policy is applied, it cannot be overridden.)
K6. At this point, only one stop action shall be operating on the context. The function shall atomically

write a "stopping" value to CXT_STS.state as described below, and then continue to the following
step.
a. The function shall atomically write CXTV_STOPG_SW, if the stop action is a

LOC.DSC_CXT_STOP.[SF, HD].
b. The function shall atomically write CXTV_STOPG_FN, if the stop action is a

P2V.DSC_CXT_STOP.[SF, HD], Stop[SF, HD]:Fn, or StopErr:Cxt.
K7. The function shall terminate context execution at a descriptor boundary and initialize the context's

current completion-wait policy (curr_wait) to the requested completion-wait policy (req_wait).
K8. The function then performs the stopping of the context using the current completion-wait policy

(curr_wait). While the function is performing this step, any change of the context's curr_wait to

SNIA SDXI Specification Working Draft 71
 Version 1.0.3

"HD" by other stop actions on the same context shall take effect during this step at an
implementation-defined point.

K9. The function returns to step K8 until one of the following mutually exclusive conditions occur.
a. The context is stopped: the function goes to step K10.
b. The function detects an implementation failure in stopping the context: the function initiates a

HaltErr:Fn action and shall then complete this stop action on the context.
K10. The function shall invalidate and exclude all internal copies of the following data structures and

ensure that the function excludes re-acquiring a copy of these data structures until the context is
once again at CXTV_RUN. If successful, the function goes to step K11. If unable to invalidate and
exclude copies of the specified data structures due to an implementation error, the function initiates
a HaltErr:Fn action and shall then complete this stop action on the context.
a. The context's CXT_STS.
b. The associated LVL_L2 for context 0.

K11. If the stop action is StopErr:Cxt or a context error was detected during the stopping of the context,
the function goes to step K13.

K12. The function shall atomically write a "stopped" value to CXT_STS.state as described below, and
then complete this stop action on the context.
a. The function shall atomically write CXTV_STOP_SW, if the current CXT_STS.state is

CXTV_STOPG_SW.
b. The function shall atomically write CXTV_STOP_FN, if the current CXT_STS.state is

CXTV_STOPG_FN.
K13. The function shall log the appropriate error (LogErr:Cxt) and then atomically write

"CXTV_ERR_FN" to CXT_STS.state. The function shall then complete this stop action on the
context.

Although not shown in the above per-context stop steps, when the function performs a Stop[SF, HD]:Fn
action, it shall invalidate all privately-cached memory-based data (LVL_FN) when it completes the
operation.
There may be a long latency from when a context stop action is initiated by privileged software to when
the context is actually stopped by the function due to many descriptors that may still be in execution. If
privileged software knows in advance that it will later stop the context, it may hint to the function earlier
that it should start "draining" (stop executing new descriptors) the context by clearing the context's
CXT_L1_ENT.ka (Keep Active Hint) to "0". This may reduce the time that software must wait for stopping
the context later.

72 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 4-3: Context Stop Action Flow

sdxi-figures-F015

DONE

K3:
Cs = CXTV_STOP_[SW, FN] or

CXTV_ERR_FN?

K4:
 Cs = CXTV_STOPG_[SW, FN]?

FAIL

K8: CXT Stopping Using
curr_wait

YES

YES

FAIL

FAIL

Initiate
HaltErr:Fn

StopErr:Cxt Stop[SF, HD]:Fn

req_wait = SF req_wait = HD

K1:
ChkValid:Cxt

PASS

SW: DSC_STOP_CXT.HD
SW: StopHD:Fn

SW: DSC_STOP_CXT.SF
SW: StopSF:Fn

FN: StopErr:Cxt

K2:
 Stop Action?

Initiate HaltErr:Fn

DONE

NO

NO

SF

curr_wait HD

K5:
 req_wait?

HD

DONE

Multiple Stop Actions operating
on the same Context Possible

Only One Stop Action operating
on the Context Possible

K7:
Terminate CXT Execution,

 curr_wait req_wait

K6:
 Stopping Action?

Cs CXTV_STOPG_SW

LOC.DSC_STOP_CXT

Cs CXTV_STOPG_FN

P2V.DSC_STOP_CXT,
Stop[SF, HD]:Fn, or

StopErr:Cxt

YES

YES

K9:
 CXT Stopped?

K10:
 Invalidate & Exclude

CXT_STS, etc.

NO

DONE

YES

Cs CXTV_ERR_FN

K13: LogErr:Cxt

NO

DONE

_SW

Cs CXTV_STOP_FN Cs CXTV_STOP_SW

K12:
 Cs = CXTV_STOPG_??

_FN

K11:
 CXT Error Detected?

Fail Signature?
LogErr:Cxt Invalid:CXT

DSC_STOP_CXT

LogErr:Cxt

SNIA SDXI Specification Working Draft 73
 Version 1.0.3

 Context Ring Submission Hint
When privileged software is momentarily stopping a context to change privileged state, it may want to hint
to other software that new descriptors may still be submitted to a context during the interim. This hint may
minimize the impact to software using the context while the context is stopping or stopped. To ensure a
consistent software implementation, SDXI defines the ring submission hint (rsh) in the Context Status
(CXT_STS.rsh). This bit is solely used by software and has no impact on the SDXI function, which never
uses nor writes it.
The ring submission hint is intended to only be valid to software when the CXT_STS.state has a value of
CXTV_STOPG_SW or CXTV_STOP_SW; it should be ignored otherwise by software. Software shall write
CXT_STS.rsh with a byte-sized access only; this avoids conflicting writes by the function to
CXT_STS.state, which is in a different byte.

• When CXT_STS.rsh = 1, software may continue to submit new descriptors to the context.
• When CXT_STS.rsh = 0, software is encouraged to not submit new descriptors. See the below table

for intended operation.
Table 4–1: CXT_STS.rsh Mappings

CXT_STS.rsh
(bit 8)

CXT_STS.state
(bits 3:0)

Definition

0 0b0000 Context is in CXTV_STOP_SW more permanently. Software is
encouraged to not submit new descriptors.

0 0b0010 Context is in CXTV_STOPG_SW more permanently. Software is
encouraged to not submit new descriptors.

1 0b0000 Context is in CXTV_STOP_SW temporarily. Software may submit new
descriptors during the interim.

1 0b0010 Context is in CXTV_STOPG_SW temporarily. Software may submit new
descriptors during the interim.

X 0b0001 Context is in CXTV_RUN. Software may submit new descriptors.
X Any Other Value Software may not submit descriptors.

Software may use this procedure to determine if it should submit new descriptors for a context:

 // Let csx = CXT_STS[8:0]
 // Let rsh = csx & 0b100000000
 // Let cse = csx & 0b1111

 check0 = (cse == CXTV_STOP_SW || cse == CXTV_STOPG_SW);

 if (rsh && check0 || cse == CXTV_RUN){
 submit_work();
 }

Privileged software may use many approaches to configuring CXT_STS.rsh. A simple approach is for
privileged software to set CXT_STS.rsh to "1" before starting the context for normal usage and to leave it
unchanged afterwards until the context is no longer available for normal usage. Thus, CXT_STS.rsh never
needs to be changed during the small interims when privileged software is modifying privileged context
state.

4.4 Atomic Operation Support

74 Working Draft SNIA SDXI Specification
 Version 1.0.3

The usage of atomic operations by the SDXI function depends on both the SDXI function supporting those
operations ("function-supported atomic operations") and the capability and configuration of the processor
and platform interface connections to the SDXI function to support those operations ("interface-supported
atomic operations"). Privileged software shall verify both before exposing an atomic operation to an SDXI
context. The following section gives more detail.
An SDXI implementation may support none, some, or all of the following function-supported atomic
operations; each set of operations has an enumeration bit in the SDXI MMIO register space.

1. Atomic accesses to the completion status block (CST_BLK) associated with an SDXI descriptor
operation; enumerated by MMIO_CAP0.cs_cap. See "4.4.1, Completion-Status Capabilities".

2. The full set of descriptors in the atomic operations group; enumerated by
MMIO_CAP1.opb_000_cap[3].

3. The minimal set of descriptors in the atomic operations group; enumerated by
MMIO_CAP1.opb_000_cap[5].

An SDXI implementation may connect to its hosting hardware platform and other SDXI functions through
one or more connection interfaces; examples include but are not limited to PCIe, CXL, and proprietary
interfaces. Interface-supported atomic operations to and from the SDXI function may not exist or may not
be configured. Platform and interface-specific mechanisms are required to determine if the capability is
available and enabled. For example, see "8.4, PCIe Atomic Capabilities Discovery and Enablement" for
details of how privileged software can determine this for an SDXI function using a PCIe interface.
Privileged software shall verify both of the following before exposing an atomic operation to an SDXI
context: interface-supported atomic operations are supported and enabled between the SDXI function and
any relevant target; both the SDXI function and any relevant target have the relevant function-supported
atomic operations.

 Completion-Status Capabilities
Each SDXI descriptor operation may specify a completion status block ("CST_BLK") whose fields are used
by the SDXI function to update (modify) the descriptor operation's completion status and report relevant
errors. The producer of the descriptor initializes the CST_BLK before submitting the descriptor. (See
"6.1.2, Completion Status Block".)
The SDXI function shall support modifying the CST_BLK with respect to other accesses either atomically
or non-atomically; it may also support both capabilities and allow the producer to choose between the two
using a descriptor control flag described in "4.4.2, Completion-Status Modes". The SDXI function reports
these capabilities in the MMIO_CAP0.cs_cap field as shown in the below table The details of the
capabilities follow in the list below.

Table 4–2 Completion-Status Capabilities
MMIO_CAP0.cs_cap Completion Status Capability

00b Atomic completion-status capability supported.

01b Reserved

10b Both atomic and non-atomic completion-status capabilities are supported.

11b Non-atomic Completion-Status capability supported.

1. Function: Atomic-Completion-Status Capability: the SDXI function supports atomic modification of

the CST_BLK. when MMIO_CAP0.cs_cap is "00b" or "10b".

SNIA SDXI Specification Working Draft 75
 Version 1.0.3

a. The function shall perform modification of the CST_BLK and decrementing of the
CST_BLK.signal field atomically with respect to other accesses of the same. The capability
depends on interface-supported atomic operations.

b. An atomic decrement of 0 in CST_BLK.signal results in 0xFFFF_FFFF_FFFF_FFFF.
c. If the function only supports the atomic completion-status capability but does not have access

to interface-supported atomics, then privileged software must not enable context execution for
the SDXI function.

2. Function: Non-Atomic Completion-Status Capability: the SDXI function supports modification of the
CST_BLK without using atomic operations when MMIO_CAP0.cs_cap is "10b" or "11b".

a. The function shall perform the following without using atomic operations: modification of the
CST_BLK; and transitioning the CST_BLK.signal to a terminal value of "0". The function shall
not depend on interface-supported atomic operations to implement the capability. The function
may not choose to evaluate the initial value of CST_BLK.signal.

b. If the producer does not ensure that the initial value of CST_BLK.signal is "1", the function
may return any terminal result in CST_BLK.signal; however, it will not generate an error.

 Completion-Status Modes
Based on the completion-status capabilities described in section "4.4.1,Completion-Status Capabilities",
privileged software determines the related, but not identical, completion-status mode availability for each
context. It exposes the availability of these modes through CXT_CTL.csa ("completion-status mode
availability"); note, however, that this field is informational only and not enforced by the SDXI function.
Privileged software shall also communicate and negotiate the available modes to the producer for a given
context. This communication is outside the scope of the SDXI specification, but a suggested mechanism is
shown in "8.4, PCIe Atomic Capabilities Discovery and Enablement". The following discussion describes
the availability modes and how they are used.

Table 4–3 Completion-Status Mode Availability
CXT_CTL.csa Definition

0b Both atomic completion-status mode and simple completion-status
mode are available to the context.

1b The context shall only use simple completion-status mode.

Table 4–4 Completion-Status Mode Requirement
Descriptor "csr" field Definition

0b The descriptor requires atomic completion-status mode.

1b The descriptor requires only simple completion-status mode.

3.

76 Working Draft SNIA SDXI Specification
 Version 1.0.3

1. Atomic Completion-Status Mode: the producer configures and requires descriptor completion using
the atomic completion-status capability.

a. Privileged software indicates the availability of this mode to a context by setting CXT_CTL.csa
to "0"; but shall only do so when the function has both atomic completion-status capability
(MMIO_CAP0.cs_cap is "00b" or "10b") and access to interface-supported atomic operations.
If the mode is not available, but the context requires the mode, privileged software cannot
enable execution of the context.

b. When the mode is exposed to a context, the producer shall set a descriptor's "csr"
("completion status requirement") field to "0" if the atomic completion-status capability is
required for the CST_BLK.

c. There is no function-enforced terminal value for CST_BLK.signal in this mode; however, it is
recommended that the producer use "0" as the terminal value.

d. When using this mode for a descriptor, the producer may update the CST_BLK atomically
even after the associated descriptor has been issued.

e. If an SDXI function does not support the atomic completion-status capability, the function shall
abort and log an error for a descriptor with the "csr" field set to "0".

f. When atomic CST_BLK access is not required, this mode is not recommended; use the simple
completion-status mode instead for greater compatibility across all SDXI implementations.

2. Simple Completion-Status Mode: the producer configures and requires descriptor completion in a

manner that complies with the non-atomic completion-status capability, but which may be satisfied
by either completion capability.

a. This mode is always available for a context and is supported by both completion capabilities.
Privileged software may recommend that the context use only this mode by setting
CXT_CTL.csa to "1". Privileged software must expose this mode when only non-atomic
completion-status capability is supported by the SDXI function.

b. The producer uses this mode by setting a descriptor's "csr" ("completion status requirement")
field to "1" to indicate that atomic completion-status of the CST_BLK is not required.
Furthermore, the producer shall set the initial value of CST_BLK.signal to "1" before
submitting the descriptor. Lastly, the producer detects completion when CST_BLK.signal has
the terminal value of "0".

c. The producer shall not rely upon atomic access of the CST_BLK nor the manner in which the
SDXI function modifies it.

d. The SDXI function shall use the non-atomic completion-status capability for this mode when
available; otherwise, it shall use the atomic completion-status capability. This mode is the
most compatible mode across all SDXI implementations.

e. This mode is preferred when both modes are available to the context (CXT_CTL.csa is "0")
and a descriptor does not require atomic CST_BLK access.

SNIA SDXI Specification Working Draft 77
 Version 1.0.3

5 SDXI Descriptor Ring Operation

Figure 5-1: An SDXI Function Context

sdxi-figures-F010

An SDXI function provides programmed-data acceleration by reading and executing a series of memory-
based, naturally-aligned, 64-byte "descriptors". Each descriptor's "opcode" field encodes a requested
operation and the remainder of the descriptor specifies additional parameters. (Descriptor operations are
further discussed in "5.1, Descriptor Operations"). Descriptors are placed in a circular ring buffer that starts
at a specified address (CXT_CTL.ds_ring_ptr). The ring is contiguous at the translation level configured
for the SDXI function. The ring is configured to contain a given number of descriptor entries
(CXT_CTL.ds_ring_sz). The number of bytes allocated in memory for the ring is: (CXT_CTL.ds_ring_sz *
64).
The ring and all its related system memory data structures comprise a "context". SDXI uses a 2-level
hierarchy of context tables (Context Table Level 2, Context Table Level 1) to enumerate the components
of the context. The concatenation of the offsets used to enumerate a context in both Context tables yields
the 16-bit "context_number" that is associated with the context. Note that the Context Tables point to a
context but are not themselves part of the context. An SDXI function can support multiple concurrent
contexts. Contexts are classified into two types: an "unprivileged" type used directly by user applications
for data movement; and "administrative" contexts that can be used by privileged software to control all
contexts supported by a SDXI function.
An SDXI function may optionally generate DMA requests with PASID when accessing non-context data
structures, as well as Context Control Entries and AKey Table Entries. This is controlled through the
MMIO_CTL0.fn_pasid_vl and MMIO_CTL0.fn_pasid fields.
A SDXI function may optionally generate DMA requests with PASID when accessing a context's descriptor
ring, Write_Index, CXT_STS, and Completion Status Block structures. This is controlled through the
CXT_L1_ENT.pv and CXT_L1_ENT.ctx_pasid fields.

A Single SDXI Context

Index = 0, N, 2*N, ...

Descriptor Entry

: + (1) * 64

Descriptor Entry

Descriptor Entry
Index = 1, N+1, 2*N+1, ...

Index = N-1, 2*N-1, 3*N-1, ...

Entry Address
Wrap-around

state
Read_Index

Write_Index

CXT_STS
Descriptor Ring

CXT_L1 Table

N = CXT_CTL.ds_ring_sz
(Each entry 64-bytes)

AKEY_ENT
. . .
. . .

AkeyTable

CXT_L2 Table

MMIO_CXT_L2

Descriptor_Entry_Address = CXT_CTL.ds_ring_ptr + ((Index % CXT_CTL.ds_ring_sz) << 6)
• Write_Index – Read_Index <= CXT_CTL.ds_ring_sz
• ContextNumber[15:0] = (lvl_2_offset << 4) + (lvl_1_offset >> 5)

ds_ring_ptr
ds_ring_sz
cxt_sts_ptr

write_index_ptr

CXT_CTL

lvl_2_ptr

+ lvl_2_offset

lvl_1_ptr
(each entry 8-bytes)

. . .

+ lvl_1_offset

(each entry 32-bytes)
cxt_ctl_ptr
akey_ptr
cxt_pasid

max_buffer
ds_grp0_cap

cxt_doorbell
Doorbell MMIO

. . .

: + (N-1) * 64

: CXT_CTL.ds_ring_ptr

78 Working Draft SNIA SDXI Specification
 Version 1.0.3

A SDXI function may optionally generate DMA requests with PASID when accessing data buffers. This is
controlled through the associated AKEY_ENT.pv and AKEY_ENT.pasid fields.
A circular ring requires "start" and "end" indicators. Rather than using memory pointers to track these, a
SDXI descriptor ring uses 64-bit *unsigned* logical indices to indicate the start (Read_Index) and end
(Write_Index) of the descriptor ring. This simplifies various calculations for SW and HW alike. The logical
indices need only be mapped onto descriptor ring addresses when writing or reading a ring entry at a
given Index.

• An SDXI descriptor ring shall be contiguous within the address space used to access it. This is
determined by the function's PCI requester ID and optional PASID.

CXT_CTL.ds_ring_ptr indicates the start address of the ring within this address space.
The logical Read_Index and Write_Index indices map to ring addresses when writing or reading a ring
entry at a given Index. An index N, maps to an address in the ring by:

• ring_entry_address = CXT_CTL.ds_ring_ptr + ((N % CXT_CTL.ds_ring_sz) << 6)
The indices are not expected to reach or exceed (2**64)-1 in practice
After software increments Write_Index and adds entries to the ring, it shall write the context's Doorbell
register with the Write_Index value; there is no architectural guarantee that new entries on the ring are
processed without this important write.
If software wants to add N entries to the descriptor ring, it must ensure that:

• Write_Index + N - Read_Index <= CXT_CTL.ds_ring_sz
For an enabled context, Read_Index is constantly being updated by the SDXI function as new descriptors
are processed. Any value read by software of the Read_Index could be stale, but this is not a problem.
Since Read_Index always increases and never wraps in the normal case, a calculation using a stale value
of Read_Index will only cause a more conservative understanding of the number of available
indices/entries by software. It will never allow enqueing more entries than the ring can hold.
If Write_Index == Read_Index, then the SDXI function does not process more entries of that context until
Write_Index and the context's doorbell value are updated beyond Read_Index. The SDXI function will
stop processing entries when Read_Index == Write_Index or Read_Index points to an invalid entry. The
SDXI function shall never process the entry pointed to by Write_Index or any entry that is logically past
Write_Index, regardless of the value of the descriptor's Valid field.
For a valid context, software shall only modify valid descriptors located between the context's Read_Index
and Write_Index when the associated CXT_STS.state is CXTV_STOP_[SW, FN] or CXTV_ERR_FN.

SNIA SDXI Specification Working Draft 79
 Version 1.0.3

5.1 Descriptor Operations
Each descriptor operation has an "opcode" field encoding and a specific format for the bytes that comprise
it. The "opcode" field is subdivided into smaller subfields including "type" and "subtype". For the purposes
of enumeration and access control, SDXI arranges sets of related operations into an operation group;
each operation within a group has a shared "type" encoding combined with a unique "subtype" encoding.
For example, all the operations of the DmaBaseGroup (DSC_DMAB) have a "type" encoding of "0x001".
The DMA Base Group (DmaBaseGrp) is available to all contexts, except the administrative context, and is
always mapped to Opcode type 1 (see 6.2).
The Administrative Group (AdminGrp) is available only on the administrative context (context 0), and it is
always mapped to Opcode type 2 (see 6.6).
SDXI functions declaring conformity to SDXI 1.1 or later, as indicated by the MMIO_VERSION register
(see 9.1), support the Administrative Discovery feature (see 6.6.11). The Administrative Discovery feature
allows software to discover the remaining operations and their opcode type encodings.
For SDXI 1.0 compatibility, SDXI functions must adhere to the following rules:

• An implementation may choose to implement the full atomics group, the minimal atomics group, or
neither.

• The full and minimal atomics group must map to opcode type 3. No other opcode group may use
opcode type 3.

• The GUIDs for the full/minimal atomic opcode group will only be advertised at index 3 of the
Administrative Discovery feature.

• Implementations that support the full atomics group must report MMIO_CAP1_opb_000_cap[3] as
a 1, otherwise it shall be zero. Implementations that support the minimal atomics group must report
MMIO_CAP1_opb_000_cap[5] as a 1, otherwise it shall be zero.

• Implementations that support full atomics must verify the legacy function level control
MMIO_CTL2.opb_000_avl[3] and the context level control CXT_L1.oob_000_enb[3] are both equal
to 1 before executing opcode type 3 descriptors.

• Implementations that support minimal atomics must verify the legacy function level control
MMIO_CTL2.opb_000_avl[5] and the context level control CXT_L1.oob_000_enb[5] are both equal
to 1 before executing opcode type 3 descriptors. Note that opcode type 5 is reserved.

The interrupt operation group can be discovered via the Administrative Discovery feature. For SDXI 1.0
compatibility, if supported, it always maps to opcode type 4, and the MMIO_CAP1_opb_000_cap[4] will be
set to indicate support. Furthermore MMIO_CTL2.opb_000_avl[4], if zero, forces the function to act as if
CXT_L1.oob_000_enb[4] is zero on all contexts thereby inhibiting processing of opcode type 4 descriptors
across the function.

Opcode type values 0 and 5 are reserved. Opcode type values 1,2,3,4 shall only to be used for the
purposes specified above. Opcode type values 6-2047 are available for SDXI functions to assign to
operation groups.

Privileged software can control access to SDXI operation groups on a context-by-context basis via the
CXT_L1_ENT.opb_000_enb field for opcode types 0-31, and the extended enables array pointed to by
CXT_L1_ENT.ext_enb_ptr for opcode types 32-2047. Opcode type 1 (DmaBaseGrp) is enabled for all
contexts, other than the administrative context, regardless of the value of CXT_L1_ENT.opb_000_enb bit
1. Furthermore, the only opcode supported by the administrative context is opcode type 2 (AdminGrp),
regardless of the value of the enable bits.

Privileged Software shall not set an opcode type value bit in CXT_L1.opb_000_enb or in the extended
enables array if the corresponding index in the Administrative Discovery data for the opcode value has a
GUID of 00000000-0000-0000-0000-000000000000. The SDXI function may ignore such bits and
software shall not rely upon their behavior.

80 Working Draft SNIA SDXI Specification
 Version 1.0.3

The definition of descriptor opcodes, their formats, and their function operation-group fields are given in
"Chapter 6, SDXI Descriptor and Operation Specification".

SNIA SDXI Specification Working Draft 81
 Version 1.0.3

5.2 Enqueuing one or more Descriptors
The following procedure may be used to enqueue one or more descriptors into a descriptor ring:

1. Check for sufficient space in the descriptor ring by reading the Read_Index, Write_Index and ring
size.

2. Reserve space in the descriptor ring by adding a value to the Write Index in memory corresponding
to the number of descriptors to be enqueued. In a multi-producer scenario, Write_Index can only be
safely updated using an atomic compare-and-swap operation. This operation also provides the
required single-threaded guarantees with respect to the update of Write_Index.

3. Let "PWI" refer to the pre-incremented Write_Index. Then Descriptors may be written into memory
starting at:
 CXT_CTL.ds_ring_ptr + (PWI % CXT_CTL.ds_ring_sz)*64.

Software shall ensure that the Valid field in a descriptor header is set to 0 (Invalid) until the whole
descriptor is written. The function may start processing the whole descriptor immediately once the
valid field is set to 1. The function may read the descriptor one or more times prior to the doorbell
being written.

4. Once all descriptors are written to memory, write the updated Write_Index value to the context's
Doorbell register.

82 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 5-2: Example x86-64 SDXI Enqueue Code
/* Example code for enqueueing descriptors on an SDXI ring using gcc 9.3 (and later).

The code should be correct for multiple CPU architectures as it relies solely on: the cpu-independent gcc single-
threaded guarantees for instruction re-ordering; gcc atomic built-ins which control compiler instruction-reordering
and proper emitting of CPU memory barriers and instructions; and the behavior of the volatile type keyword to
ensure that gcc does not optimize away or cache critical SDXI index locations. (Note: the code has been compiled
at -O3 and the assembly examined on both x86-64 and ARM64 for correctness wrt these issues.)
Using a fence (__atomic_thread_fence(__ATOMIC_ACQ_REL)) at key points in the code ensures for any given
thread that: the compiler doesn"t re-order instructions due to optimizations; and the compiler emits the minimum
but necessary CPU memory barriers to ensure the required read and write ordering within the thread.
For example, on x86-64 with optimizations enabled, the fence compiles to nothing due to the TSO memory model;
however, on ARM64 this compiles to "dmb ish". Using __ATOMIC_SEQ_CST instead for the fence penalizes the
emitted code in some cases -- e.g. mfence on x86-64 which is too strong.
In a multi-producer scenario, Write_Index can only be safely updated using __atomic_compare_exchange_n().
This operation also provides the required single-threaded guarantees wrt the update of Write_Index. Using
_ATOMIC_SEQ_CST here seems like the right generic choice which gcc compiles to the correct CPU instructions
such as "lock cmpxchg" on x86_64 and "ldaxr, cmp, bne, stlxr" on ARM64.

*/
#define SDXI_DESCR_SIZE 64
#define SDXI_DS_NUM_QW (SDXI_DESCR_SIZE / sizeof(uint64_t))
#define _ALIGN64 __attribute__ ((aligned (64)))
#define SDXI_MULTI_PRODUCER 1 // Define to 0 if single-producer.
/* Shows a method for writing an array of descriptors to the SDXI ring given a ring index.

Method: Skip writing the first QW of the first new entry to be added to the ring, but write all the other entry data as
normal. This ensures that we don"t trigger the SDXI function into reading incomplete entries as we are writing
them. Finally, write the first QW of the first new entry to the ring so the SDXI function can start processing the new
entries.
This is safe provided that the zeroth bit of the LSB (VALID bit) of the first new ring entry is "0" *before*
Write_Index is advanced past it (since an SDXI function will not read past an invalid ring entry). This requirement
is ensured by SW and the SDXI function in the following way: SW shall always initialize at least every 64th byte of
the ring to zero before first use of the ring; and subsequently, the SDXI function shall always clear the zeroth bit of
the LSB of every ring entry the function processes.

*/
int update_ring(
 uint64_t * const enq_entries, // Ptr to entries to enqueue
 uint64_t enq_num, // Number of entries to enqueue
 uint64_t * ring_base, // Ptr to ring location
 uint64_t ring_size, // (Ring Size in bytes)/64
 uint64_t index) // Starting ring index to update
{
 for (uint64_t i = 0; i < enq_num; i++){
 uint64_t * ringp = ring_base + ((index + i) % ring_size) * SDXI_DS_NUM_QW;
 uint64_t * entryp = enq_entries + (i * SDXI_DS_NUM_QW);
 for (uint64_t j = 1; j < SDXI_DS_NUM_QW; j++){
 *(ringp + j) = *(entryp + j);
 }
 }
 // Now write the first QW of the new entries to the ring.
 __atomic_thread_fence(__ATOMIC_ACQ_REL);

 for (uint64_t i = 0; i < enq_num; i++){
 uint64_t * ringp = ring_base + ((index + i) % ring_size) * SDXI_DS_NUM_QW;
 uint64_t * entryp = enq_entries + (i * SDXI_DS_NUM_QW);
 *ringp = *entryp;
 }

 return 0;
}

SNIA SDXI Specification Working Draft 83
 Version 1.0.3

Figure 5-3: Example x86-64 SDXI Enqueue Code (cont)
/* Enqueues entries onto an SDXI Ring.

We assume that the OS and/or the application have already setup the SDXI function's context and can pass the
locations and sizes of the ring, Write_index, Read_Index, and Door_Bell to this routine. Once Write_Index can be
safely advanced for the desired number of ring entries, this method does so and *then* afterwards populates the
new ring entries.

*/
int sdxi_enqueue(
 uint64_t * const enq_entries, // Ptr to entries to enqueue
 uint64_t enq_num, // Number of entries to enqueue
 uint64_t * ring_base, // Ptr to ring location
 uint64_t ring_size, // (Ring Size in bytes)/64
 uint64_t const volatile * const Read_Index, // Ptr to Read_Index location
 uint64_t volatile * const Write_Index, // Ptr to Write_Index location
 uint64_t volatile * const Door_Bell) // Ptr to Ring Doorbell location
{
 uint64_t read_idx, old_write_idx, new_idx;
 // SW should do intelligent retry & back-off; while loop shown for simplicity
 while (true){
 // Get Read_Index before Write_Index to always get consistent values
 read_idx = *Read_Index;
 __atomic_thread_fence(__ATOMIC_ACQ_REL);
 old_write_idx = *Write_Index;
 if (read_idx > old_write_idx){
 // Only happens if Write_Index wraps or ring has bad setup
 return 1;
 }
 new_idx = old_write_idx + enq_num;
 if (new_idx - read_idx > ring_size) {
 continue; // Not enough free entries, try again
 }
 if (SDXI_MULTI_PRODUCER){
 // Try to atomically update Write_Index before other threads with
 // compare_exchange operation. This built-in also ensures the required
 // single-threaded guarantees wrt the update of Write_Index.
 bool success =
 __atomic_compare_exchange_n(Write_Index, &old_write_idx, new_idx,
 false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);
 if (success) break; // Updated Write_Index, no need to try again.
 }
 else {
 // Single-Producer case
 *Write_Index = new_idx;
 __atomic_thread_fence(__ATOMIC_ACQ_REL);
 break; // Always successful for single-producer
 }
 // Couldn"t update Write_Index, try again.
 }
 // Write_Index is now advanced. Let's write out entries to the ring.
 update_ring(enq_entries, enq_num, ring_base, ring_size, old_write_idx);

 // Door_Bell write required; only needs ordering wrt update of Write_Index.
 *Door_Bell = new_idx;
 return 0;
}

84 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Multi-Producer Enqueue
Multiple producer entities may use the enqueue procedure described in the prior section in parallel without
the use of locks or other higher-level serialization methods applied to the descriptor ring. While a context's
Write_Index value in memory must be monotonically increasing, the SDXI function may see doorbell
writes to a context whose values are not monotonically increasing. The function shall discard such
doorbell writes.

5.3 Descriptor Processing
This section describes the specific behavior required of an SDXI function as it processes a descriptor
through the phases of parsing, execution, and completion. With respect to each other, descriptors within
the same context are parsed in order, but may execute and complete out-of-order or in parallel.
Descriptor Parsing Main Loop:

1. The function derives values for the context's memory-resident CXT_STS.state, Read_Index,
Write_Index, and the descriptor at Read_Index.

a. For each reference to a memory-resident value in this parsing loop, the function may source
the value from either an internal function cache or the architected locations in memory as
appropriate unless explicitly stated to the contrary.

b. If during this parsing loop, errors occur when the function reads or writes these values to
memory, the function shall log an appropriate error and end this parsing loop by proceeding to
step 11.

c. When the function serializes a value to memory, it shall ensure that any internal source of the
value matches its memory-resident value; if not, the function shall update the value in
memory.

2. The function shall examine the context's CXT_STS.state and then perform the following actions:
a. If the context is not at CXTV_RUN, the function shall end this parsing loop by proceeding to

step 11.
b. If the context is at CXTV_RUN, the function may serialize the Read_Index value in memory as

appropriate so software can make good forward progress.
3. If the function receives a doorbell_value for the context or fencing was required on the current

descriptor and has completed; the function's context parsing shall go to step 4.
a. The parsing may also go to step 4 for implementation-specific reasons.
b. Otherwise, the function's descriptor parsing for the context goes back to step 1.

4. The function shall perform checks on the context's Read_Index and Write_Index values as follows.
a. If Write_Index is less than Read_Index, the function shall log an error and end this parsing

loop by proceeding to step 11.
b. If Write_Index minus Read_Index is greater than the context's descriptor ring size

(ds_ring_sz), the function shall log an error and end this parsing loop by proceeding to step
11.

c. If Read_Index is less than Write_Index, the function's descriptor parsing may proceed to step
5.

d. Otherwise, the parsing shall go back to step 1.
5. The function shall poll the valid bit of the descriptor at Read_Index until it is valid or until an

implementation-specific timeout period has been reached. If timeout happens, the function shall go
to step 11 and log a timeout error (Step 07h, cv=1, div=1, bf=0, sub_step=3, re=1,
err_class=0x2500).

6. The function shall check the validity of the descriptor's type, subtype, chain, fence, and sequential
consistency fields for the current context. If any are invalid, the function shall log an appropriate error
and end this parsing loop by proceeding to step 11. The type and subtype fields specify the
descriptor operation that the function shall check for validity by the following steps.

SNIA SDXI Specification Working Draft 85
 Version 1.0.3

a. If the function does not support the operation (it is not an AdminGrp operation and is not listed
in the function’s DSC_DISC data), then the operation is invalid.

b. If the operation is a supported, AdminGrp descriptor operation, and the current context
number is "0" (Admin Context), then the operation is valid. If the current context number is “0”
and the operation is not an AdminGrp operation, then the operation is invalid.

c. If the operation is opcode type 3, and full atomics are supported, then
MMIO_CTL2.opb_000_avl[3] and CXT_L1.opb_000_enb[3] must be set, otherwise the
operation is invalid. If the operation is opcode type 3, and minimal atomics are supported, then
MMIO_CTL2.opb_000_avl[5] and CXT_L1.opb_000_enb[5] must be set, otherwise the
operation is invalid.

d. If the operation is opcode type 4, and the corresponding bit in MMIO_CTL2.opb_000_avl isn’t
set, then the operation is invalid.

e. If the operation opcode type is 1 (DmaBaseGroup), then the operation is valid
f. If the operation opcode is in the range 3-31, and the corresponding bit in the context’s

CXT_L1.opb_000_enb field is set, the operation is valid
g. If the opcode type is in the range 32-2047, and the corresponding bit in the context’s CXT_L1

extended enables array is set, then the operation is valid.
h. Otherwise, the operation is invalid.

7. The function shall check the fence bit in the descriptor header. If it is set, the function shall poll for
previously executing descriptors of the context to complete until an implementation-specific timeout
period has been reached.

a. If timeout happens, the function shall go back to step 1. If the previously executing descriptors
complete with error, the function shall end this parsing loop by proceeding to step 11.

b. If these descriptors complete successfully and CXT_STS.state is CXTV_RUN , the parsing
continues to the next step; otherwise parsing retruns to step 1.

8. The function shall ensure that the descriptor's valid field in memory is set to invalid. If the write
succeeds, the function goes to step 9.

9. The function shall perform the following in any order or in parallel.
a. The function shall initiate the background execution of the current descriptor using the

execution flow later in this section. The execution may be asynchronous to this parsing loop,
thus the function does not need to wait for the execution to complete before parsing new
descriptors.

b. The function shall increment the derived value of Read_Index. Note, Read_Index is not
required to be serialized to memory at this time. However, it is recommended that an SDXI
function implementation serialize Read_Index frequently enough to allow software to perform
simple load balancing between contexts.)

10. The function shall continue descriptor parsing for the context at step 1.

Descriptor Parsing End:

11. If no error has occurred in parsing the descriptor, then descriptor parsing ceases and the function
proceeds to the "Execution & Completion Phase".

12. If an error has occurred in parsing the descriptor, the function shall initiate a LogErr:Cxt and
StopErr:Cxt action on the context in any order or in parallel. Descriptor parsing ceases and no
execution occurs. Note, both the descriptor's valid field and the descriptor's completion status block
are not modified in this case.

86 Working Draft SNIA SDXI Specification
 Version 1.0.3

Execution & Completion Phase:
1. The function shall execute the current descriptor operation including accessing any referenced

AKeys, RKeys, and data buffers. DSH may be applied to data buffer accesses; see "3.6, Data
Steering Hints (DSH)" for more details. The execution is constrained by the following.

a. If the Sequential Consistency (S) flag is set in the descriptor, all writes from prior descriptor
operations in the same context shall be made globally visible prior to making writes from the
current descriptor operation globally visible, regardless of address.

b. If the Read Barrier (RB) flag is set on the current descriptor, writes performed by earlier
descriptors in the same context shall be visible to reads performed by the current descriptor
when the reads and writes target the same address in the same address space. The address
space is the same if both the read and write were in the CXT_L1_ENT derived address space,
or if the read and write used the same AKey. Completion Status Block updates are considered
a special case, and updates are not guaranteed to be visible when RB is used.

2. The function shall consider the execution of the current descriptor finished when all background
actions belonging to the descriptor are no longer executing. For each action belonging to the current
descriptor, one of the following shall be true.

a. The action has been fully performed.
b. The action has encountered an error and was stopped before proceeding further.
c. The action was stopped or not even begun because of an error in another action belonging to

the same descriptor or the entire descriptor was aborted due to the context stopping.
3. When the execution of the current descriptor is finished, the function proceeds to step 4.
4. If no descriptor execution errors occurred, and the descriptor's "np" field is "1", then the descriptor

has completed.
5. If no descriptor execution errors occurred, and the descriptor's "np" field is "0", the function shall

update the CST_BLK.signal field. If no error occurs in updating the field, then the descriptor has
completed. If an error occurs in updating the field, the function starts the SignalErr:Cxt action, which
shall set CST_BLK.er and start the StopErr:Cxt and LogErr:Cxt actions in any order or in parallel.
The descriptor is considered complete when the StopErr:Cxt action completes. (See "3.4, Error Log"
for details.)

6. If a descriptor execution error occurred and the descriptor's "np" field is "1", then the function shall
start the StopErr:Cxt action and LogErr:Cxt action in any order or in parallel. The descriptor is
considered complete when the StopErr:Cxt action completes. (See "3.4, Error Log" for details.)

7. If a descriptor execution error occurred and the descriptor's "np" field is "0", then the function shall
start the StopErr:Cxt action, LogErr:Cxt action, and DescrErr:Cxt action (which shall set CST_BLK.er
and update the CST_BLK,signal fields) in any order or in parallel. The descriptor is considered
complete when the StopErr:Cxt action completes. (See "3.4, Error Log" for details.)

5.4 Descriptor Ordering and Parallel Execution
An SDXI function may prefetch any number of descriptors from a descriptor ring up to the location prior to
that indicated by the Write_Index value in memory. Dynamic modification of valid descriptors located
between Read_Index and Write_Index-1 is not supported.
The Fence (F) flag may be used to constrain parallel execution. When the Fence flag is set, the function
shall wait for all prior descriptor operations to complete before executing the fenced descriptor operation.
When the Fence flag is clear, the descriptor operation may be executed while prior descriptor operations
are outstanding.
The Sequential Consistency (S) and Read Barrier (RB) flags may also affect parallel execution. See
section "5.6, Memory Consistency Model" for more details.
There are no ordering or consistency requirements for descriptors belonging to different contexts.

SNIA SDXI Specification Working Draft 87
 Version 1.0.3

5.5 Descriptor Completion
When each descriptor operation has completed, the function will appropriately update the referenced
CST_BLK completion signal in memory. Descriptors may complete out of order. It is up to software to
assign completion signal locations and initial values as appropriate. Some applications may require
precise tracking of descriptors while others may track groups of descriptors.
When a descriptor encounters an error during processing and causes its context to stop, there may be
multiple prior and/or subsequent descriptors from the same context being processed in parallel. These
may complete independently with or without error.

5.6 Memory Consistency Model
Unless otherwise specified, the order in which the SDXI function reads and writes buffers and other data
structures associated with executing an SDXI descriptor is undefined. Software shall not rely upon the
ordering of the data transfer within a single descriptor and thus shall not overlap the source buffer,
destination buffer, Atomic Return Data, or completion status block.
The SDXI function shall ensure that when clearing the descriptor header Valid bit, it shall be made globally
visible ahead of making any writes associated with the descriptor operation globally visible and ahead of
making any writes to the descriptor's Completion Status globally visible.
All writes associated with a descriptor operation shall be made globally visible prior to making changes to
the descriptor's Completion Status globally visible. Within the Completion Status, changes to Error
Recorded (ER) field shall be made globally visible prior to making updates to the descriptor's completion
signal globally visible.
If the Sequential Consistency (S) flag is set, all writes from prior descriptor operations in the same context
shall be made globally visible prior to making writes from the current descriptor operation globally visible,
regardless of address.
If the Sequential Consistency flag is clear, writes associated with the current descriptor operation may be
reordered ahead of, and made globally visible prior to, writes associated with prior descriptor operations
that have not yet been made globally visible.
Unlike the fence flag, the sequential consistency flag allows multiple descriptors to be executed in parallel
as long as the rules around global visibility are maintained.

Developer Note: This note is regarding the use of Sequential Consistency Flag and PCIe Relaxed
Ordering. In general, data buffer writes associated with a single descriptor operation may be issued over
the PCIe bus in any order.

If the S flag is clear, all writes associated with the descriptor operation may be issued as Relaxed Ordered
(RO=1) writes. Additionally, writes associated with the descriptor operation may be issued ahead of writes
associated with prior descriptor operations.
 If the S flag is set, all writes associated with a descriptor operation need to be issued as non-relaxed
(RO=0) over the PCIe bus, and only after writes associated with all prior descriptor operations have been
issued on the bus.
If the Read Barrier (RB) flag is set in the descriptor, writes, other than completion status block updates,
from prior descriptor operations in the same context targeting the same address and address space shall
be made visible to the reads performed by the current descriptor. The address space is the same if both
the read and write were in the CXT_L1_ENT derived address space, or if the read and write used the
same AKey.
If the Read Barrier flag is clear, reads from the current descriptor may be reordered ahead of writes from
earlier descriptors in the context, unless prevented by other mechanisms.
The following table provides a summary of the Sequential Consistency, Read Barrier, and Fence control
flags:

88 Working Draft SNIA SDXI Specification
 Version 1.0.3

Control Flag Impact

Sequential
Consistency
(S)

Affects the order in which writes become visible relative to other writes. A descriptor with
the S bit set may begin execution immediately if its writes are properly ordered relative
to other writes. A descriptor with the S bit set does not necessarily block future
descriptors from executing.

Read Barrier
(RB)

Affects the order in which writes (other than completion signals) from earlier descriptors
in the context become visible to reads performed by the flagged descriptor. Does not
require that data be visible to any other agent in the system. A descriptor with the RB bit
set does not necessarily block future descriptors from executing.

Fence (F) Enforces the execution order of descriptors within the SDXI context. Ensures all
previous descriptors in a context have completed and that their effects become visible
before the current and all future descriptors are allowed to execute.

SNIA SDXI Specification Working Draft 89
 Version 1.0.3

5.7 Descriptor Chaining
The descriptor chaining mechanism may be used for either Extended Descriptors or as part of the Error
Log. See "5.7.1, Extended Descriptors" and "3.4, Error Log" for more details.
A descriptor chain is formed from 2 or more adjacent 64-byte descriptor entries. Each entry in the chain is
referred to as a link. Each link is formatted as a standard SDXI descriptor with an SDXI header and footer.
Each link except for the last shall set the Chain (C) bit to 1 in their respective headers. The last link in the
chain is indicated by a descriptor with the Chain bit clear.
Software shall reserve enough space in the descriptor ring to enqueue the entire chain. The individual
descriptor entries forming the chain may be written into the descriptor ring in arbitrary order.
When processing a descriptor chain, an SDXI function shall increment Read_Index by 1 and clear the
header Valid bit for each link in the chain.

 Extended Descriptors
Extended descriptors may be utilized by operations that require more than the 52 bytes of operand space
provided by a single SDXI descriptor. Additional operand space may be created by chaining 2 or more
descriptor entries. Each operation definition shall indicate whether the use of an extended descriptor is
required.
Other than the Chain bit, extended descriptors utilize the same descriptor header for each link in the chain.
Only the last link in the chain contains a valid descriptor footer with the pointer to the completion status
block. The descriptor footers for all other links in the chain are reserved. Only one CST_BLK completion
signal update is performed for the entire extended descriptor.
Error log entries are generated for the extended descriptor as a whole.
An SDXI function processing an extended descriptor shall wait until all links are valid before executing the
descriptor operation.

5.8 Descriptor Driven Interrupts
Interrupts generated by descriptors do not set any sort of internal MMIO status as may be present in
traditional devices. Any interrupt status is expected to be maintained in memory.
For these interrupts, the function does not explicitly know when interrupt service is complete. These
interrupts must be edge triggered as the function does not know when to de-assert a level-sensitive
interrupt. Additionally, if MSI or MSI-X Pending bits are implemented, the Pending state will not be change
from Set to Clear while the associated vector is masked.

90 Working Draft SNIA SDXI Specification
 Version 1.0.3

6 SDXI Descriptor and Operation Specification

An SDXI function provides programmed-data acceleration by reading and executing a series of memory-
based, naturally aligned, 64-byte "descriptors". Each descriptor's "opcode" field encodes a requested
operation, and the remainder of the descriptor specifies additional parameters. The format of each
standardized descriptor is defined in this chapter. The operation of the descriptor ring and the processing,
execution, and completion of descriptors is discussed in "Chapter 5, SDXI Descriptor Ring Operation".
For the purposes of enumeration and access control, SDXI arranges sets of related descriptor operations
into operation groups. Operation groups are identified by their 128-bit machine readable Globally Unique
Identifier (GUID). The GUID’s for SDXI standard operation groups are found in this specification.
Implementors may extend SDXI by generating GUIDs for their own operation groups.
Rather than storing a 128-bit GUID in each descriptor, SDXI functions map supported operation groups
onto 11-bit ‘type’ field values within the descriptor’s opcode. The SDXI administrative discovery feature
allows software to determine which GUID’s map to which opcode ‘type’ values for a given SDXI function
(see 6.6.11). For compatibility with SDXI 1.0, and to ease discovery, certain SDXI operation groups are
required, and must map to certain ‘type’ values.
The 8-bit ‘subtype’ field within the descriptor’s opcode identifies which command within the operation
group to execute. The meaning of the subtype field is defined by the operation group itself.
Privileged software may restrict which operation groups less privileged software can access on a per
context basis. Access to type encodings 0-31 is controlled by CXT_L1.opb_000_enb. Access to type
encodings 32-2047 are controlled by the extended enables array pointed to by CXT_L1.ext_enb_ptr (see
3.2.2 for further information)

SNIA SDXI Specification Working Draft 91
 Version 1.0.3

Table 6–1: SDXI Operation Groups, Descriptor Opcode Types, and Subtypes
Operation Group Type Subtype Operation

Reserved 0x000 Reserved

DMA Base Operation Group
(DmaBaseGrp)

0x001 0x01 DMAB_NOP
0x02 DMAB_WRT_IMM
0x03 DMAB_COPY
0x04 DMAB_REPCOPY

Administrative Operation Group
(AdminGrp)

0x002 0x00 DSC_FN_UPD
0x01 DSC_CXT_UPD
0x02 DSC_AKEY_UPD
0x03 DSC_CXT_START_NM
0x04 DSC_CXT_STOP
0x05 DSC_ADM_INTR
0x06 DSC_SYNC
0x07 DSC_RKEY_UPD
0x08 DSC_CXT_START_RS
0x09 DSC_DISC

Full Atomic Operation Group
(AtomicGrp)

0x003 0x00 Reserved
0x01 DSC_ATM_SWAP1
0x02 DSC_ATM_UADD1
0x03 DSC_ATM_USUB
0x04 Reserved
0x05 DSC_ATM_AND
0x06 DSC_ATM_OR
0x07 DSC_ATM_XOR
0x08 DSC_ATM_SMIN
0x09 DSC_ATM_SMAX
0x0A DSC_ATM_UMIN
0x0B DSC_ATM_UMAX
0x0C DSC_ATM_UCLAMPI
0x0D DSC_ATM_UCLAMPD
0x0E DSC_ATM_CMPSWAP1

Interrupt Operation Group
(IntrGrp)

0x004 0x00 DSC_INTR

Reserved 0x005 Reserved

Function Assigned 0x006 – 0x7FF Enumerated via DSC_DISC

1. Also supported when Minimal Atomic Operations are present.

92 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–2: SDXI Error Log Descriptor Types
Operation Group Type Operation

Reserved 0x000 – 0x7F6 Reserved
Error Log 0x7F7 ERRLOG_ENT
Reserved 0x7F8 – 0x7FF Reserved

6.1 Descriptor Format for SDXI Operations

 Common Header and Footer
All SDXI operations use the following common header and footer encodings in their descriptor format.

Figure 6-1: Common Header and Footer

sdxi-structures-dsc_generic

SNIA SDXI Specification Working Draft 93
 Version 1.0.3

Table 6–3: DSC_GENERIC[^3] SDXI Descriptor Common Header and Footer Format
Field Bits Subfield Description

u32 opcode; 000 vl Valid.
1 = Descriptor is valid. All fields may be processed.
0 = Descriptor is invalid.

All other fields within the descriptor shall be ignored. The function
shall poll the descriptor until it becomes valid or until an
implementation defined timeout period has expired at which point an
error is logged.

001 se Sequential Consistency
1 = Operation writes are sequentially consistent
0 = Operation writes are not required to be sequentially consistent

See "5.6, Memory Consistency Model" for more details.
002 fe Fence. See "5.4, Descriptor Ordering and Parallel Execution" for

more details.
1 = All prior descriptor operations shall complete before executing

this descriptor's operation
0 = Execution of this descriptor's operation is permitted prior to

the completion of prior descriptor operations
003 ch Chain. See "5.7, Descriptor Chaining" for more details.

1 = Start or middle of a set of chained descriptors.
0 = End of chain, or non-chained descriptor.

004 csr Completion Status Mode Requirement for the descriptor. See
"4.4.2, Completion-Status Modes" for details.
0 = Atomic completion-status mode shall be used.
1 = Simple completion-status mode shall be used.

005 rb Read Barrier
0 = Prior descriptor’s writes are not guaranteed to be visible to
this descriptor.
1 = Prior descriptor’s writes are guaranteed to be visible to this
descriptor.

007:006 rsvd Shall be set to 0
015:008 subtype Specifies an operation within the Operation Group.
026:016 type Specifies the Operation Group.
031:027 rsvd Shall be set to 0

u8 operation[52]; 447:032 This region is defined separately for each operation.
u64 csb_ptr; 448 np no_pointer.

When 0, the SDXI function shall update the completion status
blocked pointed to by csb_ptr.
When 1, there is no completion status block associated with the
descriptor to update and the csb_ptr shall be ignored.
This mechanism avoids the overhead of completion-block-status
processing for a series of descriptor requests that are ordered
before a terminal one which will specify a completion status block.

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer.

A pointer to a 32B aligned region of memory containing the
Completion Status block. An invalid pointer may result in an error.

94 Working Draft SNIA SDXI Specification
 Version 1.0.3

 Completion Status Block
When a descriptor's "np" ("no_pointer") field is "0", the descriptor's "csb_ptr" field points to a completion
status block ("CST_BLK") whose fields are used by the SDXI function to update (modify) the descriptor
operation's completion status and report relevant errors. (The manner in which the SDXI function updates
the CST_BLK during descriptor processing is discussed in "5.3, Descriptor Processing".) The producer of
the descriptor initializes the CST_BLK before submitting the descriptor.
As discussed in "4.4.2, Completion-Status Modes", the producer may require or be required to use one of
two producer completion modification modes for the context with respect to the atomic modification of the
CST_BLK. The availability of the modes is reported by privileged software through the CXT_CTL.csa
("completion-status mode availability") field and may be reported to the context by means outside the
scope of the SDXI specification. The producer complies to and specifies the mode to the SDXI function by
setting the descriptor's "csr" ("completion status requirement") field.

Figure 6-2: Completion Status Block

sdxi-structures-cst_blk

The completion signal field within the CST_BLK is used by the producer to track the completion of one or
more descriptors. It is updated by the SDXI function as appropriate for the completion-status mode
indicated by the descriptor's "csr" field. When the signal reaches an appropriate terminal value, the
producer may conclude that the associated descriptors have finished and may rely upon the other
CST_BLK fields to determine success, failure, or other associated information.

Table 6–4: CST_BLK[^3] (Completion Status Block)
Field Bits Subfield Description
u64 signal; 063:000 Completion Signal value.
u32 flags; 094:064 rsvd Shall be set to 0

095 er Error Recorded (er).
By initializing this field to "0" before issuing descriptors associated with
the CST_BLK, software can rely upon this behavior: when "1", at least
one completed descriptor has encountered an error; when "0", all
completed descriptors have not encountered an error.
During the processing of an associated descriptor, an SDXI function shall
operate on this field as follows: if the descriptor succeeds, the value of
the field shall be preserved; and
if the descriptor encounters an error, the value of the field shall be "1".

u8 rsvd_0[20]; 255:096 Shall be set to 0

Multiple descriptors may point to the same single CST_BLK when atomic completion-status mode is
available and used for all associated descriptors. The producer shall refrain from this usage when the
mode is not available. During this usage, if any descriptor associated with the CST_BLK does not specify

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 0x00

+ 0x04

er + 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

rsv
rsv

signal

SNIA SDXI Specification Working Draft 95
 Version 1.0.3

atomic completion-status mode, the SDXI function may return indeterminate contents of the CST_BLK; the
producer shall avoid and not rely upon this behavior.
For each descriptor error reported through CST_BLK, the SDXI function shall ensure that the "er" ("error
recorded") field is set to "1" before modifying the completion signal value. When multiple descriptors are
associated with a single CST_BLK, the SDXI function may set the "er" field to "1" for errors encountered
on one or more of the descriptors.

 Attribute Field
The attribute (Attr) field controls features related to accessing a data buffer. Within a descriptor definition,
a postfix may be added to the field name to uniquely identify a specific data buffer (ex. Attr (Src), Attr
(Dst)).
Subsequently defined descriptors may contain data buffer pointers which have a corresponding Attr field.

Table 6–5: Attribute Field
Bits Field Description

1:0 CoherencyControl 00b : The associated memory location is accessed as I/O coherent.
01b : The associated memory location is accessed as non-coherent.
10b : The associated memory location is accessed as I/O coherent. DSH

information is requested to be included when accessing this memory
location. See "3.6, Data Steering Hints (DSH)" for more details.

All other encodings reserved

2 rsvd Shall be set to 0

3 MMIO 1b: The referenced memory buffer may be located in either system
memory or MMIO space.

0b: The reference memory buffer is located in system memory and is not
located in an MMIO space. This setting may optimize performance in
some implementations.

Figure 6-3: AttributeFormat

sdxi-structures-misc-X007

3 2 1:0
MMIO rsvd Coherency Ctl

96 Working Draft SNIA SDXI Specification
 Version 1.0.3

6.2 DMA Base Operations Group (DmaBaseGrp)
GUID: 193259fe-150b-4008-a83f-6faf59f5272a. Always maps to opcode type 1.
All SDXI implementations are required to support the DmaBaseGrp operations.

 DmaBaseGrp: DSC_DMAB_NOP
The DmaBaseGrp's Nop operation performs no functional DMA operation. A descriptor specifying the
operation is processed and ordered the same as other descriptors, obeys all relevant bits in the header,
and generates the completion signal.

Figure 6-4: DSC_DMAB_NOP Descriptor Format

sdxi-structures-dsc_dmab_nop

Table 6–6: DSC_DMAB_NOP[^7] Descriptor Format
Field Bits Subfield Description

u32 opcode; 000 vl = 1 Valid. See section "6.1.1".
001 se = 0 Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x01 See section "6.1.1".
026:016 type=0x001 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0[52]; 447:032 Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 97
 Version 1.0.3

 DmaBaseGrp: DSC_DMAB_WRT_IMM Operation
The DmaBaseGrp's WriteImm operation is used to write up to 32 contiguous bytes starting at a destination
memory address. The data is supplied inside the descriptor. Following little-endian conventions, data byte
0 is written to the first byte of the destination address.
Because this operation can be used for sending triggers, flags, or other signals to asynchronous
processes, the following minimum guarantees against torn writes are required:

• bsize = 0; One-byte immediate writes to any address is atomic
• bsize = 1; Two-byte immediate writes to any even address is atomic
• bsize = 3; Four-byte immediate writes to any address divisible by four is atomic
• bsize = 7; Eight-byte immediate writes to any address divisible by eight is atomic

The atomicity of immediate writes of other sizes, and other alignments, is implementation specific.

Figure 6-5: DSC_DMAB_WRT_IMM Descriptor Format

sdxi-structures-dsc_dmab_wrt_imm

98 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–7: DSC_DMAB_WRT_IMM[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x02 See section "6.1.1".
026:016 type=0x001 See section "6.1.1".
031:027 rsvd Shall be set to 0

u32 size; 036:032 bsize Specifies the number of bytes to write minus 1.
0x0 = 1 Byte, . . .0x1F = 32 Bytes

063:037 rsvd Shall be set to 0

u8 attr; 067:064 attr_dst Destination buffer attributes
071:068 rsvd Shall be set to 0

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 akey0_dst Destination buffer AKey
u8 rsvd_1[2]; 127:112 Shall be set to 0.
u64 addr0; 191:128 (dst) Destination buffer starting address
u8 data[32]; 447:192 32-bytes of immediate data.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 99
 Version 1.0.3

 DmaBaseGrp: DSC_DMAB_COPY Operation
The DmaBaseGrp's Copy operation copies a source data buffer to a destination data buffer.
It is an error (Generic Descriptor Error/Unsupported Field Encoding) for the source and destination buffers
to exceed the size described by CXT_L1_ENT.max_buffer.

Figure 6-6: DSC_DMAB_COPY Descriptor Format

sdxi-structures-dsc_dmab_copy

100 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–8: DSC_DMAB_COPY[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x03 See section "6.1.1".
026:016 type=0x001 See section "6.1.1".
031:027 rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes to write minus 1.
 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr; 067:064 attr_src Source buffer attributes
071:068 attr_dst Destination buffer attributes

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 (src) Source buffer AKey
u16 akey1; 127:112 (dst) Destination buffer AKey
u64 addr0; 191:128 (src) Source buffer starting address.
u64 addr1; 255:192 (dst) Destination buffer starting address
u8 rsvd_1[24]; 447:256 Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 101
 Version 1.0.3

 DmaBaseGrp: DSC_DMAB_REPCOPY Operation
The DmaBaseGrp's Repeat Copy operation copies a single 4-KiB-aligned source data buffer to multiple
adjacent locations within a 4-KiB-aligned destination buffer. This operation may be used, for example, to
fill a large region of memory.
It is an error (Generic Descriptor Error/Unsupported Field Encoding) to specify a total destination size
(4Kbytes * (nsize+1) * (num+1)) greater than the size described by CXT_L1_ENT.max_buffer.

Figure 6-7: DSC_DMAB_REPCOPY Descriptor Format

sdxi-structures-dsc_dmab_repcopy

102 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–9: DSC_DMAB_REPCOPY[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x04 See section "6.1.1".
026:016 type=0x001 See section "6.1.1".
031:027 rsvd Shall be set to 0

u32 size; 043:032 rsvd Shall be set to 0
052:044 nsize The size of the source data buffer in 4-Kbyte increments minus 1.

0x0 = 4 Kbytes, … , 0x1FF = 2 Mbytes
063:053 rsvd Shall be set to 0

u8 attr; 067:064 attr_src Source buffer attributes
071:068 attr_dst Destination buffer attributes

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 (src) Source buffer AKey
u16 akey1; 127:112 (dst) Destination buffer AKey
u64 addr0; 128 az "All Zero"

When az=1, this indicates that the source buffer is all zero. This
allows the SDXI function to optimize the transfer (even avoiding
reading the buffer).
When az=0, no such guarantee is made. When az=1, SW shall
always initialize the entire source buffer to zero; otherwise, the
contents of the destination are not defined – and no error is required
to be reported in this case.

139:129 rsvd Shall be set to 0.
191:140 addr0_src 4KB aligned source buffer starting address.

u64 addr1; 203:192 rsvd Shall be set to 0.
255:204 addr1_dst 4KB aligned destination buffer starting address.

u32 repeat; 267:256 rsvd Shall be set to 0.
287:268 num Specifies the number of times the source buffer is copied to the

destination buffer.
 0x0 = 1 copy …. 0xF_FFFF = 2**20 copies.
The total destination size is:
 4Kbytes * (nize+1) * (num+1).

u8 rsvd_1[20]; 447:288 Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 103
 Version 1.0.3

6.3 Expanded DMA Group
GUID: 0af23293-7595-4939-b08a-1c7293c2e975. The Expanded DMA Group is optional.

 ExpDmaGrp: DSC_XDMA_FILL_IMM Operation
The Fill Immediate operation fills a destination buffer with an immediate byte value. It is an error (Generic
Descriptor Error/Unsupported Field Encoding) if the buffer exceeds the size described by
CXT_L1_ENT.max_buffer.

Figure 6-8: DSC_XDMA_FILL_IMM Descriptor Format

sdxi-structures-dsc_xdma_fill_imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv

rsv csb_ptr

size
attr_dstrsvrsv

akey0rsv
addr0

datarsv

rsvsubtype = 0x01typersv

104 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–10: DSC_XDMA_FILL_IMM[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x01 See section "6.1.1".
026:016 type Function assigned opcode type value.
031:027 rsvd Shall be set to 0

u32 size; 063:032 bsize Specifies the number of bytes to write minus 1.
0x0 = 1 Byte, . . .,0xFFFF_FFFF = 2**32 Bytes

u8 attr; 067:064 attr_dst Destination buffer attributes
071:068 rsvd Shall be set to 0

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 akey0_dst Destination buffer AKey
u8 rsvd_1[2]; 127:112 Shall be set to 0.
u64 addr0; 191:128 (dst) Destination buffer starting address
u8 data; 199:192 Immediate data byte
u8 rsvd_2[3]; 223:200 rsvd Shall be set to 0.
u8 rsvd_3[28]; 447:224 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 105
 Version 1.0.3

 ExpDmaGrp: DSC_XDMA_CMP Operation
The Compare operation compares two source data buffers and returns a 64-bit value. A zero value
indicates the buffer values are identical. If the buffers mismatch, the least significant 32-bits of the value is
the first (i.e., smallest) offset of the mismatch, and the most significant 32-bits are 0xFFFFFFFF if buffer0
is less than buffer1, or 0x1 if buffer0 is greater than buffer1.
There is no alignment requirement for buffer0 or buffer1. The ret_data_ptr must be 8-byte aligned, and
points to an address in the context’s address space (i.e. CXT_L1_ENT.cxt_pasid is used).
It is an error (Generic Descriptor Error/Unsupported Field Encoding) for the source and destination buffers
to exceed the size described by CXT_L1_ENT.max_buffer.

Figure 6-9: DSC_XDMA_CMP Descriptor Format

sdxi-structures-dsc_xdma_cmp

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv

rsv csb_ptr

akey0akey1
addr0

addr1

rsv

rsv ret_data_ptr

rsvsubtype = 0x02typersv
size

attr_buf0attr_buf1rsv

106 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–11: DSC_XDMA_CMP[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x02 See section "6.1.1".
026:016 type Function assigned opcode type value.
031:027 rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes to compare minus 1.
 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr; 067:064 attr_buf0 Source buffer0 attributes
071:068 attr_buf1 Source buffer1 attributes

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 (buf0) Source buffer0 AKey
u16 akey1; 127:112 (buf1) Source buffer1 AKey
u64 addr0; 191:128 (buf0) Source buffer0 starting address.
u64 addr1; 255:192 (buf1) Source buffer1 starting address
u8 rsvd_1[8]; 319:256 Shall be set to 0.
u64 ret_data_ptr; 322:320 rsvd Shall be set to 0.

383:323 ret_data_ptr Pointer to return data in the context’s address space.
u8 rsvd_2[8]; 447:384 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

 ExpDmaGrp: DSC_XDMA_CMP_IMM Operation
The Compare Immediate operation compares the bytes of a source data buffer to an immediate byte value
and returns a 64-bit value. Conceptually this is the equivalent of allocating a temporary memory buffer,
filling it with a repeating byte value, and using the Compare operation on the source buffer and the
temporary buffer.
A zero value indicates each byte in the buffer equals the immediate byte value. If the buffer contains a
mismatch, the least significant 32-bits of the value are the first (i.e., smallest) offset of the mismatch, and
the most significant 32-bits are 0xFFFFFFFF if the source buffer byte is less than the immediate byte
value, or 0x1 if the source buffer byte is greater than the immediate byte value.
There is no alignment requirement for the buffer. The ret_data_ptr must be 8-byte aligned, and points to
an address in the context’s address space (i.e. CXT_L1_ENT.cxt_pasid is used).
It is an error (Generic Descriptor Error/Unsupported Field Encoding) for the buffer to exceed the size
described by CXT_L1_ENT.max_buffer.

SNIA SDXI Specification Working Draft 107
 Version 1.0.3

Figure 6-10: DSC_XDMA_CMP_IMM Descriptor Format

sdxi-structures-dsc_xdma_cmp_imm

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv

rsv ret_data_ptr

rsv

rsv csb_ptr

size
attr_srcrsvrsv

akey0rsv
addr0

datarsv

rsvsubtype = 0x03typersv

108 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–12: DSC_XDMA_CMP_IMM[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x03 See section "6.1.1".
026:016 type Function assigned opcode type value.
031:027 rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes to compare minus 1.
 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr; 067:064 attr_src Source buffer attributes
071:068 rsvd Shall be set to 0.

u8 rsvd_0[3]; 095:072 rsvd Shall be set to 0.
u16 akey0; 111:096 (src) Source buffer AKey
u8 rsvd_1[2]; 127:112 Shall be set to 0.
u64 addr0; 191:128 (src) Source buffer starting address.
u8 data; 199:192 Immediate data byte
u8 rsvd_2[3]; 223:200 rsvd Shall be set to 0.
u8 rsvd_3[12]; 319:224 rsvd Shall be set to 0.
u64 ret_data_ptr; 322:320 rsvd Shall be set to 0.

383:323 ret_data_ptr Pointer to return data in the context’s address space.
u8 rsvd_4[8]; 447:384 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

6.4 Atomic Operation Group (AtomicGrp)
GUID: d9bc29a1-91dc-4243-9751-b6b0329dafe1 (Minimal set) Maps to opcode type 3 if present.
GUID: 3ac7630e-7009-424b-8299-20e2901ecc5e (Full set) Maps to opcode type 3 if present.
This operation group performs various atomic operations. All AtomicGrp operations use the same
descriptor format. An SDXI implementation may support these atomic operations or not. If supported, an
SDXI Implementation may support the "Minimal" set or the "Full" set -- which includes the minimal set. If
the SDXI function supports the full set, it shall not report support for the minimal set. Both sets use the
same descriptor "type" and "subtype" for the minimal set.
Privileged software shall verify both of the following before exposing a set of atomic operations to an SDXI
context. (See as discussed in "4.4, Atomic Operation Support")

1. Interface-supported atomic operations. The relevant platform communication interface to the SDXI
function is capable and enabled to support atomic accesses to and from the SDXI function.

2. Function-supported atomic operations. The SDXI implementation supports the relevant set of atomic
operations.

SNIA SDXI Specification Working Draft 109
 Version 1.0.3

Figure 6-11: DSC_ATM Descriptor Format

sdxi-structures-dsc_atm

110 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–13: DSC_ATM[^7] Operation Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype = SWAP:0x1, UADD:0x2, USUB:0x3, AND:0x5, OR:0x6, XOR:0x7, SMIN:0x8, SMAX:0x9,

UMIN:0xA, UMAX: 0xB, UCLAMPI: 0xC, UCLAMPD:0xD, CMPSWAP:0xE
026:016 type=0x003 See section "6.1.1".
031:027 rsvd Shall be set to 0

u32 size; 033:032 rsvd Shall be set to 0
036:034 osz The size of the operands in 4-byte increments minus 1:

 000b = 4 bytes, 001b = 8 bytes. All other encodings reserved
063:037 rsvd Shall be set to 0

u8 attr; 067:064 attr_dst Destination buffer attributes
071:068 rsvd Shall be set to 0.

u8 rsvd_0[3]; 095:072 Shall be set to 0.
u16 akey0; 111:096 (dst) Destination buffer AKey
u8 rsvd_1[2]; 127:112 Shall be set to 0.
u64 addr0; 129:128 rsvd Shall be set to "00b" since addr0 must always be either 4-byte

or 8-byte aligned.
130 n Shall be set to "0b" for 8-byte alignment if address0 is an 8-

byte operand (osz = "001b")..
191:131 addr0_dst Destination buffer memory address to target for the atomic

operation. The address shall be aligned to the operand size.
u64 op1; 255:192 Operand 1 Data. If the operand size is set to 4 bytes, the lower

32 bits of Operand1Data are utilized.
u64 op2; 319:256 Operand 2 Data. If the operand size is set to 4 bytes, the lower

32 bits of op2 are utilized.
u64 ret_data_ptr; 320 nr No Return (nr)

When 0, the SDXI function shall return the original memory value
at address0 to the location pointed to by ret_data_ptr.
When 1, ret_data_ptr shall be ignored, and the original memory
value at address0 will not be returned. Software will set
ret_data_ptr to 0 when setting nr to 1.

321 rsvd Shall be set to 0.
383:322 ret_data_ptr Pointer to Atomic Return Data, a naturally aligned operand size

location in memory. The original memory value at address0 will
be written back to this location when the nr bit is clear. If the nr bit
is set, no data is returned.

u8 rsvd_2[8]; 447:384 Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 111
 Version 1.0.3

Table 6–14: Atomic Operations Sub-Type1,2,3,4

Sub
Type

Operation
Subset

Operation

0x01 Full, Min Swap (DSC_ATM_SWAP):
 *address0 = operand1;

0x02 Full, Min Unsigned Add (DSC_ATM_UADD)7:
 *address0 += operand1;

0x03 Full Unsigned Subtract (DSC_ATM_USUB):
 *address0 -= operand1;

0x05 Full AND (DSC_ATM_AND):
 *address0 &= operand1;

0x06 Full OR (DSC_ATM_OR):
 *address0 |= operand1;

0x07 Full XOR (DSC_ATM_XOR):
 *address0 ^= operand1;

0x08 Full Signed Min (DSC_ATM_SMIN)5:
 if (*address0 > operand1) { *address0 = operand1; }

0x09 Full Signed Max (DSC_ATM_SMAX)5:
 if (*address0 < operand1) { *address0 = operand1; }

0x0A Full Unsigned Min (DSC_ATM_UMIN)5:
 if (*address0 > operand1) { *address0 = operand1; }

0x0B Full Unsigned Max (DSC_ATM_UMAX)5:
 if (*address0 < operand1) { *address0 = operand1; }

0x0C Full Unsigned Increment (DSC_ATM_UINC):
 *address0 = (*address0 >= operand1) ? 0 : (*address) + 1;

0x0D Full Unsigned Decrement (DSC_ATM_UDEC):
 *address0 = (*address0 == 0 || *address0 > operand1) ? operand1 : (*address - 1);

0x0E Full, Min Compare and Swap (DSC_ATM_CMPSWAP)5:
 if (*address0 == operand1) { *address0 = operand2; }

All other encodings are Reserved
2. The sequence of reading and writing (or releasing) address0 by the SDXI function must be atomic with

respect to operations of other agents on address0.
3. "*nnn" means the memory contents pointed to by nnn.
4. All operations are performed at the specified operand size; all operands must be naturally aligned to that size.
5. When the "nr" field is zero, the SDXI function shall write the previous destination value (original memory value

at address0) to the location pointed to by the ret_data_ptr field.
 if (nr == 0){ *ret_data_ptr = *address0; }

6. Note: Provided that the atomicity requirements are met, an SDXI implementation is permitted to write back the
unchanged content of address0 when the condition is false.

7. The SDXI function may perform the write to the Atomic Return Data location (pointed to by the "ret_data_ptr"
field) in any order with respect to the atomic update of the destination location. The SDXI function shall
ensure that both the Atomic Return Data write and the destination update are completed and made globally
visible before updating the descriptor's completion status block.

8. Note that DSC_ATM_UADD can effectively perform a subtract by supplying the two's complement of the
value to subtract as the argument value to the operation since overflow is not detected.

112 Working Draft SNIA SDXI Specification
 Version 1.0.3

6.5 IntrGrp Operation Group
GUID: 7fb16347-4c3a-4d16-8442-cba51e340880. Maps to opcode type 4 if present.

 IntrGrp DSC_INTR Operation
The IntrGrp's Interrupt operation is used to generate an interrupt. The interrupt number and address space
are specified in the referenced AKey.

Figure 6-12: DSC_INTR Descriptor Format

sdxi-structures-dsc_intr

Table 6–15: DSC_INTR[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se Sequential Consistency. See section "6.1.1".
002 fe Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier. See section “6.1.1”.

007:006 rsvd Shall be set to 0
015:008 subtype=0x00 See section "6.1.1".
026:016 type=0x004 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0[8]; 095:032 Shall be set to 0.
u16 akey; 111:096 AKey used for this operation
u8 rsvd_1[42]; 447:112 Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 113
 Version 1.0.3

6.6 Administrative Operation Group (AdminGrp)
Administrative operations are used by privileged software to manage the SDXI function. A key set of such
operations comprise the Administrative Operation Group (AdminGrp). Software shall issue AdminGrp
operations only in Context 0 ("Administrative" Context) within each function; the SDXI function shall
generate a context error if an AdminGrp operation is issued on any other context. AdminGrp operations
are described below and in the following sections.

• The AdminGrp's DSC_UPD_[FN, CXT, AKEY, RKEY] update operations are used by privileged
software to indicate changes to various memory data structures. Update operations shall be used
even when transitioning data structures from the invalid to valid state. This is done to simplify
software-emulated implementations.

• The AdminGrp's DSC_SYNC operation is used as a barrier after one or more update operations.
After completion of the DSC_SYNC, the effects of prior AdminGrp updates to the structures selected
by the DSC_SYNC operation shall be seen by all new descriptors.

• The AdminGrp's DSC_CXT_START_[NM, RS] and DSC_CXT_STOP operations may be used to
control the execution state of a target context.

• The AdminGrp's DSC_ADM_INTR operation is used to generate interrupts from the local function
hosting the administrative context.

 Accessing Contexts, Akey Tables, and RKey Table by Index
An Administrative operation may operate on a context entry, an entry in an Akey table, or an entry in the
RKey table; each of these entries are referenced by an index within their containing structure. For the
function to operate on an indexed entry, the index must be within the specific limit for that structure. The
function shall log an error when an operation specifies an index that is outside of the appropriate limits.
Many administrative operations may be applied to a range of entries within a data structure. The range is
specified explicitly in the descriptor as a starting index "_start" field and an ending index "_end" field;
implicitly the relevant index limit for the structure is also used. (For example, to operate on contexts 1
through 127 inclusive, software would set cxt_start to "1" and cxt_end to "127".) The range of the specified
entries is operated upon as shown in the following pseudo-code.

114 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 6-13: Operation on Range of Entries
// Let entry_type indicate the type of referenced data-structure (CXT, AKEY, RKEY)

 if (_start > _end
 || (entry_type == CXT
 && (MMIO_CTL2.max_cxt > MMIO_CAP1.max_cxt
 || _end > MMIO_CTL2.max_cxt
)
)
 || (entry_type == AKEY
 && (MMIO_CTL2.max_akey_sz > MMIO_CAP1.max_akey_sz
 || CXT_L1_ENT.akey_sz > MMIO_CTL2.max_akey_sz
 || _end >= 2**(8 + CXT_L1_ENT.akey_sz)
)
)
 || (entry_type == RKEY
 && (MMIO_RKEY.tbl_sz > MMIO_CAP0.max_rkey_sz
 || _end >= 2**(8 + MMIO_RKEY.tbl_sz)
)
)
) {
 error();
 }

 // Asynchronous, Parallel Issue of Operation on Entries
 index = _start;
 while (index <= _end) {
 async_issue_operation(index);
 index++;
 }

SNIA SDXI Specification Working Draft 115
 Version 1.0.3

 Targeting Multiple Contexts with A Single Administrative Operation
Many administrative operations are defined such that a single operation may target the entire function or
selected multiple contexts. For such an operation, the SDXI function may evaluate individual target
contexts in any order and in parallel. The following describes the resulting architectural behavior.
Evaluating Contexts:

1. A successful completion or error result from operating on one context is unordered with respect to
another targeted context.

2. The SDXI function may terminate an operation due to an individual context error at any point and
may skip evaluation of remaining contexts. It is implementation-specific if an error detected in one
context affects whether any other targeted context is evaluated.

Returning Results and Completion Status:
1. If the administrative operation results in an architectural state change or explicit synchronization

barrier (DSC_CXT_START_[NM, RS], DSC_CXT_STOP, and DSC_SYNC), then the completion
status is signaled in the following way. (Note, each operation shall specify which background
actions-must be completed for the function to signal completion.)

a. If all target contexts have been operated upon successfully without error, the operation returns
a successful completion status block.

b. If the operation encounters an error in at least one context, the operation will return an
unsuccessful completion. Note, an operation shall only log one error even if the operation
evaluates multiple contexts with error.

c. Regardless of overall success or failure, the SDXI function shall cease evaluating targeted
contexts before generating a Completion Status Block and, if required, logging an error.

2. If the administrative operation is a data-structure update operation to any non-coherently cached
copies of function state (DSC_ADM_UPD_[FN, CXT, AKEY, RKEY]), then the completion status
merely signals that the function has begun the update action. Completion of the operation does not
imply completion of the requested update action(s). Further behavior follows for the update action(s).

a. Performing an update action on an invalid context shall have no effect and logs no error.
b. If all target contexts have been acted upon successfully without error, then no error log is

generated.
c. If any update action encounters an error in at least one context, the update action will log an

error. It is implementation-dependent if an update action may encounter an error and if
multiple update action errors log one or more errors.

A number of operations are idempotent -- viz. they may be executed several times with the same input
without changing the final result beyond its first execution. This may be useful if an operation targeting
multiple contexts has failed and needs to be resubmitted after remediation. Consult the description of the
actual operation for more details.

116 Working Draft SNIA SDXI Specification
 Version 1.0.3

 AdminGrp DSC_CXT_START_[NM, RS] Operations
The AdminGrp's DSC_CXT_START_[NM, RS] operation initiates background actions that start all valid
target contexts by changing each context's CXT_STS.state value from CXTV_STOP_[SW, FN] to
CXTV_RUN. The targeted contexts are described using the cxt_start and cxt_end fields. The operation
may also optionally signal the context to run using the supplied doorbell_value. The doorbell_value is
evaluated per the rules specified in "4.3.3, Doorbell Register and Context Signaling".
DSC_CXT_START_NM is intended to be used by the privileged software that administers the target
context. The operation transitions CXTV_STOP_SW, CXTV_STOP_FN, and CXTV_RUN to CXTV_RUN
for valid contexts; it will log an error if the target context is not in one of the above states for valid contexts.
DSC_CXT_START_RS is intended to be used by hypervisor and privileged software to restore a context
to CXTV_RUN that had been previously suspended to CXTV_STOP_FN when the function transitioned
out of GSV_ACTIVE. The operation transitions CXTV_STOP_FN and CXTV_RUN to CXTV_RUN for valid
contexts; it shall skip and not log an error if the target context is not in one of the above states or the
context is invalid. Note, that DSC_CXT_START_RS shall skip contexts in the CXTV_STOP_SW state.
For each context that the function evaluates for a start operation, the function executes the following
ordered set of steps:

1. Performs the Context Valid check (ChkValid:Cxt) described in "4.3.2, Check Valid Context". If the
check fails, the function shall not modify CXT_STS.state, skip the remaining steps and further
evaluation of the context, and take further action based on the type of start operation being executed
and the ChkValid:Cxt failure signature.

• For DSC_CXT_START_NM with any ChkValid:Cxt failure signature, log an error.
• For DSC_CXT_START_RS with a ChkValid:Cxt failure signature of LogErr:Cxt, log an error.
• For DSC_CXT_START_RS with a ChkValid:Cxt failure signature of Invalid:Cxt, do not log an

error.
2. Using the value of CXT_STS.state obtained in the previous step, if the value of CXT_STS.state is

neither CXTV_RUN nor CXTV_STOP_[SW, FN], the function shall perform the following actions
based on the type of start operation being executed.

• For DSC_CXT_START_NM, log an error, do not modify CXT_STS.state, and skip the
remaining steps and further evaluation of the context.

• For DSC_CXT_START_RS, do not log an error, do not modify CXT_STS.state, and skip the
remaining steps and further evaluation of the context.

3. For DSC_CXT_START_RS, if CXT_STS.state is CXTV_STOP_SW, do not log an error, do not
modify CXT_STS.state, and skip the remaining steps and further evaluation of the context.

4. At this point, if CXT_STS.state is either CXTV_RUN or CXTV_STOP_[SW, FN]:
• The function will issue an atomic write of the CXT_STS.state to CXTV_RUN.
• The function will then ensure that the value of CXT_STS.state is CXTV_RUN. If it is not, the

function shall log an error. The function may use any implementation-specific mechanism to
ensure this including an atomic read back of CXT_STS.state.

5. If the modification of CXT_STS.state to CXTV_RUN is successful, the context is started (transitioned
to the CXTV_RUN state).

If all target contexts have been started or skipped successfully without error, these operations return a
successful completion; otherwise, they return failure and log errors. See "5.5, Descriptor Completion" for
more details.
In the case of successful completion and only after the completion status block has been written, these
operations are required to evaluate a successfully started context's descriptor ring for new descriptors only
if a doorbell_value is specified in the start descriptor. This is done in the descriptor by setting "dv" and
placing a value in the doorbell_value field. See "4.3.3, Doorbell Register and Context Signaling" for how

SNIA SDXI Specification Working Draft 117
 Version 1.0.3

doorbell_value is used. The function is not required to evaluate a started context's descriptor ring when
"dv" is not set.
In the case where a start operation has failed, idempotency is ensured; the operation may be re-submitted
several times with the same input without changing the final result beyond its first execution until the
operation succeeds. This may be useful if an operation targeting multiple contexts has failed and needs to
be resubmitted after remediation.

Figure 6-14: DSC_CXT_START_[NM, RS] Descriptor Format

sdxi-structures-dsc_cxt_start

118 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–16: DSC_CXT_START[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = 1 Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype= NM:0x03, RS:0x08
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0; 039:032 Shall be set to 0

u8 vflags; 045:040 rsvd Shall be set to 0

46 dv doorbell_value valid.
When set to 1, after starting the context, the function evaluates
the context's descriptor ring for new descriptors using the
doorbell_value field.

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u16 cxt_start; 079:064 Indicates the starting context number to operate on.
u16 cxt_end; 095:080 Indicates the ending (last) context number to operate on.

u8 rsvd_1[4]; 127:096 Shall be set to 0
u64 db_value; 191:128 64-bit doorbell_value used when "dv" is "1".
u8 rsvd_2[32]; 447:192 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 119
 Version 1.0.3

 AdminGrp DSC_CXT_STOP Operation
The DSC_CXT_STOP operation initiates background actions that stop all target contexts from processing
new descriptors and changes each target context's state to a relevant final stopped state. The target
context shall be stopped at a descriptor boundary. See "4.3.5, Function and Context Stop Actions" for
more details. The targeted contexts are described using the cxt_start and cxt_end fields. The
DSC_CXT_STOP operation shall complete in a timely manner so that further administrative operations
may be executed.
The SDXI function shall signal completion of the operation when it determines whether the required
background stopping actions can be initiated without error. The operation's completion does not indicate
the success nor failure of the background stopping actions for the target context(s) nor does it imply
whether the stopping actions have begun or finished.
When the stopping actions finish for a valid context, the CXT_STS.state value shall be either:
CXTV_STOPG_[SW, FN]; or CXTV_ERR_FN if a background stopping action encounters an error or
abort in stopping a context. If CXTV_ERR_FN is returned, an error shall be logged. The stopping actions
initiated by this operation ignore invalid contexts (CXTV_INVALID).
Software may determine stop completion by one of these methods:

• Submit a DSC_SYNC.STOP operation and wait for its completion.
• Check each target context's CXT_STS.state to determine whether the target context is at

CXTV_STOP_[SW, FN] or CXTV_ERR_FN.

The DSC_CXT_STOP operation specifies a context completion wait policy using the Hard Stop (HS) bit in
the descriptor. When HS = 0, the function shall perform a soft-stop completion wait. When HS = 1, the
function shall perform a hard-stop completion wait. See "4.3.5, Function and Context Stop Actions" for
details.
Multiple DSC_CXT_STOP operations may be submitted against the same context regardless of the value
of its CXT_STS.state and the progress of previous stop actions upon it. This allows software to initiate a
subsequent hard-stop completion if a previous soft-stop completion is not making acceptable forward
progress.
But note that if a DSC_SYNC.STOP operation is issued between two DSC_CXT_STOP operations
targeting the same context, the second DSC_CXT_STOP shall have no effect on the stopping actions
initiated by the first DSC_CXT_STOP operation.
In the case where the DSC_CXT_STOP operation has failed, idempotency is ensured; the operation may
be re-submitted several times with the same input without changing the final result beyond its first
execution until the operation succeeds. This may be useful if an operation targeting multiple contexts has
failed and needs to be resubmitted after remediation.
From the time the operation is submitted until the time that the CXT_STS.state of a targeted valid context
becomes CXTV_STOP_[SW, FN] or CXTV_ERR_FN, software shall not modify any memory-based data
structure encompassed by LVL_CXT_CTL. Doing so may cause the context to enter undefined operation.
(See "4.3.1.2, Software Procedure For Modifying Memory-Based Data Structures")
Note that this operation is fenced with respect to prior descriptor operations on the same administrative
context. See "6.1.1, Common Header and Footer" for details.

120 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 6-15: DSC_CXT_STOP Descriptor Format

sdxi-structures-dsc_cxt_stop

SNIA SDXI Specification Working Draft 121
 Version 1.0.3

Table 6–17: DSC_CXT_STOP[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = 1 Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x04 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0; 039:032 Shall be set to 0

u8 vflags; 044:040 rsvd Shall be set to 0

045 hs 0 = Soft-Stop Completion.
1 = Hard Stop Completion.

46 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u16 cxt_start; 079:064 Indicates the starting context number to operate on.

u16 cxt_end; 095:080 Indicates the ending (last) context number to operate on.

u8 rsvd_1[44]; 447:096 Shall be set to 0

u64 csb_ptr; 448 np no_pointer. See section "6.1.1".
452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

122 Working Draft SNIA SDXI Specification
 Version 1.0.3

 AdminGrp DSC_AKEY_UPD Operation
The AdminGrp's DSC_AKEY_UPD operation is used by software to indicate a change to one or more
AKey table entries associated with one or more contexts of a target function. This operation signals the
target SDXI function to update its internal copies, if any, of the selected AKey table entries. (See "4.3.1,
SDXI Memory-Based Data-Structure Hierarchy and Caching")
The affected contexts are described using the cxt_start and cxt_end fields. The affected AKey table
indices are selected using the akey_start and akey_end fields. Note that a successful completion of a
DSC_AKEY_UPD operation only indicates that background update actions shall be started; it does not
indicate that the update actions have completed nor that their effects are visible. Software shall use the
DSC_SYNC operation to ensure that the background update actions have completed.

Figure 6-16: DSC_AKEY_UPD Descriptor Format

sdxi-structures-dsc_akey_upd

SNIA SDXI Specification Working Draft 123
 Version 1.0.3

Table 6–18: DSC_ADM_AKEY_UPD[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x02 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0; 039:032 Shall be set to 0
u8 vflags; 046:040 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u16 cxt_start; 079:064 Indicates the starting context number to operate on.
u16 cxt_end; 095:080 Indicates the ending (last) context number to operate on.
u16 akey_start; 111:096 Indicates the starting AKey number to operate on.
u16 akey_end; 127:112 Indicates the ending (last) AKey number to operate on.
u8 rsvd_1[40]; 447:128 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

124 Working Draft SNIA SDXI Specification
 Version 1.0.3

 AdminGrp DSC_CXT_UPD Operation
The AdminGrp's DSC_CXT_UPD operation is used by software to indicate a change to memory data
structures describing one or more contexts of a target function. For each context specified, the operation
signals the function to start the updating of all internal copies, if any, of all memory-based data structures
and subsidiary structures associated with the context at the specified data-structure hierarchy level. (See
"4.3.1, SDXI Memory-Based Data-Structure Hierarchy and Caching".) The targeted contexts are described
using the cxt_start and cxt_end fields. The data-structure level (dsl) field within the descriptor determines
whether the LVL_L2, LVL_L1, or LVL_CXT_CTL level associated with the context is updated.
When selecting LVL_L2, software shall specify cxt_start as the first context number mapped to the
CXT_L2_ENT and cxt_end as the last function-supported context mapped to the CXT_L2_ENT. This is
because one CXT_L2_ENT points to a naturally-aligned range of 128 contexts. For example, assume that
the function has been configured through MMIO_CAP1 and MMIO_CTL2 to support contexts 0 to 257.
Updating the CXT_L2_ENT that maps context numbers 128 to 255, requires a cxt_start of 128 and a
cxt_end of 255. Whereas, updating the CXT_L2_ENT that maps context numbers 256 and 257 requires a
cxt_start of 256 and a cxt_end of 257.
The function shall not return an error when performing an update on a context that is CXTV_INVALID.
For any requested level of the memory-based data-structure hierarchy to update, an SDXI implementation
may update any associated higher level of the hierarchy. Note that a successful completion of a
DSC_CXT_UPD operation only indicates that background update actions shall be started; it does not
indicate that the update actions have completed nor that their effects are visible. Software shall use the
DSC_SYNC operation to ensure that the background update actions have completed.

Table 6–19: Targeted Data-Structure Level
dsl[2:0] Targeted Data-Structure Level (See "4.3.1, SDXI Memory-Based Data-

Structure Hierarchy and Caching")

000b Reserved

100b DSC_CXT_UPD.CTL: Updating LVL_CXT_CTL fields.

110b DSC_CXT_UPD.L1: Updating LVL_L1 fields.

111b DSC_CXT_UPD.L2: Updating LVL_L2 fields.

All other encodings are reserved.

SNIA SDXI Specification Working Draft 125
 Version 1.0.3

Figure 6-17: DSC_CXT_UPD Descriptor Format

sdxi-structures-dsc_cxt_upd

126 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–20: DSC_CXT_UPD[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x01 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 cflags; 034:032 tgt_pcd Targeted Private-Cached Data to Update. See "Table 6–19:
Targeted Data-Structure Level" for details.

039:035 rsvd Shall be set to 0
u8 vflags; 046:040 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u16 cxt_start; 079:064 Indicates the starting context number to operate on.
u16 cxt_end; 095:080 Indicates the ending (last) context number to operate on.
u8 rsvd_0[44]; 447:096 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 127
 Version 1.0.3

 AdminGrp: DSC_FN_UPD Operation
The AdminGrp's DSC_FN_UPD operation is used by software to indicate a non-specific change in
memory data structure contents. This operation signals the target SDXI function to invalidate all non-
coherently cached copies of SDXI data structures across all contexts (LVL_FN).
Note that a successful completion of a DSC_FN_UPD operation only indicates that background update
actions shall be started; it does not indicate that the update actions have completed nor that their effects
are visible. Software shall use the DSC_SYNC operation to ensure that the background update actions
have completed.

Figure 6-18: DSC_FN_UPD Descriptor Format

sdxi-structures-dsc_fn_upd

128 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–21: DSC_FN_UPD[^7] Operation Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x00 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0; 039:032 rsvd Shall be set to 0
u8 vflags; 046:040 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u8 rsvd_1[48]; 447:064 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 129
 Version 1.0.3

 AdminGrp DSC_RKEY_UPD Operation
The AdminGrp's DSC_RKEY_UPD operation is used by software to indicate a change to one or more
RKey table entries. This operation signals the target SDXI function to update its internal copies, if any, of
the selected RKey table entries. (See "4.3.1, SDXI Memory-Based Data-Structure Hierarchy and
Caching") The affected RKey table indices are selected using the rkey_start and rkey_end fields.
Note that a successful completion of a DSC_RKEY_UPD operation only indicates that background update
actions shall be started; it does not indicate that the update actions have completed nor that their effects
are visible. Software shall use the DSC_SYNC operation to ensure that the background update actions
have completed.

Figure 6-19: DSC_RKEY_UPD Descriptor Format

sdxi-structures-dsc_rkey_upd

130 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–22: DSC_RKEY_UPD[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x07 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0; 039:032 rsvd Shall be set to 0
u8 vflags; 046:040 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u8 rsvd_1[4]; 095:064 rsvd Shall be set to 0
u16 rkey_start; 111:096 Indicates the starting RKey number to operate on.
u16 rkey_end; 127:112 Indicates the ending (last) RKey number to operate on.
u8 rsvd_2[40]; 447:128 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 131
 Version 1.0.3

 AdminGrp DSC_SYNC Operation
The AdminGrp's DSC_SYNC operation acts as a filtered synchronization barrier for prior DSC_UPD
operations, DSC_CXT_STOP operations, and background stopping actions targeting a specific function.
The filter field in the DSC_SYNC descriptor specifies which data structures updates and background
actions are ordered with respect to the synchronization barrier for the targeted function.
A DSC_SYNC operation is issued from the administrative context of a source function and synchronizes
against the specified operations and actions previously applied to a target function. When the "vf" field of
the operation is "0", both the source and target are the same local function (referred to as a "LOC"
operation). When the "vf" field is "1", the source function is a PF and the target function is a VF specified
by the "vf_number" field (referred to as a "P2V" operation).
The DSC_SYNC synchronization barrier is applied as follows.

1. For all DSC_SYNC filters except STOP, a DSC_SYNC operation shall ensure synchronization with
previous DSC_UPD operations that match the filter and are issued from the same source function
acting upon the same target function. Consider the following examples where the filter matches.

a. A DSC_SYNC operation is ensured to synchronize with a previous DSC_UPD when both
operations have "vf" as "0" and are issued on the same function.

b. A DSC_SYNC operation is ensured to synchronize with a previous DSC_UPD when both
operations have "vf" as "1", are issued on the same PF, and target the same "vf_number".

c. A DSC_SYNC operation is not ensured to synchronize with a previous DSC_UPD when one
operation is issued by the PF targeting a VF ("vf" is "1") and the other has been locally issued
("vf" is "0") on the same VF.

d. A DSC_SYNC operation is not ensured to synchronize with a previous DSC_UPD when both
operations have "vf" as "1", are issued on the same PF, but target a different "vf_number".

2. For a DSC_SYNC.STOP, the operation shall ensure synchronization with the stopping of the
specified contexts on the target function – regardless of the source of the stopping action. Consider
the following examples where the filter matches.

a. A DSC_SYNC.STOP operation with "vf" as "0" is ensured to synchronize with the stopping of
a context on the same function.

b. A DSC_SYNC.STOP operation issued by the PF targeting a context on a VF ("vf" is "1") is
ensured to synchronize with the local stopping of the same context on the same VF.

c. A DSC_SYNC.STOP operation issued by the PF targeting a context on a VF ("vf" is "1") is not
ensured to synchronize with the stopping of any context on the PF or a different VF.

3. For any specified filter and target function, an SDXI implementation may synchronize against any
larger set of updates, actions, and functions that includes the specified filter and target function;
software shall not rely upon this behavior.

A successful completion of the DSC_SYNC operation indicates the successful completion of the specified
data structures updates and background actions, and all previously received MMIO doorbells are fully
evaluated (i.e. there are no outstanding data structure reads due to a prior doorbell). An error associated
with DSC_SYNC may indicate an error associated with the same updates and background actions.
The table below describes the filter field used by DSC_SYNC.

132 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–23: DSC_SYNC Filter
Filter Name Description

000b CXT The operation synchronizes against context updates (DSC_CXT_UPD.L2,
DSC_CXT_UPD.L1, DSC_CXT_UPD.CTL, and DSC_CXT_UPD.AKEY) for the
contexts specified by the cxt_start and cxt_end fields. The key_start and key_end
fields are ignored.

001b STOP The operation synchronizes against completed stop actions on the target function
(DSC_CXT_STOP, StopErr:Cxt, and Stop_FN) for the contexts specified by the
cxt_start and cxt_end fields. The key_start and key_end fields are ignored.
Note that synchronizing against all function contexts for stopping is insufficient to
determine that the function itself has transitioned to GSV_STOP; software must
still check MMIO_STS0.fn_gsv for GSV_STOP.

010b AKEY The operation synchronizes against AKey updates (DSC_AKEY_UPD) for the
contexts specified by the cxt_start and cxt_end fields and the AKeys specified by
the key_start and key_end fields.

011b RKEY The operation synchronizes against RKey updates (DSC_RKEY_UPD) for the the
RKeys specified by the key_start and key_end fields. The cxt_start and cxt_end
fields are ignored.

100b Function (FN) The operation synchronizes against function updates (DSC_FN_UPD). The
cxt_start, cxt_end, key_start, and key_end fields are ignored.

All other values are reserved.

Figure 6-20: DSC_SYNC Descriptor Format

sdxi-structures-dsc_sync

SNIA SDXI Specification Working Draft 133
 Version 1.0.3

Table 6–24: DSC_SYNC[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x06 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 cflags; 034:032 flt Indicates the filter to apply.

039:035 rsvd Shall be set to 0

u8 vflags; 046:040 rsvd Shall be set to 0

47 vf "vf" valid.
1 = Update the VF number indicated by vf_number
0 = Update within the local function context executing this
descriptor
(For VF administrative contexts, this field shall be set to 0.)

u16 vf_num; 063:048 "vf" number.
Only valid for PF administrative contexts. When VF=1, this field
indicates the VF to update.
(For VF administrative contexts, this field shall be set to 0.)

u16 cxt_start; 079:064 Indicates the starting context number to operate on.

u16 cxt_end; 095:080 Indicates the ending (last) context number to operate on.

u16 key_start; 111:096 Indicates the starting key number to operate on.

u16 key_end; 127:112 Indicates the ending (last) key number to operate on.

u8 rsvd_0[40]; 447:128 Shall be set to 0

u64 csb_ptr; 448 np no_pointer. See section "6.1.1".
452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

134 Working Draft SNIA SDXI Specification
 Version 1.0.3

 AdminGrp DSC_ADM_INTR Operation
The AdminGrp's Interrupt operation is used to generate interrupts from within an administrative context.
The interrupt is generated from the local function hosting the administrative context.

Figure 6-21: DSC_ADM_INTR Descriptor Format

sdxi-structures-dsc_adm_intr

Table 6–25: DSC_ADM_INTR[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb = 0 Read Barrier. See section “6.1.1”. Shall be set to 0.

007:006 rsvd Shall be set to 0
015:008 subtype=0x05 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u8 rsvd_0[8]; 095:032 Shall be set to 0

u16 intr_num; 107:096 intr_num Specifies the MSI-X entry used to generate the interrupt.

111:108 rsvd Shall be set to 0

u8 rsvd_1[42]; 447:112 " Shall be set to 0

u64 csb_ptr; 448 np no_pointer. See section "6.1.1".
452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

SNIA SDXI Specification Working Draft 135
 Version 1.0.3

 AdminGrp DSC_DISC Operation
The Administrative Discovery operation is used by software to discover the GUID’s of operation groups
supported by the SDXI function, how these operation groups map onto descriptor opcode ‘type’ values,
and additional data about the SDXI function.
The discovery data is structured as an array of 2048 16-byte records. Index 0 holds additional information
about the function’s capability. Records 1-2047 hold the GUID’s of the SDXI Operation Groups that
correspond to opcode ‘type’ values 1-2047.
The GUID binary representation used by SDXI mirrors RFC4122 section 4.1.2, where the time_low,
time_mid, and time_hi_and_version fields use a little-endian encoding instead of a big-endian encoding.
The textual representation of GUIDs within this specification follows RFC4122 section 3.
A GUID value of 00000000-0000-0000-0000-000000000000 indicates that the corresponding opcode
‘type’ value is unused by the SDXI function. An SDXI function may intermix used and unused opcode
‘type’ values. For example, an SDXI function may support IntGrp at ‘type’ value 0x04, and vendor defined
Operation Groups at opcode type 0x06 and 0x08, while leaving the reserved type 0x05 and function
assignable type 0x07 unused.
The Administrative Discovery operation accepts a starting and ending index. Data is written into the 16-
byte aligned buffer located in the contexts address space (i.e. CXT_L1_ENT.cxt_pasid used). The amount
of data written is (1 + index_end – index_start)*16 bytes. If index_start is greater than index_end, the
function will treat the descriptor as invalid (see 5.3). The max_index field of index0 identifies the highest
index in use by the function. It is legal for software to read past max_index, however the function should
return the value of 00000000-0000-0000-0000-000000000000 for all indexes past max_index.
Software may choose to first retrieve index 0, and then retrieve index 1 through max_index. Alternatively,
software could read index 0 to 2047 in a single operation.

Figure 6-22: DSC_DISC Descriptor Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv csb_ptr

rsv addr

rsv

rsvsubtype = 0x09type = 0x002rsv
index_startrsvindex_endrsv

rsv

136 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–26: DSC_DISC[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1". Shall be set to 0.
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.

007:005 rsvd Shall be set to 0
015:008 subtype=0x09 See section "6.1.1".
026:016 type=0x002 See section "6.1.1".
031:027 rsvd Shall be set to 0

u16 index_start; 042:032 index_start The first index to read
047:043 rsvd

u16 index_end; 058:048 index_end The last index to read
063:059 rsvd

u8 rsvd_0[8]; 127:064 rsvd Shall be set to 0
u64 addr; 131:128 rsvd

191:132 addr 16 byte aligned destination buffer starting address
u8 rsvd_1[32]; 447:192 Shall be set to 0
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

Figure 6-23: Discovery Index 0 Format (DISC_INDEX0)

Table 6–27: Discovery Index 0 Format (DISC_INDEX0[^7])
Field Bits Subfield Description
u16 max_index 010:000 max_index The highest index in use. Indexes from max_index+1 to 2047

return 0.
015:011 rsvd Must be zero

u8 rsvd_0[14]; 127:016 rsvd Shall be set to 0

6.7 Double Copy Group (DblCopyGrp)
GUID: 989b9a64-28d9-4294-9c7b-9a3f27afaf5c. The Double Copy Group is optional.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 0x00

+ 0x04

+ 0x08

+ 0x0C

max_indexrsvrsv

SNIA SDXI Specification Working Draft 137
 Version 1.0.3

 DblCopyGrp: DSC_DBLCOPY Operation
The Double Copy operation copies a source data buffer to two destination data buffers.
It is an error (Generic Descriptor Error/Unsupported Field Encoding) for the source and destination buffers
to exceed the size described by CXT_L1_ENT.max_buffer.

Figure 6-24: DSC_DBLCOPY Descriptor Format

sdxi-structures-dsc_dblcopy

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

np + 0x38

+ 0x3C

akey2rsv
rsv

rsv csb_ptr

akey0akey1
addr0

addr1

addr2

rsv

rsvsubtype = 0x01typeRsvd
size

attr_srcattr_dst1attr_dst2rsvrsv

138 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–28: DSC_DBLCOPY[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1".
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier

0 = Prior writes are not guaranteed to be visible to this
descriptor

 1 = Prior writes are guaranteed to be visible to this descriptor

007:006 rsvd Shall be set to 0
015:008 subtype=0x01 See section "6.1.1".
026:016 type Function assigned opcode type value.
031:027 Rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes to write minus 1.
 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr[2]; 067:064 attr_src Source buffer attributes
071:068 attr_dst1 Destination buffer1 attributes
075:072 attr_dst2 Destination buffer2 attributes
079:076 rsvd Shall be set to 0

u8 rsvd_0[2]; 095:080 Shall be set to 0.
u16 akey0; 111:096 (src) Source buffer AKey
u16 akey1; 127:112 (dst1) Destination buffer1 AKey
u64 addr0; 191:128 (src) Source buffer starting address.
u64 addr1; 255:192 (dst1) Destination buffer1 starting address
u64 addr2; 319:256 (dst2) Destination buffer2 starting address
u8 rsvd_1[8]; 383:320 Shall be set to 0.
u16 akey2; 399:384 (dst2) Destination buffer2 AKey
u8 rsvd_2[2] 415:400 rsvd Shall be set to 0.
u8 rsvd_3[4]; 447:416 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

6.8 CRC Mode1 Operation Group (CrcM1Grp)
GUID: 15114db9-4a7e-47ab-97dd-ea86eda10b6e. The CRC Mode1 Operation Group is optional.
The CRC Mode1 Operation Group can calculate a CRC, calculate a CRC while copying data, can
calculate individual CRCs on multiple adjacent blocks of data that are optionally separated by metadata
gaps, and can copy blocks while performing a CRC on them. When copying blocks of data, the copy
operation can insert or remove metadata gaps as needed. The resulting CRC value, or list of values, is
written to memory within the context’s address space.
Multiple popular CRC polynomials and modes are supported spanning a wide variety of use cases, such
as T10 DIX/DIF guard tags, file formats such as zip, png, and mpeg2, and protocols such as iSCSI.

SNIA SDXI Specification Working Draft 139
 Version 1.0.3

A single CRC calculation can be continued across multiple SDXI descriptors by using the CRC result from
one descriptor as the CRC input seed in a subsequent descriptor. The CRC seed may be embedded
within the descriptor body, or it may be pointed to by the descriptor.

Table 6–29: CRC Operations Sub-Type

Sub
Type

Operation

0x00 CRC and Copy (DSC_CRC_COPY)
0x01 CRC Calculate only (DSC_CRC_CALC)
0x02 CRC and Copy Blocks (DSC_CRC_COPY_BLK)
0x03 CRC Calculate only Blocks (DSC_CRC_CALC_BLK)

Figure 6-25: DSC_CRCM1 Descriptor Format

sdxi-structures-dsc_crcm1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

+ 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

sl md ms + 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv
rsv csb_ptr

addr1

seed

crc_dst_addr

blkszcrcselreflectinvertrsvrsv

size
attr_srcattr_dstrsvrsv

akey0akey1
addr0

rsvsubtypetypeRsvd

140 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–30: DSC_CRCM1[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1".
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier

0 = Prior writes are not guaranteed to be visible to this
descriptor

 1 = Prior writes are guaranteed to be visible to this descriptor

007:006 rsvd Shall be set to 0
015:008 subtype= COPY:0x0, CALC:0x1, COPY_BLK:0x2, CALC_BLK:0x3
026:016 type Function assigned opcode type value.
031:027 Rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes in the source buffer that will be
included in CRC calculations. For the copy_blk and calc_blk
subtypes, the size value needs to be a multiple of the data block
size as defined in the blksz field.
The number of bytes copied from source to destination buffers is
dependent on the presence of metadata in source and/or
destination buffers. If metadata is present in both source and
destination buffers then the total number of bytes copied is size
+(size/block_size)*metadata_size.

 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr[2]; 067:064 attr_src Source buffer attributes
071:068 attr_dst Destination buffer attributes (not applicable to crc_calc and

crc_calc_blk)

079:072 rsvd Shall be set to 0
u8 rsvd_0[2]; 095:080 Shall be set to 0.
u16 akey0; 111:096 (src) Source buffer Akey
u16 akey1; 127:112 (dst) Destination buffer Akey (not applicable to crc_calc and

crc_calc_blk)
u64 addr0; 191:128 (src) Source buffer starting address.
u64 addr1; 255:192 (dst) Destination buffer starting address (not applicable to crc_calc and

crc_calc_blk)
u64 seed; 319:256 If sl = 0, the crc seed value is stored in the seed field. In the case

of a block operation, all blocks will use the same initial seed value.
If sl = 1 the seed field is an address pointer to an array of seed
values that is naturally aligned to the crc size as specified by the
crcsel field. In the case of crc_calc and crc_copy, the array
consists of a single value. The seed buffer resides in this SDXI
context’s address space.

u64 crc_dst_addr; 383:320 Specifies address of the buffer where the CRC(s) will be written. In
the case of a block operation, the resulting CRCs will be written
sequentially to this address. This address must be naturally
aligned to the crc size as defined in the crcsel field. The crc output
buffer resides in this SDXI context’s address space.

SNIA SDXI Specification Working Draft 141
 Version 1.0.3

u16 crc_ctrl; 386:384 blksz Specifies the block and meta data size. Only valid for
crc_copy_blk, and crc_calc_blk. Must be zero for crc_copy and
crc_calc. When metadata is present it is always excluded from the
CRC calculation.
 0x0 = 512B Block + No Metadata
 0x1 = 512B Block + 8B Metadata
 0x2 = 4096B Block + No Metadata
 0x3 = 4096B Block + 16B Metadata
 0x4 = 4096B Block + 8B Metadata
 0x5-0x7 = Reserved

387 ms Specifies the presence of metadata in the source destination
buffer. This field only has meaning when subtype = crc_copy_blk
or crc_calc_blk and blksz is 1, 3, or 4.
 0 = no metadata present in source buffer
 1 = metadata present in source buffer

388 md Specifies the presence of metadata in the destination buffer. This
field only has meaning when subtype = crc_copy_blk, and blksz is
1, 3, or 4.
 0 = no metadata present in destination buffer
 1 = metadata present in destination buffer

389 sl Specifies the CRC seed location
 0 = Common CRC seed for all blocks is defined directly in the
 seed field within this descriptor
 1 = Separate CRC seeds for each block is defined in buffer
 pointed to by seed field

392:390 crcsel Specifies the CRC size and polynomial to use:
 0x0 = CRC16: 0x8BB7
 0x1 = CRC32: 0x1EDC6F41
 0x2 = CRC32: 0x04C11DB7
 0x3 = CRC64: 0xAD93D23594C93659
 0x4 – 0x7 = Reserved for future use.

394:393 reflect Specifies if the input data, seed, and generated CRC should be
reflected.
 00b = don’t reflect input data, seed, or generated CRC
 01b = reflect input data, don’t reflect seed, or generated CRC
 10b = don’t reflect input data, reflect seed and generated CRC
 11b = reflect input data, seed and generated CRC

396:395 invert Specifies if the crc seed and generated CRC should be inverted.
 00b = don’t invert seed or generated CRC
 01b = invert seed and don’t invert generated CRC
 10b = don’t invert seed and invert generated CRC
 11b = invert seed and generated CRC

399:397 rsvd Shall be set to 0

u8 rsvd_2[2] 415:400 rsvd Shall be set to 0.
u8 rsvd_3[4]; 447:416 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

142 Working Draft SNIA SDXI Specification
 Version 1.0.3

The following table provides example usages of the CRC Mode1 operation, and the results of performing a
CRC on the ASCII string “123456789”.

Table 6-31: CRC Mode1 Examples
CRC Application crcsel reflect seed + invert CRC of “123456789”
CRC-16 / T10-DIF 0x0 00b seed=0x0000, inv=00b -or-

seed=0xFFFF, inv=01b
0xD0DB

CRC-32C / iSCSI 0x1 11b seed=0xFFFFFFFF, inv=10b -or-
seed=0x00000000, inv=11b

0xE3069283

PKZIP / PNG / ZLIB 0x2 11b seed=0xFFFFFFFF, inv=10b -or-
seed=0x00000000, inv=11b

0xCBF43926

BZIP2 0x2 00b seed=0xFFFFFFFF, inv=10b -or-
seed=0x00000000, inv=11b

0xFC891918

MPEG-2 0x2 00b seed=0xFFFFFFFF, inv=00b -or-
seed=0x00000000, inv=01b

0x0376E6E7

(none) 0x2 10b seed=0x12345678, inv=00b -or-
seed=0xEDCBA987, inv=01b

0x34913CCC

(none) 0x2 01b seed=0x12345678, inv=00b -or-
seed=0xEDCBA987, inv=01b

0x73D12E0F

NVM Express 64b CRC 0x3 11b seed=0xFF...FF, inv=10b -or-
seed=0x00...00, inv=11b

0xAE8B14860A799888

The following demonstrates how to split a single ZIP CRC operation across multiple SDXI descriptors by
forwarding the output of one CRC operation as the seed input to the next descriptor:
crcsel = 0x2, reflect=11b, seed=0xFFFFFFFF, inv=00b, data="1234", output=0x641C1F5C
crcsel = 0x2, reflect=11b, seed=0x641C1F5C, inv=10b, data="56789", output=0xCBF43926

6.9 Protection Information Operation Group (PIGrp)
GUID: cc3bdd85-7616-44a6-a7ca-d7e9f1029e67. The PI Operation Group is optional.
The PI Operation Group is dedicated to a set of memory operations that are commonly performed to
ensure data integrity. The general theory involves reading source data from memory and depending on
the operation subtype checking, adding, removing, updating, or comparing PI-related metadata data in the
source buffer pointed in addr0. Except for when the operation involves comparing the PI metadata related
to the buffer in addr1, most operations will copy the data and its associated PI buffers to the buffer pointed
by addr1 if applicable. Any errors associated with the operation are reported as a PI status in the PI Tag
Status block associated with PI operations. While a range of operations are possible, this version
describes the following operations and their parameters. See Table 6–32 for their subtypes.

Table 6–32: PI Operations Sub-Type

Sub
Type

Operation

0x00 DIF Check (PI_DIF_CHECK)
0x01 DIF Insert (PI_DIF_INSERT)
0x02 DIF Strip (PI_DIF_STRIP)
0x03 DIF Check and Update (PI_DIF_UPDATE)
0x04 DIF Compare (PI_DIF_COMPARE)

The parameters are designed to align with those associated with the CRC Operation Group to allow
implementations to efficiently leverage CRC engines for PI operations as well. Therefore, ‘size’, ‘blksz’,

SNIA SDXI Specification Working Draft 143
 Version 1.0.3

‘m0’, ‘m1’, ‘sl’, ‘crcsel’ fields are leveraged from the CRC Operation Group to efficiently calculate the size
of the data buffer with or without PI fields.

Figure 6-26: DSC_PI Descriptor Format

sdxi-structures-dsc_crcm1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
rb csr ch fe se vl + 0x00

+ 0x04

rsv cpy a** r** g**a**s** r** a** r** g**a**s** r** + 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

sl m1 m0 + 0x30

+ 0x34

np + 0x38

+ 0x3C

rsv
rsv csb_ptr

pi_block_ptr

pi_tag_status_ptr

blkszcrcselreflectinvertrsvrsv

attr_a0attr_a1rsvrsv
akey0akey1

addr0

addr1

rsvsubtypetypeRsvd
size

144 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 6–33: DSC_PI[^7] Descriptor Format
Field Bits Subfield Description
u32 opcode; 000 vl = 1 Valid. See section "6.1.1".

001 se = * Sequential Consistency. See section "6.1.1".
002 fe = * Fence. See section "6.1.1".
003 ch = 0 Chain. See section "6.1.1". Shall be set to 0.
004 csr Completion Status Mode Requirement for the descriptor.
005 rb Read Barrier

0 = Prior writes are not guaranteed to be visible to this descriptor
 1 = Prior writes are guaranteed to be visible to this descriptor

007:006 rsvd Shall be set to 0
015:008 subtype= PI_DIF_CHECK:0x0, PI_DIF_INSERT:0x1, PI_DIF_STRIP:0x2,

PI_DIF_UPDATE:0x3, PI_DIF_COMPARE:0x4
026:016 type Function assigned opcode type value.
031:027 Rsvd Shall be set to 0

u32 size; 063:032 Specifies the number of bytes in the source buffer that will be
included in CRC calculations. For the copy_blk and calc_blk
subtypes, the size value needs to be a multiple of the data block
size as defined in the blksz field.
The number of bytes copied from source to destination buffers is
dependent on the presence of metadata in source and/or
destination buffers. If metadata is present in both source and
destination buffers then the total number of bytes copied is size
+(size/block_size)*metadata_size.

 0x0 = 1 Byte, . . ., 0xFFFF_FFFF = 2**32 Bytes

u8 attr[2]; 067:064 attr_a0 Addr0 or Source buffer attributes
071:068 attr_a1 Addr1 or Destination buffer attributes (not applicable to

PI_DIF_CHECK). For PI_DIF_CMP, Addr1 is the compare buffer.

079:072 rsvd Shall be set to 0
u8 pi_flags0; 080 ref_prs 1= Ref Tag present

081 stg_prs 1= Storage Tag present

082 app_prs 1= App Tag present

083 grd_prs 1= Guard present

084 ref_inc 0 = Ref Tag is constant.
1= Ref Tag is incrementing

085 app_inc 0 = App Tag is constant
1 = App Tag is incrementing

087:086 rsvd Shall be set to 0.
u8 pi_flags1; 088 ref_prs 1= Ref Tag present

089 stg_prs 1= Storage Tag present

090 app_prs 1= App Tag present

091 grd_prs 1= Guard present

SNIA SDXI Specification Working Draft 145
 Version 1.0.3

092 ref_inc 0 = Ref Tag is constant.
1= Ref Tag is incrementing

093 app_inc 0 = App Tag is constant
1 = App Tag is incrementing

094 cpy App Tag, Ref Tag, Storage Tag, Guard shall be copied from a0
 095 rsvd Shall be set to 0.

u16 akey0; 111:096 akey0 Address 0 buffer Akey or Source Buffer Akey.
u16 akey1; 127:112 akey1 Addr1 buffer Akey. Destination buffer Akey, or Compare Buffer

Akey for PI_DIF_CMP operations
u64 addr0; 191:128 addr0 Addr0 or Source buffer starting address.
u64 addr1; 255:192 addr1 Addr 1 or Destination buffer starting address. This is the Compare

Buffer for PI_DIF_CMP operations.
u64 pi_block_ptr; 319:256 Points to a 64-byte structure of relevant initial information needed

to process a data block for PI operations like ref tag, app tag, type
of PI, location of PI, storage tag size, ref tag mask, app tag mask,
address where a contiguous array of PI data is stored, etc. The PI
block pointer structure resides in this SDXI context’s address
space.

u64 pi_tag_status_ptr; 383:320 Specifies the address of the buffer where the tag and status data
will be written. In the case of a block operation, the resulting PI
metadata will be written sequentially to this address. This address
is 64B aligned and resides in the SDXI context’s address space.

u16 pi_ctrl; 386:384 blksz Specifies the block and meta data size.
 0x0 = 512B Block + No Metadata
 0x1 = 512B Block + 8B Metadata
 0x2 = 4096B Block + No Metadata
 0x3 = 4096B Block + 16B Metadata
 0x4 = 4096B Block + 8B Metadata
 0x5-0x7 = Reserved

387 m0 Specifies the presence of metadata in the addr0 buffer. This field
only has meaning when blksz is 1, 3, or 4.
 0 = no metadata present in addr0 buffer
 1 = metadata present in addr0 buffer

388 m1 Specifies the presence of metadata in the addr1 buffer. This field
only has meaning when blksz is 1, 3, or 4.
 0 = no metadata present in addr1 buffer
 1 = metadata present in addr1 buffer

389 sl=1 Shall be set to 1 for PI operations.

392:390 crcsel Specifies the CRC size and polynomial to use:
 0x0 = CRC16: 0x8BB7
 0x1 = CRC32: 0x1EDC6F41
 0x2 = CRC32: 0x04C11DB7
 0x3 = CRC64: 0xAD93D23594C93659
 0x4 – 0x7 = Reserved for future use.

146 Working Draft SNIA SDXI Specification
 Version 1.0.3

394:393 reflect Specifies if the input data, seed, and generated CRC should be
reflected.
 00b = don’t reflect input data, seed, or generated CRC
 01b = reflect input data, don’t reflect seed, or generated CRC
 10b = don’t reflect input data, reflect seed and generated CRC
 11b = reflect input data, seed and generated CRC

396:395 invert Specifies if the crc seed and generated CRC should be inverted.
 00b = don’t invert seed or generated CRC
 01b = invert seed and don’t invert generated CRC
 10b = don’t invert seed and invert generated CRC
 11b = invert seed and generated CRC

399:397 rsvd Shall be set to 0

u8 rsvd_0[2] 415:400 rsvd Shall be set to 0.
u8 rsvd_1[4]; 447:416 rsvd Shall be set to 0.
u64 csb_ptr; 448 np no_pointer. See section "6.1.1".

452:449 rsvd Shall be set to 0
511:453 csb_ptr Completion Status Block pointer. See section "6.1.1".

Figure 6-27: PI Block Format (PI_BLK)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 0x00

+ 0x04

pip + 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

+ 0x38

+ 0x3C

pi_addr

rsv

a1_ref_tag

a1_ref_tag1a0_stag_sizea1_stag_size
a0_aptagmska0_app_tag
a1_app_tmska1_app_tag

a0_ref_tag

a0_ref_tag1typersvrsv

SNIA SDXI Specification Working Draft 147
 Version 1.0.3

Table 6–34: PI Block Format (PI_BLK[^3])
Field Bits Subfield Description

u8 a0_ref_tag[8]; 063:000 Specifies the initial ref tag associated with the buffer in addr0. The
size of Ref Tag depends on ‘blksz’ and ‘crcsel’. For e.g., if
blksz=0x3(4096+16B metadata), and crcsel=0x3(CRC64), then Ref
Tag occupies 6bytes(48bits). If blksz=0x3(4096+16B metadata), and
crcsel=0x2(CRC32), then Ref Tag is 10 bytes.

u8 a0_ref_tag1[2]; 079:064 Ref Tag extension. Remaining 2 bytes of a 10-byte Ref Tag. Only
valid based on calculation of ‘blksz’ and ‘crcsel’.

u8 pi_type; 082:080 type Data can be formatted with different Protection Information Types.
0 = Type0
1 = Type1
2 = Type2
3-7 = Reserved for future use
See NVMe and SCSI specifications on formatting types.

083 pip Position of PI buffers associated with the data blocks referenced by
this descriptor. If ‘pip’=1, ‘pi_addr’ is valid. See ‘pi_addr’.

087:084 rsvd Reserved. Shall be set to 0.

u8 rsvd_0; 095:088 rsvd Reserved. Shall be set to 0.
u8 a1_ref_tag[8]; 159:096 Specifies the initial ref tag associated with the buffer in addr0. Ref Tag

size depends on ‘blksz’ and ‘crcsel’. If Ref Tag is greater than 8-bytes,
the remaining bytes are in a1_ref_tag1.

u8 a1_ref_tag1[2]; 175:160 Ref Tag extension. The remaining 2-bytes of a 10-byte Ref Tag. Only
valid based on calculation of ‘blksz’ and ‘crcsel’.

u8 a0_stag_size; 183:176 Specifies the size of Storage Tag for buffer in addr0 within its Ref Tag.
E.g., if Ref Tag is 6-bytes (48-bits), and a1_stag_size=8, then Storage
Tag occupies the 8-Most Significant Bits of the 48-bit Ref Tag.

u8 a1_stag_size; 191:184 Specifies the size of Storage Tag for buffer in addr1 within its Ref Tag.
If Ref Tag calculated using ‘blksz’ and ‘crcsel’ is 6bytes(48bits) and
a1_stag_size=8, then Storage Tag occupies the 8-Most Significant
Bits of the 48bit ref tag. Refer to <NVMe specification> for more
details on Storage Tag.

u16 a0_aptagmsk; 207:192 App Tag Mask for buffer in addr0
u16 a0_app_tag; 223:208 Initial App Tag for buffer in addr0
u16 a1_app_tmsk; 239:224 App Tag Mask for buffer in addr1
u16 a1_app_tag; 255:240 Initial App Tag for buffer in addr1
u64 pi_addr; 319:256 Points to address of the PI buffer. If data transferred with this

descriptor is more than a single unit of block data specified in blksz i.e.
size >= 2*blksz, PI associated with each data block is contiguous to
this address. Address is valid only if ‘pip’=1. If ‘pip’=0, then each data
block is followed by pi buffer data. Irrespective of the value of ‘pip’,
size=sum(no_of_data_blocks*(blksz)) where blksz =
block_data+pi_metadata. If ‘pip’=1 and ‘blksz’ does not reflect
metadata associated with the data buffer, PI_addr shall be invalid.

u8 rsvd_1[24]; 511:320 rsvd Shall be set to 0.

148 Working Draft SNIA SDXI Specification
 Version 1.0.3

Figure 6-28: PI Tag and Status Block Format (PI_TAG_STATUS_BLK)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+ 0x00

+ 0x04

g**a**s** r** err + 0x08

+ 0x0C

+ 0x10

+ 0x14

+ 0x18

+ 0x1C

+ 0x20

+ 0x24

+ 0x28

+ 0x2C

+ 0x30

+ 0x34

+ 0x38

+ 0x3C

a1_app_tmska1_app_tag
rsv

a0_ref_tag10rsv
rsv

a1_ref_tag

a1_ref_tag10rsv
a0_app_tmska0_app_tag

a0_ref_tag

SNIA SDXI Specification Working Draft 149
 Version 1.0.3

Table 6–35: PI Tag and Status Block Format (PI_TAG_STATUS_BLK[^3])
Field Bits Subfield Description

u64 a0_ref_tag; 063:000 Final value of ref tag updated by the fn with the buffer in addr0. The
size of Ref Tag tag depends on ‘blksz’ and ‘crcsel’. For e.g., if
blksz=0x3(4096+16B metadata), and crcsel=0x3(CRC64), then Ref
Tag occupies 6bytes(48bits). If blksz=0x3(4096+16B metadata), and
crcsel=0x2(CRC32), then Ref Tag is 10bytes. If ref tag contains
storage tag, then size of ref tag is adjusted.

u16 a0_ref_tag10; 079:064 Ref Tag extension. Remaining 2 bytes of a 10-byte Ref Tag. Only
valid based on calculation of ‘blksz’ and ‘crcsel’.

u16 status; 080 err 0 = No Error
1 = Error

081 ref_err 1 = Ref Tag Mismatch error
082 stg_err 1 = Storage Tag Mismatch error
083 app_err 1 = App Tag Mismatch error
084 grd_err 1 = Guard Mismatch error

095:085 rsvd Shall be set to 0.
u8 rsvd_0[4] 127:096 rsvd Shall be set to 0.
u64 a1_ref_tag; 191:128 Final value of ref tag associated with the buffer in addr1. The size of

Ref Tag tag depends on ‘blksz’ and ‘crcsel’. For e.g., if
blksz=0x3(4096+16B metadata), and crcsel=0x3(CRC64), then Ref
Tag occupies 6bytes(48bits). If blksz=0x3(4096+16B metadata), and
crcsel=0x2(CRC32), then Ref Tag is 10-bytes. If Ref Tag contains
Storage Tag, then the size of Ref Tag is adjusted to include the
Storage Tag in the MSBits.

u16 a1_ref_tag10; 207:192 Ref Tag extension. Remaining 2-bytes of a 10-byte Ref Tag. Only
valid based on calculation of ‘blksz’ and ‘crcsel’.

u8 rsvd_1[2] 223:208 Reserved. Shall be set to 0.
u16 a0_app_tmsk; 239:224 App Tag Mask for buffer in addr0
u16 a0_app_tag; 255:240 Final value of App Tag for buffer in addr0
u16 a1_app_tmsk; 271:256 App Tag Mask for buffer in addr1
u16 a1_app_tag; 287:272 Final value of App Tag for buffer in addr1
u8 rsvd_2[28]; 511:288 rsvd Shall be set to 0.

150 Working Draft SNIA SDXI Specification
 Version 1.0.3

7 Recommended Sequences for Function
Management

7.1 Function Level Resources

 Context Level 2 Table Base (MMIO_CXT_L2) Modification
The simplest method is shown below; others are possible.

1. Stop the function using the procedure described in "4.1.9, Stopping of the SDXI Function by
Software".

2. Write MMIO_CXT_L2 with the new location of the Context Level 2 Table.
3. Activate the function using the procedure described in "4.1.8, Activation of the SDXI Function by

Software".

SNIA SDXI Specification Working Draft 151
 Version 1.0.3

7.2 Context Level Resources

 Context Level 2 Table Entry (CXT_L2_ENT) Modification
Software may modify a Context Level 2 Table Entry (CXT_L2_ENT) for a number of reasons: make the
entry invalid, add a Context Level 1 Table, or delete the Context Level 1 Table. The method for any of
these cases is essentially the same.

1. Assumptions
a. Let "cl2_idx" be the index offset of the desired CXT_L2_ENT from the beginning of the context

level 2 table; for example, the fourth entry of the context level 2 table has an index of 3.
b. The desired CXT_L2_ENT points to a context level 1 table of 128 CXT_L1_ENT entries and

indirectly to their associated contexts. Therefore, regardless of the individual context state, it is
recommended to operate on all of them.

2. If there are running contexts associated with the CXT_L2_ENT, software shall stop them before
making any other changes to the CXT_L2_ENT.

a. If context 0 (the administrative context) is included in the range of contexts associated with the
desired CXT_L2_ENT, then for the below steps "start" = 1; otherwise "start" = (cl2_idx << 7).

b. Issue DSC_CXT_STOP with cxt_start = start and cxt_end = (cl2_idx << 7) + 127.
c. Issue DSC_SYNC.STOP with cxt_start = start and cxt_end = (cl2_idx << 7) + 127.
d. Wait for the DSC_SYNC.STOP to complete.
e. If context 0 is included, issue DSC_CXT_STOP with cxt_start = 0 and cxt_end = 0. Wait until

CXT_STS.state of Context 0 is STOP_CXT_SW.
3. Modify the CXT_L2_ENT as appropriate.

a. If adding a new context level 1 table, initialize the associated CXT_L1_ENTs, and contexts as
appropriate.

4. If context 0 is included, it must be restarted first through a jump-start method described in "4.3.4,
Starting A Context and Context Signaling".

5. Propagate and synchronize the update.
a. Issue DSC_CXT_UPD.L2 with cxt_start = (cl2_idx << 7) and cxt_end = (cl2_idx << 7) + 127;
b. Issue DSC_SYNC.CXT_UPD with cxt_start = (cl2_idx << 7) and cxt_end = (cl2_idx << 7) +

127.
c. Wait for the DSC_SYNC.CXT_UPD to complete.

6. Restart all relevant contexts if appropriate. All 128 contexts can be started by issuing a
DSC_START_NM with cxt_start = (cl2_idx << 7) and cxt_end = (cl2_idx << 7) + 127.

152 Working Draft SNIA SDXI Specification
 Version 1.0.3

8 SDXI PCI-Express Device Architecture

SDXI is based on the PCI-Express device and software architecture including the use of configuration and
MMIO register spaces and standard PCI-Express capabilities including, but not limited to, PCI Power
Management, MSI/MSI-X interrupts and SR-IOV.
SDXI may be implemented using a range of function types such as PCIe EP or RCiEP. It may be
implemented as either a Physical Function or Virtual Function.
Each SDXI function shall support standard PCI-Express defined reset mechanisms such as fundamental
reset and hot-reset.
If SR-IOV is supported, PFs and VFs shall support Function Level Reset (FLR).

8.1 SDXI Function Configuration Space Registers

Figure 8-1: PCI Config Space

sdxi-structures-misc-X008

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+000h

+004h

+008h

MF +00Ch

+010h

+014h

+018h

+01Ch

+020h

+024h

+028h

+02Ch

+030h

+034h

+038h

+03Ch

SE PE BM MS I/O
0x0

SC
0x0

WI
0x0

PS
0x0

SWC
0x0rsvdPIRIS

0x0
CAP
0x1

66
0x0MDPSTARTARMA rsvdrsvd

⭠Command ⭢

Capabilities Pointer

Bar 0/1 Prefetchable Memory for MMIO Registers

Bar 2/3 Prefetchable Memory for Doorbells

Bar 4 - Reserved 0x0
Bar 5 - Reserved 0x0

Cardbus CIS Pointer - 0x0
Subsystem ID Subsystem Vendor ID

Expansion ROM Base Address - 0x0

SSEDPE DEVSEL
0x0

ID
0x0

FBE
0x0

FBC
0x0

Interrupt Pin - 0x0 Interrupt Line

Vendor IDDevice ID

Revision ID

Cache Line SizeLatency Timer - 0x0BIST

Base Class - 0x12 Sub-Class - 0x1 Prog I/F - 0x0

Header Layout - 0x0

⭠Status ⭢

⭠Class Code ⭢

Max_Lat - 0x0 Min_Gnt - 0x0

Reserved

SNIA SDXI Specification Working Draft 153
 Version 1.0.3

 Class Code
SDXI functions are expected to be identified through the SDXI class code.

• SNIA Smart Data Accelerator Interface (SDXI) controller:
• Base Class = 0x12
• Sub Class = 0x01
• Programming Interface = 0x0

 BAR Configuration

Table 8–1: BAR Configuration
PCI Bar
Index

Width Size Type Description

Bar 0/1 64 bit 512KiB to 4MiB for PF. 512KiB for VF Prefetchable, Memory MMIO Registers

Bar 2/3 64 bit Variable Prefetchable, Memory Doorbell BAR

Bar 4 Reserved

Bar 5 Reserved

If MSI-X is supported, the MSI-X table and PBA Offset table may be placed within any of the BARs
including the reserved ones depending on hardware implementation. A block of MMIO space within
BAR0/1 is reserved for use by MSI-X tables. Implementations are not required to use this reserved MMIO
region.
The MMIO register BAR is marked as prefetchable to allow software to allocate the region within 64-bit
MMIO space in order to avoid exhaustion of 32-bit MMIO space when implementing SR-IOV with many
virtual functions. Please refer to the implementation note in the PCI-Express Base Specification which
provides additional guidance on the use of the prefetchable attribute.

 Required Capabilities and Extended Capabilities
SDXI functions are required to support the following capabilities:

• PCI Power Management
• MSI and/or MSI-X

Additional PCIe capabilities such as Advanced Error Reporting, Transaction Processing Hints, and Single
Root I/O Virtualization are optional. See "4.1.7, Function Reset and Outstanding DMA Requests" for reset
requirements.

8.2 Mapping sfunc Values to PCIe Requester ID Values
PCIe SDXI Functions map sfunc values onto PCIe Requester ID values. The mapping is implementation
specific. Software may determine the mapping by reading MMIO_CAP0.sfunc and associating the value
with the Requester ID of the PCIe Function owning the register.

154 Working Draft SNIA SDXI Specification
 Version 1.0.3

8.3 Mapping SDXI DSH to PCIe TLP Processing Hints (PCIe TPH)
A PCIe SDXI Function may support PCIe TLP Processing Hints (PCIe TPH) and map DSH information
onto the corresponding PCIe TPH fields when accessing data buffers over the PCIe link. See "3.6, Data
Steering Hints (DSH)" for more details on DSH.
A PCIe SDXI Function indicates support for PCIe TPH functionality through the inclusion of the PCIe TPH
Requester Extended Capability. PCIe TPH capabilities such as the supported steering tag modes are
indicated through the TPH Requester Capability Register.
System software is responsible for selecting the desired steering tag mode via the ST Mode Select
register and enabling PCIe TPH by setting the PCIe TPH Requester Enable register to 1.
When a data buffer access has DSH information included, and PCIe TPH is enabled, the corresponding
request on the PCIe link shall be generated with the PCIe TH (Transaction Hint) field set to 1. The PCIe
TPH PH (Processing Hint) field is directly copied from the DSH "ph" field obtained from the data buffer's
AKey table entry (AKEY_ENT.ph) or RKey table entry (RKEY_ENT.ph) as appropriate. The PCIe TPH ST
(Steering Tag) information is controlled, in part, by the PCIe-defined ST Mode Select register:

• If No ST Mode is enabled, ST is set to 0.
• If Interrupt Vector Mode is enabled, the ST value is obtained by using the intr_num (PCIe interrupt

vector number) to index into the appropriate PCIe-defined structure holding the ST values, such as
the MSI-X table. The intr_num is obtained from the data buffer's AKey table entry or, if present,
RKey table entry (AKEY_ENT/RKEY_ENT.intr_num). The table entry must have the "iv" field set to 1
for intr_num to be valid. If intr_num is not valid, then ST is set to 0. The "stag" field in the AKey or
RKey table entry is not used.

• If Device Specific Mode is enabled, ST is obtained from the data buffer's AKey table entry
(AKEY_ENT.stag) or RKey table entry (RKEY_ENT.stag) as appropriate.

The use and control of PCIe TPH information with non-data-buffer accesses is implementation-specific
Refer to the PCI-Express Base Specification for further details on PCIe TLP Processing Hints.

8.4 PCIe Atomic Capabilities Discovery and Enablement
Privileged software can determine whether a PCIe SDXI Function supports initiating atomic operations
through the mechanisms described in 4.4 Atomic Operation Support. To enable a PCIe SDXI Function to
initiate atomic operations, privileged software shall set the AtomicOp Requester Enable bit in the Device
Control 2 Register. This register is located in the PCIe SDXI Function's configuration space PCI Express
Capability structure.
Privileged software can determine whether a PCIe Function supports completing atomic operations by
checking the 32-bit AtomicOp and 64-bit AtomicOp supported fields in the Device Capabilities 2 Register
of that Function's configuration space PCI Express Capability structure. The Function may be an upstream
Root Port for the PCIe SDXI Function, or another PCIe Endpoint Function acting as a peer-to-peer target.
Privileged software can check whether Bridge Functions, such as Switch Port and Root Port, located
between a PCIe SDXI Function and a target PCIe Function support routing atomic operations by checking
the AtomicOp Routing Supported field in the Device Capabilities 2 Register of those Bridge Functions"
configuration space PCI Express Capability structures.

8.5 Address Space Privilege in PCIe
In PCIe implementations, SDXI functions indicate support for requesting access to privileged address
spaces through the PCIe Privileged Mode Supported bit in the PCIe PASID Capability Register. If the
SDXI function reports that feature is supported through the PCIe PASID Capability Register, privileged
software will set the Privilege Mode Enable bit in the PCIe PASID Control Register prior to using any
address space marked as privileged. Privileged software indicates the required privileged level of an
address space by setting a “Privileged” bit present at MMIO_CTL0.fn_pr, CXT_L1_ENT.pr, AKEY_ENT.pr,

SNIA SDXI Specification Working Draft 155
 Version 1.0.3

or RKEY_ENT.pr. SDXI functions that support PASID Privileged Mode will use the Privilege Mode
Requested bit in the PCIe PASID TLP Prefix to indicate if a PASID should access privileged address
space. If an SDXI implementation does not implement the Privileged Mode Supported feature, then
IOMMUs could block access requests to privileged memory. An example of a PCIe SDXI implementation
using PASID Privileged Mode is to allow an SDXI function to read/write kernel-mode memory in an
operating system.
If the PCIe SDXI function does not support PASID Privileged Mode, or the feature is not enabled in the
PCIe PASID Control Register, then privileged software shall not set the “Privileged” bit for any address
space and the SDXI function shall not set the PMR bit in any PCIe PASID TLP Prefix.
Please refer to the PCIe specification for more information about using PASID Privileged Mode.

156 Working Draft SNIA SDXI Specification
 Version 1.0.3

9 MMIO Control Registers

Each function's MMIO registers are grouped by category within separate 64Kbyte regions, as shown in
"Table 9–1: MMIO Control Registers", to facilitate CPU MMU-based protection and emulation across a
range of possible processor architectures. PFs may implement an MMIO region of between 512KB and
4MB depending on the amount of MMIO space required to hold mailboxes for the number of supported
VFs. VFs each consume 512KB of MMIO space.
The requirements to access an SDXI function's MMIO register are described here. Software should not
depend on the results of any unsupported access (as described in this section) to these MMIO registers. A
misaligned access that straddles MMIO registers is not supported and results in undefined operation of the
SDXI function. A write to an MMIO register must be ordered with respect to other accesses to the same
register; software must use processor-specific means to ensure that the required memory ordering is
enforced.
For PCIe implementations, the SDXI function's MMIO registers are located in PCIe prefetchable memory
space. While it is expected that most platforms will not merge separate writes to an SDXI function,
software may be required on some platforms to work around this when writing SDXI function MMIO
registers. Please consult platform-specific references and the PCI Express Base Specification Revision
5.0 -- Implementation Note: "Additional Guidance on the Prefetchable Bit in Memory Space BARs".
The SDXI function's MMIO register space is segmented logically into two regions for the purposes of
discussing the access model: the Doorbell MMIO registers, and the remaining MMIO registers.
For the Doorbell MMIO registers, only a naturally-aligned 64-bit write is supported. Any other write access
is ignored by the SDXI function. A read access of a Doorbell MMIO register is not supported; the SDXI
function must return a result but the result is architecturally undefined.
For the remaining MMIO registers, the SDXI function supports all naturally-aligned accesses up to 64-bits
as atomic with one exception: if an implementation can not support 64-bit atomic accesses it will report
MMIO_CAP1.mmio64 as "0". Misaligned reads and writes within an MMIO register are not supported; the
SDXI function is allowed to return or write stale data as determined by the access type. Attempting to write
reserved fields in an MMIO register with an illegal value results in an undefined value for the register.
A "torn" read or write of an MMIO register can result when at least two agents - any of the SDXI function or
one or more software threads -- are concurrently accessing the fields of the register in a non-atomic
manner. The torn access can result in stale data being intermixed with more recent data in an
unpredictable way. Software is solely responsible for avoiding torn reads and writes on accesses that
straddle fields within an MMIO register. Software shall solely ensure synchronized access among multiple
software threads; the method for which is beyond the scope of this specification.
In an environment with synchronized software access, the following list describes methods a single
software thread can use to avoid undefined operation and torn accesses with respect to the SDXI function
itself; SDXI implementations shall ensure that these methods are supported.

• If the register is not dynamically updated by the SDXI function, then any naturally-aligned read will
avoid returning torn data.

• When the SDXI function's MMIO_STS0.fn_gsv is "GSV_STOP", any naturally-aligned read or write
will avoid torn data.

• This is the only supported method for MMIO_CXT_L2 (MMIO Offset: 0x1_0000)
• If possible, use a supported naturally-aligned atomic read or write that maps solely to complete fields

in the MMIO register.
• If the MMIO register has an associated valid/enable bit (in some cases this is in another MMIO

register), then disable or invalidate the register, read the enable/valid bit back to confirm it has
changed value, make modifications, and then enable or validate the register.

SNIA SDXI Specification Working Draft 157
 Version 1.0.3

The Error log read and write indexes are 64-bit MMIO registers and SDXI functions that report
MMIO_CAP1.mmio64 as “0” may exhibit torn accesses. Since the Error Log can contain no more than
2^26 entries, the contents of the ring can be calculated and read by software using only the lower 32-bits
of the index registers, and thereby avoid the effects of torn reads of MMIO_ERR_WRT. An SDXI function
that reports MMIO_CAP1.mmio64 as “0” must account for the possibility of receiving torn MMIO writes to
MMIO_ERR_RD.

Table 9–1: MMIO Control Registers
64KB Region PF Usage VF Usage

0x00_0000 General Control and Status Registers

0x01_0000 Context Table Registers

0x02_0000 Error Logging Control and Status Registers

0x03_0000 Mailbox Control Registers

0x04_0000 Reserved for MSI-X

0x05_0000 Reserved

0x06_0000 to
0x25_FFFF

Alternating 64K regions of Send and Receive
Mailboxes

Send Mailbox at 0x6_0000.
Receive Mailbox at 0x7_0000.

0x26_0000 to
0x3F_FFFF

Reserved N/A

158 Working Draft SNIA SDXI Specification
 Version 1.0.3

9.1 General Control and Status Registers

Table 9–2: MMIO_CTL0[^1] (MMIO Offset :0x0_0000)
Field Bits Subfield Type &

Reset
Description

u32 field0; 001:000 fn_gsr RW, 0x0 Controls the SDXI function state. See "4.1 SDXI
Function State" for more detail.

fn_gsr
0b00 GSRV_RESET
0b01 GSRV_STOP_SF
0b10 GSRV_STOP_HD
0b11 GSRV_ACTIVE

002 fn_pasid_vl RW, 0x0 Indicates whether the fn_pasid field is used when
accessing context level 2 or 1 table entries, Context
Control Entries, AKey table entries, RKey table entries,
and error log entries.
If fn_pasid_vl is “0”, requests to the referenced data
structures are accessed using DMA requests without
PASID.

003 rsvd R, 0x0 Shall be set to zero.
004 fn_err_intr_en RW, 0x0 1 = An interrupt is signaled when the function

transitions to the GSV_ERROR state as
reported through MMIO_STS0.fn_gsv. When
MSI or MSI-X is enabled, message 0 is
signaled.

0 = No interrupt is generated
007:005 rsvd R, 0x0 Shall be set to zero.
027:008 fn_pasid RW, 0x0 Function PASID value.
030:028 rsvd R, 0x0 Shall be set to zero.

031 fn_pr RW, 0x0 1 = Indicates that the address spaces of the Error Log,
RKey Table, CXT L2 Table, CXT_L1 Table, CXT_CTL,
and Akey Table memory structures are privileged if the
underlying bus supports conveying privileged address
information.
0 = Indicates that the memory structures are not in
privileged address space.

u32 fn_grp_id; 063:032 RW, 0x0 This field is provided for software to record the
function group ID assignment. The field has no effect
on the operation of the SDXI function. In a VF, the
field is read-only and reflects the value of the
associated PF. See "3.3.1, SDXI Function Group" for
more details.

SNIA SDXI Specification Working Draft 159
 Version 1.0.3

Table 9–3: MMIO_GRP_ENUM[^1] (MMIO Offset: 0x0_0008)
Field Bits Subfield Type &

Reset
Description

u8 field0; 000 busy RW, 0x0 When "0", there is no outstanding write propagation of this
function's "probe" field to the probe fields of other functions
in the function group.
When "1", there is an outstanding write propagation of this
function's "probe" field to the probe fields of other functions
in the function group.
This field does not propagate. In a VF, the field is read-only
and reflects the value of the associated PF. See "3.3.1,
SDXI Function Group" for more details.

001 probe RW, 0x0 The current value of the probe field. When written, this field
propagates to the same field in other PFs within the function
group. In a VF, the field is read-only and reflects the value
of the associated PF. See "3.3.1, SDXI Function Group" for
more details.

007:002 rsvd R, 0x0 This field always reads back as 0.
u8 rsvd_0[7]; 063:008 R, 0x0 This field always reads back as 0.

160 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 9–4: MMIO_CTL2[^1] (MMIO Offset: 0x0_0010)
Field Bits Subfield Type &

Reset
Description

u16 field0; 003:000 max_buffer RW This field controls the maximum data buffer size enabled
for use by this function. The field is encoded the same as
MMIO_CAP1.max_buffer and must not exceed it in
value.
Reset: MMIO_CAP1.max_buffer

011:004 rsvd R, 0x0 Shall be set to zero.
015:012 max_akey_sz RW This field controls the maximum size of any AKey table

useable by any context within this function. The field is
encoded the same as MMIO_CAP1.max_akey_sz and
must not exceed it in value.
Reset: MMIO_CAP1.max_akey_sz

u16 max_cxt; 031:016 RW This field controls the maximum number of contexts
enabled for use by this function. The field is encoded the
same MMIO_CAP1.max_cxt and must not exceed it in
value.
Reset: MMIO_CAP1.max_cxt

u32 opb_000_avl; 063:032 RW,
0x0

For SDXI 1.0 interoperability. Bits 3-5 must be set when
using the associated opcodes.
Bits:
0-2 unused (read-only)
3 if 0, opcode type 3 is disabled (Full Atomics). If 1, can
be used normally.
4 if 0, opcode type 4 is disabled (IntrGrp). If 1, can be
used normally.
5 if 0, opcode type 3 is disabled (Minimal Atomics). If 1,
can be used normally.
6-31 unused (read-only)
See "5.1, Descriptor Operations" and "Chapter 6, SDXI
Descriptor and Operation Specification" for more details.

Table 9–5: MMIO_STS0* (MMIO Offset: 0x0_0100)
Field Bits Subfield Type &

Reset
Description

u8 field0; 002:000 fn_gsv R, 0x0 This field describes the overall state of the SDXI function. This
register does not indicate the state of any specific context
000b – GSV_STOP
001b – GSV_INIT
010b – GSV_ACTIVE
011b – GSV_STOPG_SF
100b – GSV_STOPG_HD
101b – GSV_ERROR
All other encodings reserved.
See "4.1 SDXI Function State" for more detail.

007:003 rsvd R, 0x0 Shall be set to zero.
u8 rsvd_0[7]; 063:008 R, 0x0 Shall be set to zero.

SNIA SDXI Specification Working Draft 161
 Version 1.0.3

Table 9–6: MMIO_CAP0[^1] (MMIO Offset: 0x0_0200)
Field Bits Subfield Type &

Reset
Description

u16 sfunc; 015:000 R An opaque SDXI Function identifier that maps uniquely to
an SDXI function. For example, in a PCIe implementation of
SDXI, "sfunc" could map to a PCIe Requester ID. It is
referenced by AKey table entries. sfunc is unique for each
SDXI function within an SDXI Function Group. This field
may be set to 0 for implementations with
MMIO_CAP1.rkey_cap set to "0".

u8 field0; 016 vf R 1 = Indicates a virtual function. Software should use
the virtual function programming model including
MMIO register layout and mailbox programming.

0 = Indicates a physical function. Software should use
the physical function programming model including
MMIO register layout and mailbox programming.

018:017 cs_cap R, IMPL Completion-Status Capabilities. See "4.4.1, Completion-
Status Capabilities" for details.

019 rsvd R, 0x0 rsvd
022:020 db_stride R, IMPL Indicates the address stride between doorbell sections. The

stride is encoded as 2**(db_stride+12) bytes.
23 rsvd R, 0x0 rsvd

u8 max_ds_ring_sz; 028:024 max_sz R, IMPL Indicates the maximum size of any descriptor ring for any
context within this function. The maximum descriptor ring
size that is supported is 2**(max_ds_ring_sz + 16) bytes.
Valid max_ds_ring_sz values range from 0 (64 KB or 1K
descriptors) to 22 (256 GB or 4G descriptors); all other
encodings are reserved.
Software shall ensure for all valid contexts that:
- Let max_ds = 2**(MMIO_CAP0.max_ds_ring_sz + 10)
- Then CXT_CTL.ds_ring_sz <= min((2**32)-1, max_ds)

031:029 rsvd R, IMPL rsvd
u8 max_rkey_sz; 035:032 max_sz R, IMPL Indicates the maximum size of the RKey table for this

function. The maximum RKey table size that is supported
is 2**(12 + max_rkey_sz) bytes. Values of max_rkey_sz
greater than 0x8 are reserved.

039:036 rsvd R, 0x0 rsvd
u8 rsvd_0[3]; 063:040 R, 0x0 rsvd

162 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 9–7: MMIO_CAP1[^1] (MMIO Offset: 0x0_0208)
Field Bits Subfield Type &

Reset
Description

u16 field0; 003:000 max_buffer R, IMPL Indicates the maximum data buffer size supported by
this function for operations. The maximum data buffer
size that is supported is 2**(max_buffer+21) bytes.
Valid max_buffer values range from 0 (2 MiB) to 11
(4 GiB); all other encodings are reserved.

004 rkey_cap R, IMPL Indicates whether RKey functionality is supported.
RKey support is required to support data transfers
between functions in an SDXI group.

005 rm R, IMPL Memory Registration Required. Reserved for use
with the SDXI Connection Operation Group.

006 mmio64 R, IMPL When 1, indicates the SDXI Function implements 64-
bit atomic access to MMIO registers.
When 0, 32-bit is the largest atomic access to MMIO
registers. See the beginning of "9 MMIO Control
Registers" for more details. Behaviors associated
with this bit do not apply to the doorbell registers.

007 rsvd R rsvd
011:008 max_errlog_sz R, IMPL Indicates the maximum size of the error log for this

function. The maximum error log size that is
supported is 2**(max_errlog_sz + 23) bytes. Valid
max_errlog_sz values range from 0 (8 MB) to 9 (4
GB); all other encodings are reserved.

015:012 max_akey_sz R, IMPL Indicates the maximum size of any AKey table
referenced by any context within this function. The
maximum size that is supported is
2**(max_akey_sz+12) bytes.
Values of max_akey_sz greater than 0x8 are
reserved.

u16 max_cxt; 031:016 R, IMPL The contexts supported by this function range from 0
to max_cxt. The maximum number of contexts
supported by this function is max_cxt+1.

u32 opb_000_cap; 063:032 R, IMPL For SDXI 1.0 interoperability. SDXI 1.1+ software
should use the DSC_DISC operation to enumerate
available operation groups.
Bits:
 0-2 unused, must be zero
 3 set when Full AtomicGrp is offered in index 3
 4 set when IntrGrp is offered in index 4
 5 set when Minimal AtomicGrp is offered in index 3
 6-31 unused, must be zero
For a context to use a supported operation group, it
must be enabled. See "5.1 Descriptor Operations"
and "Chapter 6, SDXI Descriptor and Operation
Specification" for more details.

SNIA SDXI Specification Working Draft 163
 Version 1.0.3

Table 9–8: MMIO_VERSION[^1] (MMIO Offset: 0x0_0210)
Field Bits Subfield Type &

Reset
Description

u8 minor; 007:000 R, IMPL Indicates Minor Version number of SDXI function
implementation. 0x0 for the version of SDXI described in this
document.

u8 rsvd_0; 015:008 R, 0x0 Reserved.
u8 major; 023:016 R, IMPL Indicates Major Version number of SDXI function

implementation. 0x1 for the version of SDXI described in this
document.

u8 rsvd_1; 031:024 R, 0x0 Reserved.
u8 rsvd_2[4]; 063:032 R, 0x0 Reserved.

9.2 Context and RKey Table Registers

Table 9–9: MMIO_CXT_L2[^1] (MMIO Offset: 0x1_0000^)
Field Bits Subfield Type &

Reset
Description

u64 lv02_ptr; 011:000 rsvd R, 0x0 rsvd
063:012 lv02_ptr RW, 0x0 Pointer to the context level 2 table.

Table 9–10: MMIO_RKEY[^1] (MMIO Offset: 0x1_0100)
Field Bits Subfield Type &

Reset
Description

u64 ptr; 000 en RW, 0x0 When set to 1, RKey functionality is enabled. Also, sz and ptr contain
valid information.

004:001 sz RW, 0x0 Controls the size of the RKey table. This field is encoded the same
as MMIO_CAP0.max_rkey_sz and must not exceed it in value.
SNIASDXISpecification-v1.0 requires that software shall not program
sz with values greater than 0x8.

011:005 rsvd R, 0x0 Rsvd
063:012 ptr RW, 0x0 Pointer to the start of the RKey table.

164 Working Draft SNIA SDXI Specification
 Version 1.0.3

9.3 Error Logging Control and Status Registers

Table 9–11: MMIO_ERR_CTL[^1] (MMIO Offset:0x2_0000)
Field Bits Subfield Type &

Reset
Description

u64 intr_en; 000 en RW, 0x0 1 = An interrupt is signaled when hardware transitions the
MMIO_ERR_STS.sts bit from "0" to "1". When MSI or
MSI-X is enabled, message 0 is signaled.

0 = No interrupt is generated
063:001 rsvd R, 0x0 rsvd

Table 9–12: MMIO_ERR_STS[^1] (MMIO Offset:0x2_0008)
Field Bits Subfield Type &

Reset
Description

u64 info; 000 sts RW1C, 0x0 1 = An attempt to record an error in the log was
made. See err bit for the success or failure of
this operation. Once the SDXI function sets the
sts bit, no new error interrupts, if enabled, will
be generated until the bit is cleared (by
software writing "1" to the bit). Additional errors
may continue to be recorded in the log while the
sts bit is "1".

0 = An error has not been recorded.
001 ovf RW1C, 0x0 1 = The error log has overflowed, and some error

information was lost. MMIO_ERR_STS.err will
be set on an overflow event. The ovf bit is a
status bit and does not control operation of the
error log.

0 = The error log has not overflowed.
002 rsvd R, 0x0 rsvd
003 err RW1C, 0x0 1 = An error occurred attempting to write the error

log and some error information was lost.
Further error logging and hardware modification
of the MMIO_ERR_STS register is disabled
until this bit is cleared (by software writing "1" to
the bit).

0 = It has not.
063:004 rsvd R, 0x0 rsvd

SNIA SDXI Specification Working Draft 165
 Version 1.0.3

Table 9–13: MMIO_ERR_CFG[^1] (MMIO Offset:0x2_0010)
Field Bits Subfield Type &

Reset
Description

u64 ptr; 000 en RW, 0x0 When true, the error log mechanism is enabled and shall use the
values of the MMIO_ERR_CFG.ptr and MMIO_ERR_CFG.sz fields.

005:001 sz RW, 0x0 This field controls the error log size. The size of the error log is
2**(sz + 12) bytes. The error log size must not exceed the max
capability of the function as specified by
MMIO_CAP1.max_errlog_sz.

011:006 rsvd R, 0x0 rsvd
063:012 ptr RW, 0x0 Pointer to the start of the error log.

Table 9–14: MMIO_ERR_WRT[^1] (MMIO Offset: 0x2_0020)
Field Bits Subfield Type &

Reset
Description

u64 index 063:000 RW,0x0 Description: Hardware error log write pointer. The function
increments the write pointer when an error log entry is successfully
written. The write pointer is not incremented when writing of an error
log entry results in the MMIO_ERR_STS.err bit being set. The starting
byte offset of the last error log entry written by the function is given by:

- Let log_sz = 2**(MMIO_ERR_CFG.sz +12);
- Let log_bs = MMIO_ERR_CFG & ~0xFFF;
- Let index = MMIO_ERR_WRT – 1
- Then byte_offset = log_bs + ((index * 64) % log_sz);

The error log is empty when MMIO_ERR_WRT == MMIO_ERR_RD.
The write pointer value is expected to never wrap-around to 0. The
memory buffer used by the error log may wrap around.
Software may write MMIO_ERR_WRT only when error logging is
disabled either through MMIO_ERR_CFG.en or MMIO_ERR_STS.err.
Writes to this register at any other time result in undefined behavior.
Software must always read this field with a 64-bit access regardless
of the value the function returns in MMIO_CAP1.mmio64.

166 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 9–15: MMIO_ERR_RD[^1] (MMIO Offset: 0x2_0028)
Field Bits Subfield Type &

Reset
Description

u64 index 063:000 RW,0x0 Description: Error log read pointer. This points to the starting byte
offset of the first error log entry that has not been consumed (read) by
software in this way:

- Let log_sz = 2**(MMIO_ERR_CFG.sz +12);
- Let log_bs = MMIO_ERR_CFG & ~0xFFF;
- Then byte_offset = log_bs + ((MMIO_ERR_RD * 64) % log_sz);

Software increments the read pointer as it consumes error log entries.
Software must always write this field with a 64-bit access regardless of
the value the function returns in MMIO_CAP1.mmio64.

SNIA SDXI Specification Working Draft 167
 Version 1.0.3

9.4 MBOX Mailbox Registers
The PF/VF mailbox interface allows for low-bandwidth two-way communication under SR-IOV
virtualization between privileged software on a PF and the software managing a VF. This may be used
directly during runtime to pass control messages between privileged software and the VMs. It may also be
used to bootstrap higher bandwidth forms of communication such as shared memory buffers, or even
memory ring-buffers and interrupts that are written or generated by SDXI contexts
There is no mailbox communication directly between VFs. There is no mailbox communication directly
between functions that belong to different SDXI SR-IOV devices even if they belong to the same SDXI
Group. All mailbox registers are reserved in implementations that do not support SR-IOV. An
implementation is only required to implement enough mailbox registers to support the number of VFs it
implements.
Each mailbox is 16 bytes in size. There are separate transmit and receive mailboxes between each VF
and the PF.
It is recommended that under virtualization, the Hypervisor take ownership of all SDXI PFs in order to
facilitate communication between VFs under the same PF, and between SDXI VFs belonging to different
PFs within the same SDXI function group.
VF_1 is the first virtual function under the PF. The PF will use a MMIO_MBS_CTL.tgt_vf value of 0 to set
the MMIO_MBR_ST.rcv bit on VF_1. When VF_1 clears its rcv bit, the PF’s MMIO_MBS_ST.ack bit 0 will
become set. If the VF sends a message to the PF, the PF’s MMIO_MBR_ST.rcv bit 0 will become set.
Subsequent VFs, if present, will follow the same pattern. VF_N will use the tgt_vf value of N-1, ack bit N-1,
and rcv bit N-1.

Table 9–16: MMIO_MB_CTL[^1] (MMIO Offset:0x3_0000)
Field Bits Subfield Type &

Reset
Description

u64 intr_en; 000 snd RW, 0x0 Send message acknowledge interrupt enable. When 1, an
interrupt is generated when any bit in MMIO_MBS_ST.ack is
set to 1. When MSI or MSI-X is enabled, message 0 is
signaled.

001 rcv RW, 0x0 Receive message interrupt enable. When 1, an interrupt is
generated when any bit in MMIO_MBR_ST.rcv is set to 1.
When MSI or MSI-X is enabled, message 0 is signaled.

063:002 rsvd R, 0x0 rsvd

Table 9–17: MMIO_MBS_CTL[^1] (MMIO Offset: 0x3_0010)
Field Bits Subfield Type &

Reset
Description

u16 msg; 000 msg W Writing this bit to 1 causes the target MMIO_MBR_ST.rcv bit to be
set in the target function's mailbox.
VF's always send to the PF mailbox.

015:001 rsvd 0x0 rsvd
u16 tgt_vf; 031:016 W Indicates the target VF number to be used by the msg field of this

register.
Shall be set to 0 for VF copies of this register.

u8 rsvd_0[4]; 063:032 0x0 rsvd

168 Working Draft SNIA SDXI Specification
 Version 1.0.3

Table 9–18: MMIO_MBS_ST[^1] (MMIO Offset: 0x3_1000 to 0x3_2FFF)
Field Bits Subfield Type &

Reset
Description

u64 ack; 063:000 RW1C Message acknowledgment status. Indicates that the last
message sent to the corresponding function was
acknowledged by the receiver. VFs implements only bit 0 at
offset 0x3_1000 representing a message received by the
PF. The PF implements as many bits as there are VFs. This
bit should be cleared prior to sending a new message to the
target function.

Table 9–19: MMIO_MBR_ST[^1] (MMIO Offset: 0x3_3000 to 0x3_4FFF)
Field Bits Subfield Type &

Reset
Description

u64 rcv; 063:000 RW1C,
0x0

Receive message status. Indicates that rcv_data from the mailbox
corresponding to the status bit is valid. VFs implements only bit 0 at
offset 0x3_3000 representing a message received from the PF. The
PF implements as many bits as there are VFs. Clearing this status
bit returns an acknowledgement to the sender.

9.5 PF Mailbox Data Registers

Table 9–20: Send Mailbox Data Format
Field Bits Subfield Type &

Reset
Description

u8 msg[16]; 127:000 RW 16 bytes of mailbox message data to be sent to a VF.

Table 9–21: Receive Mailbox Data Format
Field Bits Subfield Type &

Reset
Description

u8 msg[16]; 127:000 R 16 bytes of mailbox message data received from a VF.

SNIA SDXI Specification Working Draft 169
 Version 1.0.3

Table 9–22: MMIO Send Mailbox Registers
MMIO Addresses MMIO Send Mailbox Range

0x06_0000 to 0x06_FFFF MMIO_MBS[0000:0FFF]

0x08_0000 to 0x08_FFFF MMIO_MBS[1000:1FFF]

0x0A_0000 to 0x0A_FFFF MMIO_MBS[2000:2FFF]

0x0C_0000 to 0x0C_FFFF MMIO_MBS[3000:3FFF]

0x0E_0000 to 0x0E_FFFF MMIO_MBS[4000:4FFF]

0x10_0000 to 0x10_FFFF MMIO_MBS[5000:5FFF]

0x12_0000 to 0x12_FFFF MMIO_MBS[6000:6FFF]

0x14_0000 to 0x14_FFFF MMIO_MBS[7000:7FFF]

0x16_0000 to 0x16_FFFF MMIO_MBS[8000:8FFF]

0x18_0000 to 0x18_FFFF MMIO_MBS[9000:9FFF]

0x1A_0000 to 0x1A_FFFF MMIO_MBS[A000:AFFF]

0x1C_0000 to 0x1C_FFFF MMIO_MBS[B000:BFFF]

0x1E_0000 to 0x1E_FFFF MMIO_MBS[C000:CFFF]

0x20_0000 to 0x20_FFFF MMIO_MBS[D000:DFFF]

0x22_0000 to 0x22_FFFF MMIO_MBS[E000:EFFF]

0x24_0000 to 0x24_FFFF MMIO_MBS[F000:FFFF]

Table 9–23: MMIO Receive Mailbox Registers
MMIO Addresses MMIO Receive Mailbox Range

0x07_0000 to 0x07_FFFF MMIO_MBR[0000:0FFF]

0x09_0000 to 0x09_FFFF MMIO_MBR[1000:1FFF]

0x0B_0000 to 0x0B_FFFF MMIO_MBR[2000:2FFF]

0x0D_0000 to 0x0D_FFFF MMIO_MBR[3000:3FFF]

0x0F_0000 to 0x0F_FFFF MMIO_MBR[4000:4FFF]

0x11_0000 to 0x11_FFFF MMIO_MBR[5000:5FFF]

0x13_0000 to 0x13_FFFF MMIO_MBR[6000:6FFF]

0x15_0000 to 0x15_FFFF MMIO_MBR[7000:7FFF]

0x17_0000 to 0x17_FFFF MMIO_MBR[8000:8FFF]

0x19_0000 to 0x19_FFFF MMIO_MBR[9000:9FFF]

0x1B_0000 to 0x1B_FFFF MMIO_MBR[A000:AFFF]

0x1D_0000 to 0x1D_FFFF MMIO_MBR[B000:BFFF]

0x1F_0000 to 0x1F_FFFF MMIO_MBR[C000:CFFF]

0x21_0000 to 0x21_FFFF MMIO_MBR[D000:DFFF]

0x23_0000 to 0x23_FFFF MMIO_MBR[E000:EFFF]

0x25_0000 to 0x25_FFFF MMIO_MBR[F000:FFFF]

170 Working Draft SNIA SDXI Specification
 Version 1.0.3

9.6 VF Mailbox Data Registers

Table 9–24: MMIO_MBS[^1] (MMIO Offset: 0x6_0000)
Field Bits Subfield Type &

Reset
Description

u8 msg[16]; 127:000 RW 16 bytes of mailbox message data to be sent to the PF.

Table 9–25: MMIO_MBR[^1] (MMIO Offset: 0x7_0000)
Field Bits Subfield Type &

Reset
Description

u8 msg[16]; 127:000 R 16 bytes of mailbox message data received from the PF.

SNIA SDXI Specification Working Draft 171
 Version 1.0.3

9.7 Doorbell Sections and Registers
The SDXI function provides a per-context, MMIO-based Doorbell Section that is used by software to
indicate that new work is available for that particular context. Software uses an interconnect-specific
mechanism to map the start of this MMIO region (Doorbell_MMIO_START) with the SDXI function; for
example, a PCI BAR. The MMIO region for Doorbell Sections is divided into doorbell-stride sized sections
(based on MMIO_CAP0.db_stride). Each section, numbered from zero, corresponds to the context of the
same number and is naturally aligned to a boundary of 2**(MMIO_CAP0.db_stride + 12) bytes. This
spacing is provided to allow the doorbell region for a particular context to be mapped to a user process
with MMU-based page protections. The size of the Doorbell MMIO region is dependent on the maximum
supported doorbell stride and the maximum number of ring contexts supported:
 Doorbell MMIO Region Size In Bytes =
 (MMIO_CAP1.max_cxt + 1) * 2**(MMIO_CAP0.db_stride + 12)
The Doorbell MMIO region shall only be written; a read returns an undefined value.
The first 8-bytes of each section corresponds to the doorbell register for the matching context; the
remaining bytes are reserved.
The doorbell register is used in the following way by software. After updating the context's Write_Index
location and adding new descriptors to the context's ring, software performs an aligned 64-bit MMIO write
of the Write_Index value, the doorbell_value, to its associated doorbell register address. The
doorbell_value is evaluated per the rules specified in "4.3.3, Doorbell Register and Context Signaling".

Figure 9-1: Doorbell MMIO Regions

sdxi-figures-F014

Stride = 2**(MMIO_CAP0.db_stride + 12) bytes
N = MMIO_CAP1.max_cxt

Doorbell MMIO Region
: offset 0 = DOORBELL_MMIO_START

Section 0 :

Doorbell Register, Context 0

Reserved{
: offset + (Stride * 1)

Section 1:

Doorbell Register, Context 1

Reserved{
: offset + (Stride * N)

Section N:

Doorbell Register, Context N

Reserved{

	1 SDXI: Overview
	1.1 Scope
	1.2 Documentation Conventions
	1.2.1 Shall, Should, May, and Can
	1.2.2 Normative vs. Informative
	1.2.3 Reserved
	1.2.4 Developer Notes
	1.2.5 Abbreviations and Terminology
	1.2.6 Other Clarifying Notes
	1.2.6.1 Index

	1.3 References
	1.4 Document Constants

	2 Background
	2.1 Architected Platform Data Mover
	2.1.1 SDXI Descriptor Ring
	2.1.2 Virtualization Support

	2.2 DMA Addressing Modes
	2.2.1 Address Space Identifier Control
	2.2.2 SDXI Function Groups
	2.2.3 Unpinned Memory Access

	2.3 Address Space Control Examples
	2.3.1 Single-Function, Single Address Space Example
	2.3.2 Single-Function, User Mode Access Example
	2.3.3 Single-Function, Multiple Address Space Example
	2.3.4 Cross-Function Transfer Example

	2.4 Modularity and Expandability
	2.5 Endian Format Support

	3 System Memory Data Structures
	3.1 Overview
	3.2 Context Data Structures
	3.2.1 Context Level 2 Table
	3.2.2 Context Level 1 Table
	3.2.3 Context Control (CXT_CTL)
	3.2.4 Context Status (CXT_STS)
	3.2.5 Access Key (AKey) Table Entry (AKEY_ENT)

	3.3 SDXI Cross-Function Access
	3.3.1 SDXI Function Group
	3.3.2 Receiver Access Key (RKey) Table
	3.3.3 RKey Table Entry
	3.3.4 Receiver Access Key (RKey) Processing

	3.4 Error Log
	3.4.1 Error Log Header Entry (ERRLOG_HD_ENT)
	3.4.2 Error Log Initialization
	3.4.3 Error Log Processing by Software

	3.5 Administrative Context (Context 0)
	3.6 Data Steering Hints (DSH)

	4 SDXI Function and Context State
	4.1 SDXI Function State
	4.1.1 G0: GSV_STOP State
	4.1.2 G1: GSV_INIT State
	4.1.3 G2: GSV_ACTIVE State
	4.1.4 G3: GSV_STOPG_SF ("Soft Stopping") State
	4.1.5 G4: GSV_STOPG_HD ("Hard Stopping") State
	4.1.6 G5: GSV_ERROR State
	4.1.7 Function Reset and Outstanding DMA Requests
	4.1.8 Activation of the SDXI Function by Software
	4.1.9 Stopping of the SDXI Function by Software

	4.2 SDXI Context State
	4.2.1 S1: CXTV_INVALID State
	4.2.2 S2: CXTV_STOP_[SW, FN] States
	4.2.2.1 CXTV_STOP_SW State
	4.2.2.2 CXTV_STOP_FN State

	4.2.3 S3: CXTV_ERR_FN
	4.2.4 S4: CXTV_RUN.[RDY, EXEC] States
	4.2.4.1 S4a: CXTV_RUN.RDY State
	4.2.4.2 S4b: CXTV_RUN.EXEC State

	4.2.5 S5: CXTV_STOPG_[SW, FN] States
	4.2.5.1 CXTV_STOPG_SW State
	4.2.5.2 CXTV_STOPG_FN State

	4.2.6 Context-Undefined Operation (CXTV_UNDEF)

	4.3 Function and Context Operations
	4.3.1 SDXI Memory-Based Data-Structure Hierarchy and Caching
	4.3.1.1 SDXI Update Operations for Modified Data Structures
	4.3.1.2 Software Procedure For Modifying Memory-Based Data Structures

	4.3.2 Check Valid Context
	4.3.3 Doorbell Register and Context Signaling
	4.3.4 Starting A Context and Context Signaling
	4.3.5 Function and Context Stop Actions
	4.3.6 Context Ring Submission Hint

	4.4 Atomic Operation Support
	4.4.1 Completion-Status Capabilities
	4.4.2 Completion-Status Modes

	5 SDXI Descriptor Ring Operation
	5.1 Descriptor Operations
	5.2 Enqueuing one or more Descriptors
	5.2.1 Multi-Producer Enqueue

	5.3 Descriptor Processing
	5.4 Descriptor Ordering and Parallel Execution
	5.5 Descriptor Completion
	5.6 Memory Consistency Model
	5.7 Descriptor Chaining
	5.7.1 Extended Descriptors

	5.8 Descriptor Driven Interrupts

	6 SDXI Descriptor and Operation Specification
	6.1 Descriptor Format for SDXI Operations
	6.1.1 Common Header and Footer
	6.1.2 Completion Status Block
	6.1.3 Attribute Field

	6.2 DMA Base Operations Group (DmaBaseGrp)
	6.2.1 DmaBaseGrp: DSC_DMAB_NOP
	6.2.2 DmaBaseGrp: DSC_DMAB_WRT_IMM Operation
	6.2.3 DmaBaseGrp: DSC_DMAB_COPY Operation
	6.2.4 DmaBaseGrp: DSC_DMAB_REPCOPY Operation

	6.3 Expanded DMA Group
	6.3.1 ExpDmaGrp: DSC_XDMA_FILL_IMM Operation
	6.3.2 ExpDmaGrp: DSC_XDMA_CMP Operation
	6.3.3 ExpDmaGrp: DSC_XDMA_CMP_IMM Operation

	6.4 Atomic Operation Group (AtomicGrp)
	6.5 IntrGrp Operation Group
	6.5.1 IntrGrp DSC_INTR Operation

	6.6 Administrative Operation Group (AdminGrp)
	6.6.1 Accessing Contexts, Akey Tables, and RKey Table by Index
	6.6.2 Targeting Multiple Contexts with A Single Administrative Operation
	6.6.3 AdminGrp DSC_CXT_START_[NM, RS] Operations
	6.6.4 AdminGrp DSC_CXT_STOP Operation
	6.6.5 AdminGrp DSC_AKEY_UPD Operation
	6.6.6 AdminGrp DSC_CXT_UPD Operation
	6.6.7 AdminGrp: DSC_FN_UPD Operation
	6.6.8 AdminGrp DSC_RKEY_UPD Operation
	6.6.9 AdminGrp DSC_SYNC Operation
	6.6.10 AdminGrp DSC_ADM_INTR Operation
	6.6.11 AdminGrp DSC_DISC Operation

	6.7 Double Copy Group (DblCopyGrp)
	6.7.1 DblCopyGrp: DSC_DBLCOPY Operation

	6.8 CRC Mode1 Operation Group (CrcM1Grp)
	6.9 Protection Information Operation Group (PIGrp)

	7 Recommended Sequences for Function Management
	7.1 Function Level Resources
	7.1.1 Context Level 2 Table Base (MMIO_CXT_L2) Modification

	7.2 Context Level Resources
	7.2.1 Context Level 2 Table Entry (CXT_L2_ENT) Modification

	8 SDXI PCI-Express Device Architecture
	8.1 SDXI Function Configuration Space Registers
	8.1.1 Class Code
	8.1.2 BAR Configuration
	8.1.3 Required Capabilities and Extended Capabilities

	8.2 Mapping sfunc Values to PCIe Requester ID Values
	8.3 Mapping SDXI DSH to PCIe TLP Processing Hints (PCIe TPH)
	8.4 PCIe Atomic Capabilities Discovery and Enablement
	8.5 Address Space Privilege in PCIe

	9 MMIO Control Registers
	9.1 General Control and Status Registers
	9.2 Context and RKey Table Registers
	9.3 Error Logging Control and Status Registers
	9.4 MBOX Mailbox Registers
	9.5 PF Mailbox Data Registers
	9.6 VF Mailbox Data Registers
	9.7 Doorbell Sections and Registers

