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Summary

The ordinary Bayes information criterion is too liberal for model selection when

the model space is large. In this article, we re-examine the Bayesian paradigm for

model selection and propose an extended family of Bayes information criteria. The

new criteria take into account both the number of unknown parameters and the com-

plexity of the model space. Their consistency is established, in particular allowing the

number of covariates to increase to infinity with the sample size. Their performance

in various situations is evaluated by simulation studies. It is demonstrated that the

extended Bayes information criteria incur a small loss in the positive selection rate

but tightly control the false discovery rate, a desirable property in many applications.

The extended Bayes information criteria are extremely useful for variable selection in

problems with a moderate sample size but a huge number of covariates, especially in

genome-wide association studies, which are now an active area in genetics research.

Some keywords: Bayesian paradigm; Consistency; Genome-wide association study; Tour-

nament approach; Variable selection.

1



1. Introduction

In many applications a variable of interest is influenced by a number of uniden-

tified covariates among a large collection of potential covariates, whose number is

much larger than the number of observations. For example, in genome-wide asso-

ciation studies, geneticists type tens or hundreds of thousands of single nucleotide

polymorphisms spreading over the whole genome to identify a handful of them that

are responsible for the genetic variation of a quantitative trait or a disease status;

see Marchini et al. (2005). In principle, the statistical issue involved is simply a

variable selection problem. However the sheer number of covariates P and the com-

paratively small sample size n make the variable-selection problem a great statistical

challenge. In such situations, classical criteria such as the Akaike information crite-

rion or aic (Akaike, 1973), the Bayes information criterion or bic (Schwarz, 1978),

and other methods such as cross validation and generalized cross validation (Stone,

1974; Craven & Wahba, 1979), are usually too liberal; that is, they tend to select a

model with many spurious covariates. This phenomenon has been observed by Bro-

man & Speed (2002), Siegmund (2004) and Bogdan et al. (2004), in their use of bic

for quantitative trait loci mapping, and will also be shown later in this article.

Variable selection with large model spaces has drawn increasing attention recently.

Meinshausen & Bühlmann (2006) and Zhao & Yu (2006) investigated consistency

properties, while Zhang & Huang (2008) studied the sparsity and bias properties of

the Lasso-based variable-selection methods (Tibshirani, 1996). To ensure consistency

of the Lasso-based variable-selection procedure, the tuning parameter must be set to

an appropriate asymptotic order, and the design matrix must satisfy a sparse Riesz

condition.

In this paper, we propose a class of extended Bayes information criteria to better
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meet the needs of variable selection for large model spaces. The original bic is an ap-

proximate Bayes approach, see Berger & Pericchi (2001) and some details later in this

article. The simplicity and effectiveness of the bic have made it very attractive, even

when the regularity conditions are not satisfied. More recently, in unpublished work,

J. O. Berger has developed a more rigorous Bayes approach called the generalized

Bayes information criterion, which sticks more to the Bayes paradigm and refines

the choice of prior distributions for various parametric models. However, Berger’s

criterion still deals mostly with the case where P is not large compared with n.

The extended Bayes information criterion family that we propose is particularly

suitable for model selection for large model spaces. It includes the original bic as a

special case and retains its simplicity. Under some mild conditions, these new criteria

are shown to be consistent. The result is particularly useful even when the covariates

are heavily collinear. Furthermore, unlike competitors such as that of Meinshausen &

Bühlmann (2006), the extended Bayes information criterion family does not require

a data adaptive tuning parameter procedure in order to be consistent, and hence is

easy to use in applications.

2. An extended family of Bayes information criteria

Let {(yi, xi) : i = 1, . . . , n} be independent observations. Suppose that the con-

ditional density function of yi given xi is f(yi|xi, θ), where θ ∈ Θ ⊂ RP , P being a

positive integer. The likelihood function of θ is given by

Ln(θ) = f(x; θ) =
n∏
i=1

f(yi|xi, θ),

where Y = (y1, . . . , yn). Let s be a subset of {1, . . . , P}. Denote by θ(s) the parameter

θ with those components outside s being set to 0 or some prespecified values. The
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bic proposed by Schwarz (1978) selects the model that minimizes

bic(s) = −2 logLn{θ̂(s)}+ ν(s) log n,

where θ̂(s) is the maximum likelihood estimator of θ(s), and ν(s) is the number of

components in s. Let S be the model space under consideration and let p(s) be the

prior probability of model s. Assume that, given s, the prior density of θ(s) is given

by π{θ(s)}. The posterior probability of s is obtained as

p(s|Y ) =
m(Y |s)p(s)∑
s∈S p(s)m(Y |s)

,

where m(Y |s) is the likelihood of model s, given by

m(Y |s) =

∫
f{Y ; θ(s)}π{θ(s)}dθ(s).

Under the Bayes paradigm, a model s∗ that maximizes the posterior probability is

selected. Since
∑

s∈S p(s)m(Y |s) is a constant, s∗ = argmaxs∈Sm(Y |s)p(s). Under

some regularity conditions on f(Y ; θ) such as the requirement that s must contain all

the nonzero components of θ and have constant dimension, the maximum likelihood

estimator of θ(s) is root-n consistent, and −2 log{m(Y |s)} has a Laplace approxima-

tion given by bic(s) up to an additive constant. That is, the bic is an approximate

Bayes approach as mentioned in introduction. An implicit assumption underlying

bic is that p(s) is constant for s over S.

It is well known that bic is consistent (Rao & Wu, 1989) under some standard

conditions such as P is fixed. In nonregular problems such as change-point analysis,

the root-n consistency of θ̂(s) may be violated, yet bic is still consistent (Yao, 1988;

Csörgö & Horváth, 1997). Nevertheless, bic is not without drawbacks. The precision

of the Laplace approximation is influenced by the specific form of the prior density

on θ(s) and the correlation structure between observations. The latter affects the
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interpretation of the sample size n in the definition of bic(s). The recent unpublished

work of Berger, and Clyde et al. (2007) have concentrated on these issues. They have

focused on the marginal likelihood m(Y |s) and rectified the problems caused by the

Laplace approximation. However, they have not targeted the problems that could be

caused by large model spaces.

In a typical genome-wide association study with single nucleotide polymorphisms,

the number of covariates is of the order of tens or hundreds of thousands while the

sample size is only in hundreds. Suppose the number of covariates under consideration

is P = 1000. The class of models containing a single covariate, S1, has size 1000, while

the class of models containing two covariates, S2, has size 1000×999/2. The constant

prior behind bic amounts to assigning probabilities to the Sj proportional to their

sizes. Thus the probability assigned to S2 is 999/2 times that assigned to S1. The

size of Sj increases as j increases to j = P/2 = 500, so that the probability assigned

to Sj by the prior increases almost exponentially. Models with a larger number of

covariates, 50 or 100 say, receive much higher probabilities than models with fewer

covariates. This is obviously unreasonable, being strongly against the principle of

parsimony.

This re-examination of bic prompts us naturally to consider other reasonable

priors over the model space in the Bayes approach. Assume that the model space

S is partitioned into ∪Pj=1Sj, such that models within each Sj have equal dimension.

Let τ(Sj) be the size of Sj. For example, if Sj is the collection of all models with j

covariates, τ(Sj) =
(
P
j

)
. We assign the prior distribution over S as follows. For each

s in the same subspace Sj, assign an equal probability, i.e., pr(s|Sj) = 1/τ(Sj) for

any s ∈ Sj. This is reasonable since all the models in Sj are equally plausible. Then,

instead of assigning probabilities pr(Sj) proportional to τ(Sj), as in the ordinary bic,
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we assign pr(Sj) proportional to τ ξ(Sj) for some ξ between 0 and 1. This results in

the prior probability p(s) for s ∈ Sj being proportional to τ−γ(Sj) where γ = 1− ξ.

This type of prior distribution on the model space gives rise to an extended bic family

as follows:

bicγ(s) = −2 logLn{θ̂(s)}+ ν(s) log n+ 2γ log τ(Sj), 0 ≤ γ ≤ 1,

where θ̂(s) is the maximum likelihood estimator of θ(s) given model s. The first two

terms in bicγ(s) are the Laplace approximation to −2 log{m(Y |s)} and the last term

is indeed −2 log{p(s)} up to a common constant. The criterion bicγ is referred to as

an extended Bayes information criterion. In the targeted application, P can be very

large but the cardinality of the candidate models is small. Thus, the Laplace approx-

imation is still valid. However, the consistency of the extended Bayes information

criteria does not depend on the validity of the Laplace approximation, as will be seen

later.

If some of the covariates are heavily collinear, the effective number of different

models might be smaller than that indicated by τ(Sj). Will this cause any serious

detrimental effect on our method? Let us consider an extreme case in which half

of the covariates are duplicates. Thus, in considering τ(Sj), P should be replaced

by P/2. However, it is easy to see that, when P is replaced by P/2 the change in

γ log{τ(Sj)} is of a smaller order than the order log n + logP of the leading terms.

Thus, some adjustment might be helpful but the effect will not be important when

either n or P is large.

With a similar motivation, Bogdan et al. (2004) proposed adding to the bic

penalty an additional term ν(s) log(l − 1), where l is to be chosen to reflect the

prior knowledge on the number of quantitative trait loci in the context of genetic

interval mapping. They showed via simulation that their modified bic performs well
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but did not investigate its consistency properties. As will be seen, adding a term that

increases with P is crucial in ensuring the consistency when P increases to infinity

with n.

3. The consistency of the extended Bayes information criteria

We consider the consistency of the extended Bayes information criteria in the

following setting. Let P = pn = O(nκ) as n → ∞ for some κ > 0. Note that

this does not require that, in practice, we must have a process such that P and n

go to infinity. Also, it does not require, but allows, P to be large. In applications,

the values of n and P are constants. The asymptotic result provides insight into

properties of the statistical method when n and P are large and of the sizes indicated

by these orders. This is also a common setting in the model selection literature; see

Shao (1997), Meinshausen & Bühlmann (2006), and Zhang & Huang (2008).

Let yn be the vector of n observations on the response variable, let Xn be the

corresponding design matrix with all the covariates of concern, and let β be the

vector of regression coefficients. Assume that

yn = Xnβ + en, (1)

where en ∼ N(0, σ2In) and In is the identity matrix of size n. Let s0 be the smallest

subset of {1, . . . , pn} such that µn = Eyn = Xn(s0)β(s0), where Xn(s0) and β(s0) are

respectively the design matrix and the coefficients corresponding to s0. In general, a

model is considered to be identifiable when no two sets of parameter values specify

the same distribution. However this notion of identifiablity is not appropriate for

the small-n-large-P problem of the linear models. In the following, we introduce an

identifiability condition suitable for this problem.

We call s0 the true submodel and denote ν(s0) by K0. Let the projection matrix
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of Xn(s) be Hn(s) = Xn(s){XT
n (s)Xn(s)}−1XT

n (s). Define

∆n(s) = ‖µn −Hn(s)µn‖2,

with ‖ · ‖ being the Euclidean norm. Clearly, if s0 ⊂ s, we have ∆n(s) = 0. The new

identifiability condition is as follows.

Condition 1: asymptotic identifiability. Model (1) with true submodel s0 is asymp-

totically identifiable if

lim
n→∞

min{(log n)−1∆n(s) : s 6= s0, ν(s) ≤ K0} =∞.

In other words, the model is identifiable if no model other than the true submodel

of comparable size can predict the response almost equally well. This identifiability

requirement is probably the weakest possible. It is weaker than the commonly as-

sumed so-called sparse Riesz condition that will be discussed below. Nevertheless, it

provides a sufficient condition for consistency of extended Bayes information criteria.

The sparse Riesz condition is an identifiability condition assumed by Zhang &

Huang (2008) and others. It requires that n−1XT
n (s)Xn(s) be uniformly positive

definite for any s of size 2K, where K is an upper bound for K0. The sparse Riesz

condition implies the foregoing asymptotic identifiability condition. A simple proof

is given as follows. For any submodel s, we have

(log n)−1∆n = (log n)−1‖µn −Hn(s)µn‖2

= (log n)−1 inf
α
‖Xn(s0 − s)β(s0 − s)−X(s)α‖2

= (log n)−1 inf
α

[{βT(s0 − s), α}{XT
n (s0 ∪ s)Xn(s0 ∪ s)}{βT(s0 − s), α}T]

≥ n(log n)−1λ(s0 ∪ s)‖β(s0 − s)‖2,

where λ(s0 ∪ s) is the smallest eigenvalue of n−1XT
n (s0 ∪ s)Xn(s0 ∪ s). By the sparse

Riesz condition, λ(s0∪ s) is uniformly larger than 0 over s of size K. The asymptotic

identifiability is hence apparent.
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In an earlier version of this article, we proposed the sparse Riesz condition inde-

pendently albeit under a different name. As pointed out by an anonymous referee this

condition is void, for instance, when any two columns of Xn are completely collinear.

This possibility cannot be ignored in applications where P >> n.

We now provide a more useful sufficient condition. Let s0 = {1, . . . , K0} and let

s−k be the set with the kth element of s0 removed. Let Hn(s−k ∪ s) be the projection

matrix of Xn(s−k ∪ s).

Lemma 1. The asymptotic identifiability condition is satisfied when

lim
n→∞

min
s 6=s0,ν(s)≤K0

max
k

[(log n)−1‖{I −Hn(s−k ∪ s)}Xn({k})‖] =∞.

A proof will be given in the Appendix. In other words, this condition requires

that at least one column of Xn(s0) be not contained in the linear space of the re-

maining columns of Xn(s0∪ s). For example, if Xn({1}) is orthogonal to Xn({k}) for

k = 2, . . . , P , this condition is satisfied even if the covariates are heavily collinear. In

particular, duplicating columns not in Xn(s0) does not affect the asymptotic identi-

fiability. This is not true for the sparse Riesz condition.

The result in Lemma 1 serves as a guideline rather than as a condition to be

directly verified because s0 is unknown. In principle, we could examine this condition

for all s0 with given size K0 ≤ K for some K. Then we would have verified, whether or

not the sparse Riesz condition holds. However, this is impractical because of the size

of P , and it is unnecessary since the sparse Riesz condition is much more stringent.

A better solution is to use our method to identify a candidate ŝ0 first, and then verify

the condition of Lemma 1 with this ŝ0. If none of maxk ‖{I −Hn(s−k ∪ s)}Xn({k})‖

is small, the condition could be practically regarded as satisfied. If a few submodels

s 6= ŝ0 are found to have small maxk ‖{I−Hn(s−k∪s)}Xn({k})‖, scientific knowledge
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can be used to judge their plausibility. If many such models are found, additional

data must be collected to resolve the nonidentifiability.

We now state the consistency result as follows.

Theorem 1. Assume that pn = O(nκ) for some constant κ. If γ > 1 − 1/(2κ),

then, under the asymptotic identifiability condition,

pr[min{bicγ(s) : ν(s) = j, s 6= s0} > bicγ(s0)]→ 1

for j = 1, . . . , K, as n→∞.

The proof is given in the Appendix. The theorem implies that, as n → ∞, the

probability that any model other than the true model will be selected tends to zero.

Consequently, the false discovery rate, when K0 > 0, goes to 0.

In addition, our proof reveals that when pn >
√
n, the ordinary bic is likely

inconsistent. A non-technical explanation is as follows. Consider the situation in

which the true model is an empty s0. A one-covariate model will be selected over

the true model when any one of its loglikelihoods exceeds the likelihood of s0 by

0.5 log n. Using the classical result (Wilks, 1938), we can show that the maximum

inflation in the loglikelihood is of order 0.5 log n when P l
√
n. Thus, a wrong one-

covariate model will be selected with positive probability, and the ordinary bic loses

consistency. Clearly, since there are many more 2-covariate models P (P − 1)/2, the

false discovery rate increases when they are included in the model space.

4. Simulation studies

4.1. Numerical consideration

In the extended Bayes information criteria bicγ, three values of γ are of special

interest, namely, γ = 0, 0.5 and 1. The value 0 corresponds to the original bic. The

value 1 ensures consistency of extended Bayes information criteria when pn = O(nκ)
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for any κ ≥ 0 not depending on n, and the value 0.5 ensures consistency when κ < 1.

When P is large, we cannot afford to calculate bicγ(s) for all possible s. Instead,

we combine bicγ with a penalized likelihood technique developed by Tibshirani (1996)

and others. Let

lλ(β) = −2 log{Ln(β)}+ n
∑
k

p(|βk|;λ),

where p(|βk|;λ) is a penalty function of |βk|, the components of β, with λ a tuning

parameter. If we choose a p(·) that has a spike at 0, the penalized negative loglike-

lihood function attains its minimum at some β̂ with many zero components. Two

common choices of p(·) are the L1 penalty considered by Tibshirani (1996) and the

smoothly clipped absolute deviation penalty proposed by Fan & Li (2001).

When λ→∞, the penalized negative loglikelihood function attains its minimum

with β being 0 except for the intercept term. When λ = 0, the function attains

its minimum at the least squares estimator. When λ increases, the number of zero

components in β̂ increases. We increase λ gradually so that the number of zero

components of β̂ gradually increases, and obtain a sequence of nested models. The

values of bicγ are computed for this sequence of models and a model is selected.

When P >> n, the above approach is still computationally infeasible. Instead, a

tournament described in by Z. Chen, J. Chen and J. Liu is used, so that the original

set of all the covariates is randomly partitioned into disjoint subsets, each containing

about n/2 covariates. The foregoing penalized likelihood is applied to each subset

to obtain a β̂ with a specific number of nonzero components, and therefore a much

reduced subset of covariates. These reduced subsets are pooled and the procedure

is repeated if necessary. Otherwise, the penalized likelihood procedure together with

the extended Bayes information criteria is applied to the reduced pooled subset to

obtain the final selected model.
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4.2. The model and the covariate structure

Our simulation study examines the performance of the extended Bayes information

criteria in three cases.

In Case 1, we set P = 50 and n = 200 with randomly generated covariates. In

this situation in which P << n, the original bic is applicable.

In Case 2, we set P = 1000 and n = 200 with randomly generated covariates. In

this situation P >> n and we expect the original bic to fail in some way and the

extended Bayes information criteria to excel.

In Case 3, covariates from a real data set were used with n = 233 and P = 1414.

In this situation, ebicγ with γ = 1 should work best. The covariate structure in Case

3 is completely natural and somewhat unknown. It is crucial that the extended Bayes

information criteria work in this situation before it is used in real data analysis.

The following linear model is generally employed in all three cases:

yi = xT
i (s)β(s) + εi, i = 1, . . . , n, (2)

for some s, where εi ∼ N(0, σ2) and σ = 1 but is assumed unknown in the analysis.

In Case 1, the covariates are generated from N(0, 1) with one of the following

covariance structures:

(i) cov(xij, xik) = ρ, for all pairs of j and k;

(ii) cov(xij, xik) = ρ, for j and k = j ± 1, and 0 otherwise;

(iii) cov(xij, xik) = ρ|k−j| for all pairs of k and j.

Two values of ρ are explored, 0.2 and 0.4.

In Case 2, the covariates are generated in 20 groups of size 50. The first ten

groups of covariates are generated as above. The other ten groups are generated from
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a discrete distribution over (−2, 0, 4) with probabilities (0.5, 0.25, 0.25), and then

scaled to have standard deviation 1. Once covariates are created, they remain fixed

throughout the simulation studies. In each replicate, a submodel s of pre-spedified

size is selected at random, and the response values are generated according to model

(2) with pre-determined β(s) which is kept unchanged throughout the simulation.

In each replicate, we compare the set s∗ selected by the extended Bayes information

criteria with the real model s. The average number of covariates correctly selected

and the average number incorrectly selected are computed. We define the positive

selection rate as the ratio ν(s ∩ s∗)/ν(s), and the false discovery rate as the ratio

ν(s∗ − s)/ν(s∗). These mimic the power and type I error in hypothesis testing. The

concept of a false discovery rate was first introduced in problems involving a huge

number of multiple tests; see Benjamini & Hochberg (1995). It is a much more

sensible measure for the problems considered in this article.

4.3. Simulation results

Case 1. We put β(s) = (0, 0.7, 0.9, 0.4, 0.3, 1.0, 0.2, 0.2, 0.1)T, which resemble a

set of fitted values in a real data analysis. The results are reported in Table 1. The

standard deviations based on the 200 repetitions are presented in parentheses, thereby

providing information on simulation errors.

It turns out that bic1 has selected slightly fewer true covariates, but also fewer

false covariates compared to bic0. To see this more clearly, we pooled outcomes with

a different covariate structure and computed the positive selection rates and false

discovery rates for P = 50. The pooling is sensible because the correlation structures

do not seem to cause an appreciable difference in the trend of the positive selection

rate and the false discovery rate. The outcomes are given in Table 2.

As expected, both the positive selection rate and the false discovery rate have

13



a declining trend from bic0 to bic0.5 to bic1, since bic1 is the most stringent and

bic0 is the least stringent. The striking point is that the decline in the positive

selection rate is inconspicuous but the difference in the false discovery rate is quite

significant. In general, the positive selection rate of bic0 is slightly higher than those

of bic0.5 and bic1, but bic0 suffers a much higher false discovery rate than the other

two. It appears that the positive selection rate is affected by the correlation among

the covariates, but the effects on the false discovery rate do not seem to show an

appreciable difference.

We also conducted simulations for P = 20, σ = 2, and so on. The results are

similar and are omitted.

Case 2. We let β = (0, 1.0, 0.7, 0.5, 0.3, 0.2)T to generate the response variable

according to model (2). The tournament approach was applied. The set of 1000

covariates was randomly partitioned into subsets of equal size 100 in the first round.

From each subset, 12 covariates were selected by the penalized likelihood method to

enter the second round of competition. In the second round, these 120 selected covari-

ates were pooled and 20 of them were selected as the final candidate covariates. Three

final models were selected according to bic0, bic0.5 and bic1. The average numbers of

correctly and incorrectly selected covariates and the corresponding positive selection

rate and false discovery rate are presented in Table 3.

As shown in Table 3, the false discovery rate of bic0 is intolerably high: the

lowest is 61.6% and the highest is 76%. The high false discovery rate makes bic0

an inappropriate model selection criterion for small-n-large-P problems. However,

bic1 effectively controls the false discovery rate, which is about 5% in all the cases

considered, while it retains a high positive selection rate. Again, the performance of

bic0.5 falls between these two.
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Case 3. We use covariates of a real dataset from a genetic genome-wide association

study in this simulation. In the genetic study, B lymphocytes from blood samples

of individuals are transformed into immortalized lymphoblastoid cell lines by the

Epstein-Barr virus. In the transformation, the Epstein-Barr virus genes are expressed

in the lymphoblastoid cell lines. Of interest is whether the mrna expression level of a

particular gene, the ebna-3a, is associated with any single nucleotide polymorphisms

over the human genome. Data were collected from 16 pedigrees with a total of 233

individuals. For each individual, the mrna expression level of the ebna-3a gene

were obtained together with the genotypes at 2155 single nucleotide polymorphisms

spread over 23 chromosomes. The dataset was originally analyzed in the report by Z.

Chen, J. Chen, and J. Liu. As the result of a preliminary analysis, only 1414 single

nucleotide polymorphisms are retained in the analysis because the others either are

uninformative or have a large proportion of missing genotypes.

In the simulation studies, the dataset is used in the following ways.

Setting 1. The observed response values are randomly permuted and reassigned

to the individuals so that the possible association between the response variable and

the single nucleotide polymorphism genotypes is de-linked.

Setting 2. The response values are randomly generated from model (2) under the

assumption of no association, while the observed response values are ignored.

Setting 3. The response values are generated from model (2) with three single

nucleotide polymorphisms having major effects, where, in each simulation replicate,

these three single nucleotide polymorphisms are randomly selected from the 1414 that

are available:

β(s) = (0,−1.56,−1.09, 1.22,−0.06,−0.08,−0.012, 0.067,−0.047,−0.07, 0.05)T.

The extra seven nonzero coefficients are not considered useful and are not used to
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compute positive selection rates and so on.

Setting 4. The trait values are generated as in Setting 3 but with ten single

nucleotide polymorphisms having minor effects:

β(s) = (0,−0.31, 0.23, 0.42,−0.32,−0.33,−0.26, 0.41, 0.29,−0.35,−0.69)T.

In Settings 1 and 2, we assess the performance of the model selection criteria

when there is no covariate associated with the response variable. In Settings 3 and 4,

we assess how the model selection criteria perform when the effects of the covariates

are at different levels. The model selection criteria are applied with the tournament

procedure, and the number of simulation replicates is 200.

The simulation results are given in Table 4. When there is no single nucleotide

polymorphism associated with the trait, bic1 tightly controls false discovery, vir-

tually no single nucleotide polymorphisms being wrongly discovered, but bic0 has

little control over false discovery; in both settings 1 and 2, about 6 single nucleotide

polymorphisms are wrongly discovered. The criterion bic0.5 reasonably controls false

discovery but less satisfactorily than bic1.

Under Setting 3, the positive selection rates of the three criteria are the same but

their false discovery rates are very different: bic0 suffers a false discovery rate as high

as 54.1% while bic0.5 and bic1 effectively control the false discovery rate, at rates

5.9% and 0.7% respectively.

Under Setting 4, although there is a decline in the positive selection rate from

bic0 to bic1, the decline is not dramatic; the difference in the false discovery rate is

again large between bic0 and bic1. The general pattern in the positive selection rate

and the false discovery rate among the three criteria is essentially the same as that

of Setting 2. The results of Setting 3 reveal an additional feature: if the effects of the

truly associated covariates are prominent, the difference in the positive selection rate
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among the three criteria seems small.

5. Further discussion

The choice of the extended Bayes information criteria to use in a particular prob-

lem is an important issue. The version bic1 is consistent as long as P does not

increase with n exponentially. The version bic0.5 is consistent when κ < 1. In

the genome-wide association study, one can be highly confident about the single nu-

cleotide polymorphisms selected by bic1, while those selected by bic0.5 are subject to

further investigation. Another way of choosing γ is to solve for κ from P = nκ and

then to set γ = 1− 1/(2κ).

Although consistency is proved under the normality assumption and a linear re-

gression model, the criteria are obviously applicable without these assumptions. Fur-

thermore, the consistency result is probably valid much more widely. Development

of such a theory will be a topic of future research.

Our result implies that, when pn = O(nκ) with κ < 0.5, the original bic is consis-

tent. Shao (1997), Li (1987) and Rao & Wu (1989) have discussed many consistent

variable-selection procedures, yet our consistency result has extended our understand-

ing of the original bic for the small-n-large-P problem.
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Proof of Lemma 1. Note that, for each k ∈ s0 and s, we have

∆n(s) = ‖Xn(s0)β(s0)−Hn(s)Xn(s0)β(s0)‖2

= inf
α
‖Xn(s0)β(s0)−Xn(s)α‖2

≥ inf
α
‖Xn(k)β(k)−Xn(s−k ∪ s)α‖2

= |β(k)|2‖{I −Hn(s−k ∪ s)}Xn(k)‖2.

In the foregoing derivation, α represents a regression coefficient of proper dimension.

Let c = min{|β(k)| : k ∈ s0} > 0. We obtain that

(log n)−1∆n(s) ≥ c(log n)−1 max
k
{‖{I −Hn(s−k ∪ s)}Xn(k)‖2},

which goes to infinity uniformly in s under the condition. This completes the proof

of asymptotic identifiability.

Proof of Theorem 1. Without loss of generality, we assume that σ2 = 1.

We consider the case s0 6⊂ s first. Note that

yT
n {In −Hn(s0)}yn = eTn{In −Hn(s0)}en =

n−ν(s0)∑
i=1

Z2
j = n{1 + op(1)},

where the Zj are independent standard normal variables. Furthermore,

yT
n {In −Hn(s)}yn − eTn{In −Hn(s0)}en

= µT
n{In −Hn(s)}µn + 2µT

n{In −Hn(s)}en − eTnHn(s)en + eTnHn(s0)en.

By asymptotic identifiability, uniformly over s such that ν(s) ≤ K, we have

(log n)−1µT
n{In −Hn(s)}µn →∞.

Write

µT
n{In −Hn(s)}en =

√
[µT
n{In −Hn(s)}µn]Z(s),
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where

Z(s) =
µT
n{In −Hn(s)}en√

[µT
n{In −Hn(s)}µn]

∼ N(0, 1).

We hence arrive at

max[µT
n{In −Hn(s)}en : s ∈ Sj] ≤

√
[µT
n{In −Hn(s)}µn] max{Z(s) : s ∈ Sj}

≤
√

[µT
n{In −Hn(s)}µn]Op{

√
(2 log pn)}

= op[µ
T
n{In −Hn(s)}µn],

where the last inequality follows the Bonferoni inequality.

Since Hn(s) is a projection matrix, we have

eTnHn(s)en = Z2
1(s) + · · ·+ Z2

j (s)

for some independent standard normal random variables. Thus, by Bonferoni in-

equality,

max{eTnHn(s)en : s ∈ Sj} = Op(log pn) = Op(log n).

The term eTnHn(s0)en is a χ2-distributed statistic with a fixed degrees of freedom K0.

In summary, µT
n{In − Hn(s)}µn, which goes to infinity faster than log n, is the

dominating term in yT
n {In −Hn(s)}yn − eTn{In −Hn(s0)}en. Thus,

yT
n {In −Hn(s)}yn − eTn{In −Hn(s)}en

eTn{In −Hn(s)}en
≥ C log n

n
,

for any large constant C in probability, and

log

[
yT
n {In −Hn(s)}yn

yT
n {In −Hn(s0)}yn

]
= log

[
1 +

yT
n {In −Hn(s)}yn − eTn{In −Hn(s0)}en

eTn{In −Hn(s0)}en

]
≥ log{1 + C(log n)/n}.

Note that the second and the third terms in bicγ are of order log n. Hence, choosing

C > K(1 + 2γκ), we obtain

bicγ(s)− bicγ(s0) ≥ n log{1 + C(log n)/n} −K(1 + 2γκ) log n→∞,
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as n→∞ uniformly in s ∈ Sj for all j = 1, . . . , K.

We now turn to the case s0 ⊂ s, for which we have {In − Hn(s)}Xn(s0) = 0.

Hence, yT
n {In −Hn(s)}yn = eTn{In −Hn(s)}en and

eTn{In −Hn(s0)}en − eTn{In −Hn(s)}en = eTn{Hn(s)−Hn(s0)}en =

j∑
i=1

Z2
i (s),

where j = ν(s)− ν(s0) and the Zi(s) are some independent standard normal random

variables depending on s. Let ên = {In −Hn(s0)}en. We obtain that

n
(

log[eTn{I −Hn(s0)}en]− log[eTn{I −Hn(s)}en]
)

= n log

{
1 +

∑j
i=1 Z

2
i (s)

êTn ên −
∑j

i=1 Z
2
i (s)

}

≤ n
∑j

i=1 Z
2
i (s)

êTn ên −
∑j

i=1 Z
2
i (s)

.

As n→∞, n−1êTn ên → σ2 = 1. It follows that

max{
j∑
i=1

Z2
i (s) : s ∈ Sν(s)} = 2j log pn{1 + op(1)}.

Thus,

max

{
n
∑j

i=1 Z
2
i (s)

êTn ên −
∑j

i=1 Z
2
i (s)

: s ∈ Sν(s)

}
≤ 2nj log pn{1 + op(1)}

(n− 2j log pn){1 + op(1)}
= 2j log pn{1 + op(1)}.

Consequently, uniformly in s such that ν(s) = ν(s0) + j,

bicγ(s)− bicγ(s0) ≥ j{log n+ (2γ − 2) log pn} = j{1 + 2κ(γ − 1)} log n.

When γ > 1 − 1/(2κ), we have, as n → ∞, that bicγ(s) − bicγ(s0) → ∞. The

conclusion hence follows.
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Table 1: Case 1: Mean correct(c) and incorrect(ic) selections
with P = 50 and σ = 1, standard deviations are in brackets

ρ = 0.2 ρ = 0.4
bic0 bic0.5 bic1 bic0 bic0.5 bic1

Correlation structure (i)

c 3.94(0.23) 3.90(0.30) 3.82(0.40) 3.06(0.72) 2.48(0.81) 2.00(0.89)
ic 1.17(1.20) 0.34(0.63) 0.12(0.39) 1.15(1.12) 0.28(0.52) 0.08(0.30)

Correlation structure (ii)

c 3.96(0.18) 3.95(0.22) 3.92(0.28) 3.09(0.74) 2.75(0.75) 2.45(0.81)
ic 0.46(0.76) 0.24(0.54) 0.14(0.37) 0.42(0.73) 0.20(0.51) 0.08(0.33)

Correlation structure (iii)

c 3.98(0.12) 3.90(0.31) 3.74(0.47) 2.96(0.74) 2.52(0.83) 2.08(0.85)
ic 1.16(1.27) 0.34(0.68) 0.14(0.37) 0.95(1.02) 0.29(0.56) 0.06(0.24)
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Table 2: Case 1: Pooled positive selection rates(psr) and false discovery rates(fdr)

ρ = 0.2 ρ = 0.4
bic0 bic0.5 bic1 bic0 bic0.5 bic1

psr 0.495 0.490 0.478 0.380 0.323 0.272
fdr 0.190 0.073 0.034 0.217 0.090 0.033
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Table 3: Simulation results for Case 2 with P = 1000,
standard deviations are in brackets

ρ = 0.2 ρ = 0.4
σ bic0 bic0.5 bic1 bic0 bic0.5 bic1

Correct(c) and incorrect(ic) selections

1 c 4.05(0.69) 3.72(0.66) 3.45(0.56) 2.83(0.68) 2.34(0.72) 1.82(0.67)
ic 7.11(2.43) 0.72(1.01) 0.09(0.30) 8.98(2.36) 0.85(1.21) 0.05(0.24)

2 c 4.03(0.70) 3.71(0.67) 3.43(0.63) 2.87(0.78) 2.26(0.72) 1.74(0.66)
ic 6.47(2.57) 0.76(1.06) 0.16(0.43) 8.72(2.66) 1.00(1.30) 0.10(0.31)

Positive selection rates(psr) and false discovery rates(fdr)

1 psr 0.810 0.744 0.690 0.566 0.468 0.364
2 0.806 0.742 0.686 0.574 0.452 0.348
1 fdr 0.637 0.162 0.025 0.760 0.266 0.027
2 0.616 0.170 0.045 0.752 0.307 0.054
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Table 4: Simulation results for Case 3, standard deviations are in brackets

Setting bic0 bic0.5 bic1

Incorrect selection number

1 6.19 (3.08) 0.23 (0.50) 0.00 (0.00)
2 6.61 (2.63) 0.34 (0.59) 0.01 (0.10)

3 3.51 (2.17) 0.19 (0.45) 0.02 (0.14)
4 3.97 (1.54) 0.94 (0.99) 0.47 (0.73)

Correct selection number

3 2.98 (0.14) 2.98 (0.14) 2.98 (0.14)
4 6.38 (1.39) 5.80 (1.73) 5.15 (2.02)

False discovery rate

3 0.541 0.060 0.007
4 0.384 0.139 0.084

Positive selection rate

3 0.993 0.993 0.993
4 0.638 0.580 0.515
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