
Fluid models in performance analysis

Miklós Telek
Dept. of Telecom., Technical University of Budapest

SFM-07:PE,

May 31, 2007

Bertinoro, Italy

Joint work with

Marco Gribaudo
Dip. di Informatica, Università di Torino,
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1. Motivations

- Conventional modelling techniques have some
limitations due to:

• State space explosion,

• Granularity and size,

• Modelling power limitations,

• Inaccurate distribution approximation.

- Continuous modelling techniques can help (in some
cases) to overcome these limitations!
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1. Motivations: State space explosion

- The size of the state space of a model generally grows
exponentially by increasing its parameters (i.e.
increasing the number of costumer in a non-product
form queuing network).

- This size can reach very quickly the storage and
processing capacity of a machine.

- Fluid techniques use additional continuous variables
which are not part of the conventional state space,
leading to smaller sets.
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1. Motivations: Granularity and Size

- Many systems are characterized by huge amount of
very small elements (i.e. the packets in a broadband
router, raw parts in a flexible manufactory system).

- Continuous variables may very naturally approximate
these large discrete numbers.



Gribaudo, Telek: Fluid models 6

1. Motivations: Modelling power

- In some cases, physical quantities like time,
temperature, or speed must be modelled explicitly.

- Conventional modelling technique “discretize” those
quantities by choosing a finite set of possible values.

- Continuous variables can instead exactly model these
quantities.
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1. Motivations: Inaccurate

approximations

- Many conventional modelling techniques relay only on
Exponential distributions and homogeneous Poission
processes (i.e. Markov Chains, GSPNs).

- Fluid model can directly embed more complex
distributions and non-homogenous Poission process,
without the need of using approximate techniques (like
Phase-Type expansion).
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2. Formalisms

- Continuous quantities have been introduced in
performance models in many flavors.

- Many high-level and low-level performance evaluation
formalisms have been developed to deal with continuous
quantities. Here we will consider:

• Reward Models,

• Fluid Models,

• Fluid Stochastic Petri Nets.
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2.1. Reward Models

- A Reward Model is a Markov chain in which each
state has associated a positive quantity called Reward
Rate.

- Reward is accumulated proportionally to the time
spent in a state and to the corresponding reward rate.

- The accumulated reward is unbounded.
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2.1. Reward Models

- The Markov Chain that governs the reward is called
the underlaying Markov Chain.

- It is described by a generator matrix Q, whose
element qij defines the transition from state i to state j:

qij = lim
∆t→0

P{S(t + ∆t) = j|S(t) = i}
∆t

, for i 6= j

qij = −
∑

k 6=i

qik, for i = j

- S(t) represents the state of the underlaying Markov
chain at time t.
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2.1. Reward Models

- The reward rate of the state i is denoted by ri, ri ≥ 0.

- They are collected in a diagonal Matrix R, whose
elements [R]ij are such that:

[R]ij = 0, for i 6= j,

[R]ij = ri, for i = j.
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2.1. Reward Models

- We denote with X(t) the total reward accumulated
until time t.

- We set X(0) = 0.

- In this case

X(t) =
∫ t

0

rS(u) du.
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2.2. Fluid Models

- Fluid Models are an extension of Reward Models.

- The rate associated to each state (called in this case
flow rate or drift) can be positive, negative or zero.

- The accumulated reward is called Fluid Level.

- The Fluid level has at least a lower bound at zero.

- The analysis techniques for Reward and Fluid Models
will be presented in Part 3 and 4 of this tutorial.
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2.2. Fluid Models

- Fluid Models are described by the same parameters
used for Reward Models:

- The Transition Rate Matrix Q.

- The Flow Rate Matrix R.

- The Flow Rate Matrix is equivalent to the Reward
Rate Matrix, without the restriction that its elements
must be positive.
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2.3. Fluid Stochastic Petri Nets

- A Fluid Stochastic Petri Net (FSPN) is an
extension of an ordinary Stochastic Petri Net, capable
of incorporating continuous quantities.

- Other similar extensions with minor differences are:
Continuous Petri Nets and Hybrid Petri Nets. In this
tutorial we will not consider such formalisms.

- We will present the basic formalism, intended for
stochastic analysis (not simulation).
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2.3. Fluid Stochastic Petri Nets

- The modelling primitives that can be used in a FSPN
model are divided into two categories:

• Discrete primitives,

• Fluid (Continuous) primitives.
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2.3. Fluid Stochastic Petri Nets

pi

tkTj

discrete
place

timed
transition

immediate
transition

discrete
arc

inhibitor
arc

tokens

pi

- Discrete primitives are identical to the equivalent
primitives of a Generalized Stochastic Petri Net
(GSPN).
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2.3. Fluid Stochastic Petri Nets

fluid
arcx2

c
l

fluid
place

fluid

c
l

- Fluid primitives are instead specific for FSPN.
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2.3. Fluid Stochastic Petri Nets

- The Discrete Part of a model is the subset of the
model by all and only its discrete primitives.

- The Fluid Part of a model is the subset of the model
composed by all and only its fluid primitives.

- It can be easily shown that the Discrete Part of a
FSPN is a GSPN.
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2.3. Fluid Stochastic Petri Nets

pi
discrete
place

tokens

pi

- Discrete Places contain Tokens.

- The number of tokens contained in a Discrete Place
represent its Marking.

- The Discrete Marking of a discrete place is a natural
number.
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2.3. Fluid Stochastic Petri Nets

pi
discrete
place

tokens

pi

- We call Pd the set of discrete places.

- We indicate with pi ∈ Pd an element of this set.

- We denote with mi the discrete marking of place pi.
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2.3. Fluid Stochastic Petri Nets

x2

c
l

fluid
place

fluid

c
l

- Fluid (or Continuous) Places contain a continuous
quantity called Fluid.

- This corresponds to the Marking for a Fluid Place.

- The Fluid Marking (Fluid Level) is a non-negative real
number.
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2.3. Fluid Stochastic Petri Nets

x2

c
l

fluid
place

fluid

c
l

- We call Pc the set of fluid places.

- We indicate with cl ∈ Pc an element of this set.

- We denote with xl the fluid level of place cl.
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2.3. Fluid Stochastic Petri Nets

- Markings of Discrete Places are collected in a vector of
|Pd| natural numbers, m = (m1, . . . ,m|Pd|).

- Markings of Fluid Places are collected in a vector of
|Pc| real numbers, x = (x1, . . . ,x|Pc|).

- The Complete Marking M = (m,x) of the model is the
set of both the Discrete and Fluid Markings.
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2.3. Fluid Stochastic Petri Nets

- The Marking M = (m,x) evolves in time.

- We denote with mi(t) and xl(t) respectively the
discrete marking of place pi at time t, and the fluid level
of place cl at time t.

- We call M(t) = {(mi(t), xl(t)), t ≤ 0} the stochastic
process that defines the model evolution (the Marking
Process).
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2.3. Fluid Stochastic Petri Nets

- Places (both Fluid and Discrete) are characterized by
an Initial Marking.

- The Initial Marking of a place represents its marking
at time t = 0.

- We call it M0 = (m0,x0).
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2.3. Fluid Stochastic Petri Nets

Tj
timed
transition

- Timed Transitions represents events that happens with
time.

- They move tokens among the discrete places.

- They move fluid along the fluid places.
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2.3. Fluid Stochastic Petri Nets

Tj
timed
transition

- We call Te the set of the timed transitions.

- We address with Tj ∈ Te a transition of this set.
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2.3. Fluid Stochastic Petri Nets

- Timed Transitions can be enabled, depending on the
marking of the places and on the weights of the discrete
and inhibitor arcs that are connected to it.

- When a Timed Transition Tj is enabled, it fires after
an exponentially distributed time.

- We denote with F (Tj , M) the Instantaneous Firing
Rate of transition Tj in marking M (that is the rate
parameter of the exponential distribution of the
transition firing time).
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2.3. Fluid Stochastic Petri Nets

- An enabled timed transition Tj changes the marking of
the discrete places to which it is connected with discrete
arcs when it fires.

- An enabled timed transition Tj continuously changes
the marking of the fluid places to which it is connected
with fluid arcs as long as it is enabled.
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2.3. Fluid Stochastic Petri Nets

tk
immediate
transition

- Immediate Transitions represents events that happens
in zero time.

- They move tokens among discrete places.

- They cannot change the fluid level in continuous
places.
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2.3. Fluid Stochastic Petri Nets

tk
immediate
transition

- We call Ti the set of the immediate transitions.

- We address with tk ∈ Ti a transition of this set.
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2.3. Fluid Stochastic Petri Nets

- Immediate Transitions can be enabled, following the
same rules as timed transitions.

- Immediate transitions are characterized by their
Weight, which is used to determine which transition will
fire when more than one are enabled at the same time.

- We denote with W (tk,M) the Weight of immediate
transition tk in marking M .
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2.3. Fluid Stochastic Petri Nets

- When more than one transition (timed or immediate)
are enabled in a marking, a conflict arises.

- The conflict resolution algorithm determines which
transition actually fires.
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2.3. Fluid Stochastic Petri Nets

- If both timed and immediate transitions are enabled in
a marking, immediate transitions have priority over the
timed ones (i.e. timed transitions can be ignored).

- Race policy solves conflict among timed transition
(whichever fires first).

- Probabilistic decision, based on the transition weights,
determines which fires among several immediate
transition concurrently enabled.
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2.3. Fluid Stochastic Petri Nets

discrete
arc

inhibitor
arc

- Discrete Arcs and Inhibitor Arcs connect discrete
places to transitions.

- They determine when a transition is enabled.

- Discrete Arcs also determine what happens when a
transition fires.
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2.3. Fluid Stochastic Petri Nets

- Each Discrete Arc or Inhibitor Arcs has associated a
weight.

- The standard GSPNs: firing rules apply to FSPNs:

• A transition is enabled if all its input places have at least as

many tokens as the weight of the corresponding arc.

• A transition is enabled if all the places to which it is

connected with inhibitor arcs have at most as many tokens as

the weight of the connecting arc, minus one.

• When a transition fires, it removes from its input places and

it puts into the output places as many tokens as the

corresponding connecting arc.
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2.3. Fluid Stochastic Petri Nets

fluid
arc

- Fluid (continuous) Arcs connect timed transitions to
fluid places.

- Each Fluid arc has associated a Flow Rate.

- The Flow Rate is a non-negative real number.
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2.3. Fluid Stochastic Petri Nets

fluid
arc

- A fluid arc directed form a timed transition to a fluid
place, pumps fluid into the place at a rate equal to the
arc’s Flow Rate.

- A fluid arc directed form a fluid place to a timed
transition, removes fluid from the place at a rate equal
to the arc’s Flow Rate.

- Fluid flows only when the Timed Transition at
beginning or at the end of the arc is enabled.
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2.3. Fluid Stochastic Petri Nets

- When the fluid place becomes empty (its fluid marking
reaches zero), the fluid flow stop.

- We denote with R(Tj , cl,M) the flow rate of a fluid arc
from timed transition Tj to fluid place cl in marking M .

- We use R(cl, Tj ,M) when the arc is directed in the
opposite direction (from the place to the transition).
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2.3. Fluid Stochastic Petri Nets

- Fluid Stochastic Petri Nets are analyzed by
transforming them into equivalent Fluid Models.

- If the FSPN has a single fluid place, then standard FM
can be applied.

- If the FSPN has more than one fluid place, then
special FM with multiple continuous variables must be
used.
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2.3. Fluid Stochastic Petri Nets

- The Transition Rate Matrix Q and the Flow Rate
Matrix R can be automatically generated starting from
the FSPN Model.

- The state space of the FM corresponds to the state
space of the discrete part of the FSPN model.

- Both the state space and the Transition Rate Matrix
Q can be calculated applying standard GSPN
techniques to the discrete part of FSPN the model.
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2.3. Fluid Stochastic Petri Nets

- The elements of the flow rate matrix can be computed
from the flow rates of the fluid arcs. If we imagine to
have only one single fluid place cl, then we can define:

ri =
∑

Tj∈E(mi)

(R(Tj , cl,mi)−R(Tj , cl,mi))

mi is the discrete marking corresponding to state i, and

E(mi) is the set of timed transition enabled in mi.
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2.3. Fluid Stochastic Petri Nets

- Some important extensions have been proposed in the
literature. Two of them are:

• Fluid-dependent transition and flow rates,

• Flush-out arcs.
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2.3. Fluid Stochastic Petri Nets

- Both the transition rates of timed transition, and the
flow rates associated to the fluid arcs can depend on the
complete (discrete and continuous) marking of the
process.

- In this case the underlaying stochastic process should
be analyzed using non-homogenous Fluid Models.

- Both the transition rate matrix and the flow rate
matrix depend on the fluid part of the model: Q(x),
R(x).
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2.3. Fluid Stochastic Petri Nets

flush-out
arc

- Flush-out arcs are special arcs that connect fluid
places to timed transition (but not timed transition to
fluid places).

- They are drawn using thick lines.

- When a transition fires, the places connected with a
flush-out arc are emptied in zero time.
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2.3. Fluid Stochastic Petri Nets

flush-out
arc

- Despite their simplicity, Flush-out Arcs can be
exploited to obtain many interesting effects, like
dropping the content of the transmission buffer.

- The underlaying stochastic model is no longer a
standard Fluid Model, but it can be analyzed similarly
using appropriate boundary conditions.
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3.1 Introduction to fluid models

Continuous time stochastic processes with

• discrete value (state),
e.g. CTMC,

• continuous value,
e.g. unfinished work in a queue,

• hybrid (continuous and discrete) value,
e.g. unfinished work and the number of customers.
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3.1 Introduction to fluid models

General continuous and hybrid valued stochastic processes

are hard to analyze.

But, there are special cases:

• reward models,

• fluid models.

A simple function of a discrete state stochastic process

governs the evolution of the continuous variable.

When the discrete state stochastic process is a CTMC

• Markov reward models,

• Markov fluid models.

We focus on this Markovian case.
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3.1 Introduction to fluid models

Reward models: unbounded (non-decreasing) evolution,

Fluid models: bounded evolution.
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3.1 Introduction to fluid models

Classes of fluid models:

• finite buffer – infinite buffer,

• first order – second order,

• homogeneous – fluid level dependent,

• barrier behaviour in second order case

– reflecting – absorbing.
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3.1 Introduction to fluid models

Infinite buffer: the continuous quantity is only lower

bounded at zero.

Finite buffer: the continuous quantity is lower bounded at

zero and upper bounded at B.
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3.1 Introduction to fluid models

First order: the continuous quantity is a deterministic

function of a CTMC.

Second order: the continuous quantity is a stochastic

function of a CTMC.
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3.1 Introduction to fluid models

Interpretation of second order fluid models.

Random walk with decreasing time and fluid granularity.

CTMC state

Fluid

level
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3.1 Introduction to fluid models

Homogeneous: the evolution of the CTMC is independent of

the fluid level.

Fluid level dependent: the generator of the CTMC is a

function of the fluid level.

dX(t) =r
dt

S(t)

Q

X(t)

S(t)

X(t)

S(t)

Q(X(t))

dX(t) =r
dt

S(t)(X(t))
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3.1 Introduction to fluid models

Boundary behaviour of second order fluid models.

Reflecting: the fluid level is immediately reflected at the

boundary.

Absorbing: the fluid level remains at the boundary up to a

state transition of the Markov chain.
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3.1 Introduction to fluid models

Interpretation of the boundary behaviours:

CTMC state

Fluid

level

Upper boundary

Reflecting Absorbing
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3.2 Transient behaviour of fluid models

- Transient behaviour of first order infinite buffer

homogeneous Markov fluid models,

- Extensions:

• finite buffer,

• second order,

• fluid level dependency.
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3.2 Transient behaviour of fluid models

First order, infinite buffer, homogeneous Markov fluid models

During a sojourn of the CTMC in state i (S(t) = i) the fluid

level (X(t)) increases at rate ri when X(t) > 0:

X(t+∆)−X(t) = ri∆ → d

dt
X(t) = ri if S(t) = i, X(t) > 0.

When X(t) = 0 the fluid level can not decrease:

d

dt
X(t) = max(ri, 0) if S(t) = i, X(t) = 0.

That is

d

dt
X(t) =

8
<
:

rS(t) if X(t) > 0,

max(rS(t), 0) if X(t) = 0.
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3.2 Transient behaviour of fluid models

First order, finite buffer, homogeneous Markov fluid models

When X(t) = B the fluid level can not increase:

d

dt
X(t) = min(ri, 0), if S(t) = i, X(t) = B.

That is

d

dt
X(t) =

8
>><
>>:

rS(t), if X(t) > 0,

max(rS(t), 0), if X(t) = 0,

min(rS(t), 0), if X(t) = B.
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3.2 Transient behaviour of fluid models

Second order, infinite buffer, homogeneous Markov fluid

models with reflecting barrier

During a sojourn of the CTMC in state i (S(t) = i) in the

sufficiently small (t, t + ∆) interval the distribution of the

fluid increment (X(t + ∆)−X(t)) is normal distributed with

mean ri∆ and variance σ2
i ∆:

X(t + ∆)−X(t) = N (ri∆, σ2
i ∆),

if S(u) = i, u ∈ (t, t + ∆), X(t) > 0.

At X(t) = 0 the fluid process is reflected immediately,

−→ Pr(X(t) = 0) = 0.
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3.2 Transient behaviour of fluid models

Second order, infinite buffer, homogeneous Markov fluid

models with absorbing barrier

Between the boundaries the evolution of the process is the

same as before.

First time when the fluid level decreases to zero the fluid

process stops,

−→ Pr(X(t) = 0) > 0.

Due to the absorbing property of the boundary the

probability that the fluid level is close to it is very low,

−→ lim∆→0
Pr(0<X(t)<∆)

∆
= 0.
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3.2 Transient behaviour of fluid models

Inhomogeneous (fluid level dependent), first order, infinite

buffer Markov fluid models

The evolution of the fluid level is the same:

d

dt
X(t) =

8
<
:

rS(t)(X(t)), if X(t) > 0,

max(rS(t)(X(t)), 0), if X(t) = 0.

But the evolution of the CTMC depends on the fluid level:

lim
∆→0

Pr(S(t + ∆) = j|S(t) = i)

∆
= qij(X(t)) .

The generator of the CTMC is Q(X(t)) and the rate matrix

is R(X(t)).
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3.3 Transient description of fluid models

Notations:

πi(t) = Pr(S(t) = i) – state probability,

ui(t) = Pr(X(t) = B, S(t) = i) – buffer full probability,

`i(t) = Pr(X(t) = 0, S(t) = i) – buffer empty probability,

pi(t, x) = lim
∆→0

1

∆
Pr(x < X(t) < x + ∆, S(t) = i)

– fluid density.

=⇒ πi(t) = `i(t) + ui(t) +
R

x
pi(t, x)dx.
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3.3 Transient description of fluid models

First order, infinite buffer, homogeneous behaviour.

Forward argument:

If S(t + δ) = i, then between t and t + ∆ the CTMC

• stays in i with probability 1 + qii∆,

• moves from k to i with probability qki∆,

• has more than 1 state transition with probability σ(∆).
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3.3 Transient description of fluid models

Fluid density:

pi(t + ∆, x) = (1 + qii∆) pi(t, x− ri∆)+X

k∈S,k 6=i

qki∆ pk(t, x−O(∆))+

σ(∆) ,

where lim∆→0 σ(∆)/∆ = 0 and lim∆→0O(∆) = 0.
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3.3 Transient description of fluid models

pi(t + ∆, x)− pi(t, x− ri∆) =X

k∈S
qki∆ pk(t, x−O(∆)) + σ(∆) ,

pi(t + ∆, x)− pi(t, x)

∆
+ ri

pi(t, x)− pi(t, x− ri∆)

ri∆
=

X

k∈S
qki pk(t, x−O(∆)) +

σ(∆)

∆
,

∂

∂t
pi(t, x) + ri

∂

∂x
pi(t, x) =

X

k∈S
qki pk(t, x) .
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3.3 Transient description of fluid models

Empty buffer probability:

If ri > 0,

−→ the fluid level increases in state i,

−→ `i(t) = Pr(X(t) = 0, S(t) = i) = 0.
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3.3 Transient description of fluid models

If ri ≤ 0:

`i(t + ∆) =

(1 + qii∆)

0
@`i(t) +

Z −ri∆

0

pi(t, x)dx

| {z }
∗

1
A+

X

k∈S,k 6=i

qki∆

0
@`k(t) +

Z O(∆)

0

pk(t, x)dx

| {z }
O(∆)

1
A+

σ(∆) .
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3.3 Transient description of fluid models

When x ≤ −ri∆, then

pi(t, x) = pi(t, 0) + xp′i(t, 0) + σ(∆) ,

and

∗ =

Z −ri∆

0

pi(t, x)dx

=

Z −ri∆

0

pi(t, 0)dx +

Z −ri∆

0

xp′i(t, 0)dx +

Z −ri∆

0

σ(∆)dx

= −ri∆ pi(t, 0) +
(−ri∆)2

2
p′i(t, 0)

| {z }
σ(∆)

+ (−ri∆) σ(∆)| {z }
σ(∆)

.
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3.3 Transient description of fluid models

From which the empty buffer probability:

`i(t + ∆) = (1 + qii∆)
�
`i(t) −ri∆pi(t, 0) + σ(∆)

�
+

X

k∈S,k 6=i

qki∆ (`k(t) +O(∆)) + σ(∆) ,

`i(t + ∆)− `i(t) = qii∆ `i(t)− ri∆pi(t, 0)+

X

k∈S,k 6=i

qki∆ (`k(t) +O(∆)) + σ(∆) ,
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3.3 Transient description of fluid models

and

`i(t + ∆)− `i(t)

∆
=

− ri pi(t, 0) +
X

k∈S
qki (`k(t) +O(∆)) +

σ(∆)

∆
,

d

dt
`i(t) = −ri pi(t, 0) +

X

k∈S
qki `k(t) .
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3.3 Transient description of fluid models

Set of governing equations:

Fluid density:

∂

∂t
pi(t, x) + ri

∂

∂x
pi(t, x) =

X

k∈S
qki pk(t, x) ,

Empty buffer probability:

if ri <= 0:

d

dt
`i(t) = −ri pi(t, 0) +

X

k∈S
qki `k(t),

if ri > 0:

`i(t) = 0.
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3.3 Transient description of fluid models

By the definition of fluid density and empty buffer

probability:
Z ∞

0

pi(t, x)dx + `i(t) = πi(t) .

In the homogeneous case:

d

dt
πi(t) =

X

k∈S
qki πk(t), −→ πi(t) = πi(0)eQt.
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3.3 Transient description of fluid models

First order, finite buffer , homogeneous behaviour.

If there is also an upper boundary:

if ri < 0:

ui(t) = 0,

if ri ≥ 0:

d

dt
ui(t) = ri pi(t, B) +

X

k∈S
qki uk(t).
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3.3 Transient description of fluid models

Second order , infinite buffer, homogeneous behaviour.

Fluid density:

pi(t + ∆, x) =

(1 + qii∆)

Z ∞

−∞
pi(t, x− u)fN (∆ri,∆σ2

i )(u)du

| {z }
∗∗

+

X

k∈S,k 6=i

qki∆ pk(t, x−O(∆))+

σ(∆)
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3.3 Transient description of fluid models

Using

pi(t, x− u) = pi(t, x)− up′i(t, x) +
u2

2
p′′i (t, x) +O(u)3

we have:

∗∗ =

pi(t, x)

Z ∞

−∞
fN (∆ri,∆σ2

i )(u)du

| {z }
1

−p′i(t, x)

Z ∞

−∞
ufN (∆ri,∆σ2

i )(u)du

| {z }
∆ri

+

p′′i (t, x)

Z ∞

−∞

u2

2
fN (∆ri,∆σ2

i )(u)du

| {z }
∆2r2

i +∆σ2
i /2=∆σ2

i /2+σ(∆)

+

Z ∞

−∞
O(u)3fN (∆ri,∆σ2

i )(u)du

| {z }
O(∆)2=σ(∆)

.
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3.3 Transient description of fluid models

From which:

pi(t + ∆, x) =

(1 + qii∆)
�
pi(t, x)− p′i(t, x)∆ri + p′′i (t, x)∆σ2

i /2
�

+
X

k∈S,k 6=i

qki∆ pk(t, x−O(∆)) + σ(∆) ,

pi(t + ∆, x)− pi(t, x) =

qii∆pi(t, x)− p′i(t, x)∆ri + p′′i (t, x)∆σ2
i /2+X

k∈S,k 6=i

qki∆ pk(t, x−O(∆)) + σ(∆) ,

∂

∂t
pi(t, x) +

∂

∂x
pi(t, x)ri − ∂2

∂x2
pi(t, x)

σ2
i

2
=
X

k∈S
qki pk(t, x).
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3.3 Transient description of fluid models

Second order , infinite buffer, reflecting barrier ,

homogeneous behaviour.

Boundary condition:

Reflecting barrier −→ `i(t) = 0.

Fluid density at 0:

Z ∞

0

pi(t, x)dx = πi(t)

,
∂

∂t
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3.3 Transient description of fluid models
Z ∞

x=0

∂

∂t
pi(t, x)

| {z }
z }| {
−∂pi(t, x)

∂x
ri +

∂2pi(t, x)

∂x2

σ2
i

2
+
X

k∈S
qki pk(t, x)

dx =
∂

∂t
πi(t)

| {z }
z }| {X

k∈S
qkiπi(t)

−ri

2
4pi(t, x)

3
5
∞

x=0| {z }
−pi(t,0)

+
σ2

i

2

2
4p
′
i(t, x)

3
5
∞

x=0| {z }
−p′

i
(t,0)

+
X

k∈S
qki

Z ∞

x=0
pk(t, x)dx

| {z }
πi(t)

=
X

k∈S
qkiπi(t)

ripi(t, 0)− σ2
i

2
p′i(t, 0) = 0
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3.3 Transient description of fluid models

First order, infinite buffer, inhomogeneous behaviour .

Fluid density:

∂

∂t
pi(t, x) + ri(x)

∂

∂x
pi(t, x) =

X

k∈S
qki(x) pk(t, x)

Empty buffer probability:

if ri(0) < 0 (and ri(x) is continuous):

d

dt
`i(t) = − ri(0) pi(t, 0) +

X

k∈S
qki(0) `k(t),

if ri(0) > 0 (and ri(x) is continuous):

`i(t) = 0.
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3.3 Transient description of fluid models

General case:

Second order , finite buffer , inhomogeneous behaviour .

Differential equations:

∂p(t, x)

∂t
+

∂p(t, x)

∂x
R(x) − ∂2p(t, x)

∂x2
S(x) = p(t, x) Q(x) ,

p(t, 0) R(0) − p′(t, 0) S(0) = `(t) Q(0) ,

−p(t, B) R(B) + p′(t, B) S(B) = u(t) Q(B) ,

where R(x) = Diag〈ri(x)〉 and S(x) = Diag〈σ2
i (x)

2
〉.
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3.3 Transient description of fluid models

General case:

Second order , finite buffer , inhomogeneous behaviour .

Bounding behaviour:

σi = 0 and positive/negative drift: `i(t)=0/ui(t)=0.

σi >0 , reflecting lower/upper barrier: `i(t) = 0/ui(t) = 0.

σi >0 , absor. lower/upper barrier: pi(t, 0)=0/pi(t, B)=0.

Normalizing condition:

Z B

0

p(t, x) dx1I + `(t)1I + u(t)1I = 1.
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3.4 Stationary description of fluid models

Condition of ergodicity:

For ∀x, y ∈ R+, ∀i, j ∈ S the transition time

T = min
t>0

(X(t) = y, S(t) = j|X(0) = x, S(0) = i)

has a finite mean (i.e., E(T ) < ∞).



Gribaudo, Telek: Fluid models 85

3.4 Stationary description of fluid models

Notations:

πi = lim
t→∞

Pr(S(t) = i) – state probability,

ui = lim
t→∞

Pr(X(t) = B, S(t) = i) – buffer full probability,

`i = lim
t→∞

Pr(X(t) = 0, S(t) = i) – buffer empty probability,

pi(x) = lim
t→∞

lim
∆→0

1

∆
Pr(x < X(t) < x + ∆, S(t) = i)

– fluid density,

Fi(x) = lim
t→∞

Pr(X(t) < x, S(t) = i)

– fluid distribution.
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3.4 Stationary description of fluid models

First order, infinite buffer, homogeneous behaviour.

Fluid density:

ri
∂

∂x
pi(x) =

X

k∈S
qki pk(x) .

Empty buffer probability:

if ri <= 0:

0 = −ri pi(0) +
X

k∈S
qki `k,

if ri > 0:

`i = 0.
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3.4 Stationary description of fluid models

First order, finite buffer , homogeneous behaviour.

Fluid density:

ri
∂

∂x
pi(x) =

X

k∈S
qki pk(x) .

Boundary equations:
8
><
>:

ri pi(0) =
X

k∈S
qki `k, if ri ≤ 0,

`i = 0, if ri > 0.

8
><
>:

−ri pi(B) =
X

k∈S
qki uk, if ri ≥ 0,

ui = 0, if ri < 0.



Gribaudo, Telek: Fluid models 88

3.4 Stationary description of fluid models

Second order , infinite buffer, reflecting boundary ,

homogeneous behaviour.

Fluid density:

ri
∂

∂x
pi(x)− ∂2

∂x2
pi(x)

σ2
i

2
=
X

k∈S
qki pk(x) .

Empty buffer probability:

`i = 0.

Boundary equation:

ripi(0)− σ2
i

2
p′i(0) =

X

k∈S
qki `k = 0.
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3.4 Stationary description of fluid models

Second order , infinite buffer, absorbing boundary ,

homogeneous behaviour.

Fluid density:

ri
∂

∂x
pi(x)− ∂2

∂x2
pi(x)

σ2
i

2
=
X

k∈S
qki pk(x).

Empty buffer probability:

pi(0) = 0.

Boundary equation:

−σ2
i

2
p′i(0) =

X

k∈S
qki `k.
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3.4 Stationary description of fluid models

General case:

Second order , finite buffer , inhomogeneous behaviour .

p′(x) R(x) − p′′(x) S(x) = p(x) Q(x) ,

p(0) R(0) − p′(0) S(0) = ` Q(0) ,

−p(B) R(B) + p′(B) S(B) = u Q(B) ,

σi =0 and positive/negative drift: `i = 0/ui = 0.

σi >0, reflecting lower/upper barrier: `i = 0/ui = 0.

σi >0, absorbing lower/upper barrier: pi(0) = 0/pi(B) = 0.
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4 Solution methods

Numerical techniques:

reward fluid

differential equations (+) +

spectral decomposition (+) +

randomization + +

transform domain + +

matrix exponent + +

moments + -
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4 Solution methods

Transient analysis:

• initial condition ,

• set of differential equations,

• bounding behaviour.

Stationary analysis:

• set of differential equations,

• bounding behaviour,

• normalizing condition .
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4.1 Transient solution methods

• Numerical solution of differential equations,

• Randomization,

• Markov regenerative approach,

• Transform domain.
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4.1 Transient solution methods

Numerical solution of differential equations (Chen et al.)

All cases.

The approach

• starts from the initial condition, and

• follows the evolution of the fluid distribution in the

(t, t + ∆) interval at some fluid levels based on the

differential equations and the boundary condition.

This is the only approach for inhomogeneous models.
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4.1 Transient solution methods

Randomization (Sericola)

First order, infinite buffer, homogeneous behaviour.

F c
i (t, x) =

∞X
n=0

e−λt (λt)n

n!

nX

k=0

 
n

k

!
xk

j (1− xj)
n−kb

(j)
i (n, k),

where F c
i (t, x) = Pr(X(t) > x, S(t) = i),

xj =
x−r+

j−1t

rjt−r+
j−1t

if x ∈ [r+
j−1t, rjt), and

b
(j)
i (n, k) is defined by initial value and a simple recursion.
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4.1 Transient solution methods

Properties of the randomization based solution method:

• the expression with the given recursive formulas is a

solution of the differential equation,

the initial value of b
(j)
i (n, k) is set to fulfill the boundary

condition,

• 0 ≤ xj ≤ 1

−→ convex combination of non-negative numbers

−→ numerical stability,

• the initial fluid level is X(0) = 0.

(extension to X(0) > 0 and to finite buffer is not

available.)
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4.1 Transient solution methods

First order, infinite buffer, homogeneous case.

Markov regenerative approach (Ahn-Ramaswami)

Busy/idle period:

interval when the buffer is non-empty/empty.

Ti : the beginning of the ith busy period.

=⇒(S(ti), Ti) is a Markov renewal sequence.

The idle period is PH distributed.

Analysis of a single busy period:

similar analysis as in Matrix geometric models.
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4.1 Transient solution methods

First order, infinite/finite buffer, homogeneous case.

Transform domain description (Ren-Kobayashi)

The Laplace transform of

∂p(t, x)

∂t
+

∂p(t, x)

∂x
R − ∂2p(t, x)

∂x2
S = p(t, x) Q ,

is

p∗∗(s, v) = ( p∗(0, v)| {z }
initial condition

+ p∗(s, 0)| {z }
unknown

R)(sI + vR−Q)−1.

p∗(s, 0) eliminates the roots of det(sI + vR−Q).
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4.2 Stationary solution methods

Condition of stability of infinite buffer first/second order

homogeneous fluid models.

Suppose S(t) is a finite state irreducible CTMC with

stationary distribution π.

The fluid model is stable if the overall drift is negative:

d =
X
i∈S

πiri < 0.

−→ the variance does not play role.
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4.2 Stationary solution methods

• Spectral decomposition,

• Matrix exponent,

• Numerical solution of differential equations,

• Randomization.
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4.2 Stationary solution methods

State space partitioning:

• S+: i ∈ S+ iff σi > 0,

second order states,

• S0: i ∈ S0 iff ri = 0 and σi = 0,

zero states,

• S0+: i ∈ S0+ iff ri > 0 and σi = 0,

positive first order states,

• S0−: i ∈ S0− iff ri < 0 and σi = 0,

negative first order states,

• S∗ = S0−SS0+,

first order states.
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4.2 Stationary solution methods

First order, infinite/finite buffer, homogeneous case.

Spectral decomposition (Kulkarni)

Differential equation: p′(x) R = p(x) Q ,

Form of the solution vector: p(x) = eλxφ,

Substituting this solution we get the characteristic equation:

φ(λR−Q) = 0,

whose solutions are obtained at det(λR−Q) = 0.
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4.2 Stationary solution methods

Spectral decomposition

The characteristic equation has |S0+|+ |S0−| solutions, with

8
>><
>>:

|S0+| negative eigenvalue,

1 zero eigenvalue,

|S0−| − 1 positive eigenvalue.

From which the solution is: p(x) =

|S0+|+|S0−|X
j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and

normalizing conditions.
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4.2 Stationary solution methods

Spectral decomposition

In the infinite buffer case these conditions are:

• p(0) R = ` Q ,

• `i = 0 if ri > 0, and

• R∞
0

pi(x) + `i = πi.

From which aj = 0 for λj > 0

and the rest of the coefficients are obtained from a linear

system of equations.
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4.2 Stationary solution methods

Spectral decomposition

In the finite buffer case these conditions are:

• p(0) R = ` Q , p(B) R = u Q ,

• `i = 0 if ri > 0, ui = 0 if ri < 0, and

• R∞
0

pi(x) + `i + ui = πi.

From which the aj coefficients are obtained from a linear

system of equations.
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4.2 Stationary solution methods

Consequences:

• If |S0−| = 1

−→ all eigenvalues are non-positive.

• If |S0−| > 1 and the buffer is infinite

−→ special treatment of the positive eigenvalues

−→ spectral decomposition is necessary.

• If the buffer is finite

−→ no need for special treatment of the positive

eigenvalues.
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4.2 Stationary solution methods

First order, finite buffer, homogeneous case.

Matrix exponent: (Gribaudo)

Assume that |S0| = 0 and S = S∗.
Introduce v = ` + u, Q−, Q+,

where q−ij = qij if i ∈ S− and otherwise q−ij = 0.

The set of equations becomes:

∂p(x)

∂x
R = p(x)Q −→ p(B) = p(0) eQR−1B = p(0) Φ,

p(0)R = vQ− −→ p(0) = vQ−R−1,

−p(B)R = vQ+ −→ v(Q−R−1ΦR + Q+) = 0 ,
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4.2 Stationary solution methods

Matrix exponent:

And the normalizing condition is

`1I + u1I + p(0)

Z B

0

eQR−1xdx

| {z }
Ψ

1I =

v(I + Q−R−1Ψ)1I = 1 .
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4.2 Stationary solution methods

Relation of spectral decomposition and matrix exponent:

Assume that |S0| = 0 and S = S∗.
The characteristic equation is: φ(λI−QR−1) = 0,

The spectral solution is: p(x) =

|S|X
j=1

aje
λjxφj ,

where λj and φj are the eigenvalues and the left eigenvector

of matrix QR−1.
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4.2 Stationary solution methods

Relation of spectral decomposition and matrix exponent:

Introducing a = {aj} and B =

0
BB@

φ1

φ2...
φ|S∗|

1
CCA ,

the spectral solution can be rewritten as:

p(x) =

|S|X
j=1

aje
λjxφj = a Diag〈eλix〉 B

= a B|{z} B−1 Diag〈eλix〉 B| {z }
= p(0) eQR−1x,
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4.2 Stationary solution methods

Second order, infinite/finite buffer, homogeneous case.

Spectral decomposition (Karandikar-Kulkarni)

Differential equation: p′(x) R − p′′(x) S = p(x) Q ,

Form of the solution vector: p(x) = eλxφ,

Substituting this solution we get the characteristic equation:

φ(λR− λ2S−Q) = 0,

whose solutions are obtained at det(λR− λ2S−Q) = 0.
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4.2 Stationary solution methods

Spectral decomposition

The characteristic equation has 2|S+|+ |S∗| solutions, with

8
>><
>>:

|S+|+ |S0+| negative eigenvalue,

1 zero eigenvalue,

|S+|+ |S0−| − 1 positive eigenvalue.

From which the solution is: p(x) =

2|S+|+|S∗|X
j=1

aje
λjxφj ,

and the aj coefficients are set to fulfill the boundary and

normalizing conditions.
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4.2 Stationary solution methods

Second order, infinite/infinite buffer, homogeneous case.

A transformation of the quadratic equation to a linear one

Assume that |S0| = |S∗| = 0 and S = S+.

d

dx
p(x) R − d

dx
p′(x) S = p(x) Q ,

d

dx
p(x) I = p′(x) I ,

d

dx
p(x) p′(x)

R I

−S 0
= p(x) p′(x)

Q 0

0 I

=⇒ d

dx
p̂(x) R̂ = p̂(x) Q̂ −→ p̂(B) = p̂(0) eQ̂R̂−1B .
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4.2 Stationary solution methods

Numerical solution of differential equations (Gribaudo et al.)

All cases with finite buffer.

Numerically solve the matrix function M(x) with initial

condition M(0) = I based on

M′(x) R(x) − M′′(x) S(x) = M(x) Q(x)

and calculate the unknown boundary conditions based on

p(B) = p(0) M(B)

This is the only approach for inhomogeneous models.
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4.2 Stationary solution methods

First order, infinite/finite buffer, homogeneous case.

Randomization (Sericola)

Randomization with simple coefficients:

Fi(x) =

∞X
n=0

e−λt/r (λt/r)n

n!
bi(n)

where r = min(ri|ri > 0) and

bi(n) is defined by initial value and a simple recursion.

Applicable only when |S0−| = 1.
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5. Applications

- Fluid Models and FSPNs have been successfully used
in the literature to study several interesting systems.

- Here we present three examples:

• Computation of transfer time distribution in P2P
file sharing applications

• Model of a pharmaceutical production system

• Analysis of software systems with checkpointing and
rejuvenation
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5.1. Transfer Time in P2P

- Peer-to-Peer has recently emerged has a new paradigm
for building network applications.

- In the last few year, P2P file-sharing applications (like
Kazaa, eDonkey, Gnutella) are generating an increasing
fraction on today’s Internet.
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5.1. Transfer Time in P2P

- In P2P applications, each peer can act both as a client
and as a server.

- In many P2P protocols, a client can be served in
parallel by more than one peer.

- The overall application performance is determined by
the number of requests being served by each peer (both
as a client and as a server).
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5.1. Transfer Time in P2P

- We design a fluid model to compute the transfer time
distribution of P2P file sharing protocol.

- We make several simplifying assumptions:

• We neglect the search and queueing phase

• We consider only one single source for download

• We imagine that the overall bandwidth depends
only on band and on the load at both the client and
the server
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5.1. Transfer Time in P2P

Uploads

c_peer s_peer

f(.)

Bytes downloaded

Downloads

Uploads

Downloads

- We model both the server and the client with two

independent service queues: one for the uploads, and

another for the downloads. The number of costumers in a

queue represents the load of that particular component.
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5.1. Transfer Time in P2P

Uploads

c_peer s_peer

f(.)

Bytes downloaded

Downloads

Uploads

Downloads

- The fluid buffer represents the quantity of byte received by

the client for the request.
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5.1. Transfer Time in P2P

- The flow rate in a state depends on the load of the
four independent components in that state. A possible
definition could be:

f(s) = min
{

cb

#cu + #cd + 1
,

sb

#su + #sd + 1

}

s = (#cu, #cd,#su, #sd)

where s represents the discrete state of the model, cb

the client bandwidth and sb the server bandwidth.
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5.1. Transfer Time in P2P

Downloads @ Server

Uploads @ Server

Downloads @ Client

Uploads @ Client

- The resulting model is a fluid model (a reward model)

whose underlaying Markov chain is the superposition of the

Markov chains of the four queues.



Gribaudo, Telek: Fluid models 124

5.1. Transfer Time in P2P

- The model can be solved using transient analysis.

- The obtained solution can be integrated to compute
the transfer time distribution.

F (s, t) = P (T (s) < t) = P (F (t) > s) =
∫ ∞

s

π(t, x)dx

F (s, t) is the probability that the application
successfully downloads a file of length s in t time units.

T (s) is the download time of a file of length s.

F (t) is the amount of downloaded data in t time units.
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5.1. Transfer Time in P2P
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- The model can then be exploited, for example, to show
the dependency of the transfer time on the initial load
of the server (for short files).
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5.1. Transfer Time in P2P
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- Or to show that the speed and the state of the server
are not influent if the client has a very low bandwidth.
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5.2. Pharmaceutical production system

- We consider a pharmaceutical production system.

- If the equipment fails during the sterilization process,
all the product contained in the buffer must be
discarded.
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5.2. Pharmaceutical production system
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- We model the system with an FSPN with flush-out
and fluid dependent transition and flow rates.
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5.2. Pharmaceutical production system

- The production slows down when the buffer becomes
full (fluid dependent flow rate α(x))

- The probability that the sterilization process fails
increases when the buffer becomes full (fluid dependent
transition rate µ3(x)).
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5.2. Pharmaceutical production system
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5.2. Pharmaceutical production system
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- The underlaying fluid model has only four states, but
is non-homogenous.
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5.2. Pharmaceutical production system

- We can solve the model using transient analysis
techniques.

- Then we can integrate the solution in various ways to
obtain interesting performance indices.
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5.2. Pharmaceutical production system
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5.2. Pharmaceutical production system
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- Crash probability:

P (crash at τ) =
X

mi:m4=1

Z ∞

0

πi(τ, x1)dx1.
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5.2. Pharmaceutical production system
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- Mean quantity of product wasted:

Ψ(c1, T3) =
X

mi:E(mi)⊇T3

Z ∞
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x1 πi(τ, x1) µ3(x1) dx1
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5.3. Software system with Rejuvenation

- It is now well established that outages in computer
systems are caused more due to software faults.

- Cost-effective fault-tolerance techniques are an
attractive way to try to cope with the problem.

- Software rejuvenation, self-restoration and
checkpointing are some of such techniques.
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5.3. Software system with Rejuvenation

- Rejuvenation restarts the system, making it experience
a downtime equal to the time it takes to clean up the
resources.

- Self-restoration does not block completely the system,
but it only degrades its performance. However it is less
effective than rejuvenation.

- Checkpointing saves the state of the system at
predefined interval, in order to reduce the system
recovery time.
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5.3. Software system with Rejuvenation

- In some cases, like Data-base systems, these three
technique are used together.

- In the literature, most of the models deals only with
some of these techniques - they do not consider all the
features together.

- Using FSPN it is possible to design a model capable of
considering all these aspects together.
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5.3. Software system with Rejuvenation
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- The degradation x1, the work x2 and the time (up-time x3, time

since last checkpoint x4) can be represented using fluid places.
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5.3. Software system with Rejuvenation

- Models with four fluid places can only be solved using
simulative techniques (with current technologies).

- Fortunately, for most performance indices, the total
up-time can be ignored, reducing the number of fluid
places to three.

- By some deeper analysis, it can be shown that two of
the three remaining fluid places (the work and the time
since last checkpoint) are dependent, so one of them can
be computed as a function of the other.
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5.3. Software system with Rejuvenation
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- The figure show a model obtained ignoring the
external load and the self-restoration.
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5.3. Software system with Rejuvenation

- A model with two fluid places can be studied using
transient analysis techniques.

- From the solution, some interesting performance
indices can be integrated.

- For example the probability of the various discrete
state can be evaluated for different values of the
parameters.
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5.3. Software system with Rejuvenation
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- Case where the mean working time is τwork = 200, and
the mean rejuvenation time is τrej = 200.
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5.3. Software system with Rejuvenation
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5.3. Software system with Rejuvenation
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5.3. Software system with Rejuvenation
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The efficiency E(t) =
Wc(t)

Wc(t) + Wl(t)

Wc(t) represents the average work checkpointed up time t,

and Wl(t) the average work lost.
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6. Conclusions

- Stochastic models with continuous variables (Reward
models, Fluid models and FSPNs) often allows proper
modeling of real systems.

- Their analysis is a more complex than the ones of only
discrete variables, but feasible for a wide class of models.

- The analytical description of these models and a set of
solution techniques have been introduced.

- Some examples of applications demonstrate the
potential use of fluid models in performance analysis.
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