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Abstract. This paper proposes a computational statistical method for multivariate confidential nu-
merical microdata. The method can be employed for recovering some commonly interesting statis-
tical information present in the microdata from noise-multiplied data. Estimating the parameters in
linear regression without using the original data directly becomes feasible. This paper demonstrates
that some statistical information can be recovered reasonably well for certain types of original data
while the level of disclosure risk is under control if the multiplicative noises used to mask the data
are appropriate.

This paper presents an alternative approach for sharing the statistical information of multivariate con-
fidential data and carrying out data mining with multidimensional sensitive data, an area of growing
interest.

An R package MaskJointDensity is built for implementing the method 1.

Keywords. Data Privacy and Confidentiality; Data Masking; Masked Data; Sample-Moment-Based
Density Approximent; the Nataf Transformation; the Noise Multiplicative Method; Noise-Multiplied
Data

1 Introduction and Motivation

Data collected by government organisations, survey organisations, statistical agencies and
health care organisations contain useful statistical information. Releasing the data to the
public will bring benefit to policymakers, national economy, and society. Data may be

1The software can be downloaded from CRAN or http://www.uow.edu.au/˜yanxia/Confidential_
data_analysis/
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released in two formats: microdata (i.e. a collection of individual records) and tabular
data. The release of microdata is often considered more dangerous from the point of view
of disclosure risk, but at the same time, the range of statistical analyses may be wider for
the microdata compared to tabular data [32].

Statistical disclosure control (SDC) is a balancing act between mandatory data protec-
tion, and demand from researchers for access to original data. Statistical disclosure limita-
tion (SDL) methods are used to alter the data while achieving statistical disclosure control.
Many SDL methods can be utilized for the purpose of releasing microdata ([10] [13]). The
public-use data released by statistical agencies are often in the form of statistical databases,
generally transformed to some extent, omitting sensitive information such as personally
identifying information, and changing the values of some sensitive data. Data masking is
one of the methods used in practice [32]. Data masking techniques include substitution,
shuffling, encryption, truncating, noise addition, etc. ([11], [38], [40], [28]).

There are two commonly used/investigated noise masking schemes introduced in the
literature: the additive noise (data) masking scheme and the multiplicative noise (data)
masking scheme. Multiplicative noise masking method has the advantage that the size of
perturbation is proportional to the size of the original value ([41]) and hence it is conjec-
tured that multiplicative noise may better protect the original data than additive noise ([17]
and [30]). Using appropriate multiplicative noise to mask a set of original data might op-
timize the level of protection provided to the original data. For instance, a multiplicative
noise which has mixture distributions and takes fewer values around its mean tends to pro-
vide a better protection on the values of the original data (See examples in Section4.). While
it is not clear whether multiplicative noise has actually been used by a government agency,
it has a long and strong history of research by both academic and agency statisticians.
Many good sources for the exploration of multiplicative noise in disclosure limitation exist.
A couple of recent references include https://www.census.gov/srd/CDAR/rrs2013-02_
Comparison_of_Methods.pdfandwww.census.gov/srd/papers/pdf/rrs2013-01.pdf.
In this paper, we consider the scenario where the microdata are protected through a multi-
plicative noise masking scheme.

Two types of approaches for retrieving statistical information of the original data based on
their respective noise multiplied data are studied in the literature. One of the approaches
is to use the masked data directly in estimating the basic statistics of the underlying pop-
ulation, including the mean, variance, moments, covariance, etc., or regression parameters
(see [32][17][14][21][35][30] and reference therein).

The other approach is to use the masked data indirectly in estimating the statistical prop-
erties of the original data (see [37] [22] [23] and [24]). For instance, under the assumption
of a (parametric) structural model f(y|θ) of the distribution of the original variable y, [37]
derived the induced distribution p(z|θ)) of the perturbed variable Z = Y R for a specific
noise distribution, where R is the multiplicative noise. The z-data can then be used to (effi-
ciently) estimate θ, which in turn can be employed to infer information about the quantiles
of the y-distribution. [22] introduced the sample-moment-based density approximant for
estimating the density function of the original data based on noise-multiplied data. They
then use the synthetic data to retrieve the statistical properties of the original data.

Ideally we prefer to have a technique that can retrieve all the exact statistical informa-
tion of the original data from the masked data. In practice, there is no such technique at
this stage. To obtain the same inference of the original data for specific statistics from the
masked data, usually one has to accept a compromise by losing the chance to retrieve the
other statistical information of the original data from the masked data. For instance, the
techniques proposed by [3],[32] and [29], respectively, can preserve the sample mean, sam-

TRANSACTIONS ON DATA PRIVACY 11 (2018)



Statistical Information Recovery from Multivariate Noise-Multiplied Data 25

ple variance, sample covariance or the estimations of linear regression parameters. But
those techniques cannot preserve other statistics and cannot maintain the same inference
for the subset of the original data. Thereby, the techniques might be less helpful if the data
user wants to explore an extensive range of statistical information of the original data and
subsets of the original data. Techniques such as [37] [22] [23], [24] and the method proposed
in this paper provide the estimation of the statistical information of the original data rather
than preserving the exact statistical information of the original data. 2 These techniques
give the data user more freedom in exploring the statistical information of the original data
based on masked data. In other words, different approaches for retrieving the statistical in-
formation of the original data from the masked data have their advantages and limitations.
Various purposes of data analysis require using different approaches to mask the original
data, thereby, using different methods to retrieve the statistical information of the data.

Regarding estimating the density function of the original data based on the masked data,
one might wonder whether a data intruder can use the estimated density function to attack
the original data. For original numerical data, we define that the disclosure of the value of
a datum occurs if the relative difference between the estimated value of the datum and the
actual value of the datum is less than a pre-set criterion (see [21] and [19] ). Therefore, a
possible way to attack the actual value of a datum by using the information of the estimated
density function could be that the data intruder guesses or identifies the value of the da-
tum based on the probability of the disclosure occurred, conditional on the masked datum
observed. The larger the probability is, the more likely the data intruder accepts the esti-
mated value as the actual value of the original datum. When the original data are masked
by the multiplicative noise method, (masked datum)/(mean of the multiplicative noise) is
the unbiased estimator of the value of the original datum. If we use this estimator to esti-
mate the value of the original datum, our experience shows that the risk of the attack can
be significantly reduced if the density function of the multiplicative noise which is used to
mask the datum takes fewer values around the mean position of the noise. That is why we
use this type of multiplicative noise in the simulation studies in Section 4. Our experience
also shows that skewed multiplicative noise can provide better protection for the original
skewed data. For a set of original data, the probability distribution of a multiplicative noise
can have a significant impact on the level of disclosure risk of the dataset. It is essential for
the data provider to identify an appropriate set of multiplicative noise for masking the
original data in terms of reducing the level of disclosure risk and reducing the amount of
data utility loss. The discussion on the topic of the appropriateness is beyond the scope of
this paper; we do not discuss it herein.

Regarding estimating the density function of the original data based on masked data, we
also have to mention the work of [1], [2], [9] and [15]. Unlike from [22], the techniques
introduced by [1], [2], [9] and [15] are for noise-added data. A set of noise-added data
(i.e., Original data + additive noise) can be converted to a set of noise-multiplied data
by the exponential transformation, (i.e., exp(Original data) × exp(additive noise)). Con-
versely, a set of noise-multiplied data (i.e., Original data × multiplicative noise) can be
converted to a set of noise-added data by the logarithm transformation in certain circum-
stance (i.e., log(Original data) + log (multiplicative noise)). However, the techniques for
noise-multiplied data cannot be replaced by the techniques for noise-added data in gen-
eral. The techniques developed for different types of masked data rely on different theories
and approaches. Thereby, different methods have different advantages. This paper only

2Using the techniques of synthetic data to protect the data privacy also cannot preserve the exact statistical
information of the original data.
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considers techniques for noise-multiplied data.
The weakness of the methods suggested by [37] and [22] is that both approaches are devel-

oped for retrieving the statistical information from masked numerical univariate data. In
this paper, we focus on the technique of retrieving the statistical information of the original
data from noise-multiplied multivariate data.

In this paper, we only consider numerical multivariate data. Developing a method for
a general type of data is still an open question. The method proposed in this paper can
be used to recover the statistical information of marginal distributions of the underlying
original data from the noise-multiplied data and to recover the outputs of linear regression
analysis of the original data from masked data.

This paper is constructed as follows. In Section 2, the method used to build the framework
proposed in this paper is introduced. Section 3 briefly discusses the issues of information
loss and disclosure risk. Simulation studies on the method proposed are presented in Sec-
tion 4. Finally, conclusion and discussion follow.

2 The Method Proposed

In many practical situations, often only limited information such as the marginal distribu-
tion and covariance can be practically obtained. The modeling of joint probability distri-
butions of correlated variables based on this limited information remains a challenge. The
copula is one of the popular techniques for approximating the joint outcome of variables.
Copulas have been used for many applications in the real-world including quantitative fi-
nance, civil engineering, reliability engineering, warranty data analysis, turbulent combus-
tion, medicine, hydrology, weather research and random vector generation among others.
Copula-based methods for modeling the joint probability distributions of multiple corre-
lated variables have been investigated in the literature and adopted in the practice of data
analysis ([39] [4]), including the applications in data privacy protection ([36]).

Based on copula functions, the Nataf transformation is used to handle the dependence of
correlated predictor variables and marginal distributions. [20] showed that the Nataf dis-
tribution of a random vector could be accurately estimated if marginal cumulative distri-
bution functions and correlation matrix of the random vector is available. [22] introduced
the method of estimating the density function of univariate distributions based on noise-
multiplied data. Combining these two pieces of work, we propose a computational ap-
proach to modeling the joint density function of a random vector based on noise-multiplied
data.

Let X = (X1, · · · , XM )T be a sensitive random vector with continuous marginal prob-
ability cumulative functions {Fi}Mi=1, where the superscript “T” denotes the transpose of
a vector or a matrix. The entries of X are also called attributes in the literature. Denote
{x(k) = (xk,1, · · · , xk,M )T }Nk=1 a set of (original) multivariate data of X = (X1, · · · , XM )T ,
where x(k) = (xk,1, · · · , xk,M )T is the kth observation of X .

Multiplicative noise (data) masking scheme: Let C = (C1, · · · , CM )T be a continuous
random vector, independent of X . The entries C1, · · · , CM are mutually independent and
their probability distributions are not necessarily the same. Using C to mask the dataset
{x(k) = (xk,1, · · · , xk,M )T }Nk=1 involves two steps: (i) generating a set of sample {c̃(k) =
(c̃k,1, · · · , c̃k,M )T }Nk=1 with sizeN from C; (ii) yielding a set of noise-multiplied data {x∗(k) =

(x∗k,1, · · · , x∗k,M )T = (xk,1c̃k,1, · · · , xk,M c̃k,M )T }Nk=1.
In this paper, only the dataset {x∗(k) = (x∗k,1, · · · , x∗k,M )T }Nk=1, together with {c(k) = (ck,1,

TRANSACTIONS ON DATA PRIVACY 11 (2018)



Statistical Information Recovery from Multivariate Noise-Multiplied Data 27

· · · , ck,M )T }N ′

k=1, is available to the public 3, where {c(k)}N
′

k=1 is another sample from C with
size N ′ � N . Since {c(k)} is different from {c̃(k)}, the actual values of {x(k)} cannot be
obtained by dividing. We call X∗ = (X∗1 , · · · , X∗M )T = (X1C1, · · · , XMCM )T the masked
random vector.

2.1 The Nataf Transformation

In this subsection, we briefly introduce how to use the computational method to obtain the
Nataf density function of a random vector X = (X1, · · · , XM ) when the marginal density
functions and the correlation matrix of the random vector are known. Let

Zi = Φ−1 [Fi(Xi)] , i = 1, 2, · · · ,M,

where Φ(·) is the probability cumulative function of a standard normal distribution. Thus,
Zi is normally distributed with zero mean and unit variance, i = 1, 2, · · · ,M . Denote Z =
(Z1, · · · , ZM )T a new random vector.

Using the technique for finding the distribution of a transformation of a random vector,
the joint probability density function (pdf) of the random vector X can be modeled by the
density function

fX,Nataf (x) = φM (z, ρ0)
f1(x1)f2(x2) · · · fM (xM )

φ(z1)φ(z2) · · ·φ(zM )
, x = (x1, · · · , xM )T ∈ RM (1)

where the covariance matrix given by fX,Nataf is forced to be equal to the covariance matrix
of X ; z = (z1, · · · , zM )T ∈ RM ; zi = Φ−1 [Fi(xi)], i = 1, · · · ,M ; φ(·) is the standard normal
pdf; fi is the pdf of Xi and

φM (z, ρ0) =
1√

(2π)Mdet(ρ0)
exp(−1

2
zT ρ−10 z)

is the M-dimensional normal pdf with zero mean, unit variance and correlation matrix
ρ0 = (ρ0,ij)M×M . This distribution model is referred to Nataf distribution (see [20]).

Denote the correlation matrix of X by ρX . The (i, j) entry of ρX , i.e. ρX,ij , is the corre-
lation of the ith attribute Xi and the jth attribute Xj . If ρX is available, [20] introduced a
numerical approach for estimating the (i, j) entry of ρ0, i.e. ρ0,ij , from

ρX,ij =

m∑
l=1

m∑
k=1

PlPk(
x̃il − µi

σi
)(
x̃jk − µj

σj
), (2)

where m is the number of Gaussian points, and Pl and Pk are the corresponding weights
(See Appendix A);

x̃il = F−1i (Φ(u∗il))

x̃jk = F−1j (Φ(ρ0iju
∗
il +

√
1− ρ20iju

∗
jk))

and (u∗il, u
∗
jk)T =

√
2(uil, ujk)T defined in Appendix A. [20] also pointed out that it is suffi-

cient to ensure the accuracy of the estimation of ρ0 if the number of Gaussian points used
in (2) is m = 7. Therefore, the R package built in this paper uses m = 7.

3Following the same treatment used in MaskDensity14 (see [24]), the noise information is released to the public
in a binary file.
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For convenience, we drop the subscript “Nataf” from the Nataf density function fX,Nataf

from now onwards. Recall that the Nataf density function of X will preserve the marginal
density information of X and covariance of X , that is, the information of the correlation
relationship between the entries of the random vector X .

2.2 Estimating the Joint Probability Density Function based on Masked
Data

To estimate the Nataf joint density function fX in (1), two pieces of information are nec-
essary. One is the information on ρX , which is used to estimate ρ0, and the other is the
information of the marginal density functions of X .

The matrix ρX can be estimated by two methods:

Method 1 Using the sample correlation matrix of {x(k) = (xk,1, · · · , xk,M )T }Nk=1 to estimate
ρX . This method is feasible if the data provider is willing to make the sample corre-
lation matrix of {x(k) = (xk,1, · · · , xk,M )T }Nk=1 available to the public. To save space,
simulation studies presented in Section 4 do not consider the scenario where ρX is
estimated by the sample correlation matrix.

Method 2 Using masked sample {x∗(k) = (x∗k,1, · · · , x∗k,M )T } and independent noise sample
{c(k) = (ck,1, · · · , ck,M )T } to estimate ρX .4 It is equivalent to estimate ρX,ij , for all
i, j = 1, · · · ,M .

Recall that the entries of the random vector C are mutually independent. Therefore, the
covariance of the ith entry of X and the jth entry of X can be evaluated by using the
characteristics of the masked random vectorX∗ and the characteristics of the multiplicative
noise vector C. (i) if i 6= j,

Cov(Xi, Xj) = Cov(X∗i , X
∗
j )/[E(Ci)E(Cj)]; (3)

(ii) if i = j,
V ar(Xi) =

{
V ar(X∗i )− V ar(Ci)[E(X∗i )/E(Ci)]

2]
}
/E(C2

i ). (4)

The entry ρX,ij of ρX has expression Cov(Xi, Xj)/
√
V ar(Xi)V ar(Xj), i, j = 1, · · · ,M .

Therefore, ρX can be estimated by replacing V ar(X∗i ), Cov(X∗i , X
∗
j ), E(Ci) and V ar(Ci),

i, j = 1, · · · ,M , with their sample estimators, respectively. In fact, the high-order mixed
moments of the attributes can also be estimated by using the sample high-order mixed
moments of masked variables and the sample high-order moments of multiplicative noise.

The estimated marginal density functions of X can be obtained by applying MaskDen-
sity14 to {x∗k,i}Nk=1, i = 1, · · · ,M , respectively (see [24]). Use f̂Xi

to denote the estimated
marginal density function of Xi, i = 1, · · · ,M . Thus, the Nataf joint density function fX
can be estimated as follows:

f̂X(x) = φM (z, ρ0)
f̂X1

(x1)f̂X2
(x2) · · · f̂XM

(xM )

φ(z1)φ(z2) · · ·φ(zM )
. (5)

4Compared to Method 1, Method 2 is more practical and convenient for both data users and data providers,
particularly, in the process of exploring the statistical information for subsets of data (see Section 4).
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2.3 Simulating Samples from the Estimated Joint Density Function f̂X

We can simulate a sample from the estimated joint density function f̂X . Use the sample
to represent the original data of X , and obtain the statistical properties of the original data
from the sample.

Many techniques for simulating samples from a (joint) density function can be found from
the literature, including Rejection sampling [31], Metropolis-Hastings algorithm ([26], [12])
and the naive technique described in [6].

Given the estimated density function in (5), there is an easy and efficient way to simulate
sample data with size N from f̂X . We describe the process below and adopt it in the R
package built in this paper:

(1) Simulate a set of multivariate sample data {(zk,1, · · · , zk,M )}Nk=1 from a M-dimensional
normal distribution. The distribution has zero mean, unit variance and correlation
matrix ρo.

(2) Transform zk,i to
x̃k,i = F̂−1Xi

(Φ(zk,i)), k = 1, · · · , N

where F̂Xi is the estimated marginal cumulated distribution, i = 1, · · · ,M . Then, the
multivariate data {(x̃k,1, · · · , x̃k,M )}Nk=1 is a sample from f̂X .

We built an R package, named MaskJointDensity to implement the method and the process
of data simulation described in Sections 2.1-2.3 5.

3 Information Loss and Disclosure Risk

There are no universal quantitative criteria for evaluating disclosure risk and information
loss. [7] and [8] evaluate them by aggregating the results from different measures of dis-
closure risk and information loss. While this may be appropriate for comparing across
different masking procedures, the data provider might have the different focus on disclo-
sure risk and information loss for the different type of data. Given that the primary focus
of the paper is not a comparison of different masking methods or assessing the disclosure
risk and the information loss, we take a broader, more flexible approach. We merely em-
ploy the commonly used criteria for evaluating the value disclose risk. Depending on the
particular context, the data provider may choose some or all measures for performing this
assessment.

Many studies on the measurements of disclosure risk can be found in the literature (see
[33] [34] [42] and reference therein). We use two ways to check the appropriateness of
a multiplicative noise for masking the value of an attribute. (i) Examining the plot of
the original data vs. its masked counterpart and evaluating the (sample) correlation
coefficient between the original data and its masked data. The plot of the original data
vs. the masked data is not available to the public as the original data is not accessible to the
public. However, the data provider can use it to visually check the proportion of the values
of the original data which can be accurately identified or estimated from the values of their
corresponding masked data. The correlation coefficient is a quantitative measurement on
the linear relation between the original data and masked data. Our experience shows that

5The software can be downloaded from CRAN or http://www.uow.edu.au/˜yanxia/Confidential_
data_analysis/
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the value of the correlation coefficient needs to be controlled under 0.9 ([25]). (ii) Checking
the probability measure of the disclosure risk The probability measure of disclosure risk is
defined as the probability P (|C/E(C)− 1| < δ), where C is the multiplicative noise under
consideration ([19] and [21]). This measure is the conditional probability of the relative
distance given the value of the original datum. The δ is decided by the data provider
and used to control the relative difference between the value of the original datum and
its unbiased estimator. Having a small probability P (|C/E(C) − 1| < δ) is a necessary
condition for an appropriate multiplicative noise C. In this paper, we use δ = 0.05. We
focus on values disclosure risk in this paper. As showed in [25], none of the above single
criterion can be used alone or dominate the others in terms of identifying an inappropriate
multiplicative noise set. Making a balanced judgment using these criteria is necessary.

There are also many discussions on the measures of data utility for masked microdata
([44], [43], [27] and reference therein). [27] suggested that, with noise addition, transformed
data (i.e., masked data) has to keep the same statistical properties as the original data. [27]
explained that keeping the same statistical properties as the original data in practice means
making statistics such as the marginal distribution, mean, variance, standard deviation,
covariances, and correlation coefficient the same for both original and perturbed data sets.
[44] suggested measures including the measure of the similarity between the distributions
of the original data and released data.

As explained in the introduction, ideally we would prefer that there is no information
loss, that is all results from analyzing the masked data are identical to the same analyses
performed on the original data. However, in practice this is not possible. In this paper
we use the method proposed to retrieve the statistical information of the original data,
including summary statistics, skewness, and kurtosis of the marginal distribution, and the
estimates of regression parameters. We evaluate the information loss by comparing the
values of the statistic and its estimate in absolute difference. We also visually compare the
plots of the estimated marginal density functions with the marginal density functions of
the original data and see the similarity between the plots. This is a more flexible approach
that allows the data provider to assess and evaluate information loss in a particular context.

4 Simulation Studies

IfX is multivariate normally distributed, the Nataf density function ofX will be close to the
actual joint density function ofX . In this section, we use simulation studies to demonstrate
the performance of the method proposed in this paper. Therefore, all X considered in this
section are not multivariate normally distributed. While potentially an interesting area
for future study, we do not consider the impact of noise based on different measurement
criteria of disclosure risk, or for confidential data with different probability distributions.
We adopt only the basic measures of disclosure risk described in Section 3.

A set of multiplicative noise with different probability distributions can provide differ-
ent levels of protection for the original data. The amount of statistical information of the
original retrieved from the masked data can be affected by the probability distribution of
the multiplicative noise used to mask the original data and the technique used to extract
the information from the masked data. The purpose of this section is to use examples to
demonstrate the computational method proposed for recovering the statistical information
of multivariate data based on their noise-multiplied data. In practice, a set of original data
can be masked by different types of multiplicative noise. However, we only focus on, for
the original data studied in this section, whether there is an associated multiplicative noise
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vector such that (i) the original data can be well protected; (ii) the statistical information
of the original data can be reasonably retrieved from noise-multiplied data by using the
method proposed. The multiplicative noise met the requirement is considered as an appro-
priate multiplicative noise for the underlying original data. We do not touch on the issue
of whether the noise applied to the original data in this section is the best noise in terms of
minimising the information loss and disclosure risk. In practice, the data provider can do
his best to search for the best appropriate multiplicative noise for the underlying original
data if he/she wants.

The multiplicative noise masking scheme does not protect zero-valued observations. One
of the manners for protecting the values of a data set involved zero-valued observations is
to transform all the values of the dataset by shifting a constant before data masking (see an
example in [21]). We can estimate the density function of the shifted data, then obtained
the synthetic data of the shifted original data. Finally, get the synthetic data of the original
data by shifting back the synthetic data of the shifted original data. Based on the method of
[22] and the method proposed in this paper, the (joint) density function is approximated by
the function of moments. Theoretically, shifting data will not cause any issues in estimating
the (joint) density function. Practically, replacing theoretical moments by sample moments
accordingly might cause some extra error in the estimation. Therefore for different types of
data, there are various strategies for selecting an appropriate constant for the shifting. For
this paper, we will not pay attention to this issue and we do not apply the shifting strategy
to the data studied in this section.

In the discussion below, we use the criteria mentioned in Section 3 to check if the values of
the underlying data are protected to a reasonable level. Due to limitations of space, we do
not present all the plots of the original data vs. its masked counterpart. It is worth recalling
that the motivation of the method proposed is to estimate the (joint) density function of
the original data based on the masked data. Then, to simulate the synthetic data from
the estimated (joint) density function and to use the synthetic data to retrieve the statistical
characteristics of the original data. Since the synthetic data are different from the original
data, we should not expect that the statistical inference given by the synthetic data is the
same as those given by the original data. What we wish to see is the values of a statistic
and its estimate are relatively close. The acceptable levels of closeness are varied subject to
the content of the underlying data and the expectation of data providers.

An R package maskJointDensity is built in this paper. The data provider can use the R
function “maskBatch” to produce masked multivariate data and noise.bin binary files for
the data user. Inputting the masked multivariate data and noise.bin files to R function
“unmaskAndGetSampleBatch”, the data user can obtain the synthetic data of individual
marginal distributions of the original multivariate data and the synthetic data of the joint
distribution of the original multivariate data.

Two simulation studies are presented in this section 6.
Example 1. The original bivariate data {(xi,1, xi,2)}1000i=1 is simulated from a random vector
X = (X1, X2). Six different random vectors, listed in Table 1, are studied in this example.
The random error e ∼ N(0, 1) is independent of X1. Except for Model 1, at least one
of marginal variables is not normally distributed. The literature studies showed that a
multiplicative noise with mixture distributions tends to provide more protection on the
original data (see [19] [16] [18] [21]). We use MixUnif(L = (a1, a2), U = (b1, b2), p =
(p1, 1− p1)) to denote the probability distribution of a random variable

V = I(W2=0)Unif(a1, b1) + I(W2=1)Unif(a2, b2)

6The R code for the simulation study will be available on request
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Table 1: Models studied in Example 1

Model 1 X1 ∼ N(9, 2) and X2 = 0.8X1 + e
Model 2 X1 ∼ N(9, 2) and X2 = 0.8X1 + 0.2X2

1 + 8e
Model 3 X1 ∼ Gamma(shape = 9, scale = 0.5) + 2 and X2 = 1 + 0.8X1 + e
Model 4 X1 ∼ Gamma(shape = 7.5, scale = 1) + 2 and X2 = 0.8X1 + e
Model 5 X1 ∼ Gamma(shape = 9, scale = 0.5) + 2 and X2 = 0.8X1 + 0.2X2

1 + 8e
Model 6 X1 ∼ Gamma(shape = 7.5, scale = 1) + 2 and X2 = 1 + 0.8X1 + e

Table 2: Correlation coefficient of the masked data and the original Data

Model1 Model2 Model3 Model4 Model5 Model6
cor(X1, X∗

1 ) 0.3614051 0.3614051 0.4267313 0.4681106 0.4268818 0.4681106
cor(X2, X∗

2 ) 0.3967303 0.6224688 0.5357683 0.4365898 0.6878778 0.5632015

where P (W2 = 0) = p1 = 1 − P (W2 = 1). Three independent multiplicative noises are
used in this example:

C1 ∼ MixUnif(L = (10, 45), U = (30, 80), p = (0.5, 0.5))

C2 ∼ MixUnif(L = (10, 45), U = (30, 80), p = (0.5, 0.5))

C3 ∼ MixUnif(L = (10, 45), U = (30, 80), p = (0.7, 0.3)).

We use C1 to mask X1 in all Models, C2 to mask X2 in Models 1 - 3, and C3 to mask X2 in
Models 4 - 6.

The probability measures of the disclosure risk of the three noises are approximately equal
to 0. The correlation coefficients of X1 and X∗1 , and X2 and X∗2 given by the six models are
listed in Table 2. All the values of the correlation coefficients are reasonably small and less
than 0.9. We only present the plots of the masked data vs. the original of Model 5 (in Figure
1) and virtually check the protection level because the correlation coefficients provided by
Model 5 are slightly bigger than others. It turns out that the values of the original data are
well protected at a reasonable level, except for the values close to 0. Under the assumption
that the data provider considers the data protected to an acceptable standard then, the data
provider can release masked multivariate data and associated noise.bin files to the data
user.

The data user can use “unmaskAndGetSampleBatch” to obtain the synthetic data for each
attribute X1 and X2, and the synthetic joint data of (X1, X2). The statistical inference of the
original data can be estimated by applying the conventional statistical inference methods
to the synthetic data.

All the statistical information of the marginal distribution of the original data, including
the estimated summary statistics, skewness, and kurtosis, are reasonably retrieved from
noise-multiplied data in this example. To save space we do not report them, but report the
regression analysis outputs in Tables 3 - 5. We fit the synthetic bivariate data by the four
different models listed in Tables 3 - 5 and check whether the regression parameters can be
reasonably estimated and whether the data user can correctly identify the actual model of
the data when the actual joint distribution is not multivariate normal.

To use MaskJointDensity to estimate the marginal density function, it involves a sequence
of sampling (see MaskDensity14 in [24]). To reduce the impact of the randomness on in-
ference results, we independently apply MaskJointDensity to the same sets of multivariate
noise-multiplied data 50 times and obtain 50 sets of synthetic bivariate data of the origi-
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Figure 1: Model 5: the plots of X1 vs masked X1 (left), and X2 vs masked X2 (right).

nal data then fit the data to the four models, respectively. Tables 3 - 5 report the means of
estimations.

Tables 3 - 5 show that, if the actual relationship between X1 and X2 is linear, the linear
relationship can be revealed by the synthetic data, regardless if the marginal distributions
are normal or not. If the actual relationship between X1 and X2 is not linear, it will become
complicated. If the model building is based on the values R2 and F-statistic, sometimes
synthetic data and the original data might give the same result, although the fitted model
is not necessarily the actual model. See the outputs of the data fitted to X2 = β1X1 + e in
Model 2, Model 5, and Model 6. The plots of residuals are also beneficial in model build-
ing, but are not shown here. Therefore, caution is necessary in interpreting the regression
outputs if the actual model is nonlinear and the actual joint distribution of the original
multivariate data differs greatly from the multivariate normal distribution.

Example 2. Consider the data given by [28]. The data set with 50, 000 observations was
created using the procedure suggested by [5] for generating a multivariate data set with
nonnormal marginal distributions. The original data consist of six variables (three non-
confidential and three confidential variables). The three nonconfidential variables (Gender,
Marital Status, and Age) are discrete variables. The current version of MaskJointDensity is
not available for discrete variables. We only consider the data analytic for the three con-
fidential variables in this example. The three continuous variables present Home Value
(lognormal), Mortgage Balance (Gamma), and Total Net Asset Value (Normal).

The summary statistics of “Home Value” (”Home” briefly afterward) show that more than
80% observations have the value less than 20 and the maximum value is 32380.00. The plots
of the smoothing density function of the three variables are presented in Figure 2. The plot
of the density function of “Home” is highly skewed. It is very difficult to estimate the joint
density function of the three variables even for the original data. Therefore, in this exam-
ple we transform the variable “Home” and create a new variable “LHomeNew” which is
the logarithm of “Home.” No transformation is applied to the other two variables, “Mort-
gage” and “Value.” The new data set has four attributes “LHomeNew”, “MortgageNew”
and “ValueNew”, and the nonconfidential variable “Marital Status”. The entries for each
attribute are in a column while the observations in the same row belong to the same ID. The
observations of those IDs taking non-positive value in the attribute “Home” are dropped
from this new data set; therefore the new data set has 49937 observations. The variable
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Figure 2: The plots of the density functions of Home Value (Home) (left), Mortgage Balance
(Mortgage)(center) and Total Net Asset Value (Value) (right).

Table 6: Three types of Multiplicative noises for data masking

multiplicative noise
CLH: MixUnif(L = (10,50); U = (35, 80); p = (0.5, 0.5))
CM:MixUnif(L = (10,45); U = (30, 80); p = (0.5, 0.5))
CV:MixUnif(L = (10,45); U = (30, 80); p = (0.5, 0.5))

“Marital Status” takes values 1 or 0, indicating married or single.
We use three independent multiplicative noise variables to mask “LHomeNew”, “Mort-

gageNew” and “ValueNew”, respectively. The distributions of the noise variables are listed
in Table 6. The data of “Marital Status” remains the same. Denote the masked variables as
“starLH”, “starM” and “starV”, respectively.

The correlation coefficients of the original data vs. their masked data are 0.8511242,
0.7893962 and 0.397864, respectively. All the probability measures given by the multiplica-
tive noises are approximately equal to 0. The scatter plots of the original data vs. their
unbiased estimator (i.e. masked data divided by the mean of noise) are presented by Fig-
ure 3. Except for the values near 0, the values of the original data are protected at a certain
level. The noise-multiplied data sets could be released to the public. These noise-multiplied
data and the data of “Marital Status” make up a multivariate data set. The dataset has four
columns with the input names “starLH”, “starM” , “starV” and “Marital Status”, respec-
tively. The number of rows is 49937.

In this example we want to demonstrate two types of application of MaskJointDensity. The
first one is about retrieving the statistical information of the full set of original data based
on the full set of noise-multiplied data. The second one is about retrieving the statistical
information of a subset of the original data based on the data provided by the full set
of noise-multiplied data. The approach of data masking is a non-interactive approach,
and the data user only receives the set of noise-multiplied data of the entire underlying
original data. The probability structure of a subset of the original data is not necessarily
the same as the probability structure of the whole set of data. Therefore, data mining can
receive benefit from the second type of application. In the following study, the full set
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Figure 3: The plots of LHomeNew vs. starLH (left), MortgageNew vs. starM (center), and
ValueNew vs. starV (right).

−5 0 5 10

0.
00

0.
05

0.
10

0.
15

density.default(x = LHomeNew)

N = 49937   Bandwidth = 0.2297

D
en

si
ty

0 100 200 300 400 500

0.
00

0
0.

00
5

0.
01

0
0.

01
5

density.default(x = MortgageNew)

N = 49937   Bandwidth = 4.213

D
en

si
ty

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

density.default(x = ValueNew)

N = 49937   Bandwidth = 2.579

D
en

si
ty

Figure 4: The plots of the density functions of LHomeNew (left), MortgageNew (center),
ValueNew (right) and their estimated density functions.

of original data is the dataset of “LHomeNew”, “MortgageNew” and “ValueNew”; the
subset of original data is the dataset of “LHomeNew”, “MortgageNew” and “ValueNew”
with “Marital Status” taking value 1.

Figure 4 shows the plots of the marginal density functions given by the full set of original
data and the estimated marginal density function of the full set of original data. The den-
sity function of “MortgageNew” is skewed. The synthetic data captured the characteristic
feature, but not very accurately. It is interest to see the impact of the inaccuracy on statis-
tical inference discussed in this example. The basic statistics for the marginal distributions
of the full set of data are reported in Table 7.

We independently simulated 100 sets of synthetic data from the estimated joint density
function of (LHmoeNew,MortgageNew, V alueNew). The means of the sample correlation
coefficients are reported in Table 8.

We fit the full set of original data and each set of independent synthetic joint data to the
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Table 7: Summary statistics

based on based on
the full set of original data the subset of original data

LHomeNew MortgageNew ValueNew LHomeNew MortgageNew ValueNew
Min. -4.60500 0.00 -7.97 -4.60500 0.00 -7.97

1st Qu. -0.09431 14.44 83.05 -0.09431 14.37 84.14
Median 1.41300 34.64 100.10 1.40900 34.70 101.00
Mean 1.42900 50.09 100.10 1.42800 50.07 101.00

3rd Qu. 2.93300 69.03 116.80 2.92800 68.97 117.60
Max. 10.39000 538.80 207.90 10.39000 538.80 197.60

skewness 0.05696396 1.979897 0.01974775 0.06036983 1.986101 0.02110218
kurtosis 2.886455 8.74088 2.951897 2.843275 8.759893 2.958549

based on based on
the synthetic data for the full set data the synthetic data for subset data

LHomeNew MortgageNew ValueNew
Min. -4.5460 0.00 3.012 -4.60500 0.00 -7.548

1st Qu. -0.1168 31.63 82.000 -0.05817 31.63 83.270
Median 1.4090 51.67 100.200 1.40900 51.67 101.000
Mean 1.4590 66.96 100.000 1.47000 66.91 100.700

3rd Qu. 2.9630 86.47 117.500 2.96300 86.47 117.900
Max. 9.7990 528.30 207.000 9.68100 503.00 204.100

skewness 0.1281217 2.023997 0.03779607 0.1322291 2.053022 -0.03815748
kurtosis 2.796491 9.48355 2.820405 2.843275 9.770844 3.067751

Table 8: Correlation coefficients of (LHmoeNew, MortgageNew, V alueNew) and the
means of the correlation coefficients of synthetic joint data.

LHmoeNew MortgageNew V alueNew
LHomeNew 1 0.5432643 0.6941981

MortgageNew 1 0.718935
ValueNew 1

SimuLH SimuM SimuV
SimuLH 1 0.513514 0.6625484

(0.02240162) (0.00405837)
SimuM 1 0.6453576

(0.03507253)
SimuV 1
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Table 9: The estimates of linear regression parameters

Full set of data Subset of data
Original data Synthetic data Original data Synthetic data

β̂0 -4.3763360 Mean (β̂0) -3.87023 -4.4774152 Mean (β̂0) -4.003642
(sd) ( 0.0678778) (sd) 0.2069711

Median(β̂0) -3.874046 Median(β̂0) -4.025206
β̂1 0.0040528 Mean (β̂1) 0.006256887 0.0038934 Mean (β̂1) 0.006449104

(sd) (0.0007046795) (sd) 0.001468772
Median(β̂1) 0.006390341 Median(β̂1) 0.006395167

β̂2 0.0559900 Mean (β̂2) 0.04914956 0.0565257 Mean (β̂2) 0.04982898
(sd) (0.001122921) (sd) 0.002632977

Median(β̂2) 0.0489815 Median(β̂2) 0.0500252
R2 0.486 Mean(R2) 0.4362 0.4883 Mean(R2) 0.4654302

(sd) (0.4517501) (sd) 0.02650493
Median(R2) 0.4511517 Median(R2) 0.4688621

following linear regression models, respectively:

LHmoeNew = β0 + β1MortgageNew + β2V alueNew + ε, (6)

SimuLH = β0 + β1SimuM + β2SimuV + ε. (7)

The regression analysis outputs are reported in Table 9. The 100 sets of synthetic data pro-
duced 100 least squares estimates (β0, β1, β2). The mean (sd) and median of the estimates
of each regression parameter are presented in Table 9.

The full set of masked data (“starLH”, “starM”, “starV”, “Marital Status”) is available
to the data user. If the data user is interested in the impact of “Marital Status” on the
probability structure of (“LHomeNew”, “MortgageNew”, “ValueNew”), he/she can con-
duct two subsets of masked data from the full set of masked data based on the values of
“Marital Status” accordingly. We consider the subset of masked data (“starLH”, “starM”,
“starV”, “Marital Status”=1) in this example. Recall that, when the data user receives a
set of masked data, he/she also receives the files of noise.bin related to the set of masked
data. These files of noise.bin contain the information of the multiplicative noises used to
mask the underlying data, and they are still valid when we applied MaskJointDensity to the
subset of masked data.7

The basic statistics for marginal distributions of the subset of data are reported in Table 7.
The regression analysis outputs for the subset data are reported in Table 9. Following the
same way as for the full set of data, we also independently simulated 100 sets of synthetic
data from the estimated Nataf joint density function of the subset of data. The 100 sets of
synthetic data produced 100 least squares estimates (β0, β1, β2). The mean (sd) and median
of the estimates of each regression parameter are also presented in Table 9.

The data analysis outputs showed in Tables 7, 8 and 9 are very impressive. Most of the
basic statistical characteristics of the marginal distributions of the original data, the correla-
tion coefficients of the original data and the estimated regression parameters are recovered
at a reasonable level in terms of the absolute difference between the values obtained from
the original data and the values derived based masked data, respectively.

Discussion and Conclusion:
7A detailed discussion on this issue be found from [23].
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This paper proposes a computational statistical method for estimating the Nataf joint den-
sity function based on noise-multiplied data. An R package MaskJointDensity was built as
part of this paper. The data provider can use the package to generate the masked data of the
underlying original multivariate microdata for the data user. Using the same package, the
data user can obtain the estimated marginal density functions and the estimated Nataf joint
density function of the underlying original data based on noise-multiplied data. The data
user then can generate synthetic data from the estimated (joint) density functions. Those
synthetic data are beneficial for exploring the statistical information of the original multi-
variate data or subsets of the original multivariate data without accessing them. Shuffling
also makes use of the multivariate normal copula. However, shuffling treats the whole
data set as the population and maintains the marginals as well as the rank-order correla-
tion among the variables, before and after masking. In this sense, shuffling provides an
approximation to the joint density of the variables. In the method proposed, the data is not
treated as a population. Rather, we consider the data as a sample and use a sample of the
population to approximate the joint.

The method proposed in this paper has the following merits:

(i) Sharing the statistical information of confidential data: Following the method proposed
and the software MaskJointDensity designed, the data provider masks each attribute
independently. The masked data are released to the data user by each owner of orig-
inal datasets. Therefore, in preparing the masked data sets for the data user data
providers do not need to share the values of the original data among them. 8

(ii) Analyzing data with conventional statistical methods: The statistical information of the
original data can be obtained/estimated by applying the conventional statistical
methods to the synthetic data of the original data.

(iii) Generating synthetic data for the subset of the original data: With a full-set of noise-
multiplied data, the data user can explore the joint statistical information of the full-
set of original data as well as the joint statistical information of subsets of the original
data (see Example 2). Most existing statistical data analysis methods developed for
masked data, for instance, data shuffling, or released synthetic data which gener-
ated from models based on the full-set of data, do not have such an advantage. This
property is beneficial for big data mining, particularly when data privacy issues are
involved.

The method proposed in this paper provides an alternative approach for recovering the
statistical information of the original data based on noise-multiplied data. Though the
method has its merits, it also has its limitations in practice. Since the basic technique of the
method relies on the theory of approximation, the method cannot preserve the exact statis-
tical inference results of the original data. In the approach proposed, the theoretical values
of the moments of the underlying random variables are replaced by the sample moments
accordingly. Thereby, the size of the sample of the underlying original data has an impact
on the performance of the method proposed. Additionally, the method proposed combined
the two approaches, the Nataf transformation, and Sample-moment-based density approx-
imants. Both of the methods have their limitations. Evidently, the statistical information
of most concern such as the information of the marginal distribution and the inference
in linear regression, can be reasonably obtained from the synthetic data generated by the

8We assume that the original multivariate data are linked. We do not discuss the technique how to link the
data collected from different sources in this paper.
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Table 10: The typical weights and Gaussian points for Gauss-Hermite quadrature

m Points u∗ik =
√
2uik Weights Pk

1 0 1
2 ± 1 0.5
3 ± 1.73205080757 0.16666666667

0 0.66666666667
4 ± 2.33441421834 0.045875854768

± 0.74196378430 0.454124145232
5 ± 2.85697001387 0.011257411328

± 1.3552617997 0.222075922006
0 0.533333333333

6 ± 3.32425743359 0.00255578440233
± 1.88917587773 0.088615746029
± 0.616706590154 0.408828469542

7 ± 3.75043971768 0.000548268858737
± 2.36675941078 0.0307571239681
± 1.1544053948 0.240123178599
0 0.457142857143

method proposed. However, inference for high order polynomial regression and nonlinear
regression based on the synthetic data might not be reliable unless the actual probability
distribution of the original data is close to the multivariate normal distribution. Further-
more, when the original data have extreme outliers, missing data or are highly skewed, the
estimated marginal density function(s) might be less accurate. The outcomes of the estima-
tion might consequently affect the estimated Nataf density function and the final statistical
inference results. Improving the method (and software) to address these constraints will
be the focus of our future research. Information loss is inevitable after data is perturbed.
Our experience shows that the distribution of the multiplicative noise has some impact on
the level of data protection and amount data information retrieved. An appropriate mul-
tiplicative noise can provide a good balance in the value disclosure risk and data utility
information loss. Developing a general regulation for identifying an appropriate noise set
will benefit the applications of the multiplicative noise masking scheme in practice.

MaskJointDensity provides a tool for estimating the marginal density function and the joint
density function of the original data. It raises an interesting question: can the data intruder
use the estimated (joint) density function to attack the original data? Our research showed
the risk of the attack can be reduced if the underlying multiplicative noise is appropriate.
We will discuss this issue in another paper.

Preliminaries

Table 10 is from [20]. The number of Gaussian m used in MaskJointDensity is 7.
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