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A powerful tool in computational stochastic mechanics is the stochastic finite element method (SFEM).
SFEM is an extension of the classical deterministic FE approach to the stochastic framework i.e. to the
solution of static and dynamic problems with stochastic mechanical, geometric and/or loading properties.
The considerable attention that SFEM received over the last decade can be mainly attributed to the spec-
tacular growth of computing power rendering possible the efficient treatment of large-scale problems.
This article aims at providing a state-of-the-art review of past and recent developments in the SFEM area
and indicating future directions as well as some open issues to be examined by the computational
mechanics community in the future.
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1. Introduction

It is today widely recognized that computational methods per-
mit the analysis and design of large-scale engineering systems. The
considerable influence of inherent uncertainties on system behav-
ior has also led the scientific community to recognize the impor-
tance of a stochastic approach to engineering problems. Issues
related to uncertainty quantification and its influence on the reli-
ability of the computational models, are continuously gaining in
significance. While analytical procedures were most useful for
exploring and developing the field of stochastic mechanics, it is
now for the computational methods with the help of powerful
computing resources and technology to expand and generalize
these procedures and hence make them applicable to complex
realistic engineering systems. For this reason, the procedures of
computational stochastic mechanics are receiving lately consider-
able attention [125].

Engineering experience has shown that uncertainties are in-
volved not only in the assessment of loading but also in the mate-
rial and geometric properties of engineering systems. The rational
treatment of these uncertainties, achieved by means of probability
theory and statistics, cannot be addressed rigorously when follow-
ing the traditional deterministic approach. This approach, which is
almost exclusively used in engineering practice even today, is
based on the extreme (minimum, maximum) and mean values of
system parameters. In this framework, it is implicitly assumed that
the results obtained from a deterministic analysis are representa-
tive of all possible scenarios of system loading and strength. This
is not true in most cases. It is however, sure that the deterministic
approach cannot lead to an ‘‘optimum” system design. Stochastic
methods do provide this possibility at the expense of increasing
the complexity of the system model and, consequently, of the re-
quired computational effort for the solution of the problem. The
exploitation of the available computational resources (hardware
and system software) and the development of enhanced solution
algorithms (application software) are therefore of paramount
importance in the application of stochastic methods to real-world
problems and to their further dissemination to the engineering
community.

A powerful tool in computational stochastic mechanics is the
stochastic finite element method (SFEM). SFEM is an extension
of the classical deterministic FE approach to the stochastic
framework i.e. to the solution of stochastic (static and dynamic)
problems involving finite elements whose properties are ran-
dom. From a mathematical point of view, SFEM can be seen
as a powerful tool for the solution of stochastic partial differen-
tial equations (PDEs) and it is treated as such in numerous stud-
ies where convergence and error estimation issues are examined
in detail. In fact, these two aspects of SFEM are complementary
and inter-dependent. The considerable attention that SFEM re-
ceived over the last decade can be mainly attributed to the
spectacular growth of computational power rendering possible
the efficient treatment of large-scale problems. This article aims
at providing a state-of-the-art review of past and recent devel-
opments in the SFEM area. It also aims at indicating future
directions as well as some open issues to be examined in the
future.

A fundamental issue in SFEM is the modeling of the uncertainty
characterizing the system parameters (input). This uncertainty is
quantified by using the theory of stochastic functions (processes/
fields). The first half of this article (Section 2) is thus devoted to
methods existing in the literature for the simulation (generation
of sample functions) of stochastic processes and fields. In the sec-
ond half (Section 3), a thorough description of the available vari-
ants of SFEM is provided. The most important techniques used
for the discretization of stochastic fields are first introduced and
a discussion on their performance is made based on results re-
ported in the literature. The issue of using two different meshes
for the discretization of the system and the stochastic field, respec-
tively, is also examined. The formulation of the stochastic finite
element matrix, which is the key-point of the method, is then pre-
sented. For the calculation of system response statistics, two meth-
ods are discussed in detail: Monte Carlo simulation (MCS) along
with the perturbation approach (based on a Taylor series expan-
sion of the response vector) and their recent variants. Section 3
closes with the spectral stochastic finite element method (SSFEM),
which is a specific formulation of SFEM based on the expansion of
the response vector in polynomial chaos series. Some recent and
promising developments concerning this formulation are pointed
out. The advantages and drawbacks of the SSFEM are critically re-
viewed and summarized from a variety of applications existing in
the literature. Finally, issues related to specialized software devel-
opment are discussed.

The author hopes that this article will serve as a useful source of
information to scientists and engineers interested by SFEM and
will help to further disseminating the method for the solution of
real-world problems which are inherently influenced by a number
of uncertain parameters during their life time.

2. Uncertainty modeling: representation of stochastic processes
and fields

The first step in the analysis of uncertain systems (in the frame-
work of SFEM) is the representation of the input of the system. This
input usually consists of the mechanical and geometric properties
as well as of the loading of the system (left and right hand side of
the equilibrium equation, respectively). Characteristic examples
are the Young modulus, Poisson ratio, yield stress, cross section
geometry of physical systems, material and geometric imperfec-
tions of shells, earthquake loading, wind loads, waves etc. A conve-
nient way for describing these uncertain quantities in time and/or
space has always been the implementation of stochastic processes
and fields, the probability distribution and correlation structure of
which can be defined through experimental measurements. How-
ever, in most cases, due to the lack of relevant experimental data,
assumptions are made regarding these probabilistic characteris-
tics. Two main categories of stochastic processes and fields can
be defined based on their probability distribution: Gaussian and
non-Gaussian. A detailed review of the existing techniques for
the simulation of Gaussian and non-Gaussian stochastic processes
and fields along with their respective applications in computa-
tional stochastic mechanics, is presented in the next two sub-sec-
tions. For the sake of brevity, the presentation is made for
stochastic fields (variable in space). The same expressions hold
for stochastic processes but with time t as the independent
variable.

2.1. Simulation methods for Gaussian stochastic processes and fields

Despite the fact that most of the uncertain quantities appearing
in engineering systems are non-Gaussian in nature (e.g. material,
geometric properties, wind, seismic loads), the Gaussian assump-
tion is often used due to its simplicity and the lack of relevant
experimental data. Furthermore, Gaussian random fields occur
naturally in applications as a result of the central limit theorem
and are the model of maximum entropy when only information
on the second-order moments is available [172]. From the wide
variety of methods developed for the simulation of Gaussian sto-
chastic processes and fields, two are most often used in applica-
tions: the spectral representation method [167,168] and the
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Karhunen–Loève (K–L) expansion [67]. A unified approach for gen-
erating Gaussian random field simulation methods (including
spectral representation and K–L expansion) has been proposed in
[144].

2.1.1. The spectral representation method
In the general case, the spectral representation method ex-

pands the stochastic field f(x) as a sum of trigonometric functions
with random phase angles and amplitudes. The version having
only random phase angles is adopted in most applications be-
cause it leads to sample functions that are ergodic in the mean
value and autocorrelation [78]. The amplitudes are then deter-
ministic and depend only on the prescribed power spectrum of
the stochastic field:

f̂ ðiÞðxÞ ¼
XN�1

n¼0

An cosðjnxþ /ðiÞn Þ; ð1Þ

where An ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sff ðjnÞDj

p
, jn = nDj, Dj = ju/N and n = 0,1,2, . . . ,

N � 1. It also holds that A0 = 0 or Sff(j0 = 0) = 0. The parameter ju

is a cut-off wave number defining the ‘‘active region” of the power
spectral density function (SDF) Sff(j) of the stochastic field. Since ju

has a specific value, the wave number step Dj ? 0 as N ?1. In
addition, for a given number of terms N, Dj is constant, while
/ðiÞ0 ;/

ðiÞ
1 ; . . . ;/ðiÞN�1 are independent random phase angles uniformly

distributed in the range [0,2p] and are produced by a random num-
ber generator.

Each sample function given by Eq. (1) has the following proper-
ties [167]:

1. It is asymptotically a Gaussian stochastic field as N ?1 due to
the central limit theorem.

2. Its mean value and autocorrelation function are identical to the
corresponding targets as N ?1.

3. Under the condition A0 = 0 or Sff(j0 = 0) = 0, it can be shown that
f̂ ðiÞðxÞ is periodic with period T0 = 2p/Dj.

Weakly ergodic sample functions are produced when both the
phase angles and amplitudes are random [78]. This is the main rea-
son for which spectral representation with random phase angles
and deterministic amplitudes is used in most applications.

Spectral representation algorithms are nowadays available
covering various kinds of Gaussian stochastic fields: multi-dimen-
sional, multi-variate (vector), non-homogeneous e.g. [33,78,93,
105,167–169]. The simulation of the non-homogeneous fields is
based on the notion of the evolutionary power spectrum
[105,171]. The computational cost of digital generation of homoge-
neous Gaussian sample functions can be drastically reduced by
using the fast Fourier transform technique (FFT). Spectral represen-
tation is even useful for the simulation of non-Gaussian fields.
There exist a wide variety of methods related to the translation
concept (memory-less non-linear transformation of a Gaussian
field to a non-Gaussian one) which are using this technique for
the generation of sample functions of the underlying Gaussian field
e.g. [16,21,34,80,100,147] (see Section 2.2). Spectral representation
has also been successfully implemented in the framework of
Monte Carlo simulation (MCS) for the solution of realistic problems
with the stochastic finite element approach e.g. [4,20,99,133,135–
138,145,146,173].
0

0.2

0 8 16 24 32
index i

Fig. 1. Eigenvalue decay in K–L expansion for scale of fluctuation h=0.2, 0.4, 1.0, 2.0:
case of square exponential autocovariance. Reprinted from [174], Copyright � 2007,
with permission from Elsevier.
2.1.2. The Karhunen–Loève (K–L) expansion
The K–L expansion can be seen as a special case of the orthog-

onal series expansion where the orthogonal functions are chosen
as the eigenfunctions of a Fredholm integral equation of the second
kind with the autocovariance function as kernel (covariance
decomposition) [67,195]:
f̂ ðxÞ ¼ �f ðxÞ þ
XN

n¼1

ffiffiffiffiffi
kn

p
nn/nðxÞ; ð2Þ

Z
D

Cff ðx1; x2Þ/nðx1Þdx1 ¼ kn/nðx2Þ; ð3Þ

where �f ðxÞ is the mean of the field (usually considered as equal to
zero), kn and /n(x) are the eigenvalues and eigenfunctions of the
autocovariance function Cff(x1,x2), respectively, nn is a set of uncor-
related random variables and N is the number of K–L terms. In the
case of zero-mean, homogeneous Gaussian stochastic fields, the
autocovariance function depends only on the distance n = x2 � x1

between two points and coincides with the autocorrelation function
Rff i.e. Cff (x1,x2) = Cff(n) = Rff(n).

The K–L expansion offers a unified framework for the simula-
tion of homogeneous and non-homogeneous stochastic fields,
although some problems have been identified regarding the homo-
geneity of the generated sample functions [55,83,174,176]. It is
particularly suitable for the representation of strongly correlated
stochastic fields where only a few terms, corresponding to the N
larger eigenvalues, are required in order to capture most of the ran-
dom fluctuation of the field (see below comments on the solution
of the Fredholm integral equation and Fig. 1). This approach is usu-
ally combined in the literature with the polynomial chaos (PC)
approximation for the calculation of the response variability of
uncertain finite element systems e.g. [1–3,19,22,28,29,41,66,67,
94,108,113,187,189]. The combination is called the spectral sto-
chastic finite element method (SSFEM). In this case, the uncertain
(Gaussian) input parameters are modeled via the K–L expansion
while the probabilistic characteristics of system response are
determined using the PC decomposition (see Section 3 for a de-
tailed presentation of the SSFEM). There also exist some cases
where the K–L expansion has been implemented in the framework
of MCS e.g. [112,157–159]. It should be noted that for homoge-
neous random fields defined over an infinite domain, the K–L
expansion reduces, theoretically, to the spectral representation
method [65,88].

Despite its theoretical importance, the implementation of K–L
expansion is often hindered by the difficulty encountered for solv-
ing the Fredholm integral equation. As analytic solutions of this
integral equation are only known for simple geometries and spe-
cial forms of the autocovariance function, special numerical treat-
ment is required in the case of realistic problems involving
complex domains. These numerical methods (e.g. Galerkin) usually
lead to dense matrices that are very costly to compute and solve
the corresponding equations. It is important to note that the
accuracy in the computation of the eigenpairs of the autocovari-
ance function strongly influences the efficiency of K–L series
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[88,140,164,174,176]. Enhanced methods for the solution of the
Fredholm integral equation have been proposed in [140,58,164].
The first method is a mixed wavelet-Galerkin scheme replacing
the conventional bases (polynomial, trigonometric, etc.) by wave-
lets that exhibit a number of desired properties which improve
the performance of the Galerkin method for the required solution
of integral equations. The second approach is a generalized fast
multi-pole accelerated Krylov eigen-solver applicable to general,
piecewise analytic correlation kernels and leading to significant
speed up in some specific cases [164].

A comprehensive comparison between the spectral representa-
tion and K–L expansion methods can be found in [83,88,174]
where it is shown that strongly correlated stochastic fields with
smooth autocovariance function may be easier to simulate with
the K–L expansion when using a small number of terms N(620)
in Eqs. (1) and (2), (Fig. 2). However, the performance of spectral
representation improves by increasing the number of retained
terms. In most cases, an absolute minimum of 128 terms must
be used for N in the spectral representation method in order to en-
sure some level of convergence to Gaussianity through the central
limit theorem. Finally, the homogeneity and ergodicity of sample
functions generated by the K–L series are questionable and its
computational performance less satisfactory than that of spectral
representation.

2.1.3. Other series expansion methods
In addition to the spectral representation and K–L expansion,

there also exist some other methods for the simulation of Gaussian
stochastic processes and fields such as the turning bands method
(TBM), the autoregressive moving average (ARMA)–autoregressive
(AR) models, the optimal linear estimation (OLE) and the expan-
sion optimal linear estimation (EOLE) methods. The TBM involves
the simulation of random fields in two or higher dimensions by
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Fig. 2. Convergence of spectral representation and K–L expansion to the target variance
autocovariance, h=0.2; (b) h=2.0; (c) square exponential autocovariance, h=0.2; (d) h=2.0
using a sequence of one-dimensional fields along lines crossing
the domain (Fig. 3). The formulation of TBM depends on knowledge
of the 1D autocorrelation function R1(n). If this function is known,
the line fields can be produced using some efficient 1D algorithm
(e.g. FFT). The autocorrelation function R1(n) is chosen such that
the multi-dimensional correlation structure Rn(n) is reflected over
the ensemble. Mantoglou and Wilson [109] suggested the compu-
tation of R1(n) through an integral equation and supply explicit
solutions, for either the equivalent 1D autocorrelation function or
for the 1D SDF, for a variety of multi-dimensional correlation struc-
tures. The TBM produces accurate results only when a large num-
ber of lines are used at the expense of decreased computational
efficiency [52]. The ARMA–AR models permit the simulation of
both stationary and non-stationary stochastic processes using
recursive expressions for the calculation of some coefficients relat-
ing a Gaussian white noise process with the process to be simu-
lated e.g. [35]. The degree of success of such time-series
generation is usually measured in terms of the closeness of the pre-
scribed target autocorrelation function and the corresponding
sample autocorrelation function computed from the generated
sample functions (Fig. 4).

The OLE method was introduced in [102] and is sometimes re-
ferred to as the Kriging method. It is a special case of the method of
regression on linear functionals. In the context of OLE, the approx-
imated field f̂ ðxÞ is defined by a linear function of nodal values
f = {f(x1), . . . , f(xn)} as follows:

f̂ ðxÞ ¼ aðxÞ þ
XN

n¼1

bnðxÞfn ¼ aðxÞ þ bTðxÞ � f: ð4Þ

The functions a(x) and bn(x) are determined by minimizing in
each point x the variance of the error Var½f ðxÞ � f̂ ðxÞ� under the
condition that f̂ ðxÞ is an unbiased estimator of f(x) in the mean
i.e. E½f ðxÞ � f̂ ðxÞ� ¼ 0. The EOLE method is an extension of OLE
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as a function of the number of retained terms N in Eqs. (1) and (2): (a) exponential
. Reprinted from [174], Copyright � 2007, with permission from Elsevier.



Fig. 3. Illustration of the TBM concept: contributions from the line process Zi(ni) at
the closest point are summed into the field Z(x) at xk. Reprinted from [52] with
permission from ASCE.
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using a spectral representation of the vector of nodal variables f.
As in the K–L expansion, the series can be truncated after N terms
and the eigenvalues kn are sorted in descending order. A compre-
hensive comparison between the K–L expansion and the EOLE
method can be found in [102,176]. In these papers, variance error
estimators are provided, which allow checking the accuracy of the
random field discretization for different correlation structure,
scale and order of expansion. It appears that even in the case of
the exact K–L expansion (i.e. when an exponential covariance ker-
nel is used) the K–L maximal error is not always smaller than the
Fig. 4. (a) Sample function of a non-stationary process generated using an ARMA
model; (b) target (continuous line) and sample (oscillating line) autocorrelation
functions computed from the generated sample function of Fig. 4a. Reprinted from
[35] with permission from ASCE.
EOLE error for a given number of retained terms (Fig. 5). In addi-
tion, the K–L point-wise variance error estimator for a given order
of expansion is smaller than the EOLE error in the interior of the
discretization domain but larger at the boundaries. However, the
K–L approach provides the lowest mean error over the domain
(Fig. 6).

2.2. Simulation methods for non-Gaussian stochastic processes and
fields

The problem of simulating non-Gaussian stochastic processes
and fields has received considerable attention recently in the
field of stochastic mechanics. This is due to the fact that several
quantities arising in practical engineering problems (e.g. material,
geometric properties, soil properties, wind, wave, earthquake
loads) exhibit non-Gaussian probabilistic characteristics. Non-
Gaussian fields are also useful for the determination of spec-
tral-distribution-free upper bounds of the response variability
of stochastic systems [134]. In particular, the simulation of highly
skewed narrow-banded stochastic processes and fields is well
recognized today as a testbed that reveals the limitations of
the existing simulation methods [34]. Since all the joint multi-
dimensional density functions are needed to fully characterize
a non-Gaussian stochastic field, a number of studies have been
focused on producing a more realistic definition of a non-Gauss-
ian sample function from a simple transformation of some
underlying Gaussian field with known second-order statistics
e.g. [16,21,34,80,100,110,141,142,147].

Simulation methods for non-Gaussian stochastic processes and
fields can be grouped into two main categories. Those which seek
to produce sample functions matching the prescribed power spec-
tral density function (SDF) and lower-order statistics (mean,
Fig. 5. Comparison of errors for K–L (denoted as SE) and EOLE methods with
exponential autocorrelation. Reprinted from [102] with permission from ASCE.



Fig. 6. Point-wise estimator for variance error, represented for different discretization schemes and orders of expansion (exponential autocorrelation function) [176].
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variance, skewness and kurtosis) of a target stochastic field e.g.
[85,86] and those seeking to generate sample functions compatible
to complete probabilistic information. The first type of methods are
suitable for the simulation of wind and wave loads, for which
generation of non-Gaussian sample functions according to pre-
scribed lower-order moments will provide accurate results for
the stochastic response [86]. However, sample functions having
only the prescribed lower moments are not sufficient for the suc-
cessful solution of problems where the accurate characterization
of the tails of the distributions is of importance (e.g. soil liquefac-
tion [145,146]). This is due to the potential non-uniqueness of the
marginal probability distribution of realizations of a non-Gaussian
field that is defined only by its lower-order moments. Research
studies have shown that the occurrence of soil liquefaction is
significantly influenced by the tails of the marginal probability
distributions of the random soil properties used in the analysis.
Different marginal probability distributions with similar lower-
order moments, but dissimilar tails, will lead to widely varying
amounts of observed soil liquefaction as described in detail in
[146]. When dealing with such types of problems, the use of meth-
ods belonging to the second category is required.

2.2.1. Correlation distortion methods
2.2.1.1. Translation fields. The methods falling into the second
category are more challenging in the sense that they seek to gen-
erate sample functions compatible to complete probabilistic infor-
mation, namely the marginal probability distribution and the
SDF of the stochastic field. The correlation distortion methods
[21,34,80,100,147] are the main representatives of this group. In
all these approaches, the generation of a zero-mean homogeneous
non-Gaussian field with SDF ST

ff ðjÞ is based on the translation field
concept [77] i.e. on a nonlinear memory-less transformation of an
underlying zero-mean homogeneous Gaussian field with SDF
Sgg(j):

f ðxÞ ¼ F�1 �U½gðxÞ�; ð5Þ

where U is the standard Gaussian cumulative distribution function
and F is the non-Gaussian marginal cumulative distribution func-
tion of f(x). Methods [21,34,100,147] are iterative because their
objective is to match the prescribed probabilistic characteristics at
the individual sample level through spatial averaging, whereas
the technique described in [80] requires only one step because its
objective is to meet the same goal through ensemble averaging.

An important issue arising in the context of translation fields is
that the choice of the marginal distribution of f(x) imposes con-
strains to its correlation structure [79–81]. In other words, F and
ST

ff ðjÞ (or RT
ff ðnÞ) have to satisfy a specific compatibility condition

derived directly from the definition of the autocorrelation function
of the translation field:
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Fig. 7. Comparison of target and sample PDF and SDF of a moderately skewed
(skewness = 1.838) lognormal stochastic field produced using the Yamazaki–
Shinozuka algorithm (correlation length parameter b = 5).
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RT
ff ðnÞ ¼

Z 1

�1

Z 1

�1
F�1½Uðg1Þ�F�1½Uðg2Þ� � /½g1; g2; RggðnÞ�dg1dg2; ð6Þ

where g1 = g(x), g2 = g(x + n), /[g1,g2;Rgg(n)] denotes the joint den-
sity of {g1,g2} and n is the space lag. If F and ST

ff ðjÞ are proven to
be incompatible through Eq. (6), i.e. if RT

ff ðnÞ has certain values lying
outside a range of admissible values and/or the solution Rgg(n) is not
positive definite and therefore not admissible as an autocorrelation
function, there is no translation field with the prescribed character-
istics. In this case, one has to resort to translation fields that match
the target marginal distribution and/or the SDF approximately [80].
It must be noted that translation fields have a number of useful
properties such as the analytical calculation of crossing rates and
extreme value distributions [77,80]. This class of random fields
can be used to adequately represent various non-Gaussian phenom-
ena e.g. the peak dynamic response distribution of nonlinear beams,
the loads encountered during the atmospheric re-entry of a space-
craft or the spatial variability of the crystallographic orientation in
random polycrystalline microstructures [56,6,84].

2.2.1.2. Methods extending the translation field concept. The afore-
mentioned issue arising in the context of translation fields is
amended by using (i) an iterative procedure involving the repeated
updates of the SDF of the underlying Gaussian stochastic field g(x)
and, (ii) an extended empirical non-Gaussian to non-Gaussian
mapping leading to the generation of a non-Gaussian field f(x) with
the prescribed F and ST

ff ðjÞ [34,100]. Yamazaki and Shinozuka [192]
defined the iterative procedure in such a way that when the final
realization of g(x) is generated according to the updated Sgg(j)
and then mapped to f(x) via Eq. (5), the resulting non-Gaussian
sample function will have both the prescribed marginal probability
distribution and SDF. The formula used to update Sgg (j) is the
following:

Sðjþ1Þ
gg ðjÞ ¼

SðjÞggðjÞ
SðjÞff ðjÞ

ST
ff ðjÞ: ð7Þ

This algorithm provides fairly good results for slightly non-Gaussian
fields with broad-banded SDFs. However, as observed by Deodatis
and Micaletti [34], there is a limitation with regard to the simula-
tion of highly skewed non-Gaussian stochastic fields. In this case,
the resulting non-Gaussian sample functions have the prescribed
SDF but their marginal probability density function (PDF) differs
significantly from the target one (Fig. 7). This limitation is due to
the specific form of the updating formula of Eq. (7). The major prob-
lem is that, after the first iteration, the underlying Gaussian field is
no more Gaussian and homogeneous for reasons thoroughly ex-
plained in [34].

Deodatis and Micaletti [34] proposed an algorithm having the
same structure as that of Yamazaki and Shinozuka but with several
improvements:

(i) Improved updating scheme of Sgg(j)

Sðjþ1Þ
gg ðjÞ ¼

ST
ff ðjÞ

SðjÞff ðjÞ

" #a

SðjÞggðjÞ: ð8Þ

From extensive numerical experimentation, the authors con-
cluded that a value of a equal to 0.3 gives the better results in
terms of convergence.

(ii) Extended empirical non-Gaussian to non-Gaussian mapping
f ðxÞ ¼ F�1 � F�½gðxÞ�; ð9Þ
F* is the empirical marginal probability distribution of g(x)
updated in each step.

(iii) Use of frequency shifting in order to circumvent some con-
vergence issues arising around j = 0.
As a result of the mapping of Eq. (9), the generated non-Gauss-
ian fields are not translation fields in a strict sense but match the
prescribed characteristics (PDF and SDF) with remarkable accuracy
(Fig. 8). The algorithm becomes computationally demanding in the
case of non-Gaussian fields with large skewness and narrow-
banded spectra (see the numerical examples of [100]).

Phoon et al. [141] used the K–L expansion for the simulation of
non-Gaussian fields together with an iterative mapping scheme to
fit the target marginal distribution function. The method offers a
unified framework for the simulation of homogeneous and non-
homogeneous stochastic fields and has been further improved in
order to cover the case of highly skewed distributions [142].

Efficient variations of the aforementioned procedures have been
proposed in [100,110]. Masters and Gurley [110] presented a gen-
eral non-Gaussian cumulative distribution function (CDF) mapping
technique in which the generated sample functions converge to
both the target PDF and SDF through iterative corrections to both
probability and spectral content. As in [141], the distortion to the
PDF is used as a criterion to determine the need for further itera-
tion. This technique makes use of the spectral representation
method for the generation of the underlying Gaussian sample func-
tions and achieves a good matching of the target non-Gaussian PDF
in many cases. However, it should be mentioned that this approach
is accurate and efficient for stochastic fields having distributions
close to the Gaussian. An interesting variant of [34] has been intro-
duced in [100]. This computationally efficient technique is again
translation-based and uses an iterative procedure similar to that
of [34] for the generation of homogeneous non-Gaussian fields
with the prescribed characteristics. However, the function fitting
ability of neural networks (NN) is exploited for the approximation
of the SDF of the underlying Gaussian field in a very small number
of iterations and the algorithm is remarkably efficient even in the
limiting case of narrow-banded fields with very large skewness
(Fig. 9 – Table 1). The convergence criterion used in this method
is the following:
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Fig. 9. Comparison of target and sample PDF and SDF of a highly skewed
(skewness = 2.763) lognormal stochastic field produced using the NN-based
enhanced hybrid method (EHM) (correlation length parameter b = 5). Reprinted
from [100], Copyright � 2005, with permission from Elsevier.

Table 1
Computational performance of D–M and EHM algorithms for the highly skewed non-
Gaussian field of Fig. 9. Reprinted from [100], Copyright � 2005, with permission from
Elsevier.

Method Iterations Time (s)

Deodatis–Micaletti 29,279 146
EHM–SD 82 2.0
EHM–CG (Fletcher and Reeves) 25 0.6
EHM–Quickprop 45 1.2
EHM–Rprop 32 0.8
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Fig. 8. Comparison of target and sample PDF and SDF of the moderately skewed
lognormal stochastic field of Fig. 7 produced using the Deodatis–Micaletti
algorithm. Reprinted from [100], Copyright � 2005, with permission from Elsevier.
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ðwÞ ¼ 1
2

XN

j¼1

½Sff ðjjÞ � ST
ff ðjjÞ�2; ð10Þ

and the neural network weights w are adjusted at every iteration.
Recently, another algorithm for the simulation of strongly non-

Gaussian stochastic fields has been proposed in [16]. It involves an
iterative scheme generating sample functions that match a pre-
scribed non-Gaussian marginal distribution and a prescribed SDF.
The simulated field possesses all the properties of translation
fields. The method also determines the SDF of an underlying
Gaussian field according to translation field theory. Several numer-
ical examples demonstrate the capabilities of the methodology and
determine the limits of its applicability. This is the latest develop-
ment in a class of simulation algorithms based on the translation
field concept.

2.2.1.3. Binary random fields – simulation of random media. As men-
tioned before, the simulation of highly skewed narrow-banded
stochastic processes and fields is a highly computationally
demanding task. Limiting case of this class of random fields are
the binary fields, which are often used in modeling two-phase
random media. A translation model for non-stationary, non-
Gaussian random processes has been developed in [53] and suc-
cessfully applied to the simulation of a 1D binary process repre-
senting a two-phase functionally graded composite material.
However, translation models are in many cases inadequate to
accurately describe the micro-structural features of random med-
ia as the requirement of positive definiteness is not often met
[76]. An alternative methodology for the simulation of binary
random fields according to their prescribed autocorrelation func-
tion has been lately introduced by Koutsourelakis and Deodatis
[97]. It essentially contains two parts. In the first part, an algo-
rithm is introduced to obtain samples of a binary field from a
nonlinear transformation with memory of a Gaussian field. In
the second step, an iterative algorithm is implemented allowing
the determination of the probabilistic characteristics of the
underlying Gaussian field, so that the resulting binary field has
a prescribed autocorrelation function (Fig. 10). The method has
a wide range of applicability and its computational cost is rela-
tively small. The accurate modeling of constituent properties
and microstructure of random heterogeneous materials (e.g. con-
crete, geomaterials, composites) using non-Gaussian stochastic
fields has been addressed by a large number of researchers e.g.
[6,38,39,54,60,73,75,76,84,90,97,114,117,129,152,180,193]. As it
is stated in a recent state-of-the-art article [75], a joint experi-
mental-stochastic mechanics research is imperative in this area
in order to validate the stochastic models and improve the safety
and reliability of engineering material systems.

2.2.2. Methods based on polynomial chaos (PC) expansion
Sakamoto and Ghanem [156] proposed an alternative way to

generate sample functions of non-Gaussian non-stationary sto-
chastic processes according to their prescribed (non-stationary)
marginal PDF and correlation function with the expansion of the
non-Gaussian process at discrete points using classical polynomial
chaos (PC) decomposition:

uðxÞ ¼
XP

j¼0

ujðxÞWj; ð11Þ



Fig. 11. Exact map Y3 = g3(Z) (solid line) vs. PC approximate map Y ðpÞ3 ¼ gðpÞ3 ðZÞ
(dashed lines) for different orders of PC (random variable Z � N(0,1)). Reprinted
from [55], Copyright � 2003, with permission from Elsevier.

Fig. 10. (a) Comparison of target Gaussian autocorrelation with Gaussian autocor-
relation calculated using iterative inversion algorithm; (b) comparison of target
binary autocorrelation with binary autocorrelation calculated using inversion
algorithm. Reprinted from [97] with permission from ASCE.
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where fWjgP
j¼0 ¼ PjðfnngN

n¼1Þ denotes the set of Hermite polynomi-
als defined in some underlying Gaussian set fnngN

n¼1, P is the num-
ber of PC expansion terms and N is the number of terms retained
in the K–L expansion. It is noted that K–L expansion (Eq. (2)) is
used for the simulation of the underlying Gaussian process. The
method leads in most cases to good approximations of the target
non-Gaussian distribution. Puig et al. [149,150] examined the con-
vergence behaviour of PC expansion and proposed an optimization
technique for the determination of the underlying Gaussian auto-
correlation function. Some limitations of PC approximations have
been recently pointed out by Field and Grigoriu [55,83]. Specifi-
cally, it has been demonstrated that the accuracy of the PC
approximation is not always improved as additional terms are re-
tained and the PC approximation of certain processes may become
computationally demanding because of the large number of coef-
ficients uj that need to be calculated. This is usually the case of
problems involving sharp non-linearity and abrupt slope changes
or bifurcations [1,55] (Fig. 11).

Xiu and Karniadakis [190] suggested an optimal description of
different distribution types by using a more general PC framework
called Askey chaos. Precisely, they presented a new method for
solving stochastic differential equations based on Galerkin projec-
tions and extensions of Wiener’s polynomial chaos. In this frame-
work, the stochastic processes are represented using an optimum
trial basis from the Askey family of orthogonal polynomials
fUjgP
j¼0 ¼ PjðffngN

n¼1Þ that reduces the dimensionality of the system
and leads to exponential convergence of the error:

uðxÞ ¼
XP

j¼0

ujðxÞUj; ð12Þ

where ffngN
n¼1 denotes a set of (non-Gaussian) random variables and

P is the number of generalized PC expansion terms. Numerical
examples showed substantial reduction of the computational cost
compared to Monte Carlo simulations for low dimensional stochas-
tic inputs e.g. [57,170,189,190].

2.2.3. Other methods
Recently, a new spectral representation-based model has been

developed for the direct simulation of a class of non-Gaussian pro-
cesses [82]. The model is based on the spectral representation the-
orem for weakly stationary processes and can match the second
moment properties along with several higher order moments of
any non-Gaussian process. The model consists of a superposition
of harmonics with uncorrelated but dependent random amplitudes
and is useful for both Monte Carlo simulation and analytical stud-
ies for the response of linear and nonlinear systems to non-Gauss-
ian noise [84].

Elishakoff et al. [47] proposed a conditional simulation tech-
nique for a non-Gaussian stochastic field. This was an extension
of the unconditional simulation technique by Yamazaki and Shin-
ozuka [192] into a conditional stochastic field. In their technique,
non-Gaussian random variables (values of the stochastic field at
specific points) are transformed to Gaussian ones without taking
into account correlation, and sample simulations are carried out
in the Gaussian stochastic field. A correlation coefficient between
samples that have been transformed to a given stochastic field is
then obtained and computations are iterated until the coefficient
converges to a target value. This approach has been verified only
through numerical simulations. An improved version of the tech-
nique by Elishakoff et al. is the method proposed by Hoshiya
et al. [87] for the simulation of conditional translation stochastic
fields, which has a better theoretical formulation.

In [17], a procedure based on Markov theory is developed, in
which matching of the SDF is accomplished by adjusting the drift
coefficient of the Fokker–Planck equation governing the probabil-
ity density and the diffusion coefficient to match the PDF. The pro-
cedure is applicable to an arbitrary PDF, if the SDF is of a low-pass



Fig. 12. Comparison of errors for the midpoint (MP), interpolation (SF) and local
average (SA) methods for varying element size and correlation structure (expo-
nential-A, square exponential-B and sinusoidal-C). Reprinted from [102], with
permission from ASCE.
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(broad band) type, and to a large class of PDFs, if the SDF is of a nar-
row band type with its peak located at a nonzero frequency.

2.2.4. The case of non-Gaussian vector processes and fields
A relatively small number of simulation techniques have been

developed so far for non-Gaussian vector (multi-variate) processes
and fields [5,70,71,143,147]. These stochastic fields are useful for
the representation of spatially correlated system properties or ran-
dom loads in the stochastic finite element method (see Section 3).
The algorithm of Popescu et al. [147] is an iterative spectral repre-
sentation-based scheme extending the approach of Yamazaki and
Shinozuka to the multi-variate case. The algorithm by Gioffrè
et al. is based on translation vector processes and thus it is not iter-
ative. Conditions on the cross-covariance matrix are given to as-
sure the applicability of the model, which is calibrated on the
basis of experimental results obtained from wind tunnel tests on
a tall building [70,71]. The method is efficient for reproducing
the non-Gaussian nature of pressure fluctuations on separated flow
regions. An application of the model in the case of translation vec-
tors with non-identically distributed components is presented by
Arwade [5]. It is shown that the translation model has the ability
to match exactly target marginal distributions and a broad variety
of cross-correlation matrices and is well suited to the simulation of
heterogeneous material properties. However, the generation of
sample functions of vector processes with highly skewed non-
Gaussian characteristics and weakly correlated components that
accurately match the prescribed target cross-covariance (or
cross-spectral density) matrix and marginal PDF, is still a challenge
[21]. The accurate and efficient simulation of this kind of non-
Gaussian processes remains an open area of research.

3. The stochastic finite element method (SFEM)

The second step in the analysis of uncertain systems is the
propagation of uncertainty through the system and the assess-
ment of its stochastic response. This is the most important issue
in stochastic mechanics and is mainly addressed today in the
framework of the stochastic finite element method (SFEM). SFEM
is an extension of the classical deterministic approach for the
solution of stochastic (static and dynamic) problems and has re-
ceived considerable attention especially in the last two decades,
due to the technological advances in the available computational
power [46,64,67,94,96,111,176]. SFEM involves finite elements
whose properties are random. From a mathematical point of view,
SFEM is a powerful tool for the solution of stochastic partial dif-
ferential equations (PDEs) and it has been treated as such in
numerous publications where convergence and error estimation
issues are examined in detail e.g. [10–12,30,41,58,113,124]. SFEM
has been successfully applied in a wide variety of problems (e.g.
solid, structural and fluid mechanics, acoustics, heat transfer)
[1–4,13–15,18,20,22–29,31,32,37,40,42,44–46,48–51,57–69,72,74,
89,91,92,94–96,99,103,104,106–108,111–113,116–124,126–139,148,
154,155,158,160,162,166,173,175,188,196].

There are two main variants of SFEM in the literature: i) the per-
turbation approach [96,106,107], which is based on a Taylor series
expansion of the response vector and, ii) the spectral stochastic fi-
nite element method – SSFEM [67] where each response quantity
is represented using a series of random Hermite polynomials.
Monte Carlo simulation – MCS [138] can also be added to these
two variants. In the framework of MCS, a deterministic problem
is solved a (large) number of times and the response variability
is calculated using simple relationships of statistics. Due to its
robustness and simplicity, MCS is often used in the literature as a
reference method in order to check the accuracy of other ap-
proaches and is sometimes combined with the two aforemen-
tioned SFEM variants [63]. The SFEM comprises three basic steps:
the discretization of the stochastic fields representing the uncer-
tain system properties, the formulation of the stochastic matrix
(first at the element and then at the global-system level) and final-
ly, the response variability calculation (response statistics). These
steps along with their computational aspects are described in the
following sections.

3.1. Discretization of stochastic processes and fields

The first basic step of SFEM is the discretization of the stochastic
processes/fields used to represent the uncertain mechanical and
geometric system properties. The term ‘‘discretization” means
the approximation (replacement) of the continuous stochastic field
(see Section 2) by a finite number of random variables forming a
random vector:

f ðxÞ !discretization
f̂ ðxÞ ¼ ffig: ð13Þ

The discretization methods existing in the literature can be split into
two main categories: (i) point discretization methods where the final
random variables are simply the values of the stochastic field at spe-
cific points of the system domain (element centroid, nodes, integra-
tion points) and, (ii) average-type discretization methods where the
random variables are defined as (weighted) integrals of the stochas-
tic field over each finite element. The main representatives of the
first category are the midpoint, nodal point, integration point and
interpolation methods [37,106,107], while the local average and
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weighted integral methods [182,183,31,32] are the main representa-
tives of the second group. These methods have been extensively used
by several researchers in the framework of SFEM leading to results of
different levels of accuracy e.g. [4,25,31,72,111,173,184]. A thorough
comparison of the midpoint, interpolation and local average meth-
ods for the case of 2D–1V homogeneous Gaussian stochastic fields
with three different correlation structures (exponential, square
exponential and sinusoidal) and various correlation length parame-
ters, has been presented in [102] (Fig. 12). A comparison between the
local average and weighted integral methods in the calculation of the
response variability of plane stress/strain, plate and thin shell struc-
tures can be found in [184,72,4,173], respectively (see also Fig. 13).

Another important issue in SFEM is the choice of the ‘‘stochastic
mesh” used for the discretization of the stochastic fields and its
relationship with the finite element mesh used for the analysis.
The choice of the ‘‘stochastic mesh” is mainly determined by the
correlation length parameter which is directly related to the vari-
ability of the random field, whereas the finite element mesh is usu-
ally defined by the geometry and the stress or flux gradients of the
response. In [37] it is stated that, since the choice of these two
meshes is based on different criteria, the use of two different
meshes is possible and may be more efficient in practical problems.
This can be explained by the fact that, for strongly correlated sto-
chastic fields, the ‘‘stochastic mesh” can be significantly coarser
than the finite element mesh thus leading to a substantial reduc-
tion of the random variables (dimension) of the problem. However,
the use of the same mesh is simpler and sometimes more conve-
nient. The ideal case is of course that of a mesh which accurately
describes at the same time the geometry, the stress gradients of
the response and the variability of the stochastic field, but this case
does not appear often in engineering problems.

Concerning the size of the stochastic mesh, Der Kiureghian and
Ke [37] proposed the value LRF � b/4 � b/2, where b is the correla-
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Fig. 13. (a) Scordelis-Lo shell; (b) comparison between local average and weighted int
correlation length parameter b for the case of combined Young modulus and Poisson rati
tion length parameter and LRF is the typical element size in the ran-
dom field mesh. This result has been obtained by repeatedly
evaluating the reliability index of a beam with stochastic rigidity
using meshes with decreasing element size. This range was con-
firmed by Li and Der Kiureghian [102] and Zeldin and Spanos
[194] who arrived to this conclusion by comparing the power spec-
tra of the random fields before and after discretization. Another rule
for the size of the random field mesh is provided in [166]. To the
author’s knowledge, there are very few publications in the litera-
ture where use is made of two really independent meshes in con-
junction with a general mapping procedure of the random field
realization onto the finite element mesh [20,157]. However, this
is the only general approach to be adopted in large-scale engineer-
ing applications where the finite element mesh is automatically
generated and the elements have variable size and unprescribed
orientation.

3.2. Formulation of the stochastic finite element matrix

The discretized stochastic fields are used for the formulation of
the stochastic matrix of each finite element (e) which, in the case of
a random spatial variation of Young modulus described by a zero-
mean, homogeneous stochastic field f(x,y,z), has the following
form:

kðeÞ ¼
Z

VðeÞ
BðeÞT DðeÞ0 BðeÞdV ðeÞ þ

Z
V ðeÞ

BðeÞT DðeÞ0 BðeÞf ðeÞðx; y; zÞdV ðeÞ; ð14Þ

or

kðeÞ ¼ kðeÞ0 þ DkðeÞ;

where kðeÞ0 and Dk(e) are the mean (deterministic) and fluctuating
parts of the stochastic finite element matrix, respectively, B(e) is
the (deterministic) strain–displacement matrix, DðeÞ0 is the mean
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            C 

                  L 

2.6 26 65 130

ngth parameter b

l)

rigid diaphragm 

R = 7600 mm 
L = 15200 mm 
h = 76 mm 
θ = 40
E = 21000 N/mm2

 = 0.3 ν

egral methods (Scordelis-Lo shell) – COV of vertical deflection wc as a function of
o variation. Reprinted from [173], Copyright � 2003, with permission from Elsevier.
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value of the constitutive matrix and V(e) is the volume of the finite
element. Expressions for the stochastic matrix of several kinds of fi-
nite elements (2D and 3D beam, plane stress/strain, plate, shell) are
existing in the literature [31,138,184,72,4,173]. It is worth noting
that, in the case of dynamic problems, the mass and damping matri-
ces can be random as well e.g. [49,50,181]. In this case, a random
eigenvalue problem has to be solved in order to obtain the random
eigenpairs of the system. Since the solution of this problem is often
computationally demanding, several papers are devoted to this to-
pic proposing different approaches for achieving an enhanced com-
putational efficiency e.g. [68,151,178].

The global stochastic matrix of the system has a similar form
and is formed using k(e) as follows:

K ¼
XNe

e¼1

kðeÞ ¼ K0 þ DK; ð15Þ

where Ne is the number of finite elements in the problem at hand.
Finally, static analysis in the context of SFEM, results in the solution
of the algebraic problem given below:

P ¼ ðK0 þ DKÞu; ð16Þ

where P and u are the loading and nodal displacement vectors,
respectively. In the case of large-scale systems, the solution of this
problem is computationally demanding and thus constitutes the
crucial point in the applicability and efficiency of the SFEM as will
be discussed in the next sections.

3.3. Monte Carlo simulation – MCS

3.3.1. Direct MCS
MCS is the simplest method for treating the response variability

calculation in the framework of SFEM. In this method, NSIM sam-
ples of the stochastic system matrix are generated using a random
number generator and the final equilibrium Eq. (16) is solved NSIM
times, leading to a population (sample) of the response vector.
Based on this population, the response variability of the system
is calculated using simple relationships of statistics. For example,
if ui is the displacement at the i-th d.o.f., then the unbiased esti-
mates of the mean value and variance of the sample are

EðuiÞ ¼
1

NSIM

XNSIM

j¼1

uiðjÞ; ð17Þ

r2ðuiÞ ¼
1

NSIM � 1

XNSIM

j¼1

u2
i ðjÞ � NSIM � E2ðuiÞ

" #
: ð18Þ

It is obvious that the accuracy of the estimation depends on the
number of samples and, in particular, the estimate of standard devi-
ation r is inversely proportional to

ffiffiffiffiffiffiffiffiffiffiffiffi
NSIM
p

. A small number of sam-
ples e.g. NSIM � 50 permits only a rough approximation of the mean
value and variance of the response. With a larger sample size e.g
NSIM � 500, it is possible to estimate the CDF of the response
[161]. The solution of NSIM deterministic problems has a significant
computational cost especially in the combined case of large-scale
systems and of considerable stochastic dimension. It is therefore
desirable to combine MCS with discretization methods that do
not involve a large number of random variables such as the mid-
point or the local average method, which lead to only one random
variable per finite element. The weighted integral method is also
advantageous because it permits an exact representation of the sto-
chastic field using a small number of random variables (66 in elas-
ticity problems) e.g. [184,72].

The direct MCS described in this section is the basic version of
the method. A variant of MCS called ‘‘fast MCS” has been recently
used for the efficient numerical evaluation of the variability re-
sponse function [165] needed to calculate spectral-probability dis-
tribution-free upper bounds of the response variability of
structural systems [134]. Numerous other variants of this approach
(importance sampling, subset simulation, line sampling) have been
developed in the last decade especially for the efficient solution of
reliability problems where the calculation of small failure probabil-
ities requires a very large number of samples [161]. Even a few
years ago, the application of the direct MCS to large-scale realistic
problems was impossible due to its excessive computational cost.
However, the development of robust and efficient solution algo-
rithms in conjunction with the increasing availability of powerful
computers and the suitability of the method to parallel processing
with ideal efficiency, alleviate this limitation to a large extent.
Thus, direct MCS is today a powerful (and perhaps the only univer-
sal) tool for treating complex SFEM applications. This is why it is
often used as a reference approach for validating the results of
other methods [4,9,44,51,138,173,176,177,179].

3.3.2. Variants of direct MCS for SFE-based reliability estimation
3.3.2.1. Importance sampling. Direct MCS becomes inefficient for
the solution of reliability problems where a large number of low-
probability realizations in the failure domain must be produced.
In order to alleviate this problem without deteriorating the accu-
racy of the solution, numerous variants of this approach have been
developed. An important class of improved MCS are variance–
reduction techniques where the generation of samples of the basic
random variables is controlled in an efficient way. The most prom-
inent representative of this class of methods is importance sam-
pling (IS), in which the generation of samples is controlled by a
sampling distribution concentrated in the ‘‘important” (low-prob-
ability) region of the failure domain. The main challenge in the
application of IS to physical problems is the determination of the
sampling distribution, which depends on the specific system at
hand and on the failure domain [161]. The optimal choice of the
sampling distribution (for which the variance of the estimator of
the probability of failure pF vanishes) is practically infeasible since
an a priori knowledge of pF is required for this purpose [163]. Thus,
several techniques based on kernel density estimators or design
points have been proposed in order to produce a sampling distribu-
tion characterized by a reduced variance of the estimator of pF

p̂F ¼
1
N

XN

i¼1

1FðhðiÞÞhðhðiÞÞ
f ðhðiÞÞ

: ð19Þ

In this equation, N is the number of samples, 1F denotes the indica-
tor function of the failure domain, h is the joint probability distribu-
tion of the basic random variables and the samples fhðiÞgN

i¼1 are
generated according to the sampling distribution f.

IS is efficient for the reliability assessment of static linear and
nonlinear systems characterized by a small number of basic ran-
dom variables. However, for the dynamic reliability analysis of
large nonlinear SFE systems in high stochastic dimensions, the
computational effort needed to construct a suitable sampling dis-
tribution may exceed the effort required by the direct MCS [161].

3.3.2.2. Subset simulation. In order to overcome the inefficiency of
direct MCS in calculating small failure probabilities, a novel ap-
proach called subset simulation (SS) has been recently proposed
[7]. SS is a powerful tool, simple to implement and capable of solv-
ing a broad range of reliability problems e.g. [8]. The basic idea of
SS is to express the failure probability pF as a product of larger con-
ditional probabilities by introducing a decreasing sequence of
intermediate failure events (subsets) fFigm

i¼1 such that Fm=F and
F1 	 F2 	 � � � 	 Fm = F

pF ¼ PðFmÞ ¼ PðF1Þ
Ym�1

i¼1

PðFiþ1=FiÞ: ð20Þ



Fig. 14. (a) Limit state and important direction a; (b) line sampling procedure.
Reprinted from [163], Copyright � 2004, with permission from Elsevier.
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With a proper choice of the intermediate events, the conditional
failure probabilities can be made sufficiently large. Therefore, the
original problem of computing a small failure probability is reduced
to calculating a sequence of larger conditional probabilities, which
can be efficiently estimated by means of direct MCS with a small
number of samples.

A significant advantage of SS is that its convergence rate does
not depend on the number of random variables (stochastic dimen-
sion) of the problem [163]. However, the convergence rate of SS
strongly depends on the selection of the intermediate failure
events as well as on the choice of the spread of the proposal PDF
used to generate the conditional samples through a Markov chain
procedure. Since no information is available in order to make opti-
mum choices for the aforementioned parameters, the convergence
of SS can be significantly delayed in some cases.

3.3.2.3. Line sampling. Another recently developed technique
which permits the efficient treatment of high dimensional reli-
ability problems is line sampling (LS) [98]. This technique takes
advantage of an implicitly available performance function (data
points on the limit state surface) obtained directly from FE anal-
yses. A brief description of the procedure will be given herewith
in the standard normal space but its generalization is straightfor-
ward. As already mentioned in the case of IS, the optimal choice
of the sampling distribution is practically infeasible. However,
something quite close to optimal sampling can be achieved by
using LS and computing an important direction a which points to-
ward the failure domain nearest to the origin (Fig. 14). Neither
the vector a is required to point exactly to the design point, nor
are any assumptions made with respect to the shape of the limit
state surface. Under the condition that direct MCS will be used for
the subspace h? (Fig. 14), the estimator of Eq. (19) is reduced
after some algebra to

p̂F ¼
1
N

XN

i¼1

pðiÞF ; ð21Þ

where the conditional failure probabilities pðiÞF are computed using
the standard normal CDF U as follows:

pðiÞF ¼
Z þ1

�1
1FðhðiÞÞ

1ffiffiffiffiffiffiffi
2p
p exp �ðh

ðiÞ
1 Þ

2

2

" #
¼ UðbðiÞl Þ þUð�bðiÞu Þ; ð22Þ

with the safe domain lying in the range ½bðiÞl ;b
ðiÞ
u �. It is worth noting

that Eq. (21) is the best approximation (that with the smallest var-
iance) of the estimator of Eq. (19).

A particular advantage of LS is its robustness. In contrast to IS,
where an inappropriate choice of the sampling distribution leads
to worse estimates compared to direct MCS, LS performs at least
as well as direct MCS even in the worst possible case where the
direction a is selected orthogonal to the optimal direction [98].
In comparison to IS, it can be shown that LS requires far less perfor-
mance evaluations (FE analyses) to obtain a similar accuracy. The
advantages of LS become more pronounced in high stochastic
dimensions as it is demonstrated in [163] where a comparison be-
tween different approaches for reliability estimation is presented.
Finally, the application of a stepwise procedure proposed in [98]
can lead to a further reduction of its computational cost.

3.4. The perturbation method – Taylor series expansion of the
stochastic finite element matrix

The Taylor series expansion of the stochastic finite element
matrix and of the resulting response vector of a physical system
is known in the literature as the perturbation method e.g.
[18,96,106,107,183]. In this approach, the stochastic field f(x)
representing an uncertain system property is discretized into N
zero-mean random variables faigN
i¼1. The Taylor series expansion

of the stochastic system matrix is then expressed as

K ¼ K0 þ
XN

i¼1

K I
iai þ

1
2

XN

i¼1

XN

j¼1

K II
ijaiaj þ � � � ; ð23Þ

where

K I
i ¼

oK
oai

����
a¼0

and K II
ij ¼

o2K
oaioaj

�����
a¼0

; ð24Þ

and a ¼ a1 a2 : : : aN½ �T is a random vector containing the
random variables faigN

i¼1.
The solution of the finite element Eq. (16) requires also a Taylor

series expansion of the loading and response (e.g. displacement)
vectors in a similar way:

P ¼ P0 þ
XN

i¼1

PI
iai þ

1
2

XN

i¼1

XN

j¼1

PII
ijaiaj þ � � � ; ð25Þ

u ¼ u0 þ
XN

i¼1

uI
iai þ

1
2

XN

i¼1

XN

j¼1

uII
ijaiaj þ � � � ð26Þ
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If the loading is considered as deterministic, it is obvious that
PI

i ¼ PII
ij ¼ 0 and P = P0. The displacement vector of Eq. (26) is calcu-

lated using the following iterative scheme:

u0 ¼ K�1
0 P0;

uI
i ¼ K�1

0 ðP
I
i � K I

iu0Þ;
uII

ij ¼ K�1
0 ðP

II
ij � K I

iu
I
j � K I

ju
I
i � K II

iju0Þ:
ð27Þ

The quantities uI
i and uII

ij denote the sensitivity of the displacements
with respect to the random variables ai. An obvious drawback of the
perturbation method is the need for calculation of the partial deriv-
atives K I

i and K II
ij that increases significantly the computational cost

of the approach especially in large stochastic dimensions.

3.4.1. First and second-order approximation of the response variability
The first order approximation of the displacement variability

follows from Eq. (26) by omitting the higher order terms:

Mean value : E1ðuÞ ¼ u0; ð28Þ
Covariance matrix : Cov1ðu;uÞ ¼ Ef½u� E1ðuÞ�½u� E1ðuÞ�Tg

¼
XN

i¼1

XN

j¼1

uI
iðuI

jÞ
T EðaiajÞ: ð29Þ

The expectation E(aiaj) is related to the autocorrelation function of
the stochastic field.

The second-order approximation of the response variability can
be computed in a similar way only in the case of Gaussian random
variables ai. For all other distributions, it is required the knowledge
of the joint probability distribution function of the random vari-
ables. Since this is infeasible in practice, higher order approxima-
tions are limited to problems involving Gaussian random fields
[111]. However, it should be noted that the improvement in accu-
racy obtained using higher order approximations is rather small
compared to the disproportional increase of computational effort
[132].

A second-order perturbation approach has been used in [106]
leading to accurate results for a two d.o.f. dynamic problem. For
a dynamic problem with geometric non-linearity, the results were
satisfactory only for small coefficients of variation of the input sto-
chastic field. Falsone and Impollonia [51] proposed an improved
method based on the perturbation approach which overcomes its
drawbacks. The accuracy of the method is remarkable in the eval-
uation of higher order moments and PDF of the response even for
high amount of uncertainty of the input (Fig. 15). This method pro-
Fig. 15. PDF for the vertical displacement (a) and the rotation (b) at the midpoint of a clam
different values of the correlation length k (Young modulus variation, r = 30%). Reprinte
vides a valid alternative to the classical perturbation approach due
to better accuracy and to MCS due to significantly reduced compu-
tational effort. A generalization of the method to geometrically
nonlinear as well as to (linear) dynamic problems can be found
in [91,50], respectively.

3.5. The spectral stochastic finite element method – SSFEM

The spectral stochastic finite element method – SSFEM has been
introduced by Ghanem and Spanos [67] as an extension of the
deterministic finite element method for the solution of boundary
value problems with random material properties. In the initial ver-
sion of the method presented in [67], the random spatial variation
of the Young modulus of a structure is described by a Gaussian sto-
chastic field which is represented using the Karhunen–Loève (K–L)
expansion (see Section 2)

f ðx; hÞ ¼ lðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞniðhÞ: ð30Þ

In this context, the stochastic matrix of a finite element (e) has the
following form:

kðeÞðhÞ ¼ kðeÞ0 þ
X1
l¼1

kðeÞl niðhÞ; ð31Þ

where kðeÞ0 is the mean value of k(e)(h), kðeÞi are deterministic matri-
ces given by

kðeÞi ¼
ffiffiffiffi
ki

p Z
Xe

/iðxÞBT D0BdXe; ð32Þ

B is the strain–displacement matrix and D0 is the mean value of the
constitutive matrix. Assuming deterministic loading, the finite ele-
ment equilibrium equation has the form:

K0 þ
X1
l¼1

KiniðhÞ
" #

UðhÞ ¼ F; ð33Þ

where U(h) is the unknown vector of random nodal displacements.
In the context of SSFEM, the vector U(h) is expanded in a series of
random Hermite polynomials fWjðhÞg1j¼0 (polynomial or Wiener
chaos, a terminology introduced by N. Wiener in the context of tur-
bulence modeling [186]) as follows:

UðhÞ ¼
X1
j¼0

UjWjðhÞ; ð34Þ
ped–clamped beam, compared with classical Monte Carlo simulation (symbols), for
d from [51], Copyright � 2002, with permission from Elsevier.
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and the final equilibrium equation reads:

X1
i¼0

KiniðhÞ
 !

�
X1
j¼0

UjWjðhÞ
 !

� F ¼ 0: ð35Þ

A finite number of terms is finally retained in both expansions (say
M+1 terms in the K–L expansion and P terms in the polynomial
chaos expansion – PCE) leading to a residual 2M,P that has to be min-
imized in the mean square sense in order to obtain the optimal
approximation of the exact solution U(h) in the space HP spanned
by the polynomials fWkgP�1

k¼0 (Galerkin approach):

E½2M;P �Wk� ¼ 0; k ¼ 0;1; . . . ; P � 1; ð36Þ

where P þ 1 ¼ ðMþpÞ!
M!p!

and p is the order of chaos polynomials. After
some algebraic manipulations, the following NP 
 NP linear system
of equations is finally obtained:

K00 . . . K0;P�1

K10 . . . K1;P�1

..

. ..
.

KP�1;0 . . . KP�1;P�1

2
66664

3
77775 �

U0

U1

..

.

UP�1

2
66664

3
77775 ¼

F0

F1

..

.

FP�1

2
66664

3
77775; ð37Þ
3.5.1. Computational aspects of SSFEM
Eq. (37) shows that the dimension of the resulting linear system

in SSFEM depends directly on the number of terms P retained in
the PCE of the random nodal displacement vector. Since P is multi-
plied by N(the number of degrees of freedom (d.o.f.)) as shown in
Eq. (37), it is obvious that the computational cost required for
the solution of this system is much larger than that of the corre-
sponding deterministic problem. When direct solution techniques
are used for this purpose, the required computing time is prohibi-
tive especially in the case of finely discretized large-scale systems.
This is why the use of SSFEM has been limited in the past to the
solution of uncertain systems with a small number of degrees of
freedom.

The particular form of the global matrix in Eq. (37) can be
exploited in order to obtain a more efficient solution of the system.

is block diagonal-sparse (Fig. 16) and Krylov-type iterative tech-
niques such as the preconditioned conjugate gradient method
(PCG) are particularly suitable in this case. A number of PCG vari-
ants with various preconditioning matrices led in most cases to a
substantial reduction of the number of iterations (and thus of the
computational cost) irrespectively of the coefficient of variation
Fig. 16. Sparsity pattern of the global Galerkin matrix for M = 4 and PC degree p = 1 (
+ Business Media: [43], � Springer-Verlag 2007.
of the input random field which affects the condition number of
matrix and thus the convergence behaviour of the iterative algo-
rithms e.g. [66,139,29,95,43,22]. Recently, a generalization of the
classical spectral decomposition (truncated K–L expansion) for
the solution of the problem interpreted as an ‘‘extended” eigen-
problem has been proposed together with ad hoc iterative solution
techniques inspired by classical techniques for solving the eigen-
problem [122,123]. This method leads to further computational
savings and reduction of memory requirements compared to Kry-
lov-type techniques in the solution of linear problems.

3.5.2. Accuracy and range of applicability of SSFEM
3.5.2.1. Accuracy of SSFEM. It is observed that the coefficients Uj in
the approximation of the displacement vector (Eq. (34)) result
from a Galerkin minimization of the residual of Eq. (36). General
convergence properties to the exact solution are also valid in this
procedure. When the number of retained terms in Eq. (34) tends
to infinity, SSFEM tends to be ‘‘exact”. However, when a large
number of terms are retained in PCE (say 35 for p = 3 and
M = 4), the computational cost of the method may become pro-
hibitive in large-scale problems. Convergence analyses and error
estimators quantifying the accuracy of the method can be found
in [64]. Another observation is that, in SSFEM, the response quan-
tities are represented by a PCE in terms of the standard normal
random variables of the input random field. Thus, this method
can be considered as a polynomial response surface approach in
which the coefficients are calculated using the Galerkin method
[15].

In most applications, SSFEM is used in conjunction with a
K–L expansion of the Gaussian random field(s) describing the
uncertain parameters of the problem (see e.g. [160] for a discus-
sion on Gaussian system properties). This random field must be
characterized by a correlation length sufficiently large in order
for the corresponding K–L expansion to yield a good approxima-
tion for a small number M of (<20) terms and a reasonable sto-
chastic dimension is preserved (see also Section 2.1). For non-
Gaussian properties, it has been suggested to use PCE for the
representation of the input as well [64–66]. In the case of a log-
normal distribution, this leads to closed-form expressions since a
lognormal random field can be defined by a simple transforma-
tion of a Gaussian field [64,65]. However, the use of PCE for the
representation of both input and output can lead to a loss of
accuracy [176,177]. The use of the generalized PCE seems to
be the best solution in the case of a general non-Gaussian input
[57,108,189,190] (Fig. 17).
left), p = 2 (middle) and p = 3 (right). With kind permission from Springer Science



Fig. 18. (a) Three-bar elasto-plastic truss; (b) standard deviation of the vertical
displacement Z at the bottom node of the truss as a function of the approximation
order M (COV of Young moduli E1, E2=0.3, NI: number of B-spline interpolation
points). Reprinted from [13], Copyright � 2006, with permission from Elsevier.

Fig. 17. Error convergence of the mean solution of a stochastic ordinary differential
equation with random input following the exponential distribution, obtained using
the Laguerre-chaos and Hermite-chaos [190]. Copyright � 2002, Society for
Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.
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3.5.2.2. Range of applicability of SSFEM. The application of SSFEM is
practically limited to linear problems. The first application of the
method to elasto-plastic problems can be found in [3] where plas-
tic and failure analysis of earth faults is attempted by introducing
some simplifying assumptions. Geometrical and material non-lin-
earity cannot be taken into account efficiently since PCE has been
found to perform poorly in problems involving sharp non-lineari-
ties, discontinuities, slope changes or bifurcations [1,55] (see also
Section 2.2). In these cases of non-smooth solutions, the choice
of other basis functions such as wavelets or the use of an adaptive
multi-element generalized PCE has been suggested as a remedy to
the problem [101,185,131]. More recently, a novel stochastic re-
sponse surface approach has been proposed for solving nonlinear
mechanical problems [13,14]. The approach is based on a Hilbert
approximation of the nonlinear mechanical function representing
the uncertain system using Hermite or Lagrange polynomials.
The coefficients of the approximation are calculated through a cu-
bic B-spline interpolation of the response function. The method
gives accurate results (a comparison with MCS is given in Fig. 18)
but its application is limited to problems involving a small number
of uncertain parameters. Alternatively, the concept of enrichment
of standard finite element bases used in a deterministic context
to achieve convergence acceleration in problems involving discon-
tinuities such as cracks [115], could be extended to the stochastic
case. In this context, additional basis functions (enrichment func-
tions) are added to the polynomial bases in order to capture the pe-
culiar behaviour of the solution [69].

3.5.2.3. Recently proposed methods. The most recent developments
in spectral-Galerkin-based SFEM include the stochastic reduced ba-
sis methods (SRBMs) introduced in [118,154,116], the non-intru-
sive approaches proposed in [13–15], the use of the method in a
multi-scale setting [191] and the extension to the stochastic frame-
work of the eXtended finite element method (X-FEM) [124]. The
SRBMs constitute an efficient alternative which is also limited to
the analysis of random linear systems (at least in its present formu-
lation). In contrast to the PC approach, the response process is rep-
resented using basis vectors spanning the preconditioned
stochastic Krylov subspace. What is interesting here is that: (i)
the basis vectors are problem dependent in contrast to PC expan-
sions where the choice of basis functions depends only on the input
distribution and, (ii) subsequent application of the Galerkin scheme
leads to a reduced-order deterministic system of equations to be
solved for the unknown coefficients in the stochastic reduced basis
representation. As a result, SRBMs are computationally efficient
with regard to PCE at a comparable level of accuracy and are thus
suitable for solving large-scale linear problems (for an exhaustive
comparison of these projection schemes see [154]), as can be seen
in Fig. 19. In the non-intrusive approaches presented in [13–
15,26], based on a stochastic response surface, the PCE is used to
create a surrogate model through a response surface without inter-
fering with the FE procedure i.e. without directly modifying the ele-
ment matrix. This is why these methods can take advantage of
powerful deterministic FE codes and using them as a black-box.
The multi-scale SFEM developed in [191] combines a stochastic var-
iational approach and scale-bridging multi-scale shape functions in
order to solve stochastic elliptic problems. The applicability and
efficiency of the method are demonstrated with the analysis of a
simplified benchmark multi-scale model of groundwater flow in
porous media. Finally, the X-SFEM proposed in [124] is an approach
relying on two major points: the implicit representation of complex
geometries using random level-set functions and the use of a Galer-
kin approximation at both stochastic and deterministic (FE) levels
(Fig. 20). This extension is important since there is no other efficient
strategy available in the literature for dealing with uncertainties in
the geometry. However, in its present formulation, it is valid only in
the context of linear elasticity.

As a conclusion, it can be stated that SSFEM is a rather new but
promising technique and many advances remain to be achieved for
its successful and computationally efficient application to nonlin-



Fig. 20. (a) Random level-set representing a random welded joint of elliptical
shape; (b) convergence of the X-SFEM approximation: error indicator eh,p with
respect to the order p of generalized PC (top) and the average FE mesh size h
(bottom). Reprinted from [124], Copyright � 2008, with permission from Elsevier.

Fig. 19. (a) Clamped square plate subjected to uniform in-plane tension; (b) error in
mean displacement at point E of the plate for various projection schemes as a
function of the standard deviation of the random Young modulus; (c) PDF of
displacement at point E computed using MCS and second-order projection schemes.
Reprinted from [154], Copyright � 2005, with permission from Elsevier.
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ear and inverse problems with stochastic data as well as to cases
with time-dependence.
3.6. SFEM specialized software

Although many interesting variants of SFEM are available and
continue to appear in the literature, this is not accompanied by
an analogous rapid development of relative computer software.
This is mainly due to the scepticism of a part of the engineering
community with respect to stochastic methods and to the
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persisting continuous refinement of existing deterministic FE soft-
ware. In [161], it is stated that: ‘‘An important aspect for software
development in probabilistic mechanics is the deterministic solver
of the code; indeed, the necessity of having a good mechanical
model in the first place must never be overlooked”. This is true
and the ability of combination of some SFEM variants as the non-
intrusive techniques with well established powerful deterministic
FE codes is very important and will further enhance the develop-
ment and dissemination of SFEM and permit the solution of
large-scale stochastic problems [155]. The incorporation of a prob-
abilistic toolbox to the recent releases of ANSYS software can be ci-
ted as an example [153]. However, its uncertainty modeling
capabilities are limited to the use of random variables. A stochastic
FE library has also been coupled with ANSYS for response variabil-
ity calculation [94].

Some representative examples of specialized SFEM software
systems are COSSAN [158], NESSUS [155] and FERUM [36]. Finite
element reliability using Matlab (FERUM) provides implementa-
tion of the SSFEM method for system response and reliability
analysis but its capability of interaction with external (third-
party) codes is limited. Numerical evaluation of stochastic struc-
tures under stress (NESSUS) is more attractive since it has this
capability and is applicable to large-scale engineering problems
with uncertainties in loading, geometry and material behavior.
In its framework, the uncertain parameters are modeled using
random variables and probabilistic sensitivity measures can be
calculated. Finally, computational stochastic structural analysis
(COSSAN) is an open system, designed to be easily adjustable
and expandable to include new computational tasks. It contains
several module groups each performing a different task such as
stochastic finite elements, reliability assessment, response sur-
face computation, system identification, nonlinear programming
techniques etc. The current developments in COSSAN are focused
on the construction of communication tools making this software
capable of interacting with highly developed, third-party FE
codes.

4. Conclusions

The article aimed at providing a state-of-the-art review of past
and recent developments in the SFEM area, indicating future direc-
tions and addressing some open issues to be considered by the
engineering community in the future:

� An overview of accurate and efficient simulation techniques of
Gaussian and some kinds of non-Gaussian stochastic processes
and fields, e.g. scalar processes with highly skewed non-Gauss-
ian characteristics, has been presented. The techniques based
on the translation field concept are very promising because they
combine accuracy and computational efficiency with a number
of properties (analytical calculation of crossing rates and
extreme value distributions), which are useful for the reliability
assessment of uncertain physical systems using MCS. The neces-
sity of developing efficient methods for the simulation of non-
Gaussian vector processes and fields has also been outlined.

� The three most important alternative formulations for SFE anal-
ysis (perturbation approach, MCS with its variants and SSFEM)
have been critically reviewed and summarized. The topics of
the discretization of the stochastic fields representing the uncer-
tain system properties and of the formulation of the stochastic
finite element matrix have also been treated in detail. The capa-
bility of using two independent meshes in conjunction with a
general mapping procedure of the random field realization onto
the finite element mesh appears to be essential in large-scale
applications for computing time savings.
� The efficient application of SFEM to nonlinear and inverse prob-
lems with stochastic data as well as to cases with time-depen-
dence remains a challenge. MCS is the only universal tool for
treating such complex SFE problems at the expense of a prohib-
itive computational cost. SSFEM emerges as a powerful alterna-
tive in some cases with the potential of further improvements in
its formulation.

� Rigorous proofs of convergence properties and error estimation
studies are needed in order to strengthen the theoretical back-
ground of SFEM and thus lead to its wider acceptance by the sci-
entific community.

� The development of robust and efficient solution techniques
suitable to a parallel processing environment properly adjusted
to solve the particular problem at hand will further enhance the
potential of SFEM.

� Equally important is the development of user-friendly special-
ized SFEM software capable of interacting with powerful third-
party codes and treating large-scale stochastic problems in trac-
table computing times.
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