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1. Course description

The course focuses on foundations of the mathematical theory of electromagnetic fields and waves
and includes:

- Basic electromagnetic theory. Differential operations of the vector analysis. Maxwell’s and
Helmholtz equations.

- Statements and analysis of the boundary value problems for Maxwell’s and Helmholtz
equations in unbounded domains associated with the wave diffraction. Conditions at infinity.

- Statements and analysis of the boundary value problems for Maxwell’s and Helmholtz
equations associated with the wave propagation in guides.

- Introduction to the integral equation method with application to the solution of the boundary
value problems for the Helmholtz equation.

- Introduction to the theory of numerical solution of partial differential equations by finite
difference, finite element, and Galerkin methods.



2. Introduction

Mathematical problems arising in electromagnetics and acoustics always attracted attention of
mathematicians. The traditional (physical) diffraction theory was created by Huygens (who
formulated in 1660s the famous Huygens principle, according to which the wave propagation
is caused by secondary sources), Fresnel (1818), Maxwell (1850s), Helmholtz (1859), Kirchhof
(1882), and others. The modern level was achieved owing to the studies of Poincare (1892) and
Sommerfeld (1896) when it became clear that the mathematical theory of diffraction is connected
with certain nonselfadjoint boundary value problems (BVPs) for partial differential equations
(PDEs) of mathematical physics in unbounded domains. Recently, this theory has been developed
on a completely new mathematical level involving the theory of distributions (Colton, Kress,
Kleinmann, Werner, Vineberg, Costabel, Stephan, and others). The corresponding aspects of the
theory of pseudodifferential operators were developed by Kohn and Nirenberg (1965), Eskin (1973),
Shubin (1978), Taylor (1981), Rempel and Schulze (1982), and Mazja (1970-80s) who considered
the problems on manifolds with sharp edges. The typical BVPs associated with the wave diffraction
are stated in domains that have noncompact boundaries stretching to infinity and contain inclusions
large in comparison with a characteristic parameter of the problem (e.g. wavelength) or dimensions
of the boundary inhomogeneities. Recent remarkable progress of computational resources has
opened new possibilities for solving such problems based on the use of huge computer clusters
employing parallel computations.

These circumstances dictate the necessity of deeper studies of mathematical foundations of the
electromagnetic field theory that would enable further development and creation of specifically
oriented mathematical and numerical methods and techniques.

The course focuses on foundations of the mathematical theory of electromagnetic fields and
waves and includes

(1) review of differential operations and theorems of the vector analysis;

(ii) basic notions of the electromagnetic theory, Maxwells equations;
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(iii) statements and analysis of the boundary value problems (BVPs) for Maxwells and
Helmbholtz equations in unbounded domains associated with the wave diffraction, plane waves,
conditions at infinity;

(iv) statements and analysis of the BVPs for Maxwells and Helmholtz equations associated
with the wave propagation in guides, the mathematical nature of electromagnetic waves;

(v) introduction to the integral equation method with application to the solution of the BVPs
for the Helmholtz equation; and

(vi) introduction to the theory of numerical solution of PDEs by finite difference, finite element,
and Galerkin methods. The course offers a possibility of solving practical exercises and problems
based on the considered basic theoretical items.

A compact version of the course presented at the URSI Commission B School for Young
Scientists consists of three parts according to the following lists of topics .

Part 1

Differential operations and theorems of the vector analysis.

Basic electromagnetic theory. Maxwells and Helmholtz equations.

Statements and analysis of the boundary value problems (BVPs) for Maxwells and Helmholtz
equations in unbounded domains associated with the wave diffraction. Plane waves. Conditions at
infinity

Part 2

Statements and analysis of the BVPs for Maxwells and Helmholtz equations associated with
the wave propagation in guides. The mathematical nature of waves.

Introduction to the integral equation (IE) method with application to the solution of the BVPs
for the Helmholtz equation.

Introduction to the theory of numerical solution of ordinary and partial differential equations by
finite difference, finite element, and Galerkin methods.

Part 3

A review of the statements and methods concerning basic proofs of the existence and uniqueness
of the BVPs for Maxwells and Helmholtz in electromagnetic field theory.

Solution to some of the course problems.

The full version of the course consists of approximately 16 lectures presenting foundations of
the mathematical theory of electromagnetic fields and waves.

A course plan. Full version

e Lecture 1: Differential operations of the vector analysis. Sections 8.1-8.7, 12.

e Lecture 2: Introduction to harmonic analysis. Section 3.

e Lecture 3: Basic electromagnetic theory. Maxwell’s and Helmholtz equations. Section 4.

e Lecture 4: Statements and analysis of the BVPs for Maxwell’s and Helmholtz equations in
bounded domains. Integral equation method. Sections 5.1, 5.3, 5.4,5.5,5.7.

e Lecture 5: Statements and analysis of the BVPs for Maxwell’s and Helmholtz equations in
unbounded domains associated with the wave diffraction. Conditions at infinity. Sections
5.2,5.8,5.9,5.10.

e Lecture 6: Statements and analysis of the BVPs for Maxwell’s and Helmholtz equations
associated with the wave propagation in guides. Sections 5.6, 7.1, 7.2, 7.3.

e Lecture 7: Introduction to the theory of numerical solution of PDEs by finite difference, finite
element, and Galerkin methods. Section 16.

e Lecture 8: Repetition. Overview of the course problems and miniprojects.

e Additional parts of the course include the following more specialized topics:

- numerical solution of BVPs for Maxwell’s equations in infinite domains, absorbing boundary
conditions.



10 Chapter 2. Introduction

- a mixed Lee-Madsen finite element formulation for the numerical solution of Maxwell’s
equations in the time domain. Finite Difference Time-Domain method (Yee scheme) for the
numerical solution of Maxwell’s equations. Dispersion relation and stability analysis for the
Yee scheme. Vector finite elements for solution of Maxwell’s equations

- Interior Penalty Discontinuous Galerkin Finite Element Method (IPDGFEM) for the nu-
merical solution of Maxwell’s equations. A posteriori error analysis and adaptive error
control.

- fully explicit hybrid IPDGFEM/FDM method for the numerical solution to Maxwell’s
equations.

- adaptive hybrid FEM/FDM method for the solution of inverse problems to Maxwell’s
equations.

Course problems.

There are about 25 problems in the course that accompany the theoretical lecture material.
Those that are not marked with a star are on average level of difficulty, while miniprojects constitute
more complicated problems.

It is assumed that a student would solve minimum 15 problems in written form and at least one
miniproject; the latter may be solved by a small team consisting of two students.

Computations performed by standard accessible software (MATLAB) illustrating the solutions
are encouraged, especially for the miniprojects.

Course literature

A.N. Tikhonov, A.A. Samarskij, Equations of Mathematical Physics, Dover Publications, 1990.
ISBN 0-486-66422-8.

D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, Wiley-Interscience
Publication, New York (1983).

D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Applied
Mathematical Sciences 93, Springer-Verlag, Heidelberg (1992), 2nd Edition, 1998.

D. I. Jin, The Finite Element Method in Electromagnetics, Second Edition. J.Wiley and sons,
2002.

P.B.Monk, Finite Element Methods for Maxwell’s equations, Oxford university press, 2003.

S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods, Applied
Mathematical Sciences, Springer-Verlag, Heidelberg (2003).

A.Taflove, Advances in computational electromagnetics: the finite difference time-domain
method, Boston, M-house, 1998.

Recommended reference literature
R. Adams, Calculus, 4th Edition. Addison-Wesley, 1999. ISBN 0-201-39607-6.
E. Kreyszig, Advanced Engineering Mathematics, 8th Edition. ISBN 0-471-33328-X.

In the compendium, the problem numbers, i.e. PROBLEM a.b.c corresponds the numbers in the
book E. Kreyszig, Advanced Engineering Mathematics, 8th Edition (AEM); for example, Problem
8.1.1 is problem 8.1.1 on p. 407 in AEM, chapter 8.1. The same applies to the numbers of theorems.
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3. Harmonic functions

Various aspects of the mathematical theory of wave diffraction and propagation are connected
with the analysis of the Helmholtz equation; its solutions are called meta-harmonic functions.
Many important properties and statements of this theory have their roots in the theory of harmonic
functions—solutions to the Laplace equation: statements of BVPs, potentials, fundamental solu-
tions, integral equation method, proofs of existence and uniqueness etc. Therefore we begin the
course with a basic introduction to the theory of harmonic functions.

Definition. Fundamental solutions

Denote by D € R? a two-dimensional domain bounded by the closed smooth contour I.
A twice continuously differentiable real-valued function u defined on a domain D is called
harmonic if it satisfies Laplace’s equation

Au=0 in D, 3.1
where 2 22
u u

is called Laplace operator (Laplacian), the function u = u(x), and x = (x,y) € R%. We will also
use the notation y = (xo,yo).

The function | |
D(x,y) =P(x—y) = -

In—— 3.3
2w [x—y] G-

is called the fundamental solution of the Laplace equation. For a fixed y € R?, y # x, the function
®(x,y) is harmonic, i.e., satisfies Laplace’s equation
I*® 9P ,
W—i—a—yZZO in D. (3.4

The proof follows by straightforward differentiation.
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Green’s formulas

Let us formulate Green’s theorems which leads to the second and third Green’s formulas.

Let D € R? be a (two-dimensional) domain bounded by the closed smooth contour I' and B%V
denote the directional derivative in the direction of unit normal vector 7y, to the boundary I' directed
into the exterior of I" and corresponding to a point y € I'. Then for every function u which is once
continuously differentiable in the closed domain D = D+T, u € C' (D), and every function v which
is twice continuously differentiable in D, v € C?(D), Green’s first theorem (Green’s first formula)
is valid
dv

Y, (35)

//(uAv+gradu-gradv)dx: u
) J dny

where - denotes the inner product of two vector-functions. For u € C?(D) and v € C?(D), Green’s
second theorem (Green’s second formula) is valid

//(uAv—vAu)dx - / <u;: —vaa:> dly, (3.6)
D r Y 4

Proof. Apply Gauss theorem
//diVAdX: /ny-Adly 3.7
D r

to the vector function (vector field) A = (A, A;) € C!(D) (with the components A, A, being once
continuously differentiable in the closed domain D = D+ T, A; € C'(D), i = 1,2) defined by

dv  dv
A=u-gradv= [ugx,ugy],

the components are

We have 5 5 5 5
: : v %
divA =div (ugradv) = e <u8x> + ER (u8y> =
Qudv O 0udv O edu-grady+ud
R 3y 3 u 9 grad u - grad v + uAv.

On the other hand, according to the definition of the normal derivative,

d
ny-A=ny-(ugradv) = u(ny-gradv) = u%,
y
so that, finally,
d
/ / div Adx = / / (ubv+ grad u - grad v)dx, / ny-Adl, = / wldl, (3.8
D D r r oy

which proves Green’s first formula. By interchanging u and v and subtracting we obtain the desired
Green'’s second formula (3.6).

Let a twice continuously differentiable function u € C?(D) be harmonic in the domain D. Then
Green’s third theorem (Green’s third formula) is valid

u(x) = / (C[)(x,y);;[y - u(y)W) dl,, xeD. (3.9)

r
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Proof. For x € D we choose a circle

Qxr) = {y: x—yl = \/(x—x0) + (y—30)2 = 1}

of radius r (the boundary of a vicinity of a point x € D) such that Q(x,r) € D and direct the
unit normal n to Q(x,r) into the exterior of Q(x,r). Then we apply Green’s second formula
(3.6) to the harmonic function u and ®(x,y) (which is also a harmonic function) in the domain
y € D: [x—y| > r to obtain

0= (uAD(x,y) — P(X,y)Au)dx = (3.10)
/D\Q/Xr
ID(x,y) du(y)
[ (s ot Y Y ar,
TuQ(x,r)

Since on Q(x,r) we have
grad \ P(x,y) = e

2nr’
a straightforward calculation using the mean-value theorem and the fact that
dv
=—dl, =0 3.11
any Y 3.1

for a harmonic in D function v shows that

i [ (w0 “ 5 - o) 5 Yot = utw),

r—0 8ny

which yields (3.9).

BVPs for Laplace equation

Formulate the interior Dirichlet problem: find a function u that is harmonic in a domain D bounded
by the closed smooth contour I, continuous in D = DUT and satisfies the Dirichlet boundary

condition:
Au=0 1in D, (3.12)

ulp=—f, (3.13)

where f is a given continuous function.

Formulate the interior Neumann problem: find a function u that is harmonic in a domain D
bounded by the closed smooth contour T, continuous in D = DUT and satisfies the Neumann
boundary condition

u

5l =& (3.14)

where g is a given continuous function.

Theorem 1 The interior Dirichlet problem has at most one solution.

Proof. Assume that the interior Dirichlet problem has two solutions, #; and u;. Their difference u =
u1 — up is a harmonic function that is continuous up to the boundary and satisfies the homogeneous
boundary condition # = 0 on the boundary I'" of D. Then from the maximum-minimum principle or
its corollary we obtain # = 0 in D, which proves the theorem.
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Theorem 2 Two solutions of the interior Neumann problem can differ only by a constant. The
exterior Neumann problem has at most one solution.

Proof. We will prove the first statement of the theorem. Assume that the interior Neumann problem
has two solutions, 1] and u,. Their difference ¥ = u; — u, is a harmonic function that is continuous
up to the boundary and satisfies the homogeneous boundary condition a—;‘v = 0 on the boundary I"
of D. Suppose that u is not constant in D. Then there exists a closed ball B contained in D such that

// |grad u|*dx > 0.
B

From Green’s first formula applied to a pair of (harmonic) functions u, v = u and the interior Dj, of
a surface I', = {x — hn, : x € I'} parallel to the Ds boundary I" with sufficiently small 4 > 0,

J
//(uAu+|gradu|2)dx:/u%dly,
r y

Dy,

//\gradu]zdxg//\gradu]zdx,
B Dy

(because B € Dy,); next we obtain

d
//|gradu|2dX§ /ua%dlyzo.
Z y

Dy,

we have first

Passing to the limit # — 0 we obtain a contradiction

//]gradu\zdxgo.
B

Hence, the difference u = u; — up must be constant in D.

Potentials with logarithmic kernels
In the theory of BVPs, the integrals

d

ux) = [ExyEWdl, vix) = [ S Exyn)d, (3.15)
c c

are called the potentials. Here, x = (x,y), y = (x0,y0) € R?; E(x,y) is the fundamental solution of

a second-order elliptic differential operator;

d d

on, ~ om

is the normal derivative at the point y of the closed piecewise smooth boundary C of a domain
in R?; and &(y) and 1(y) are sufficiently smooth functions defined on C. In the case of Laplace
operator Au,

1 1

E(x,y) = ®(x—y) = — .

(3.16)
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In the case of the Helmholtz operator . (k) = A+ k?, one can take E(x,y) in the form

1
x—yl

where H(gl) (z) = —4i®(z) + h(z) is the Hankel function of the first kind and zero order (one of the
1

=—1
e
single layer potential; 4(z) and h(z) are continuously differentiable and their second derivatives
have a logarithmic singularity.

i 1
E(xy) =E(x—y) = (H (kx—y)) = 5_In - —— +h(klx—y). (17

so-called cylindrical functions) and ®(x —y is the kernel of the two-dimensional

Properties of potentials

Theorem 3 Let D € R? be a domain bounded by the closed smooth contour I'. Then the kernel of
the double-layer potential

dP(x,y) 1 1
Vixy) = ——, dxy)=—In——, 3.18
(x,y) o, (xy)=5_In P (3.18)
is a continuous functionon I' for x,y € I'.
Proof. Performing differentiation we obtain
1 cosbyy
Vv =— : 3.19
(xy)=5_ r—g (3.19)

where 6y y is the angle between the normal vector ny, at the integration point y = (xo,yo) and vector
x — Y. Choose the origin O = (0,0) of (Cartesian) coordinates at the point y on curve I" so that the
Ox axis goes along the tangent and the Oy axis, along the normal to I" at this point. Then one can
write the equation of curve I in a sufficiently small vicinity of the point y in the form

y=y(x).

The assumption concerning the smoothness of I' means that yo(xp) is a differentiable function in a
vicinity of the origin O = (0,0), and one can write a segment of the Taylor series

2
X 2.1

y=3(0) +/(0)+ () = 22y (nx) (0 < <1)

because y(0) = y'(0) = 0. Denoting r = |x —y| and taking into account that x = (x,y) and the
origin of coordinates is placed at the point y = (0,0), we obtain

= 0+ =07 = VTR = [ Ay = sy 14 Lo

/!
cos by y = Y 1 0" (1) ,
r 2\ /1422(1/4) (Y (nx))?
and
cosbyy y 1 y'(nx)
roo o 21422(1/4) (" (X))

The curvature K of a plane curve is given by

/!

b
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which yields y”(0) = K(y), and, finally,

cosbtyy 1

lim —= = -K
rg?) r 2 (Y)

which proves the continuity of the kernel (3.18).

Statement 2 (Gauss formula) Let D € R? be a domain bounded by the closed smooth contour
I'. For the double-layer potential with a constant density

ony

— 3.20
2w Ryl (3.20)

where the (exterior) unit normal vector n of I' is directed into the exterior domain R?\ D, we have

W(x) = -1, xeD,

1
W(x) = —5, X€T, (3.21)
W(x) = 0, xeR?\D.

Proof follows for x € R?\ D from the equality

ov(y) ,, _
| dly =0 (3.22)

applied to v(y) = ®(x,y). For x € D it follows from Green’s third formula

du 0P (x,
u(x) = / <CI>(x,y)an —u(y)a(n”> dl,, x€ D, (3.23)
Y Y
r
applied to u(y) = 1 in D.
Note also that if we set
1
W(x) = —3 x €T,
we can also write (3.21) as
1
VL (X) = lim v(x+hne) =V(x) £, X €T. (3.24)
h—+0 2

Corollary. Let D € R? be a domain bounded by the closed smooth contour I'. Introduce the
single-layer potential with a constant density

1 1
u’(x) = /CID(x,y)dly, d(x,y) = 51 Pl (3.25)
r
For the normal derivative of this single-layer potential
ou® 0P

on, on,

r
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where the (exterior) unit normal vector n, of I' is directed into the exterior domain R? \ D, we have

MW _ | yep

8nx 3 )
ou’(x) 1

o, 2 xel, 3.27)
ou’(x) ’y =

o 0, xeR"\D.

Theorem 4 Let D € R? be a domain bounded by the closed smooth contour I'. The double-layer

potential

dP(x,y) 1 R

with a continuous density ¢ can be continuously extended from D to D and from R?\ D to R*\ D
with the limiting values on I

dD(X/, 1
ve(x') = a(xy)qJ(y)dly +59(), X €T, (329)
ny
or |
vi(x') =v(x')+ E(p(x’), x €T, (3.30)
where
ANEET] .
va(x') = hl_1>r1i101/()(—l—hmC ) (3.31)
Proof.
1. Introduce the function
0P(x,
10 =900 ) = [ 225 (013) — gy (.32
y
r

where @y = ¢(x’) and prove its continuity at the point X' € . For every € > 0 and every 11 > 0
there exists a vicinity C; C I of the point x" € T such that

lp(x) —o(x)| <n, x'e€C. (3.33)
Set
1:11+12:/---+ /
G I'\¢
Then
L[ <nBy,

where Bj is a constant taken according to

D _
/‘ (xy ‘dly <B, ¥xeD, (3.34)
any

and condition (3.34) holds because kernel (3.18) is continuous on I'.
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Taking 1 = €/Bj, we see that for every € > 0 there exists a vicinity C; C I of the pointx’ € T’
(i.e., X' € Cy) such that
II(x)] <& VxeD. (3.35)

Inequality (3.35) means that I(x) is continuous at the point x' € T".
2. Now, if we take v (X') for X’ € I' and consider the limits v (x') = limj,_,1ov(X + hn,) from
inside and outside contour I" using (3.24), we obtain

v (X)) =I(X)+ lim V(X —hng) =v(x') — %(p(x’),

h——0
1
vi (X)) =I(x)+ lim V(X' +hny) =v(x) + =@ (X),
h—+0 2
which prove the theorem.

Corollary. Let D € R? be a domain bounded by the closed smooth contour I'. Introduce the
single-layer potential

1 1
)= [@y)0Mdh, Pxy)= 5 in (336
r
with a continuous density ¢. The normal derivative of this single-layer potential
du(x) dd(x,y)
= dl, 3.37
8I’lx anx (P(y) y ( )
r

can be continuously extended from D to D and from R?\ D to R?\ D with the limiting values on I"

agf,fl = / wwy)dlﬁ %(p(x’), x €T, (3.38)
N dux) dux) 1 ..
an . om, T2P0), x€L (3.39)
where Sux) | |
Ty iy gradv(x +hny ). (3.40)

Generalized potentials

Let S(I") € R? be a domain bounded by the closed piecewise smooth contour I". We assume that a
rectilinear interval I'y is a subset of I', so that 'y = {x: y =0, x € [a,]]}.

Let us say that functions U;(x) are the generalized single layer (SLP) (I = 1) or double layer
(DLP) (I =2) potentials if

w@:/m@ﬁ@mm,x:@we&wy
I

where
K](X,l‘) :gl(X,l)-FF[(X,l‘) (l = 1,2),
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F} » are smooth functions, and we shall assume that for every closed domain Sorr(I') C Si(T), the
following conditions hold

i) Fi(x,t) is once continuously differentiable with respect to the
variables of x and continuous in ¢;
ii) F(x,7)and

t

F)(x,1) = ;})/Fz(x,s)ds, g€R!,

q
are continuous.

We shall also assume that the densities of the generalized potentials ¢; € Lgl) (') and ¢ €
2
LY(r).
Generalized potentials keep all essential properties of harmonic potentials with a purely loga-
rithmic kernel stated in the previous section.

Reduction of BVPs to integral equations

Green’s formulas show that each harmonic function can be represented as a combination of single-
and double-layer potentials. For BVPs we will find a solution in the form of one of these potentials.

Introduce integral operators Ky and K acting in the space C(I") of continuous functions defined
on contour I'

ID(
2/ xy), (y)dl,, xeT (3.41)
dny
and 2(
2/ *3) (y)dl,, xeT. (3.42)
ony

The kernels of operators Ky and K| are continuous on I" As seen by interchanging the order of
integration, Ky and K are adjoint as integral operators in the space C(I") of continuous functions
defined on curve I'.

Theorem 5 The operators I — Ky and I — K have trivial nullspaces
N(I—-Ky) ={0}, N{I-K;)={0},
The nullspaces of operators / 4+ Ky and / + K; have dimension one and
N(I+Kp) =span{l}, N(I+K;)=span{yp}
with

/ wodly # 0.
r

Proof. Let ¢ be a solution to the homogeneous integral equation ¢ — Kp¢p = 0 and define a

double-layer potential
IP(x,y)

v(x) = [ ———=¢(y)dl,, x€D (3.43)
dny
with a continuous density ¢. Then we have, for the limiting values on I,

P 1
vi(x) = a(;’y) P(y)dly £ 50(x) (3.44)
y
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which yields
2v_(x) = Kop(x) — ¢ =0. (3.45)

From the uniqueness of the interior Dirichlet problem (Theorem 1) it follows that v = 0 in the
whole domain D. Now we will apply the continuity of the normal derivative of the double-layer
potential (3.43) over a smooth contour I,

Iv(y)
dny

_Iv(y)
any

—0, yeT, (3.46)

+

where the internal and external limiting values with respect to I are defined as follows

Iv(y) Iv(y)

= =1 ,-grad —h 47
8ny y—TI',yeD 8ny hl—r>I(1) fy gra v(y ny) (3 )
and
d 0
4SS A ¢) N, n, - gradv(y + hny). (3.48)
any L yoryeR2H any h—0
Note that (3.46) can be written as
}lirr(l)ny - |gradv(y + hny) — gradv(y — hny)] = 0. (3.49)
—
From (3.47)—(3.49) it follows that
) 0
WP g yer (3.50)
any ony |

Using the uniqueness for the exterior Neumann problem and the fact that v(y) — 0, |y| — oo,
we find that v(y) = 0, y € R?\ D. Hence from (3.44) we deduce ¢ =v, —v_ =0 on I'. Thus
N(I —Kp) = {0} and, by the Fredholm alternative, N(I — K;) = {0}.

Theorem 6 Let D € R? be a domain bounded by the closed smooth contour I". The double-layer

potential

o) = [ 25 o)t Blxy) = e

n——, xeD, (3.51)
T |x—y]|

with a continuous density ¢ is a solution of the interior Dirichlet problem provided that ¢ is a
solution of the integral equation

2/ IP(xy) (y)dly = —2f(x), x€T, (3.52)
any

where f(x) is given by (3.13).

Proof follows from Theorem 4.

Theorem 7 The interior Dirichlet problem has a unique solution.

Proof The integral equation ¢ — K¢ = —2f of the interior Dirichlet problem has a unique solution
by Theorem 5 because N(I — K) = {0}.
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Theorem 8 Let D € R? be a domain bounded by the closed smooth contour I'. The double-layer

potential

u(x) = (M;(,f’y)w(y)dlw x €R*\D, (3.53)
y

r
with a continuous density ¢ is a solution of the exterior Dirichlet problem provided that ¢ is a
solution of the integral equation

dD(
+2/ x¥), (y)dly =2f(x), xeT. (3.54)
Here we assume that the origin is contained in D.

Proof follows from Theorem 4.

Theorem 9 The exterior Dirichlet problem has a unique solution.

Proof. The integral operator K : C(I") — C(T") defined by the right-hand side of (3.53) is compact
in the space C(I") of functions continuous on I" because its kernel is a continuous function on I'.
Let @ be a solution to the homogeneous integral equation ¢ + K¢ = 0 on I and define u by (3.53).
Then 2u = @ + K¢ = 0 on T, and by the uniqueness for the exterior Dirichlet problem it follows
that u € R*\ D, and [ @dl, = 0. Therefore ¢ + K¢ = 0 which means according to Theorem 5
(because N(I+ K) =span{1}), that ¢ = const on I'. Now [ ¢@dl, =0 implies that ¢ =0 on T,
and the existence of a unique solution to the integral equation (3.54) follows from the Fredholm
property of its operator.

Theorem 10 Let D € R? be a domain bounded by the closed smooth contour I'. The single-layer
potential

x) = / ®(x,y)w(y)dl,, xeD, (3.55)

with a continuous density Y is a solution of the interior Neumann problem provided that y is a
solution of the integral equation

+2/ acpa; Y y(y)dl, = 2(x), x€T. (3.56)

Theorem 11 The interior Neumann problem is solvable if and only if

/ ydl, =0 (3.57)
r

is satisfied.

Problems

Problem

Prove that the function (3.3)

1 1
"yl

(the fundamental solution of the Laplace equation) is harmonic with respect to the coordinates of x
for a fixed y € R?, y # x and with respect to y for a fixed x € R?, x # y.

D(x,y) =P(x—y) =
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Problem
Prove that the function (3.17)

1
x—yl

is the kernel of a generalized potential according to the definition of Section 3.4.2.

i 1
E(xy) = E(x—y) = (Hy (klx—y]) = 5 In - +h(kx—y]),

Problem

Reduce to a boundary integral equation the BVP from Section 14.2 in a rectangle IT,, = {(x,y) :
0<x<a,0<y<b}

Au=0, wu=u(xy), 0<x<a,0<y<b, ucC*Iy)NC(My)
u(0,y)=0,  u(a,y)=0, 0<y<b,
u(x,0) =0, u(x,b) =H(x), 0<x<aq,

H =] 2P - (x—xs)?2e 70735 x—xg| < p, (3.58)
0, ‘X_XS‘ > P,

with suppH(x) = L = (xs — p,xs+ p) C (0,a).

Problem

Formulate a Neumann BVP in a rectangle I1,;, as in 3.6.3 with a compactly supported boundary
function of your own. Check the solvability condition (3.57).
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4. Maxwell’s equations

The classical macroscopic electromagnetic field is described by four three-component vector-
functions E(r,7), D(r,7), H(r,7), and B(r,7) of the position vector r = (x,y,z) and time 7. The
fundamental field vectors E(r,) and H(r,7) are called electric and magnetic field intensities. D(r,t)
and B(r,7) which will be eliminated from the description via constitutive relations are called the
electric displacement and magnetic induction. The fields and sources are related by the Maxwell

equation system

oD
W —rotH = —J s
oB
W +rotE = 0,
divB = 0,
divD = p,
written in the standard SI units.
The constitutive relations are
D €E,
B = uH,
J = oE.

4.1)

(4.2)

(4.3)
4.4)

(4.5)
(4.6)
4.7)

Here €, i, and &, which are generally bounded functions of position (the first two are assumed
positive), are permittivity, permeability, and conductivity of the medium for J being the conductivity

current density.

In vacuum, that is, in a homogeneous medium with constant characteristics € = &, 4 = U, and
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o = 0, the Maxwell equation system takes a simpler form

JE

tH = - 4.8
JH

(E = —po— 49

ro Ho> s 4.9)

divH = 0, (4.10)

dvE = p. @.11)

Note that divergence conditions (4.3), (4.4), (4.10), and (4.11) follows from fundamental field
equations (4.1), (4.2), (4.8), and (4.9). Indeed, taking the divergence of (4.1) and (4.2) and recalling
that divrotA = 0 for any vector-function A, we obtain

JB JD
div W = 0, leE = —leJ
Since charge is conserved, the charge function p and conductivity current J are coupled by the
relation
dp

diVJ—i-E =0; (4.12)

hence,

gtdivB = gt (divD—p)=0.

However, the divergence conditions should be taken into account when designing a numerical
scheme on the stage of discretization.

In the case of a homogeneous medium, it is reasonable to obtain equations for each vector
E(r,t) and H(r,?). To this end, assume that p = 0. Applying the operation rot to equation (4.1)
and taking into account the constitutive relations, we have

0
rotrotH = EgrotE + orotE. (4.13)

Using the vector differential identity rotrotA = graddivA — AA and taking into notice equation
(4.2), we obtain the equation for magnetic field H

0’H oH
graddivH — AH = —g,uW — G.Ug
or
1 9’H oH 1
AH= 5= 5 +0l—>- P — 4.14
612 (91‘2 +G‘u ot <a S‘U> ( )
because divH = 0.
The same equation holds for electric field E
1 9’E oE 1
AE= — =5 +OoU—>- = ). 4.15
612 8[2 +6‘u ot <Cl 8“) ( )

Equations (4.14) or (4.15) hold for all field components,

1 0%u du

Au=—— -
“ a28t2+6“8t’

(4.16)
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where u is one of the components H,,H,,H; or E, E,, E..
If the medium is nonconducting, ¢ = 0, then (4.14), (4.15), or (4.16) yield a standard wave
equation

1 2%u
a2 a2’

This implies that electromagnetic processes are actually waves that propagate in the medium

Au 4.17)

1
with the speed a = —— (the latter holds for vacuum).
VEL

Time-harmonic fields

Time-periodic (time-harmonic) fields
H(r,t) =H(r)e ',  E(r,t) =E(r)e ' (4.18)

constitute a very important particular case. Functions E and H are the field complex amplitudes;
the quantities Re E and Re H have direct physical meaning.

Assuming that complex electromagnetic field (4.18) satisfies Maxwell equations and that the
currents are also time-harmonic, J(r,t) = J(r)e '’ substitute (4.18) into (4.1)—(4.4) to obtain

rotH = —ioD+]J, (4.19)
rotE = ioB, (4.20)
divB = 0, 421
divD = p. (4.22)

Since J = oE, equation (4.19) can be transformed by introducing the complex permittivity
! .0
E=&+1—.
(O]

As aresult, system (4.19)—(4.22) takes the form

rotH = —iw€eE, (4.23)
rotE = iouH, (4.24)
div(uH) = 0, (4.25)
div(eE) = p. (4.26)

In a homogeneous medium and when external currents are absent, equations (4.25) and (4.26)
follow from the first two Maxwell equations (4.23) and (4.24).

Simplest solutions: plane waves

Consider the simplest time-harmonic solutions to Maxwell equations in a homogeneous medium
(with constant characteristics), plane electromagnetic waves. In the absence of free charges when
divE = 0, the electric field vector satisfies the equation

rotrotE = w’¢’UE, 4.27)
or

AE + k*E =0, (4.28)
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where
/ .0 2 24 2,
£ :£+16, K°=weu=k"+iouo, k=uweu. (4.29)
In the cartesian coordinate system, equation (4.28) holds for every field component,
Au+ K2u= 0, (4.30)

where u is one of the components E,,E,, E;.
The Helmholtz equation (4.30) has a solution in the form of a plane wave; componentwise,

Eq=EQe/®tirtsd) gl i = k7 (o =ux,,2). 4.31)

Here x is called the wave propagation constant. Therefore, the vector Helmholtz equation (4.28)
has a solution

E—E, Pl Ky +K2) _ Eo eik-r’ (4.32)
where the vectors
k= (K &,k;), r=(x,%z), Eo=const. (4.33)
Since divE = 0, we have
divE = div (Ege™ ") = ie®* "k - Eg = 0.

Thus, k- E¢ = 0 so that the direction of vector E is orthogonal to the direction of the plane wave
propagation governed by vector k.
Vectors E and H are coupled by the relation

rotE = iouH. (4.34)
Since
rot (Ege™™ ™) = [grad ™™, o),
we have
Ve'[ko, Eo] = /iH, (4.35)

where ko = k/|K| is the unit vector in the direction of the wave propagation. Thus, vectors E and H
are not only orthogonal to the direction of the wave propagation but also mutually orthogonal:

E-H=0, E-k=0, H-k=0. (4.36)
We see that the Maxwell equations have a solution in the form of a plane electromagnetic wave
E(r) = Ege™®", H(r) = Hpe'* ™, (4.37)

where

Ve' ko, E| = /iH, /i[ko, H = —V¢E, (4.38)
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Fundamental polarizations. Normal waves

Introduce the dimensionless variables and parameters
kox — X, /.L()/E()H — Ha E— Ea k(z) = 30N0w2>

where &) and [ are permittivity and permeability of vacuum. Propagation of electromagnetic
waves along a tube (a waveguide) with cross section Q (a 2-D domain bounded by smooth curve I')
parallel to the x3-axis in the cartesian coordinate system xj, x2, X3, X = (x1, X2, x3), is described by
the homogeneous system of Maxwell equations (written in the normalized form) with the electric
and magnetic field dependence ¢/*** on longitudinal coordinate x3 (the time factor e/®’ is omitted):

rotE=—H, x€cZX,

rotH = i€E,
E(x) = (E; (X)e; +E> (x')es + E3 (x') e3) e, (4.39)
H(x) = (H; (X')e; + Hy (x') ey + H; (x') e3) 3,

X/ = (xl, XQ),

with the boundary conditions for the tangential electric field components on the perfectly conducting
surfaces
Ecly =0, (4.40)

Write system of Maxwell equations (4.39) componentwise

oH JE o0H
5 iyHy = igE), = —iyEy = —iHy, iyH) — = = igE,
x> x> dx)
8E3 8H2 8H1 8E2 8E1
WE — 22— i, 22T _ep,, 222 20U g,
L T P T

and express functions E1, H;, E>, and H; via E3 and Hsz from the first, second, fourth, and fifth
equalities, denoting k> = & — 72,

i ([ J0Ey OHs i [ JEs OHs
Er= 2 <yax1 - ox ) » B2= 72 (yaxz + dxi ) ’ (4.41)
o 0E; 0H; _i 7 0E; 0H;
=g <8axz”axl>’ =5 < “on ”aX2>~

Note that this representation is possible if y> # & and y> # &,.
It follows from (4.41) that the field of a normal wave can be expressed via two scalar functions

I (x1,x) =E3(x1,x2), W(x1,x2) =H3(x1,x2).

If to look for particular solutions with £3 = 0 then we have a separate problem for the set of
component functions [E}, E>,Hs|, [H;,H,,0] which are called TE-waves (transverse electric) or
the case of H-polarization. For particular solutions with H3 = 0 we have a problem for the set of
component functions [Hy, Hy, E3], [E1, E2,0] called TM-waves (transverse magnetic) or the case of
E-polarization. These two cases constitute two fundamental polarizations of the electromagnetic
field associated with a given direction of propagation.

For v =0 when we consider fields independent of one of the coordinates (x3) we have two sepa-
rate problems for the sets of component functions [E|, E,, H3], TE-(H)polarization, and [H,, H, E3],
TM-(E)polarization.

Thus the problem on normal waves is reduced to boundary eigenvalue problems for functions
IT and ¥. Namely, from (4.39) and (4.40) we have the following eigenvalue problem on normal
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waves in a waveguide with homogeneous filling: to find y € C, called eigenvalues of normal waves
such that there exist nontrivial solutions of the Helmholtz equations

ATI+RII=0, X =(x,x)€Q (4.42)
AY+EPY =0, EP=¢e—7, (4.43)
satisfying the boundary conditions on I’y

¥
H|1—~0 = 0, % . - 0, (444)
0

In fact, it is necessary to determine only one function, Hs for the TE-polarization or E3 for the
TM-polarization; the remaining components are obtained using differentiation.
These problems are considered in more detail in Section 7.1 using vector polarization potentials.

Problems
Problem

Prove that the Helmholtz equation Au + k*u = 0 has a solution in the form of plane wave (4.31)

Eq=EQe ™ot 2 i i = k7 (a0 =x,,2).

Problem
Prove that

divE = div (Ege™ ™) = ie®* Tk - Eg = 0
under the condition div Eg = 0. For the definitions of vectors see Section 4.2.

Problem
Prove that

rot (Ege’™® ™) = [grad ™™, Ey],
and
Ve'[ko, Eo] = \/ITHo,

where rotE = iouH and ko = k/|K| is the unit vector in the direction of the wave propagation.

Problem
Let

E = graddivP+4*P, H= —ikrotP, P =1[0,0,II].

Find an explicit expression for all components of vector product [E, H*], where * denotes complex
conjugation, in terms of function IT(x).

Problem
Prove formulas (4.41).
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Fundamental solutions of the Helmholtz equation, 3D-case

The potential theory developed for the Laplace equation can be extended to the Helmholtz equation
Z(c)u:=(A+c)u=0. (5.1

In order to construct fundamental solutions consider, in spherical coordinates, a solution vy = vy(r)
depending only on r; the Laplace operator has the form

1d [ ,dv 1 d?(rvo)
Avg = — 2 (2270 _ 2 2
Y= 2 gy (r dr> rodr? 62
which yields an ordinary differential equation
d2
d—:;+cw=o, W= vor. (5.3)
Its linearly independent solutions are
ikr —ikr
i (e = >0, (5.4)
r r
—Kr Kr
€ (e = —K2<0). (5.5)
r r
The fundamental solution
e—ikr
oo(r) == 56)
corresponds to an outgoing spherical wave
ei(a)t—kr)
uo(r) = (5.7)
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propagating off a source placed in the origin » = 0 where @(r) has a singularity ~ % .
Another solution

eikr
V()(r) = 7 (58)
corresponds to an incoming spherical wave
ei(wt+kr)
uo(r) = . (5.9

propagating from a source at infinity. This solution is ignored because it has no direct physical
sense.

Behavior of wave fields at infinity (2D-case)

In the two-dimensional case, the Helmholtz equation % (k*)u = 0 written in the polar coordinates

r = (r, ¢) has the form

10 (0 1 9?

S e Ty = S Y (5.10)
raor \ dr

Assume that the function u = u(r) satisfies the Helmholtz equation outside a circle of radius ry. On

any circle of radius r > ry function u can be decomposed in a trigonometric Fourier series

u(r) =Y u(r)e"® (0<¢ <2m), (5.11)
n——oo
where the coefficients
1 2r ing
n(r) = 5= [ uw)e g (5.12)

are functions of r. In order to find u,(r) multiply equations (5.10) by ﬁe*"’w and integrate over a
circle of radius r. As a result of integration, we obtain

1d ( du, n? 2

(5.13) is a second-order ordinary differential equation with constant coefficients for u,(r) which
holds for » > ry. Equation (5.13) is actually the Bessel equation of order n. Its general solution can
be written as

un(r) = AgH (k) + BoH® (kr), (5.14)

where H\"? (z) are its linearly independent solutions; they are the nth-order Hankel functions of

the first and second kind, respectively.
Thus any solution u = u(r) to the homogeneous Helmholtz equation (satisfied outside a circle
of radius rp) can be represented for r > ry in the form of a series

(=)

ue) =Y [AHY (kr) + BH (kr)]e™  (0< ¢ <21, r>rp). (5.15)

n=—oo

At infinity, the following asymptotical formulas are valid

12y _ |2 (-2 1
H, " (z) = n_ze 277 +0<Z3/2 , (5.16)
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which yields an asymptotic estimate of the solution to the homogeneous Helmholtz equation at
infinity
(r)=0 . (5.17)
u(r) = . .
Vr

For the zero-order Hankel functions of the first and second kind, respectively, the following
asymptotical formulas are valid

HV() = 2oy, (5.18)

Fundamental solutions of the Helmholtz equation, 2D-case

In the three-dimensional case, fundamental solutions are expressed in terms of elementary functions.
According to the analysis in the previous section, the situation is different in the two-dimensional
case. In fact, in polar coordinates, the equation for the solution vo = v (r) of the Helmholtz equation
Z(k*)u = 0 depending only on r has the form

-z i = 1
rdr (rdr>+k vo =0, (5.19)
or
d*vo ldvy 5
— +—-——+kvo=0. 5.20
drr  rdr LG (5.20)
Equation (5.20) is the Bessel equation of zeroth order. Its general solution can be written as
vo(r) = C H" (kr) + CHP (kr), (5.21)
where the linearly independent solutions
2i 1
o) = i +g (o) (522)
2) 2 1.0
H, = —In-
o () 7180 (@)

where g(()l’2) (z) are continuously differentiable at the origin, are the zero-order Hankel functions of

the first and second kind, respectively. At infinity, the following asymptotical formulas are valid

HV@) = \/Zei(z—ﬁ) T (5.23)

H(gz)(z) = 4/ ;Zei(zﬁ) +...,

Thus, in the two-dimensional case, the Helmholtz equation has two fundamental solutions

oo(r) =H\"(kr) or oo(r) =H (kr) (5.24)
ikr efikr

corresponding to outgoing cylindrical waves (and to fundamental solutions — or in the
r

three-dimensional case).

The choice of a particular fundamental solution is governed by the chosen time dependence: if
the time dependence is ¢/®' or e~'®!_ then Héz) (kr) or, respectively, Hél) (kr) specifies an outgoing
cylindrical wave.
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Integral representation of solution. Potentials

Using notation (5.1) we can write the second Green formula for the Helmholtz operator . and a
domain 7" bounded by a piecewise smooth surface ¥

dv  Jdu
/T[u.fv—v.i”u]d’r:/2<uav vav> do. (5.25)

Prove this formula following the proof of Section 3.2.
Substituting instead of v a fundamental solution to the Helmholtz equation in the case of three
dimensions and repeating literally the proof applied for obtaining an integral representation for a

solution to the Poisson equation Au = — f in Section 3.2 (the third Green formula), we arrive at the
integral representation of solution to the inhomogeneous Helmholtz equation . (kz)u =—f
1 e*ikR ou pa) e*th
N do / dr (526
u(r) 471/2[ R Jv u8v< R )} ntam F(r0) - d (5.26)
R = |r—rf= \/(x—x0)2 +(—y0)*+(z—20)%

One can show that the volume potentials

nin) =4 [ siro)

satisfies the inhomogeneous Helmholtz equation . (k?)u = — f. However, both these functions
decay at infinity. This fact dictates the necessity to introduce additional conditions specifying the
behavior of solutions to the Helmholtz equation at infinity which would enable one to uniquely
determine the solution.

In the 2D-case the volume potentials are

n(r) = / F(ro drro (5.27)

/ f rO r_ rO) ro» / f rO )dll'()7 (528)
where the fundamental solution
I (1) 1 1
&(r—rg) = ZH(g (Klr—ro) = 7_1n e + h(k|r — 1))

of the Helmholtz operator .Z(k?) is taken in the form (3.17); here h(z) is a continuously differan-
tiable function.

The single layer and double layer potentials (3.15) associated with the Helmholtz equation in
the 2D-case are

_ / E(r —10)E (xo)dly,  v(r) = / &(r —ro)n (xo)dir,, (5.29)
C

ony,

where C is a smooth contour. It is easy to verify that potentials (5.29) are in fact generalized
single layer and double layer potentials according to Definition 3.4.2. Therefore, for them all the
properties and statements proved in Section 3.4.1 are valid.

Problems for the Helmholtz equation in bounded domains

Formulate the interior Dirichlet problem for the Helmholtz equation: find a function u continuous
in D = DUT that satisfies the Helmholtz equation in a domain D bounded by the closed smooth
contour I,

L(K)u=Au+kKu=0 in D, (5.30)
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and the Dirichlet boundary condition
ulp=—f1, (5.31)

where f is a given continuous function.

Formulate the interior Neumann problem: find a function u continuously differentiable in
D = DUT that satisfies the Helmholtz equation (5.30) in domain D bounded by the closed smooth
contour I' and the Neumann boundary condition

du

nl. =% (5.32)
nir

where % denotes the directional derivative in the direction of unit normal vector n to the boundary

I directed into the exterior of I" and g is a given continuous function.

Let us also formulate Dirichlet and Neumann boundary eigenvalue problems for the Laplace
equation: find a nontrivial solution u € C(D) or, respectively, u € C!(D) to the homogeneous
Dirichlet or Neumann BVPs

—Au=Au in D, ul=0, (5.33)

or

ol _
8nr_

that correspond to certain (in general complex) values A called eigenvalues.
It is known that eigenvalues of the Dirichlet and Neumann boundary eigenvalue problems for

the Laplace equation in a domain D form the sets Ap;; yeu = {A,? N - of isolated real numbers
AP0N

—Au=Au in D, 0, (5.34)

with the accumulation point at infinity; also, 0 ¢ Ap; and 0 € Ay,,. The complements
Ppir.New = C \ Apir, Neu, Where C denotes the complex A-plane, are called resolvent (regular) sets of
the Dirichlet or Neumann BVPs for the Laplace equation in D.

Normal waves

Going back to the problems on normal waves we see that the form of solution in (4.39)

E(x)=(E| (X)e;+Ey(x')e; +E3(x') e3) ei$"x3’
H(x) = (Hy (X') €1+ Ha (X') €2+ Hs (X') €3) 7, (5.35)
= (xlv x2);

with the dependence ¢/** on longitudinal coordinate x3 specify a wave propagating in the positive
direction of x3-axis. Problems on normal waves (4.42)—(4.44) have nontrivial solutions if

P=e—y=22 or =AY, n=12,..., (5.36)

so that the eigenvalues of normal waves

Y=y =1\/e—2AP or y=v =/e—A). (5.37)

We have 0 < )LID N < DN < ...; therefore, that are at most finitely many values of y‘,? and yﬁlv
that are real, while infinitely many of them are purely imaginary. Consequently, according to (5.35),
there are at most finitely many normal waves that propagate without attenuation (in the positive
direction of x3-axis) and infinitely many decay exponentially.
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Reduction to integral equations

According to the definition, the (interior) Dirichlet or Neumann BVPs (5.30), (5.31) or (5.30),
(5.32) for the Helmholtz equation in D have at most one solution if A is not an eigenvalue; that is,
if L € ppir(D) or A € pyeu(D) is a regular value.

The following statements concerning equivalent reduction of the internal BVPs for the Helmholtz
equation to integral equations can be proved similarly to the theorems of Section 3.5.

Theorem 12 Let D € R? be a domain bounded by the closed smooth contour I". The double layer
potential

9
r) = / T (r R0 ), (5.38)

with a continuous density ¢ is a solution of the interior Dirichlet problem (5.30), (5.31) provided
that A € pp;-(D) is a regular value and ¢ is a solution of the integral equation

2 / OGN =0) vVl = —2f(r), reT. (5.39)

Iny,

Theorem 13 Let D € R? be a domain bounded by the closed smooth contour I. The single layer
potential

- / &(r — 1) y(ro)dly, (5.40)

with a continuous density V¥ is a solution of the interior Nuemann problem (5.30), (5.32) provided
that A € pyey(D) is a regular value and y is a solution of the integral equation

& (r—
r) +2/(5mr°)w(ro)dlro —2g(r), rel. (5.41)

Problems in unbounded domains

Conditions at infinity
Let us recall first that the plane waves propagation along the x-axis have the form

A

a:f(t—g), ﬁ=f<t+§), (5.42)

where i and 7 are, respectively, the forward wave (propagating in the positive direction of the
x-axis) and backward wave (propagating in the negative direction of the x-axis). They satisfy the
following first-order partial differential equations
din  1di
24222 — 0 5.43
ox aot ’ (5:43)
i 104

In the stationary mode
u=v(x)e' (5.45)
For the amplitude function v these relations take the form

PR
Yilike = o, (5.46)
dx

Q—lkv = 0, (5.47)
dx



5.8 Problems in unbounded domains 35

(0]
for the forward and backward waves, respectively, where k = —.

a
Spherical waves. If a spherical wave is excited by the sources situated in a bounded part of
the space (not at infinity), then at large distances from the source, a spherical wave is similar to a

. 1 : . . .
plane wave whose amplitude decays as —. This natural physical assumption leads to a conclusion
that the outgoing, respectively, incoming, spherical waves must satisfy the relationships

du 1du 1
24227 - - 548
or " aor ? (r) ’ (5:48)
du 1du 1
-2 = ) 54
dr adt ? <r> (>49)
For the amplitude functions in the stationary mode we have
v . 1 . )
3 +ikv = of - for outgoing spherical waves, (5.50)
r r
v . 1 ) . .
5 ikv = ol - for incoming spherical waves. 5.51)
r r

Let us prove now that at large distances from the source, any outgoing spherical wave decays

1
as —.

,
1. In the case of a point source at the origin, this statement is trivial because the wave itself
has the form

ei(a)l‘—kr) ]
u(r,t) = =vo(r)e'”, (5.52)
r
so that
0 1
Y 4 ikvp =0 <> . (5.53)
ar r

Check this relationship.
2. Let a spherical wave be excited by a point source situated at a point ry. The amplitude of
the spherical wave is
oIkR

vo(r) = = R= Ir—ro| = \/r2+r§—2rrocose. (5.54)

Calculating the derivative we obtain

JR r—rgcosB 1
R AN | — 5.55
or R +0<r> ( )

and

vy . 1
ﬁ—i-lk\/o =0 (R) .
in view of (5.53). Next,

dvg _dvodR _ dvy 1 ~ dw 1
9r ~9Rar_ 9R (”O(r)) _8R+0(r>
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So(2)-+(2)

d 1 1
I 4 ikvo+0 () —0 <> (5.56)
oar r r

what is to be proved.

3. Show that the volume potential

because

Finally,

o—ikR
v(r) = / f(ro)——dt,, R=|r—rol, (5.57)
T R
satisfies condition (5.50). Introducing the notation
d
2v=2" 4k, (5.58)
or

we obtain

Py = /Tf(ro)g7 <e_1;kR> dty, = /Tf(ro)o C) ATy, =0 (i) : (5.59)

Volume potential (5.27) is the amplitude of an outgoing wave excited by the sources distributed
arbitrarily in a bounded domain 7'. Also, function v defined by (5.57) satisfies the inhomogeneous

1
Helmholtz equation .Z (k*)u = — f and decays as — for r — oo, In addition, it satisfies the condition
r

g:+ikv:0 <i) (5.60)

Uniqueness

Theorem 14 There is one and only one solution to the inhomogeneous Helmholtz equation
LK)y = (A+K)w = —f(r), (5.61)

where f(r) is a function with local support, which satisfies the conditions at infinity

v = 0(1>, (5.62)
r

v . 1
E—i—lkv = 0<r>.

Proof.  Assuming that there are two different solutions v; and v, and setting
W=V —V,

we see that w satisfies the homogeneous Helmholtz equation . (k*)w = 0 and the conditions at

infinity (5.62). Let X be a sphere of radius R (later, we will take the limit R — ). Applying the
—ikR

third Green formula to w(r) and the fundamental solution ¢y(ry) = AR’ R = |ryp —r|, we arrive

at the integral representation of w at a point r € Xp

W(r)zsz [(bo(l‘o)?:—wjr(%(l’o)) dGy,. (5.63)
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The conditions at infinity (5.62) for w(r) and ¢y(r) yield

q)o?: —waav (do) = o {—ikw+0 (i)] — (5.64)
B O R QRUORIE
r r r r
Therefore,
w(r) = /2 o (;) doy, -0, R —oo. (5.65)

This implies w(r) = 0 at any r € X and thus at any spatial r.
Conditions (5.62) are called Sommerfeld radiation conditions.
In the two-dimensional case the Sommerfeld radiation conditions at infinity take the form

1
by = 0<\/?>’ (5.66)
lim\ﬁ<§\;+ikv> = 0.

r—so0

Statements of problems of the mathematical diffraction theory. Uniqueness

In this section, we summarize the main results concerning the solvability of two-dimensional
problems for the Helmholtz equation. We will limit ourselves to a brief survey, assuming that details
can be found in original monographs. We will consider the BVPs that arise in electromagnetics
and acoustics when the plane wave diffraction and free oscillations (eigenoscillations) of the
electromagnetic or acoustic fields in open and closed cylindrical domains are studied.

Prove first an important property of the solution to the Helmholtz equation in an unbounded
two-dimensional domain.

Theorem 15 Let uy(r) be a solution to the Helmholtz equation satisfied outside a circle of radius
ro. If

lim / lu|*dl =0, (5.67)
Cr

r—roo

where C, is a circle of radius r, then u = 0 for r > ry.

Proof.  Any solution u = u(r) to the (homogeneous) Helmholtz equation (satisfied outside a
circle of radius ry) can be represented for r > rg in the form of series (5.15)

u(r) = i Un ()€™, un(r) = AnH (k) + ByHYY (kr) (0 < ¢ <27, r>rg).  (5.68)

n—=—oo
Therefore,
1i_>m/ wPdi =21 Y rlun(r) (5.69)
F—reo C,- Nn—=—oo
If
lim/ lul?dl =0,
r—oo C,
then (5.69) yields
lim rju,(r)> =0, n=0,%£1,42,.... (5.70)

r—r0
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Next, according to asymptotical formulas (5.16) for Hankel functions r|u,(r)|? are bounded quanti-
ties at r — oo, namely,

1
rlun(r) > = ro <> =0(1), n=0,£1,£2,..., (5.71)
r
which, together with (5.70), implies

A,=B,=0, n=0,%£1,£2,..., (5.72)
and, consequently, u = 0 for r > rg in line with representation (5.68).

In the three-dimensional case, a similar statement is valid.

Theorem 16 Let uy(r) be a solution to the Helmholtz equation satisfied outside a sphere S, of
radius rg. If

fim / lul2ds = 0, (5.73)
s,

r—o0
then u = 0 for r > ry.

For the vector solutions of Maxwell equations (4.23) and (4.24), electromagnetic field E(r),
H(r), the similar statements are valid

Theorem 17 Let E(r), H(r) be a solution to the Maxwell equation system satisfied outside a
sphere of radius rg. If

lim / |[H,e,]|*ds =0, (5.74)
r—ee Jg,

or
lim [ |[E,e/][*ds =0, (5.75)
r—eo Js,

where S, is a sphere of radius r and e, = r/r is the unit position vector of the points on S,, then
E(r) =0, H(r) =0 for r > ry.

The proof of this theorem is based on expansions of the electromagnetic field in spherical
harmonics which are particular solutions to the Maxwell equations in the three-dimensional space
and application of asymptotical properties of the spherical harmonics.

Scalar problem of diffraction by a transparent body

Formulate a scalar (acoustical) problem of the wave diffraction by a transparent body €. Let Q; be
a domain bounded by a piecewise smooth surface X. The problem under consideration is reduced
to a BVPs for the inhomogeneous Helmholtz equation with a piecewise constant coefficient

Aug(r) +kuo(r) = —fo, reQy=R\Q, (5.76)
Auy(r) +kjuy(v) = —fi, reQ;
solution u satisfies the conjugation conditions on X
Jdu; Jdug
—un=0 279 5.77
o =5, on  on ’ (5.77)
and the conditions at infinity
1
uw = O () , (5.78)
r



5.10

5.10 Vector problem of diffraction by a transparent body 39

Theorem 18 The solution to problem (5.76)—(5.78) is unique.

Proof. Since problem (5.76)—(5.78) is linear, it is sufficient to prove that the corresponding
homogeneous problem (with fy = f; = 0) has only a trivial solution. Together with ug and u
consider the corresponding complex conjugate functions u; and uj. They satisfy the same boundary
and transmission conditions; however, the condition at infinity takes the form

duy ., (1
5 + ikouy = o <r> . (5.79)

Applying the second Green formula to «] and u] in domain Q, we obtain

8uT *8u1 N
'/Z |:Mlav — U av:| dGro = 0, (580)

where v denotes the unit normal vector to the boundary X directed into the exterior of ;. Let
Sg be a sphere of sufficiently large radius R containing domain Q;. Applying the second Green
formula to up and ug in the domain Qg situated between Q; and Sk, we obtain

duy  , dug duy  , dug B
/Z |:I/l()avo —Moavo:| dGl‘o +/SR |:I/l()ar —MOW dGrO = 0, (581)

where dd Vv, denotes the directional derivative in the direction of the unit normal vector v to X
directed into the interior of Q; (external with respect to €y). Adding up (5.80) and (5.81) and
taking into account the conjugation conditions on ¥, we have

8u6 8u0
— —uy—— | doy, = 0. 5.82
/SR [MO or 10 Br} fo (5.82)
Applying the condition at infinity and transferring to the limit R — oo in (5.82) we obtain
lim [ |ug|’ds=0, (5.83)
R—o0 Sk

Thus uy = 0 outside sphere Sk according to Theorem 16. Applying the third Green formula (5.63)
in Qg we obtain that uy = 0 in Qg. Then applying the third Green formula in Q; we obtain that
u; = 01in Q. Therefore, homogeneous problem (5.76)—(5.78) has only a trivial solution. The
theorem is proved.

Vector problem of diffraction by a transparent body

Formulate a vector (electromagnetic) problem of the wave diffraction by a transparent body €. Let
Q1 be a domain bounded by a piecewise smooth surface ¥ and Qy = R\ Q;. The problem under
consideration is reduced to a BVP for the inhomogeneous system of Maxwell equations (4.23) and
(4.24) with a piecewise constant coefficient

rotHj = —ia)sjEj +Jj, rotEj = i(O,LLjHj, j=0,1, (5.84)

with the transmission conditions stating the continuity of the tangential field components across
interface X

[Hi,v] = [Ho,v], [Ei,Vv]=[Eo,V], (5.85)
and the Silver—Miiller radiation conditions at infinity

lim I’([Ho,er] — ik()Eo) = 0, ko= Elo, (586)

r—oo
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where V is the unit normal vector to X, e, = r/r is the unit position vector of the points on S, and
the limit holds uniformly with respect to all directions (specified by e,). Note that in this case (5.84)
can be written equivalently (in every domain where the parameters are constant) as a one vector
equation with respect to i.e. E(r) by eliminating H(r):
2 3 .
rotrotE; — o~g;u;E;j=J;, j=0,1. (5.87)

Theorem 19 The solution to problem (5.84)—(5.86) is unique.

Proof.  Since problem (5.84)—(5.86) is linear, it is sufficient to prove that the corresponding
homogeneous problem (with J; = 0) has only a trivial solution. Next, one has to apply Theorem
17 and perform the same steps as in the proof of Theorem 18 using Lorentz lemma instead of the
Green formulas.

Problems

Problem

Prove the second Green formula (5.25) for the Helmholtz operator .’ and a domain 7 bounded by
a piecewise smooth surface X

d d
/T[ufv— v.Zuldt = /E <ua“j - V&ij) do
following the proof of Section 3.2.

Problem
Prove formula (5.26)

1 e R 9y 9 [e R 1 e/kR
u(r) = M/E[Rav—“av(zeﬂd"“m/ﬁ(ro)zed%

R = Ir—ro| = /(x— 02+ (r—30)2+ (2~ 20)2

following the proof of Section 3.2.

Problem
Prove that the single layer and double layer potentials (5.29)

ur)= [ S r)8 )y, v(e)= [ (e ro (o), S o) = LY (Ko,
c c

satisfy the Helmholtz equation.

Problem

Apply separation of variables and find eigenvalues AP and eigenfunctions of the Dirichlet bound-
ary eigenvalue problem (5.33) for the Laplace equation in a rectangle I, (see problem 3.6.3).
Determine normalized eigenfunctions with respect to the norm generated by the inner product

(f.g)= / / fgdxdy in the space L,(I1,;) of square-integrable functions.
Hab

Problem

Apply separation of variables and find eigenvalues A and eigenfunctions of the Neumann boundary
eigenvalue problem (5.34) for the Laplace equation in a rectangle I, (see problem 3.6.3).
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Problem

Show that eigenfunctions of the Dirichlet boundary eigenvalue problem (5.33) for the Laplace
equation in a rectangle I, are orthogonal with respect to the inner product introduced in 5.11.1.

Miniproject 1: solution to the Dirichlet problem for the Poisson equation
Solve the BVP in a rectangle I, = {(x,y) : 0 <x<a,0<y<b}

—Au=F(x,y), u=u(xy), 0<x<a,0<y<b, u€cC*I,)NC(,)
u(07y):07 M(aay):0¢ 0<y<b,
u(x,0) =0, u(x,p) =0, 0<x<a,

Flry) = { Asint v — (20— ) sin gt [y— (0= %) |- () €My 030). (5 g4,
P00 (69) # Mony0), |

with  suppF(x,y) = I 4, (x0,y0) C Hgp,

hy hy hy )
[y (X0,0) = 4 (6,¥) t X0 — ~ <X <X+, Yo— - <y<yo+— ¢-
2 2 2 2
Hints: Decompose F (x,y) in Fourier series £3,_, fy ¢y in (normalized and orthogonal) eigenfunc-
tions @, of the Dirichlet boundary eigenvalue problem (5.33) for the Laplace equation in rectangle
I1,5; that is, calculate Fourier coefficients f, of F(x,y). Look for the solution u to the BVP in the

form of Fourier series X7,_, uy ¢y with unknown Fourier coefficients uy, find a relation between u,,
and fy.

Miniproject 2: example of inverse problem

Prove that in 5.11.7 it is possible, under certain conditions, to uniquely determine any of the five
parameters A, xo, Yo, /11, ho provided that the remaining four are given from the knowledge of one
Fourier coefficient u; = u; (A, xo,y0,h1,h2) of u(x,y).
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Formulation of the problems

Denote by I' the boundaries of the cross sections [in the plane x = (x,y)] of cylindrical domains
with the generatrix directed along the z axis and consider the following three typical cases.

(i) T is an unclosed nonintersecting finite piecewise smooth curve (a strip) situated in the
free space (in particular, strip I' may coincide with a rectilinear segment or a circular arc. We will
also consider a more general case when I consists of a finite number of simple, planar, closed
or unclosed smooth curves I'; of a finite length that belong to class C*. Introduce the following
notation:

F:UF]', T,ﬂszw for l7é‘],
J
where the edges

or = U(l:j \T)

are the endpoints of T" (these points do not belong to I" and dT'I" = 0). Let Gy be a union of
internal domains bounded by closed curves I';, and we set G = 0 if these domains are absent.

(i) = (2Q'UdN?)\X, where dQ! and dQ? are the boundaries of the half-plane Q! =
QF ={x:y> 0} [which is, of course, an unbounded Srj(X)-domain introduced in Chapter 2]
and of a bounded Sr(X)-domain Q%> C Q~ = {x: y < 0}, respectively, having a common part
Iy = (0Q°NdQY) € {x: y =0} containing an interval (a slot) £, £ C I'1; function € = &(x) =
g, =const x € Q",n = 1,2 specifies the permittivity of the medium. We indicate a particular
case when the Srj(X)-domain Q% =T, = {x: —a/2 < x < a/2 —b <y < 0} is a rectangle, and
L={x:y=0, -] <x <} is the slot with the edges X = {A|; = —I, Ay =1}.

(i) T = (T, UdTly,)\ L, where Q! =T, = {x=:0<x<a, 0<y<b} and
Q? =11, = {x: 0<x<a,by <y< 0} are two rectangular domains, and L = {x : y=0,a/2 —w =
dy <x<dy=a/2+w} is the slot with the edges X = {A| =d|, Ay =d>}.
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In case (i), the acoustic and electromagnetic two-dimensional problems of diffraction by such
curved boundaries are reduced to the determination of a scalar function u (the scattered field) that
satisfies the homogeneous Helmholtz equation

Au+ku=0 in R*\(T|JG), (6.1)
the Dirichlet,
M|F = _fv (62)
or the Neumann,
du
= == 6.3
anl. =% (6.3)
boundary conditions on I', and the Sommerfeld radiation conditions at infinity
d
u=0(""?), a—u —iku=o(r~'/?) (6.4)
r

for r = x| = (x> + y?)!/2 — oo, The Dirichlet problem corresponds to a soft screen in acoustics (or
to the case of E-polarization in electrodynamics), and the Neumann problem, to a hard screen (or
to the case of H-polarization). Here, k means the free-space wavenumber and Sk > 0, k # 0.

In addition to the above conditions, field u must satisfy the requirement that provides the
finiteness of energy in every bounded spatial domain:

u € Hp,.(R*\ Go); (6.5)

/ (170 + uf?) dx < oo

G\Go

that is,

for every bounded domain G.
We also formulate the BVPs for the homogeneous Helmholtz equation with a piecewise constant
coefficient
Au(x) +Ae(xX)u(x) =0, A=k xcQ, (6.6)

where Q = R? \ Sin case (i) and Q = QU2 in cases (ii) and (iii). For the classical solution, one
may require additionally that

ueM={u:uec CZ(Q)QCI(Uiﬁ& \[s)},
where
s ={x: dist(x,dl) < 6}

is a -vicinity of the endpoints of curve I' (edges), and Q% = {x: £(x) = €; = const}; solution u
satisfies homogeneous boundary conditions (6.2) or (6.3) on I, the conjugation conditions on X [in
cases (ii) and (iii)]

1 du™ 1 du
+ —Uy = _ frd
U —u 0, L(X) £ o } 0, (6.7)
or St o
+_ - — ou_ _ou | _y.
u u =0, [ o o } 0; (6.8)

in case (ii), when the diffraction of the plane H- or E-polarized wave is considered, the first
(homogeneous) conjugation condition may be replaced by the inhomogeneous condition

1 du™ 1 du
+ = _— =
Weow =L [e(x) on & 3n] 0

(6.9
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or
Jut  Jdu”
+— T = _— | =
U —u 0, [811 an] vy, (6.10)

where y; = y;(x) (j = 1,2) is the given differentiable function on X and the Meixner (edge)
conditions (6.5). For complex A, the Sommerfeld radiation condition can be replaced by a more
general radiation condition: there exists an Ry > 0 such that for all x = (r,¢9) : r > Ry, the following
representations hold

wx) =Y anHy (kr)pn(9), (6.11)

m=—oo

where a,, are the complex numbers, p,,(¢) = €™ (m = 0,+1,42,...) in case (i); in case (ii),
pm(@) =0 (m=—1,-2,...) and p,(¢) = sinm¢ for (6.2) and p,,(¢) = cosm¢ for (6.3); the
series in (6.11) admit double termwise differentiation with respect to r > Ry and ¢ € (0,27) [case
(i)] or ¢ € (0,7) [case (ii)]; the Hankel function H,g,l) (z) of the first kind and mth order may be
generally considered on the appropriate Riemann surface of complex variable z. of the analytical
continuation with respect to the spectral parameters k or A of the fundamental solution & of
the two-dimensional Helmholtz operator .7#’; (in electromagnetic diffraction problems, k = © is
referred to as the wavenumber of free space, @ is the frequency parameter, and c is the speed of
light in free space). Note that & (x —y) satisfies the Sommerfeld radiaton conditions in domain Q"
for real values of k.

Homogeneous problems (6.1), (6.2) with f =0, (6.5), and (6.11); (6.1), (6.3) with g =0,
(6.5), and (6.11); (6.6), (6.2) with f =0, (6.8), (6.5), and (6.11); and (6.6), (6.3) with g =0, (6.7),
(6.5), and (6.11) concerning the determination of (complex) values of spectral parameters k or A
(eigenvalues), for which there exist their nontrivial solutions (in appropriate spaces), will be called
problems E (with the Dirichlet conditions on I') and problems H (with the Neumann conditions on
D).

These problems may be conditionally referred to as the problem on eigenfrequencies of open
[(i1)] and shielded [(iii)] slot resonators.

The respective inhomogeneous BVP (6.1), (6.2), (6.4), and (6.5); (6.1), (6.3)—(6.5); (6.6), (6.2),
(6.8), (6.4), and (6.5) [or (6.6), (6.2) with f =0, (6.10), (6.4), and (6.5)]; and (6.6), (6.3), (6.7), (6.4),
and (6.5) [or (6.6), (6.3) with g =0, (6.9), (6.4), and (6.5)] (that correspond in electromagnetics
to the diffraction of the plane H-polarized wave), will be called, respectively, problems Ei and
problems Hi.

The form of the radiation condition (6.11) in these problems is connected with the fact that the
spectral parameter may be complex. For real k (when considering the diffraction problem Hi in
the lossless medium with S& = 0), one can replace (6.11) by the equivalent Sommerfeld radiation
conditions (6.4) or the Kupradze radiation conditions for the complex k with 3k > 0. (6.11) may
be considered as a generalization of the latter conditions and can be applied for arbitrary nonzero
complex k (or A). This condition may be also considered as the continuation of the Sommerfeld
condition from the real axis of the complex parameter or of the Kupradze condition from the
zero-sheet upper half-plane to the appropriate Riemannian surface.

In (6.2) and (6.3), the equality means the equality of elements from spaces H'/ 2(I') and
HY 2(I"), and (6.3) must hold on both sides of I". It is well known that solutions to the homogeneous
Helmholtz equation belonging to H} .(R?\ (T\JG))) are infinitely differentiable in R*\ (TUGo);
therefore, one can assume that u € C>(R?\ (CUG))) and understand (6.1) in a usual sense. If the
field sources are situated outside the curved boundaries, then functions f and g, which correspond
to the trace of the incident field and its normal derivative on I, are infinitely differentiable on I" and

f, g € C?(T). Moreover, if I” C T is a smooth part of a C* curve, then one can show that solution
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u is infinitely differentiable up to I'” (on each side of the curve if L' () dGy = 0), and

ue C*(R*\ (T JGo)) (N €'(Gi\ (Ts|JGo) () C'(G2\Ts),
86>0 6>0

if all I'; belong to C*.

Uniqueness and existence theorems

Consider the uniqueness of the problems (6.1, (6.2), (6.4), and (6.5) and (6.1, (6.3)-(6.5). We
will prove that for 3k > 0 and k # 0, these Dirichlet and Neumann problems with homogeneous
boundary conditions have only trivial solutions. Denote by [ - | the difference of the limiting values
of a function taken from different sides of a curve. Equations (6.1)—(6.3) yield the transmission
problem for u:

Au+kPu=0 in G| J(Gi\Gy),

du
= [&n} ar 0,
up=0 or 3Z =0,
r

with the radiation condition (6.4) for » — c. Recall that A is a closed, smooth C* curve that
contains I' (I' C A) and divides the plane into bounded, G, and unbounded, G,, domains, and » is
the normal vector external with respect to G1.

Denote by Bg = {x: |x| < R} a circle of radius R such that A C Bg. Applying the second
Green’s formula in domains G, \ Go, G2()Bg to functions u and u and adding up the results, we

obtain 3 5
/ (”u”u> dl = 4ik’k’//|u\2dx, k=K +ik".
Br

Integrals over A vanish by virtue of the boundary and transmission conditions. Here, the applica-
bility of the Green’s formula follows from the fact that u belongs to H} (R?\ Gy) and contour A
is smooth. A standard analysis of the obtained identity shows that u = 0 in G,. The transmission
conditions and the fact that u is an analytical function in R?\ (T'UGp) yield u = 0in G; \ Go. Thus,
the uniqueness of the solution to problem (6.1)—(6.5) is proved.

We will look for the unique solution to problem (6.1)—(6.5) in the form of potentials

i e
u(x) = Kolgg) =~ [ H(Kix—y)o()dt. ¢ (D) (6.12)
r
for the Dirichlet problem and

d -
)= Kilg) = ¢ [ 5o H x -y Dyl e AV (613)
r

for the Neumann problem. Here, H(gl) (z) is the Hankel function of the first kind. Continuing ¢
and y as zero functions from I' to A, performing the restriction on I', and taking into account the
continuity of operators g and p, we prove that

d
= [8“] and [u]- = O for the Dirichlet problem
nir
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and

d
v = [u]; and [&u] = 0 for the Neumann problem.
nir

In addition to this, o
ue Hlloc (R2 \ GO)

for all
A '), ye H'(T)

[see (6.12) and (6.13)]. Here,

lr = p (W (ulg,) =W (ulg,))

Bﬂrzp(% (ulg,) =7 (ulg,))

Since solution u is chosen in the form of potentials (6.12) and (6.13), equation (6.1) and conditions
(6.4) and (6.5) hold for all ¢ and y. Thus, we have to satisfy only boundary conditions (6.2) or
(6.3), which yields the equations on curves I':

Do=" [ B Wx-y)pw)di = 0. xeT. 6149
T

D = pyoKog,
for the Dirichlet problem, and

_id (9 _
NW—uuMﬂ/&@“>“W‘YDWW””—‘“”’ xeT, 6.15)

N = pnkKg,

for the Neumann problem. The first equation has a weak (logarithmic) singularity and the second
equation is hypersingular. Using the methods of the analysis of logarithmic integral operators in
the Sobolev spaces in terms of PDOs (see Section 1.8), we can consider both equations (6.14) and
(6.15) from a single viewpoint as pseudodifferential equations.

Thus, if ¢ and y are solutions to (6.14) and (6.15), formulas (6.12) and (6.13) give the solution
to diffraction problem (6.1)—(6.5).

Now, we consider the case when all curves I'; are closed and smooth. Then,

D:H ') — H'2(T)

and
N:H'() = H V(D)

are the Fredholm operators with zero indices. In addition, D and N are elliptic PDOs of orders —1
and +1, respectively.
By virtue of the regularity theorem, if the equations

Do=f (6.16)

and
Ny =—g (6.17)

have C* right-hand sides and " is a C* curve, then solutions ¢ and y on I" belong to C*. Equations
(6.16) and (6.17) or (6.14) and (6.15) are uniquely solvable for all k: Sk > 0, k # 0 except for a
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discrete set of points. According to the definitions of Section 1.6, these points are the CNs and they
are situated on the real axis with the only possible accumulation point at infinity. For equations
(6.16) and (6.17), all CNs are isolated and have finite algebraic multiplicity. We will denote by
(D) and o (N) the sets of CNs for equations (6.16) and (6.17), respectively.

When the Dirichlet or the Neumann problem is solved for k € (D) or k € 6(N), (6.16)
or (6.17) should be replaced by modified equations that are uniquely solvable for k € o(D) or
k € o(N). Thus, for all values k such that 3k > 0 and k # 0, the Dirichlet and the Neumann
problems (6.1)—(6.5) are uniquely solvable. However, the solutions can be represented in the form
of potentials (6.12) and (6.13) only if k ¢ o(D) for the Dirichlet problem and k ¢ ¢ (N) for the
Neumann problem. We have proved the following statement.

Theorem 20 If k ¢ o(D), then the operator
D:H ') = H'2(T)

is bounded and has a bounded inverse. In this case, equation (6.16) is uniquely solvable. If
k ¢ o(N), then the operator
N:H'2() = H (D)

is bounded and has a bounded inverse. In this case, equation (6.17) is uniquely solvable.

Assume that all I'; are unclosed smooth curves. Before to proceed to the analysis of the general
case of the diffraction problem on I', we consider a particular case of intervals situated on one line,
when

= {x:y:O,azj,l <x<amj,j=1,....J;a <aj(i<j)}.

In this case, D and N are convolution-type operators on the line R'. Calculating the Fourier
transforms of the kernels of these operators and using the convolution theorem and the properties
of the Fourier transform, we rewrite equations (6.14) and (6.15) as

+oo
|
Do = / \/memf(p(g)dg = f(x), xeT, (6.18)
and .
Ny = / VE 12 G(E)dE = g(x), xeT. 6.19)

Here, ¢ and ¥ denote the Fourier transforms of ¢ and w. We will look for solutions ¢ and v in the
spaces of generalized functions (distributions) ¢ € A~'/>(T") and y € H'/?(T). In the case under
consideration, these spaces can be described in terms of the Fourier transform:

{u (14]&)'a(é) € Ly(RY), suppuCl"}
The left-hand sides of equations (6.18) and (6.19) define the boundary integrodifferential operators
D:A 2 = H'*(T)

and
N:A'2(T) = HV2(D),

where H*(T") is a restriction of H*(R') on I'. We have

(52—k2>“2/2 — TN+ 0(E),
- = g+ o(E
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for |&| — oo; therefore, D and N are Fredholm PDOs with the zero index and orders —1 and +1,
respectively. These operators are invertible by virtue of the estimates

(D9.9)1,| = /WE 2| pE) P >0, 920,

and
AN /Mz 22 [§(E)PdE >0, y#0.

These estimates prove that the kernels of these operators contain only the zero element: kerD = {0}
and ker N = {0}. Thus, by the Fredholm alternative, equations (6.18) and (6.19) or (6.14) and
(6.15) are uniquely solvable.
Consider the general case of a system of curves of arbitrary shape I". The operators
D:H () - H'*(I)
and
N:A'2T) = H (D),
are bounded, and their Fredholm property follows from the Garding inequality

R(D+Kp)9,9) > Aplol?,, VoeH D),

RIN+E) Y. v) > wloli,, Vwed"* ()

with certain compact operators

Kp: HVXT)— HYX(D),

Ky: HY2(@I)— H V(D).
Equations (6.14) and (6.15) are uniquely solvable for arbitrary right-hand sides f € H'/ 2(T') or
geHY/ 2(I), since the corresponding homogeneous equations have only trivial solutions. Indeed,
if we assume that ¢ and y are nontrivial solutions of (6.14) and (6.15) for f =0 and g = 0, then
formulas (6.12) and (6.13) yield nontrivial solutions of homogeneous problems (6.1)—(6.5), which

contradicts the uniqueness theorem. Thus, in the case of unclosed curves, equations (6.16) and
(6.17) has a unique solution for all k: Sk >0, k # 0.

Theorem 21 If 3k > 0 and k # 0, then each operator
D:A 2T = H'2(T)
and
N:H'2() = H (D)
is bounded and has a bounded inverse. Equations (6.16) and (6.17) are uniquely solvable.

When the diffraction problems are considered, it is important to investigate the asymptotic
behaviour of solutions in the vicinities of the endpoints of dI". Let f and g be smooth functions,
e.g., f,g € C(I'). Applying the known results concerning the regularity of solutions of elliptic
equations, one can easily show that ¢ and v are smooth functions on I' (they belong to C* if all
I'; € C*) and have singularities

p=0(p "), p—0, (6.20)
y=0(p"?), p—0, (6.21)

in the vicinities of the endpoints of dT" (p is the distance to an endpoint of the curve); note that
estimates (6.20) and (6.21) are accurate with respect to the order.
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7. Wave propagation and diffraction in guides

Wave propagation in a guide

We have already introduced normal waves as solutions (5.35) to homogeneous Maxwell equations
with the imposed dependence ¢/ on longitudinal coordinate x3. Let us show that the solutions in
the form of normal waves can be obtained independently from a different viewpoint

To this end, consider again a tube (a waveguide) parallel to the x3-axis in the cartesian coordinate
system xj, X2, X3, X = (X1, X2, x3) bounded by a smooth cylindrical surface ¥ with transversal
(by the plane x3 =const) cross section  (a 2-D domain bounded by smooth curve I) filled with
a homogeneous medium having permittivity and permeability € and u; denote by k = /1€
the wavenumber of the medium. Propagation of electromagnetic waves along the waveguide is
described by the homogeneous system of Maxwell equations which can be written in the form

rotH = —ikE, (7.1)
rotE = ikH,

with the boundary conditions for the tangential electric field components on the perfectly conducting
walls X of the waveguide

Ec|s =0, (7.2)

Look for particular solutions of (7.1) in the form

E = graddivP+k’P, (7.3)
H = —ikrotP,

using the polarization potential P = [0,0,11] that has only one nonzero component P; = IT. It is
easy to see that

H;=0, E=10,0,FE3], H=[H|,H,,0], (7.4)

and this case is called TM-polarization or E-polarization Substituting (7.3) into (7.1) yields the
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equations
2 0*11 2
MAIT+K“IT = 0 or Aﬂ+ﬁ+k I1=0, (7.5)
3
02 02 02
A3 = —+—5+—.
¥ ox?  dx3  Ix3
Condition (7.2) is satisfied if we assume that
Iy =0, (7.6)

because the third components of both P and E are actually tangential components that must vanish
on the waveguide wall and they are coupled by the first relation (7.3). (7.5) and (7.6) constitute the
Dirichlet BVP for the Helmholtz equation in the tube. We look for the solution to this problem in
the form

M(x) =(x,x3) = y(X) f(x3), X' =(x1,x%2), W), f(x3)#0, (7.7)

using the separation of variables. Namely, substituting (7.7) into (7.5) and dividing by nonvanishing
product fw we have

A /!
fAY+ "y + K fy=0 or J’Jﬂ; = k2, (7.8)
which yields
/!
AV _ -2, e
y f

with a certain constant A. Thus y must solve the Dirichlet eigenvalue problem for the Laplace
equation in cross-sectional domain

(7.9)

Ay+Aly = 0, X €Q, (7.10)
vip = 0.

Denote by A = {4, } and ¥ = {y, } the system of eigenvalues and eigenfunctions of this problem.
A particular solution of (7.5) is

IT = T1,(x) = Y (X') fu(x3), (7.11)
where f, satisfies the equation
f 4 (& = 2a) f = 0. (7.12)
The general solution of (7.12) is
fal3) = AP 4+ Bue M gy = k2= 4. (7.13)

The first and the second terms in (7.13) correspond, respectively, to the wave propagating in the
positive or negative direction of the waveguide axis.
Considering the wave propagating in the positive direction set

fa(xz) = Ape™S. (7.14)
As a result we obtain the solution

I1,(x,x3) = Ay, (X)) e, (7.15)
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We have 0 < A; < A, < ...; therefore, that are at most finitely many values of y, = \/k? — A,
with k2 > A,, that are real, while infinitely many of them, for y, = i\/A, — k2 (i = —1) with k> < A,,,
are purely imaginary. Consequently, there are at most finitely many waves in the waveguide that
propagate without attenuation (in the positive direction of x3-axis) and infinitely many decay
exponentially.

Looking for particular solutions of (7.1) in the form

H = graddivP+k°P, (7.16)
E = ikrotP,

where the polarization potential P = [0,0,I1] has only one nonzero component P; = I, it is easy to
see that

E3;=0, H=[0,0,H;], E=IE|,E,0], T.17)

and this case is called TE-polarization or H-polarization. Substituting (7.16) into (7.1) yields the
equations

911
A3TT+ K11 :()orAn+§7+Hn=Q (7.18)
X3
02 9% 92
Ay = —4—+—.
3 8x% + 8x§ + 8x§

Condition (7.2) is satisfied if we assume that

Il
—| =0, (7.19)
on |y

because the third components of P and the first two of E are tangential components that must
vanish on the waveguide wall and they are coupled by the first relation (7.16). Repeating the above
analysis we see that

1 =I1,(x) = A, W, (X)) e, (7.20)

where Y, solves the Neumann eigenvalue problem for the Laplace equation in cross-sectional
domain Q

Ay+iy = 0, X ecQ, (7.21)
A B
on |y '

(7.20) specifies the wave propagating in the positive direction of the waveguide axis. Denote by
A = {21} and W = {y!} the system of eigenvalues and eigenfunctions of this problem. We
have 0 < 7LIH < AZH < ...; therefore, that are at most finitely many values of y‘,f’ = /k? — A1 with
k* > AH that are real, while infinitely many of them, for 7 = i\/A/ — k2 with k> < AH are purely
imaginary. Consequently, there are at most finitely many waves in the waveguide that propagate
without attenuation (in the positive direction of x3-axis) and infinitely many decay exponentially.

The waves obtained from (7.3), (7.4) or (7.16), (7.17) are called, respectively, TM-waves or
TE-waves.
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Diffraction from a dielectric obstacle in a 2D-guide

Introduce the complex magnitude of the stationary electric and magnetic field, E(r,#) and H(r,?),
respectively, where r = (x,y,z), and consider the problem of diffraction of a TM wave (or mode)

E(r,t) =E(r) exp(—iwt), H(r,7) =H(r) exp(—ior), (7.22)
1 OJE; 1 JE;
E(r) = (E;,0,0), H(r)= (o, o 92 iom 3y ) (7.23)

by a dielectric inclusion D in a parallel-plane waveguide # = {r: 0 <y < T, —o0 < x,7 < oo}.

4
1
J
R
s
\\\\
Q)
._,/
)
N
0
Y I

Figure 7.1: TE-mode diffraction by a dielectric inclusion in a parallel-plane waveguide

The total field u(y,z) = Ey (y,z) = E (y,z) + ES“ (y,z) = u' (y,z) + u*(y,z) of the diffraction by
the D of the unit-magnitude TE wave with the only nonzero component is the solution to the BVP

[A+x%e(3,2)]u(3,2) =0in S = {(1,2) : 0 <y < T, —00 < 7 < o0}, (7.24)

u(y,z) = u'(y,2) +u'(v,2), u'(y,2) = i ar exp(il,z)sin(ny), (7.25)

n=1

u(£m,z) =0,

2 2
oy oz
domains z > 278 and z < —278, ® = Kc is the dimensionless circular frequency, k = ®/c =27 /2
is the dimensionless frequency parameter (A is the free-space wavelength), ¢ = (& ,uo)*l/ 2 is the
speed of light in vacuum, and I, = (k% —n?) 12 is the transverse wavenumber satisfying the
conditions

where A = is the Laplace operator, superscripts © and ~ correspond, respectively, to the

ImT, >0, T, =ill,], |T= ImT, =0>—«})V? n>x (7.26)
It is also assumed that the series in (7.25) converges absolutely and uniformly and allows for double
differentiation with respect to y and z.

Note that u/(y,z) satisfies (7.24) in S, the boundary condition, and radiation condition (7.25)
only in the positive direction, so that the electromagnetic field with the x-component u(y, z) may

be interpreted as a normal wave (a waveguide mode) coming from the domain z < —278.
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7.3 Diffraction from a dielectric obstacle in a 3D-guide 53

Diffraction from a dielectric obstacle in a 3D-guide

Diffraction of electromagnetic waves by a dielectric body Q in a 3D tube (a waveguide) with
cross section Q (a 2D domain bounded by smooth curve I') parallel to the x3-axis in the cartesian
coordinate system is described by the solution to the inhomogeneous system of Maxwell equations

rotH = —i&E + j2,

rotE = iougH, (7.27)

E‘L’|3P =0, HV|3P =0, (7.28)

admitting for |x3| > C and sufficiently large C > 0 the representations (+ corresponds to 4 and —
to —o0)

1 . (1
E = ZR(i)e_iY;I)\xﬂ Alg )Hl’e3 _l}/[g )VZHP +
H —~’ —iwey(VoI1,) X e3
. iouy(VoW,) xe
+ ZQ(pi)e’#)"“( @) HolV2 .p()z) X ) (7.29)
P Ap ‘Pp€3 — 1Y Vzlpp
Here, y,(]'/) =\/K3 —A,S-"), Imy,(jj) <0 or Im}/,(,j) =0, koy,(,j) > 0, and /1,(,1), IT,(x1,x2) and ll(,z),

W, (x1,x2) (k3 = w*&ylo) are the complete system of eigenvalues and orthogonal and normalized
in Ly (IT) eigenfunctions of the two-dimensional Laplace operator —A in the rectangle I1,, =
{(x1,x2) : 0 <x; <a,0<x <b} with the Dirichlet and the Neumann conditions, respectively;
and Vo =e1d/dx| +e2d/dx,.

We assume that E? and HC are solutions of BVP under consideration in the absence of body Q,
&(x) = gol, x € P (I is the identity tensor):

rotH® = —iwgyE° + jO.

rotE? = iouoH?, (7.30)

E5p =0, HY|yp=0. (7.31)

These solutions can be expressed in an analytical form in terms of j% using Green’s tensor of
domain P. These solutions should not satisfy the conditions at infinity (7.29). For example, E® and
HC can be TM- or TE-mode of this waveguide.

Problems

Problem

Determine explicit expressions for TM-waves in a waveguide of rectangular cross section I1,, =
{(x1,x2) : 0<x1 <a,0<x; <b}.

Problem

Prove that
H=1[0,0,Hs], E=[E;,E;,0] (Ez=0)

(formula (7.17)) if

H = graddivP+k’P, E =ikrotP, P =]0,0,II].
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Miniproject: energy of electromagnetic wave

The energy W3 carried by the TM normal wave E, H of index n propagating along x3-axis in a
waveguide with cross section Q is determined according to

0]
= — E H* 7.32
W= [ [ B, as (7.32)

where * denotes complex conjugation. Prove that
0}
Ws = o |Aul T, (7.33)

where A, is the nth eigenvalue of the Dirichlet boundary eigenvalue problem for the Laplace
equation in Q.
Hints: Use the solution to Problem 4.4.4 and formula (7.20).

Problem

The normal wave propagating along x3-axis in a waveguide with cross section Q that corresponds
to the first (minimal) eigenvalue A; of the Dirichlet boundary eigenvalue problem for the Laplace
equation in Q is often called the fundamental TM mode of the waveguide. Determine an explicit
expression for the fundamental TM mode in a waveguide of rectangular cross section Q =11, =
{(x1,%2) : 0<x; <a,0<xy<b}.

Problem
A solution to the homogeneous Maxwell equations satisfying homogeneous boundary conditions
on the waveguide walls, independent of coordinate x, and with the dependence ¢'** on coordinate z

is called a normal wave propagating along z-axis in a parallel plane (2D) waveguide % . Determine
an explicit expression for the fundamental TM mode (see (7.22), (7.23), (7.24)) in #'.

Problem

Prove that for 1 < x < 2 the scattered field component u°(y,z) in (7.25) can be represented
asymptotically for z > 27§ as

u'(,2) = U'(y,2) +exp(—|T2|2)U*(v,2), U'(y,z) =ai exp(il'z)sin(y), (7.34)

where U*(y, z) is a bounded and differentiable function in strip S satisfying |U*(y,z)| < Up, (y,2) € S,
with a certain constant Uy. How accurate can we determine u°(y, z) if we replace it with principal
term U'(y,7)?
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8.1 Gradient. Directional Derivative

Definition of the gradient. Vector function

af. df. Idf
df=Vf=—i+—j+—=Kk
is called a gradient of (scalar) function f(x,y,z).
Vector differential operator V is defined by

d, d., 4
V= al + a—y,] + a—zk.
Consider an example:
af af af
frd — 2' = = — =
flxyz) =2x+yz=3y7 S =2, 9y LT G 7Yy

grad f = Vf =2i+ (z—6y)j+ k.

d
Directional derivative. The directional derivative Dy, f or d_f of a function f at a point P in
s

the direction of a vector b, |b| = 1, is defined by

Do — tim HQ =)

s—0 S

(s=10—Pl),

where Q is a variable point on the straight line C in the direction of b.
In the Cartesian xyz-coordinates straight line C in parametric form is given by

r(s) =x(s)i+y(s)j+z(s)k = po + sb
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where b is a unit vector and py the position vector of P. Applying the definition it is easy to check,

d
using the chain rule, that Dy, f = d—f is the derivative of the function f(x(s),y(s),z(s)) with respect
S
tos

df _odf , df , df,
a—ax+aiyy+aizz7
/_dx /_@ /_dZ

YTas Y Tay T s

Dyf =

Differentiation gives
r'(s)=xi+yj+7k=b,

that is
Dyf = g:b-gradf
ds
(b is a unit vector, |b| = 1), or
df 1
D,f =— = —a-grad
of =5 T s

where a # 0 is a vector of any length).

Example 1 Gradient. Directional Derivative

Find the directional derivative of f(x,y,z) = 2x*> +3y? +z% at P: (2,1,3) in the direction of
a=i-2k=[1,0,-2].

Solution.

af af af
= 2 2 2‘ = = =
f(x,y,Z) - 2)6 +3y +Z ’ ax 4)6, ay 6}’, 8z 2Z7

grad f = 4xi+ 6yj 4 2zk.

At the point P: (2,1,3)
grad f = 8i+ 6j+ 6k = [8,6,6].

Since |a| = |[1,0,—2]| = v/1+4 = /5, we obtain

Dyf = OZ - \%(i—2k)-(8i+6j+6k) _
ﬁ Y ) b) ) _ﬁ = ﬁN . .

Theorem 22 grad f points in the direction of the maximum increase of f.
Proof. From the definition of the scalar product we have
Dypf =b-grad f = |b||grad f|cosy = |grad f|cosy  (|b| =1).
where 7 is the angle between b and grad f. Directional derivative Dy f is maximum or minimum

when cosy =1, y =0, or, respectively cosy = —1, Yy = &, that is if b is parallel to grad f or,
respectively —grad f. Thus, the following statement holds.
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Theorem 23 Let f(x,y,z) = f(P) be a differentiable function. Then directional derivative Dy f is
(i) maximal in the direction

_gradf
~ gradf]
and has the form
Dy f = |grad f];
(i1) minimal in the direction
_ gradf
 |gradf]
and has the form
Dy f = —|grad f].

(grad f # 0).

Surface normal vector

Let S be a surface represented by
f(x,y,2) = ¢ = const,

where f is a differentiable function.

Theorem 24 If f(x,y,z) €C!) is a differentiable function and grad f # O then grad f is a surface
normal vector to the surface f(x,y,z) =C.

Proof. Let C be a curve on S through a point P of S. As a curve in space, C has a representation

r(1) = (1) = [e(0), 3(1), 2(1)] = x(0)i+ (1) + 2(1)k.

If C lies on surface S, the components of r(z) must satisfy f(x,y,z) = C, that is,

Fx(t),y(),z(1)) =c.

A tangent vector to C is
r'(t) = (1)i+y (1)j+2 (1)k;

the tangent vectors of all curves on S passing through P will generally form a plane called the
tangent plane of S at P. The normal to this plane (a straight line through P perpendicular to the
tangent plane) is called the surface normal to S at P. A vector in the direction of the surface normal
is called a surface normal vector of S at P.

We can obtain such a vector by differentiating f(x(z),y(¢),z(¢)) = ¢ with respect to z. By the

chain rule,
a‘f/ 8.f/ a‘f/ /
- - —z =gradf-r'(t) =0
aXX+ayy+azz grad f-r'(1) =0,
where
b b,
Ta Y T ar Cdt’

Hence grad f is orthogonal to all the vectors r’ in the tangent plane, so that it is a normal vector of
S atP.

Example 2 Gradient as Surface Normal Vector

Find a unit normal vector n of the cone of revolution z> = 4(x* +y?) at the point P : (1,0,2).
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Solution.
The cone is the level surface z> = 4(x*> +y?), or

fxy,2) =47 +4y* =2 =0,
so that we have the equation of the cone as a level surface with ¢ = 0. The partial derivatives are

aIf of af
a_ 7y_8y7 R 227

8
X, Iz

and the gradient is
grad f = 8xi+ 8yj — 2zk.

At the point P : (1,0,2)
grad f = 8i— 4k = [8,0,—4].

We have |grad f| = /64 + 16 = v/80. The unit normal vector of the cone at P is

1 1 1 2 1
n=—oradf= —(8i—4k) = ——4(2i—k) = —i— —k.
|grad f|g f \/80( ) 4/5 ( ) V5 V5

Gradient fields and potentials

Let a vector field be given by a vector function p which is the gradient of a scalar function,
p =grad f. Function f is called a potential function or a potential of p.
As an example, consider the vector function which describes the gravitational force (gravita-

tional field)
p= e 0 ).

where

r=[x—x0,y—y0,2—20] = (x—x0)i+ (y—yo)i+ (z—z0)k
and

r= 1t = /(e =20+ (y—30) + (s~ 20)2.
We have a
d (1 —2(x—xp) X — X0
dx <r> T2 —x0)2+ =302+ -] A

and similarly

d (1N _ y=yo 9 [1\_ z—2
oy\r) B 7 az\r) B~

Thus p is the gradient of the scalar function

fera) =5 (r>0):

d /c d /c d /c
oir = () (i 3 ()
p=gradf dx \r H_8y r J+8z r
According to the definition f is a scalar potential of the gravitational field.
Calculating the second partial derivatives with respect to x,y,z by the chain rule we obtain

ok <1> _ 1 +3(x—x0)2

ox2 \'r rd ’

73
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2 (1)

dy? r
97 (1 __1 . 3G-n)?
a2\r) P '

By adding the righthand and lefthand sides, one can show that potential f satisfies the Laplace
equation

_0if | 9Ef | 9Ef

The differential operator of the second order

is called the Laplace operator (Laplacian).

Problems
Problem 8.8.1

d
Find derivative d—v: of the function w = \/x2 +y2 where x = ¢¥ and y = =¥

Problem 8.9.1
Find grad f of the function f(x,y) = x> —y? and its value and length at the point P: (—1,3).
Problem 8.9.7

Find the gradient —grad f for f(x,y,z) = z/(x* +y?) and its value at the point P : (0, 1,2).
Recall that the directional derivative Dy, f or Is of a function f at a point P in the direction b is
s

calculated as the scalar product

d
Dbf:—f:b‘gradf
ds

(b is unit vector, |b| = 1), or
1
Daf = wa-gradf

(a # 0 is an arbitrary vector).

Divergence and rotation of the vector field

Definition of divergence
Let

V(X,y,Z) =Vi (x,y,z)i+v2(x,y,z)j +V3(x,y,z)k

be a differentiable vector function. The (scalar) function

. dvy  dva  dvs
dlvv_x—F&iy—F&iz

is called the divergence of v or the divergence of the vector field defined by v.
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Define the vector differential operator V by

d, d. d

Then we can write the divergence as the scalar product

divv=V.v= <ai+aayj+ak> ~(vii+vj+ k) =

ox dz
Jdvi dva  dvs
ox "oy Tz

Consider an example:
v(x,,2) = 3xzi + 2x9j — 2k,
vy vy vz

o3, 2ok, 2 =2y
dx © o e

and
divv =3z+42x—2yz.

If f is a twice differentiable function, then

_df. df. df
gradf =5 gt 52
and 2 5 2
. w2, O°f / f
div (grad /) =V f = ) + —8))2 + FER
so that

div (grad f) = Af,

where A is the Laplace differential operator.

Example 3 Gravitational Force

The vector function

where
r = [x—x0,y —Y0,2—20] = (x —x0)i+ (y—yo0)j+ (z—z0)k

and

r=Ir =/ r—x0) + (5 —30)* + (— 20)°,

describes the gravitational force (gravitational field). We have

P <1>: —2(x—xo)  x-x

ox \r 2[(x—x0)? 4 (y = y0)* + (z—20)?] r3

d 1\ _ y=yo Od[(1\_ z—2
oy\r) 7 adz\r) B~

and similarly
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Then p is the gradient of the function
C
f(X,y,Z):; (I">0)§

d seN. d /cN. O /c
P—g“f—a(ﬂ*+$(ﬂl+z(ﬂk
A vector field p is said to be a gradient of f if p =grad f; function f is called a scalar potential of p.
In the example above f is a scalar potential of the gravitational field.
Finding the second partial derivative using the chain rule with respect to x,y, z, we obtain

92 (1) _ 1 3w

a2\ r r3 rd ’
2 (1Y __1 30w
oy \r) 1 r ’

(1Y 1 ay
a2\r) P P ’

By adding the righthand and lefthand sides, one can show that the potential f satisfies the Laplace
equation

’f | 9*f  9*f _

M=oat otz ="

so that
divp = div (grad f) = V> f = 0.

Rotation (curl) of a vector field

Definition of rotation.
Let x,y,z be a positive oriented Cartesian coordinate system and

V(X,y,Z) =Vi (X,y,Z)i‘l— VZ(xvyaZ)j + V3(X,y,Z)k

a differentiable vector function. Then the vector function

i j k
curlv=V xv= % a% 8% =
Vi Vo V3

dvy dv dvi dv dv, dv
EAENERACH FIT ad BEA) j+ 92 97\ k
dy 0dz dz  dx dx dy
is called rotation (or curl) of vector field v.
Example 4 Curl of a the vector field
Let x,y,z be a positive oriented Cartesian coordinate system. Consider the vector field
v(x,y,z) = yzi+ 3zxj + zk.

The curl of v is calculated according to

i j k
_ |2 9 9 |_
curllv=| 5 H | =
vz 3xz 2z

dz IBxx)\, (dd) dz\. (9Bxx) 02\, ., s
<8y dz >l+< oz ox )i\ Tox dy k = —3xi+yj+2zk.
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8.7 Important vector differential identities

Theorem 25 For any twice continuously differentiable scalar function f,

curl (grad f) = 0. 8.1)

The potential (or conservative) field is called rotation-free.

Proof.
S N O I
curl (grad f) = A 2 a% a% —
L R
Of RN, (0f IEN. (3 OFNy . b
(ayaz 1+ 8Z7E I+ ox ay k_(ny fyZ)lJr(fxz fzx)JWL(fyx fxy)k—0~

Theorem 26 For any twice continuously differentiable vector function v,
div (curlv) = 0. (8.2)

The field of rotation is called divergence-free.
Proof.

. _d (dvi In d [dvi Jdns d (dvy dvi\
div (curlv) = =2 (ay‘az> oy <az_a> 5z <a ay> =
(V3yx - Vlz.x) + (Vlzy - V3xy) + (lez - Vlyz) =0.
More vector differential identities:

V(ioy)=yVo +oVy.
V- (¢F) =div(¢F) =V¢ -F+¢V-F.
V. FxG)=VxF-G-F-VxG.
V x (VxF)=V(V-F)-VF. (8.3)

8.8 Problems
8.8.1 Problem 8.10.1

Determine the divergence of

V(x,y,z) =Vi (X,y,Z)i+V2(X,y,Z)j —I—V3(x,y,z)k ZXi+yj +zk.
8.8.2 Problem 8.10.2

Determine the divergence of

V(x,y,z) =Vi (x,y,z)i+vz(x,y,z)j —|—V3(X,y,Z)k = x2i+y2j +sz'
8.8.3 Problem 8.10.14

Determine Af = V2 f of the function

fxy) = (x=y)/(x+y).
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Problem 8.71.3

Find curl of the vector field

1
v= (@ +y +2) i+ +K).

Problem 8.11.14

Show that
div(uxv) =v-curlu—u-curlv.

Problem 8.711.15

Find curl fu of
u=yi+zj+xk

where f = xyz.
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9. Line integrals

Curves in a parametric form and line integrals

Let xyz be a Cartesian coordinate system in space. We write a spatial curve C using a parametric
representation

r(r) = [x(0),y(1),2()] = x(@)i+y(O)j+z()k (1 €1), ©.1)

where variable ¢ is a parameter.

As far as a line integral over a spatial curve C is concerned, C is called the path of integration.
The path of integration with spatial endpoints A to B goes from A to B (has a certain direction) so
that A :=r(a) is its initial point and B :=r(b) is its terminal point. C is now oriented. The direction
from A to B, in which 7 increases is called the positive direction on C. Points A and B may coincide,
then C is called a closed path.

Example 5 Elliptical arc

The vector function
r(t) =[acost,bsint], t: T —0

defines an oriented elliptical arc (on the xy-plane). The corresponding parameter interval has the
endpoints a = 7 and b = 0. With such an orientation,

P(m) = (acosm,bsinm) = (—a,0)

is the initial point and
P(0) = (acos0,bsin0) = (a,0)

is the endpoint. So the elliptical arc has become an oriented curve.
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Line integrals
Definition of line integral. If C is an oriented curve in a parametric form
P=P(t) (x=x(t), y=yt), z=2z()) tel=(to,t1), t:1tg—t, 9.2)

and f(P) and g(P) are real (or complex) function defined on C, the line integral of a scalar function
is defined as

Lrerage)= [ paseo)), ©3)
c 1=t

(if the right-hand side in the equality specifying the integral exists).

A line integral of a vector function F(r) over a curve C is defined by

b
/CF(r) dr = / F(r(1)) - %dt,

or componentwise

b
/ F(r)-dr = / (Fidx+ Fdy+ F3dz) = / (Fx' + Ry +FBZ)dt  ('=d/dr).
C C a
Example 6 A line integral in the plane

Find the value of the line integral when F(r) = [y, —xy] and C is a circular arc from (1,0) to
(0,1).
Solution. We may represent C by
r(t) = [cost,sint] = costi+ sintj, (9.4)
and
r(t) = [cost,sint], t:0— m/2.

The parameter interval is I = (#,¢;) with the initial point #p = 0 and endpoint #; = 7r/2. In such an
orientation,
P(0) = (cos0,bsin0) = (1,0)

is the initial point and
P(m/2) = (acosm/2,bsinm/2) = (0,1)

is the endpoint.
We have x = cost, y = sinz and can write vector function F(r) on the unit circle

F(r(t)) = —y(¢)i—x(t)y(t)j = [— sint, — costsint] = —sinti — cosz sintj.

Determine
r'(t) = —sinti+ costj

and calculate the line integral:

/2
/F(r) -dr :/ (—sinti —costsintj) - (—sinti+ costj)dt =
c 0
/2

/2
/ (sin’t — cos®tsint)dt = / [(1/2)(1 — cos2t) — cos’t sint]dt =
0 0

/2 /2 T
(1/2)/ [(l—cosZt)dt+/ Cosztdcost:Z—
0 0

W =
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Example 7 Line integral depends on the form of the curve

Find the line integral for F(r) = [5z,xy,x’z] when curves C; and C, have the same initial point
A:(0,0,0) and endpoint B: (1,1,1), Cy is an interval of the straight line

rl(t)

[t,t,t] =ti+tj+tk, 0<r<I,
and G, is a parabola

ro(t) = [t,1,°] =ti+tj+1°k, 0<r<1.

Solution. We have
F(r|(t)) =5ti+2j+°k, F(ra(t)) = 5%+ 12§ + 1k,
vy () =i+j+j, () =i+j+2].

Then we can calculate the line integral over C;

1
F(r)-dr — / F(ri(1)) -y (1)di =
C 0

1 37
+ —_

1 5
20 B3NV 2 I
ké (Sr+ef+r)dr =2+ 247 =15

1
3

The line integral over C; is

F(r)-dr = /01 F(ry(t)) -rh(t)dt =

(&
1
/ (52 + 12 +26%)dt =
0
Thus we have got two different values.
Theorem 27 The line integral
/ F(I’) -dr = / (F]dX+F2dy —|—F3dZ),
C c

where F1, F>, F3 are continuous functions on a domain D in space, is path independent in D, if and
only if F = [F1, F>, F3] is the gradient of a function f = f(x,y,z) in D :

F =gradf;
with the components
of of of
F==—, BbB==— FB=—.
Tooxt TP oy P oz

If F is the gradient field and f is a scalar potential of F then the line integral

| F@-ar = r(8) - ra),

where A is the initial point and B the endpoint of C.
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Example 8 Path independence

Show that the integral
/ F(r)-dr= / (2xdx + 2ydy + 4zdz)
c c

is path independent in any domain in space and find its value if integration is performed from
A:(0,0,0) to B:(2,2,2).

Solution. We have
F = [2x,2y,4z] = 2xi+2yj+4zk = grad f,

and it is easy to check that
f(x,y,2) = 2%+ 52 +22%,

According to Theorem 27, the line integral is path independent in any domain in space. To find its
value, we choose the convenient straight path

r(t)=[t,t,f] =t(i+j+k), 0<r<2.
LetA:(0,0,0),z =0, be the initial point and B : (2,2,2), ¢ = 2 the endpoint. Then we get
v'(1)=i+j+].
F(r) r' =2t +2t +4t =8¢
and ) 5
/C(Zxdx+2ydy—|—4zdz) = /0 F(r(t))-r'(t)dt = /0 8tdt = 16.

According to Theorem 27,
/F(r)dr:f(2,2,2) —£(0,0,0)=4+4+2-4—0=16.
c
Example 9 Path independence. Determination of a potential

Evaluate the integral
1= / (3x*dx+ 2yzdy + y*dz)
c

fromA: (0,1,2) to B: (1,—1,7):
Solution. If F has a potential f, then
af » df af
X, =—
dy

=F =2z, = =F =y

F=gradf: —=F =3 ' 92

ox

Performing integration, we obtain

f=x+8(2), fi=28 =27 g=y2+h),
fz:y2+hI:y27 h/:O7l/l:0
This gives
X,¥,2) =x +yz
flayz) = +y°

and
I=f(1,-1,7)—f(0,1,2) =14+7—(0+2) =6.
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Theorem 28 The line integral

/F@dﬁiﬂﬂw+5@+&&)
C C

where F, F,, F3 are continuous functions on a domain D in space is path independent in D if and
only if
/ F(r)-dr=0
c

along every closed path C in D.

The differential form
Fldx + dey + F3dZ

is called exact in a domain D in space if it is the differential

Cof . Af, of

of a differentiable function f(x,y,z) everywhere in D:
Fidx+ dey + Fdz = df,

where af af
= gv F2 = 7})7 F‘3

d

Theorem 29 Consider the line integral

/F(r)~dr:/(Fldx+F2dy+F3dz),
c c

where F, Fp, F3 continuous and have continuous first partial derivatives in a domain D in space.
If the differential form Fydx + Fody + F3dz is exact in D then

curlF =0 in D;

in components,
OB _om OF _OR R _oR
dy dz’ dz dx’ dx Iy’
If
curlF=0 in D

and D is a simply connected, then the line integral is path independent in D.

Suppose that Fi, F>, F3 are differentiable functions of three variables x, y, z in any open simply
connected domain D. Then, by Theorem 29, the following conditions are equivalent:
(1.3) Differential form Fidx + F,dy + F3dz is exact.
(1i.3)
JFs JdF, JdF JdF; JF, OJF
dy dz’ dz dx’ dx Iy’
(iii.3)  [o(Fidx+ F>dy+ F3dz) = 0 for any closed curve C in D.
(iv.3) [, (Fidx+ F>dy+ F3dz) depends only on the initial point and endpoint of the curve L in
D (is path independent in D).
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The same statements are valid in the two-dimensional case. Suppose that Fjand F; is differen-
tiable functions of two variables x,y in an open, simply connected domain D. Then, by Theorem
29, the following conditions are equivalent:

(1.2) Differential form Fjdx + F>dy is exact.

(ii.2)

oF, JF
ox  dy’

(iii.2) JoFidx+ F>dy = 0 for any closed curve C in D.

(iv.2) [, Fidx+ F>dy depends only on the initial point and endpoint of the curve L in D (is
path independent in D).

Problems
Problem 9.7.1

Calculate
dr

/C F(r).dr— / "R e(r)) ar

where F = [y?, —x?] and C is an interval of the straight line from (0,0) to (1,4).
Problem 9.1.5

Calculate

/CF(r) -dr,

where F = [(x—y)?,(y—x)?]and C: xy =1, 1 <x < 4.
Problem 9.2.2

Calculate the line integral
1= / e*(cosydx — sinydy)
c

fromA: (0,7) to B: (3,7m/2).



10. Green’s Theorem in the Plane

Let C be a closed curve in xy-plane that does not intersect itself and makes just one turn in the
positive direction (counterclockwise). Let Fj (x,y) and F>(x,y) be functions that are continuous and

dF JF
have continuous partial derivatives Zland 22 everywhere in some domain R enclosed by C.

dy dx
Then

oF, J0F _

Here we integrate along the entire boundary C of R so that R is on the left as we advance in the
direction of integration.
One can write Green’s formula with the help of curl

//(curlF)-kdxdyz/F-dr.
R c

Example 10 Green’s formula in plane

Verify Green’s formula for F; = y?> — 7y, F> = 2xy+ 2x and C being a circle R : x*> +y* = 1.
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Solution. Calculate a double integral

//(E)Fz 91;1>dxdy // (2y+2) — (2y—17)]dxdy = 9//dxdy or.

Calculate the corresponding line integral. Circle C in the parametric form is given by
r(t) = [cost,sint] = costi+ sintj.
r'(t) = —sinti+ costj.

OnC
Fi =y*—Ty=sin’t —7sint, F, =2xy+2x=2costsinz +2cost,

and we get that the line integral in Green’s formula is equal to the double integral:

2r
/F(r)~dr:/ [(sin®¢ —7sint)(—sint) + (2costsint +2cost) cost]dt = 0+Tm+0+ 27w =97
c 0

Example 11 Suppose that w = w(x,y) is a differentiable function and

e %Y v

Then
8F2 (9F1 . 82w 82w

ox dy ol oy

= V.

The line integral

/(Fldx+F2dy) :/(le’—i—Fzy’)ds:/(—awx’—i—awy’)ds:/(gradw)-nds,
c c ¢ dy dx c

where n is a unit normal vector to C because n is the unit tangent vector of C,
r'(s)=xi+)j: r'(s):n=0.
By the definition, gradw - n is the normal derivative of w in the direction of n and is denoted by

—W, Then the double integral of the Laplace operator applied to w, Aw = V2w, is

on
//Vzwdxdy /—ds

10.1 Problems
10.1.1 Problem 9.4.1

Evaluate the integral

I = /F dr—/F —dt

counterclockwise along boundary C of region R by Green’s theorem, where F = [x?¢”,y%¢*] and R
is the rectangle with vertices (0,0), (2,0), (2,3) and (0,3).

10.1.2 Problem 9.4.3

Evaluate the integral

I= /CF(r) -dr,

counterclockwise around boundary C of region R by Green’s theorem, where F = [y, —x] and C is
P 4yr=1/4



11.1

11. Surfaces and integrals

Surfaces in a parametric form

Let xyz be a Cartesian coordinate system in space. A surface S in a parametric form is given by
three equations
x=x(u,v), y=yu,v), z=z(u,v), (u,v) €D, (11.1)

or
r(u,v) = [x(u,v),y(u,v),z(u,v)] = x(u,v)i+y(u,v)j+z(u,v)k [(u,v) € D], (11.2)

where variables u,v are called parameters. Domain D is located in the uv-plane and is called the
parameter domain. (11.2) can be written as

r=r(u,v) [(u,v) € D], (11.3)

where r(u,v) is the position vector for a point on S,

—

r(u,v) = OP(u,v).

A surface S may be given explicitly with respect to any of the coordinate pairs by one of the
equations

2= f(x,y),

x=g(y2)
or

y =h(x,2);

the parameter equations may be replaced by
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etc., and the corresponding vector parameter equation is
r=[u,v,f(u,v)] [(u,v)€ D]. (11.4)

The parameter domain R is the projection of S on the xy- (yz-, xz-) plane.
A surface may be given implicitly by the equation

g(x,y,z) = 0;

e.g.,
Py +2=a%, >0,

or

7=+Va?—x*—y>?

gives the hemisphere of radius a and origin O.

Example 12 Parametric representation of a cylinder

The circular cylinder
x2+y2:a2’ —oo0 < 7 < oo, (115)

has radius a, height 2, and Oz as its axis. A parametric representation is
r(u,v) = [acosu,asinu,v] = acosui+ asinuj + vk,

u,virektangel R: 0 <u <2m, —oo< v <oo,

The components of r(u,v) are
X =acosu, y=asinu, z=nm. (11.6)

Note that each point x, y,z defined by (11.6) satisfies the cylinder equation (11.5), and conversely
each point x, y, z on the surface of the cylinder satisfying (11.5)] can be written using parametrization

(11.6) since

2 2 2

x> 4y* = da? cos’ u+ a® sin® u = a*(cos® u + sin’ u) = a>.

An equation
F+yt=at, —1<z<1

definies a cylindrical surface which has radius a, height 2, and Oz as its axis. A parametric
representation is
r(u,v) = [acosu,asinu,v] = acosui+ asinuj+ vk,

u,vinrectangle R: 0 <u <2x, -1 <v < 1.

r(u,v)’s components are
Xx=acosu, y=asinu, z=n.

Example 13 Parametric representation of a sphere
A sphere x> +y? + 7> = a® can be represented by
r(u,v) = acosvcosui+acosvsinuj + asinvk,

u,vin rectangle R: 0 <u <2m, —m/2<v<m/2.
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The components of r(u,v) are given by

X =acosvcosu, y=acosvsinu, = asinv.
Make use of the spherical coordinates

X =rcosvcosu, y=rcosvsinu, z=rsinv,

where r is the distance to the origin and u and v are two angles. One also uses spherical coordinates
in the form

x=rsinfcos¢, y=rsinOsing, z=rcos@, r>0,0<0<7m —n<p<m.
Example 14 Parametric representation of a cone
A circular cone 7z = -l-\/m, 0 <z < H can be represented by
r(u,v) = ucosvi+usinvj+uk, wu,vinrectangleR: 0<v<2m, 0<u<H.
The components of r(u,v) are given by
X=ucosv, y=usinv, z=u.

observe that x*> +y? = z°.

Tangent Plane and Surface Normal

Let C be a curve on a surface S given by parametric equations

and F(u(r),v(¢)) is the position vector of point P lying on C. According to the chain rule, we get a
tangent vector tocurve C 5 5
, dr r, r,

r(t)—a—wu EMA
Hence the partial derivatives r,, and r, at P are tangential to S at P. We assume that they are linearly
independent, which geometrically means that the curves u = const and v = const on § intersect at
P at a nonzero angle. Then r, and r, span the tangent plane of S at P. Hence their cross product
gives a normal vector N of S at P:

N=r,xr,#0.

The corresponding unit normal vector n of S at P is

LI N

If S is represented by an implicit equation

g(x,y,z) =0,

then

gradg.
|grad g|
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Example 15 Unit normal vector of a sphere
gz =+ 4+ —d* =0

_xi+X
a

xyz} x
_a

1 Z
= - d = — = [7’777 i 7k.
n \gradg\gra I P J+a

Example 16 Unit normal vector of a cone

8(x,y,2) = —z+Vx2+y? =0:

! grad ! * 4 1
8§=—07 ) y -
|grad g| V2 | /232 )2

X . y .
+ —k.
Ve ey

Surface Integrals

To define a surface integral, we take a surface S given by a parametric representation

r(u,v) = [x(u,v),y(u,v),2(u,v)] = x(u, )i+ y(u,v)j + z(u,v)k,
the normal vector
N=r,xr, 7& 07

and unit normal vector /

= —N.
IN|

n

A surface integral of a vector function F(r) over a surface S is defined as

/S/F'ndA:/R/F(r(“>v))'N(u,v)dudv,

ndA = n|N|dudv = |N|dudyv,

Note that

and we assume that the parameters u,v belongs to a region R in the u, v-plane.

Write the equivalent expression componentwise using directional cosine:
F=[R,F, B = Fi+khj+Fk,

n = [cosa,cos 3,cos Y] = cos ai+ cos Bj + cos Yk,
N= [N17N27N3] :N1i+N2j +N3k7

and

//F~ndA://(F1cosa+cmosﬁ+F3cosy)dA:
S s

//(FlNl + F>,N; + F3N3)dudyv.
N

Flux through a surface

Surface integral (11.7) can be interpreted as F’s flux through a surface S.

117
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Example 17 Determine the flux of water through the parabolic cylinder
S:y=x>,0<x<2,0<z<3

if the velocity vector is v =F = [37%,6,6xz].

Solution. A parametric representation of S is
r(u,v) = [u,u?,v] = ui+ u’j+ vk, 0<u<2, 0<v<3

(setting x = u and z = v, we have y = x> = u?).
Partial derivatives (vector functions) of r,, and r,,

r,=[1,2u,0], r,=][0,0,1],

are tangent vectors to surface S at a point P € S spanning the tangent plane to S at point P. The
vector (cross) product
N=r,xr,#0

is a normal vector to S at point P (the cross product is perpendicular to the tangential plane). We
have
J

i
N=r,xr,=|1 2u =2ui—j=[2u,—1,0].
0

- o K

0
The corresponding unit normal vector

1 1
n:7N27 2Lti—. .
IN| \/1+4u2( )

On surface S,
F(r(u,v)) = F(S) = 32,6, 6uv] = 3(v}i+ 2j + 2uvk).

Then
F(r(u,v))-N(u,v) = 3[v*,2,2uv] - [2u, —1,0] = 3(2uv* — 2) = 6(w* — 1).

Parameters u, v belong to rectangle R: 0 <u <2, 0 <v < 3. Now we can write and calculate the

flux integral:
//F-ndA ://F(r(u,v))-N(u,v)dudv:
s R

3 r2 3 2 3 2
//6(uv2—1)dudv:6(/ vzdv/ udu—/ / dudv) = 6(3%*-2—-6) =172.
0 JO 0 0 0 JO

Example 18 Evaluation of a surface integral
Evaluate a surface integral of the vector function F = [x, 0, 3y?] over a portion of the plane
S:x+y+z=1,0<xyz<1.
Solution. Writing x = u and y = v, we have z = 1 —u — v and can represent S in the form
r(u,v) =[uv,l—u—v], 0<v<1,0<u<l—w

We have
ru:[lvoa_l]a rV:[Oala_”;
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a normal vector is
k

i
N=r,xr,=|1 0 —1 |=i+j+k=][1,1,1].
01 —1I

The corresponding unit normal vector

1 1
n=—N=—(i+j+k).
N[ V3

On surface S,
F(r(u,v)) = F(S) = [1?,0,3V*] = u?i +3v’k.

Hence
F(r(u,v)) N(u,v) = [1?,0,3v*] - [1,1,1] = u® + 3%

Parameters u,v belong to triangle R: 0 <v <1, 0 <u <1—v. Now we can write and calculate
the flux integral:

/S/F-ndA:/R/F(r(u,v)).N(u,v)dudv:/R/(uz_{_%z)dudv:

/01 /O]_v(u2+3v2)dud1/— /01dv/ol_vuzdu—l—3/01v2dv/01_vdu—
:(1/3)/01(1v)3dv+3/01v2(1v)dv:(1/3)/olt3dt+3/ol(v2v3)dv:
(1/3)-(1/4)+3(1/3—1/4) = 1/3.

11.4 Problems
11.4.1 Problem 9.5.1

Determine a normal vector and unit normal vector to the xy-plane
r(u,v) = [u,v] = ui+vj

and parametric form of curves u = const and v = const.

11.4.2 Problem 9.5.3

Determine a normal vector to cone surface
r(u,v) = ucosvi+usinvj + cuk = [ucos v, usinv, cu]
and parametric form of curves is u = const and v = const.

11.4.3 Problem 9.5.24

Determine a unit normal vector to the ellipsoid 4x> +y> 4 97> = 36.



12. Divergence Theorem of Gauss

Let v(x,y,7) be a differentiable vector function,

V(x,y,z) =V (X,y,Z)i+V2(X,y,Z)j +V3(X,y,Z)k,

then the (scalar) function
dvi dvo  dv;

leV:a—x-l- Iy + 92

is called the divergence of v.
Formulate the divergence theorem of Gauss.

Theorem 30 Let T be a closed bounded region in space whose boundary is a piecewise smooth
orientable surface S. Let F(x,y,z) be a vector function that is continuous and has continuous first
partial derivatives in some domain containing 7. Then

///dideVz//F-ndA.
T s
In components

oF, JF, O0F; B
//T/ (W+a—y+a—z)dxdydz—/S/(Flcosa—i—cmosB+F3cosy)dA.

oF, J0F O0F; _
/ /T / (W ot a_z) dxdydz = /S / (Fidydz + Fydzdx + Fydxdy).

or
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Example 19 Evaluate
= / / (¥*dydz + x*ydzdx + x*zdxdy), (12.1)
s

where S is the closed surface consisting of the cylinder x> 4+ y? = a® (0 < z < b) and the circular
disks z=0and z = b (x* +y*> < a?).

Solution.
2

Fi :x3, 23 :xzy, B =xz
Hence the divergence of F = [Fy, F>, F3] is

OF, OF, OF
divP=21 220 903 302021 32552
dx dy 0z

The form of the surface suggests that we introduce polar coordinates
x=rcosf, y=rsin@ (cylindriska koordinater r,0,z)

and
dxdydz = rdrd0dz,

According to Gauss’s theorem, a surface integral is reduced to a triple integral if the area T is
bounded by a cylindrical surface S,

//(deydz+x2ydzdx+x2zdxdy):///diVFdV:///szdxdydz:
s T T

b a 2r
5/ / / r?cos? Ordrd0dz =
7=0Jr=0.6=0

a 2w a4 21
sb / / 3 cos? 0drd® = b / cos? 0O =
o Jo 4 Jo

at rm 5 4
Sb—/ (1+2c0s0)d6 = ~mba”.
8 Jo 4
Example 20 Verification of the divergence theorem

Evaluate
I://F-ndA, F="7xi—zk
S

over the sphere S : x> +y? +z> = 4. Calculate the integral directly and using Gauss’s theorem.
Solution.
F(x,y,z) = [F1,F», F3] is a differentiable vector function and its components are
F= [F],O,F?,], F] = 7x, F3 = —Z.

The divergence of F is

JdF, o0F, OdF
divF = =1 4722 3

— =7+0—-1=6.
dx 8y+az *

Accordingly,

4
= // /diVFdV = 6// /dxdydz —6--72° = 64r. (12.2)
T, klot T, klot 3
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The surface integral of S can be calculated directly. Parametric representation of the sphere of
radius 2

S: r(u,v) =2cosvcosui+ 2cosvsinuj+2sinvk,
u,virektangel R: 0 <u <2m, —n/2<v<m/2.

Determine the partial derivatives

r, = [—2sinucosv,2cosvcosu,0],
r, = [—2sinvcosu, —2sinvsinu,2cosv),
and the normal vector
i J k
N=r,xr,=| —2sinucosv 2cosvcosu 0 = [4coszvcosu,4cos2vsinu,4cosvsinv].

—2sinvcosu —2sinvsinu 2cosv

On surface S,
x=2cosvcosu, z=2sinv,

and
F(r(u,v)) =F(S) = [7x,0,—z] = [14cosvcosu,0, —2sinv].

Then
F(r(u, V)) ’ N(”? V) =

2 2

(14cosvcosu)dcos® veosu -+ (—2sinv)(4cosvsiny) = 56cos® vcos® u — 8 cos vsin? u.

The parameters u,v vary in the rectangle R: 0 <u <2m, —n/2 <v < 1/2. Now, we can write
and calculate the surface integral:

/S/F-ndA - /R/F(r(”ﬂ’))‘N(u,v)dudv:

2 p—m/2
8/ / (7cos®veos® u — cosvsin® v)dudv =
0 —m/2

7 2« /2 /2
8 {/ (1 +cos2u)du/ cos® vdv — 27T/ cosvsin? vdv} =
2 Jo —7/2 —x/2

/2 /2
567r/ cos> vdv — 16717/ cosvdvsin®vdy =
—7/2 —7/2

/2 n/2
87r{7/ (1 —sin*v)dsinv —2 dvsinzvdsinv} =
—1/2 —7/2

87r{7/11(1—tz)dt—z/lltzdt} =

87[7-(2—2/3)—4/3] =87-4/3-6 = 64.

coinciding with the value (12.2).
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Example 21 Physical Interpretation of divergence

The mean-value theorem for a triple integral yields

//T/f(x7y’z)dv:f(xo,yo,zo)V(T)

where (xo,y0,20) isapointon 7 and V(T) is T’s .
According to Gauss’s theorem

| |
divF(xo.y0, :—///d' dezi/ /F JA.
v (XO Yo ZO) V(T) T v V(T) S(T) n

Choose a fixed point P : (x1,y1,z1) in the T and let T shrink to P so that the maximum distance
d(T) between points in T and P approaches 0. As a result, one obtains a different definition of

divergence
1
divF(x;,y1.2) = lim 7/ /F-ndA.
Coyva) = S J

This means that divergence is independent of a Cartesian coordinate system in space.

Example 22 Differential operator of the second order
2 9>  9?
=32 + 92 + 92
is called the Laplace operator (Laplacian). A twice differentiable function f that satisfies the
Laplace equation in domain 7T,

A=V?

9*f 9 f O9*f
Af==5+=5+=5=0
f dx2 + dy? 0972 ’
called harmonic function in T.
One can transform a double integral of Laplacian Aw to a line integral of its normal derivative

ow.
//Vzwdxdy:/awds.
R c on

on’
One can also transform a triple integral of the Af Laplacian to a surface integral of its normal
derivative for

F=gradf.
We have 2 2 2
. . f f f_w
dlszdlvgradf:WqLa—y2 a—z2:V f,
and

F-n=gradf-n

According to Gauss divergence theorem, we get

/ /T / V2 fdxdydz /S / g{;dA.

This we have shown that if f(x,y,z) is a harmonic function in T (V>f = 01 T, then the integral
of the normal derivative of this function is zero

/S/gijdAzo.
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Problems
Problem 9.7.13

Evaluate the integral over a surface 7 : |x| < 1,]y| < 3,|z| <2 da F = [x?,0,7?].
Problem 9.7.15

Evaluate the integral of F = [cosy, sinx, cosz| where S is a closed surface consisting of the cylinder
x*+y? =4 (|z] < 2) and the circular disks z = —2 and z = 2 (x> +y? < 4).

Problem 9.8.1

Verify the fundamental properties of solutions to the Laplace equation for f(x,y,z) = 272 — x> —y?
and S being a "box’ surface 7: 0 <x<1,0<y<2,0<z<4.



13. Stokes’s Theorem

The Stokes’s theorem transforms line integrals into surface integrals and generalizes Green’s
theorem in the plane.
Let x,y,z be a positively oriented Cartesian coordinate system and

V(x,y,z) = Vl(xvyvz)i_l_VZ(xay?Z)j +V3(X,)’7Z)k

a differentiable vector function. The vector function

i j k
curlv=V xv= % (% a% =
Vi v2 V3

aV3 avz R 8v1 aV3 . 8vz 8v1
(a—y‘a—z)”(a—z‘x)”(x—a—y)k

is the curl of v (or rotation of vector field v).

Let (i) S be a piecewise smooth oriented surface in space and the boundary of S a piecewise
smooth simple closed curve C and (ii) F(x,y,z) a continuous vector function that has continuous
first partial derivatives in a domain in space containing S. Then

//(curlF) 'ndA=/For’(s)ds, (13.1)
s C
Here n is a unit normal vector of S, r/(s) is the unit tangent vector and s the arc length of C.

Write Stokes’ theorem componentwise. Remind that the parameter form of surface S is given
by three equations

x=x(u,v), y=yu,v), z=z(u,v), (u,v) €D, (13.2)
or by the vector function

r(u,v) = [x(u,v),y(u,v),z(u,v)] = x(u,v)i+y(u,v)j+z(u,v)k [(u,v) € D], (13.3)
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here r(u,v) is the position vector of the point P = P(u,v) = (x(u,v),y(u,v),z(u,v)) € S and variables
u,v are parameters. Domain D is located in the uv-plane and is called the parameter domain.
We can write Stoke’s theorem in components

oF;  OF IF  IF IR, IR -
/R/Kay‘az>N1+<az‘ax)N”<f%c‘@)ﬂ"“‘”‘
Z/C‘<F1dX+F2dy+F3dZ),

where R is the parameter domain in the uv-plane bounded by spatial curve C corresponding to S
with parameter vector function r(«,v) and normal vector N(u,v) = [N1,Na, N3] =1, X I}.

Example 23 Verification of Stokes’s Theorem

Verify Stokes’ theorem for the vector functions
F = [y,z,x] = yi+zj+xk
and the surface (paraboloid) S given by
2=flxy)=1-(+y"), z2>0

Solution. The curve C is a circle r(s) = [coss,sins,0]. Its unit tangent vector is r'(s) =
[—sins,coss,0]. Hence

2
/Fﬁ@ﬁz/‘wm@ﬁmﬂﬂ+mwz—m
C 0

According to Stokes’s theorem, we get

i j Kk
_ |4 2 92 |_
curlF = | = e
y z x

Q_% 1+ @_@ '+ %_Q k =
dy 0z 2z ox)? ox dy)
—i—j-k=[-1,—1,—1].

A normal vector of S is
N = grad (z — f(x,y)) = [2x,2y,1].

Furthermore, we calculate the scalar product and get
curlF-N=[—-1,—1,—1]-[2x,2y,1] = —2x—2y— 1.

Using polar coordinates defined by x = rcos 8, y = rsin 8: we obtain

//(curlF)~ndA://(—Zx—Zy—l)dxdy:/~/(—2rcos(9—2rsin9—l)rdrdO,
s R R

where R is the circle r < 1, 0 < 0 < 27. Next we have

/~/(—2r0059 —2rsin@ — 1)rdrd6 =
R

27 1 27 1 27 1
—2/ cosede/ rdr—2/ sinGdG/ rdr—/ de/ rdr=0+0—7 = —7.
0 0 0 0 0 0
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Example 24 Evaluation of a line integral by Stokes’s theorem

Evaluate

/CF -r'(s)ds,

F = [y,xz’, —2y’] = yi+x’j — 2k,

where

and C is the circle
Py =4, z=-3.

Calculate the integral directly and with the help of Stokes’ theorem.

Solution. As a surface S bounded by C we can take the plane circular disk S : x>+ y? < 4 in the

plane z = —3. Then a normal vector to S n =k = [0,0, 1], and Stokes’ theorem gives
i k
d 9 2
curlF = o Jy oz =
y xz2 —zy°
(—zy*) I dy d(—z° o(xz*) 0
(zy)_(JCZ)i+ l_(zy)jJr () 9y
dy 0z 0z ox ox dy

=3z(y” +x2)i+ (2 — Dk = [-32(* +x2),0,2° — 1].
curlF-N=curlF- k=27 —1

and
curl F-N|__;=-3%—1=-28.

Then
/ / (curl F) -ndA = / (—28)dxdy = —2872* = —112x.
S x24+y2<d z=-3

13.1 Problems
13.1.1 Problem 9.9.1

Evaluate the surface integral

/S /(curlF) ‘ndA,

OS}CSI, OSYSL Z:l‘

where F = [z2,5x,0] and S is a square

13.1.2 Problem 9.9.3

Evaluate the surface integral

/S /(curlF) ‘ndA,

where F = [¢%, ¢%siny, e cosy| and S is a cylindrical paraboloid.

7=y, 0<x<40<y<2.



14. BVPs for the Laplace equation

Assume we have a rectangular plate of length a and width b of constant thermal conductivity.
Assume further that the flat domain is isolated and that the sides are at constant or non-constant
temperature described by four given functions fi(y), f2(y), 0 <y < b, and f3(x), fa(x), 0 <x < a.
Let u = u(x,y,t) denote the temperature of the point (x,y), 0 < x < a, 0 <y < b, and the time
moment ¢ > 0. After a certain sufficiently long time interval, the plate temperature tends to be
stationary i.e. independent of time. Then u = u(x,y) satisfies the BVP for the two-dimensional
Laplace equation in the rectangle IT= {x,y) : 0 <x<a,0<y < b} (II={x,y): 0<x<@a,0<

y<b})

Au=0, u=u(xy), O0<x<a, 0<y<b,
u € C*(IT)NC(10),

u(0,y) = fi(y),  ula,y) = fa(y),
u(x,O) :f3(x)a u(x7b) = f4(x),
f34(x) €C([0,a]), fi2(y) € C([0,D]

Note that the corresponding homogeneous BVP

0<y
0<x
).

INIA
S

a,

Au=0, u=u(xy), 0<x<a, 0<y<b,
u € C2(IT) NC (1),

M(O,y) =0, u(aay) =0,

u(x,0) =0, u(x,b) =0

has only a trivial solution.

(14.1)
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14.1 Separation of variables in a rectangle
Determine a solution u € C*(IT) N C(IT) to the Laplace equation Au = 0 which has the form

u(x,y) =X (x)Y (y). (14.2)
Insert (14.2) in Au = 0:
X'Y+Y'X = 0, (14.3)
X// Y//
—+— = 0. 14.4
vty (14.4)

Both fractions in (14.4) must be equal to a constant. We consider two cases I and II, which
correspond to a negative and a positive constant denoted by —A% < 0 and u? > 0.

Solve the first two differential equations for X (x) and Y (y) arising from the (14.3) and (14.4)
with a negative constant —A2 < 0:

"

case I ~ = —A*= X"4+A°X=0 = X(x)=BjcosAx+BysinAx
Y//
2 A’= Y'—A’Y=0 = Y(y)=CcoshAy+C,sinhdy
and with a positive constant u? > 0:

"
case II <= = X"-A’X=0 = X(x)=DjcoshAx+D,sinhAx, (14.5)
"

v = —u?= Y'4+AWY =0 = Y(y)=Ecosdy+E;sinAy. (14.6)

Now use (14.5), (14.6) and its equivalent in cases I and determine solutions to the Laplace
equation that satisfy homogeneous boundary conditions (14.16) on all sides of the rectangle IT
except one. We have four such cases:

Homogeneous boundary conditions (14.16) on all sides of IT except y = b

I X(0) =X(@)=0 = B =0,B=1A=""=anC =0
a

Y(0) =0 u = uy,(X,y) = sinanxsinh any (14.7)
un(0,y) =un(a,y) =0; un(x,0)=0.

Homogeneous boundary conditions (14.16) on all sides of IT except y =0

2 X(0)=X(a)=0 = B =0,Br=1:4 =" =an
a

C; = sinh(anb);C, = —cosh(onb)
Y(b)=0 u =uy,(X,y) = sinanxsinhan(b—y), (14.8)
uy(0,y) =up(a,y) =0; uy(x,b) =0.

Homogeneous boundary conditions (14.16) on all sides of IT except x = a

3 Y(0) =Y(®) =0 = E1:0;E2:1;un:%m:/3m;01:0
X(0) =0 u = up(X,y) = sinh Bmxsin fmy, (14.9)
U (x,0) = um(x,b) =0; uy(0,y) =0.
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Homogeneous boundary conditions (14.16) on all sides of IT except x =0

4 Y(0) =Y(b)=0 = E1=0;E2=1;un=n7m:/3m;D1:0
X(a) =0  u=up(x,y)=sinhBm(a—x)sinfmy, (14.10)
Un(%,0) = uy(x,b) =0; wuy(a,y)=0.

u given by (14.7)—(14.10) are solutions to the Laplace equation in a rectangle Il which have the
form (14.2). One can use (14.7)—(14.10) and determine the solution to (14.1) as a Fourier series
using the Fourier method.

14.2 Dirichlet BVP in a rectangle with a given boundary function
Consider an example of the BVP (14.1)

Au=0, u=u(xy), 0<x<a, 0<y<b,
u(0,y)=0,  u(a,y)=0, 0<y<b, (14.11)
u(x,0) =0, u(x,b) =H(x), 0<x<a,

where u € C?(IT) N C(IT), with a boundary function
H(x) € C'[0,a)NL = suppH(x) C (0,a)

dvs H(xs£tp)=0,H'(xstp)=0and H(x) =0,x¢ L=suppH(x) = (xs— p,xs+p), 0 < xs < a;
for example
2 (v 212 ,—r(x—xs)? _
H(x) = { OP" = @=xs) T, =g < p, (14.12)
0, |X—XS| 2D,

where p, Q and r are given positive numbers, and supp H(x) = L = (xs — p,xs+p) C (0,a).

14.3 Problem
Solve the BVP
Au=0, u=u(xy), 0<x<a, 0<y<b,
u(0,y) =0, u(a,y) =0, 0<y<b, (14.13)
u(x,0) = H(x), u(x,p) =0, 0<x<a,

with a boundary function H(x) € C'[0,a]NL = suppH(x) C (0,a) ie H(xs £ p) =0, H' (xs+p) =0
and H(x) =0, x ¢ L =suppH(x) = (xs — p,xs+p), 0 < xg < a. Use the Fourier method and
determine solution as a Fourier series.

Solve the BVP
Au=0, u=u(xy), 0<x<a, 0<y<b,
u(0,y)=H(y),  u(a,y)=0, 0<y<b, (14.14)
u(x,0) =0, u(x,p) =0, 0<x<a,

with a boundary function H(y) € C'[0,b]NL = suppH(y) C (0,b) ie H(ys+p) =0, H' (ys+p) =0
and H(x) =0,y ¢ L =suppH(y) = (ys— p,ys + p), 0 < ys < b. Use the Fourier method and
determine solution as a Fourier series.
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BVPs for the Laplace and Poisson equations

Consider a BVP for the two-dimensional Laplace equation in the rectangle with vertexes (0,0),
(a,0), (a,b) and (0,D):

Au=0, u=u(xy), 0<x<a, 0<y<b,
M(O,y) :fl(y)a u(avy):fZ(y)’ (1415)
u(x,0) = f3(x), u(x,b) = fa(x).
The two-dimensional Poisson equation is
Au=p(x,y), wu=uxy), 0<x<a, 0<y<b. (14.16)

Note that e.g. the temperature is defined by a continuous function in the closed rectangle. Thus
boundary functions f; in (14.15) must coinside in the corner points (0,0), (a,0), (a,b) and (0,b):

u(0,0) = f1(0) = /3(0),  u(a,0) = f3(a) = f2(0),
u(0,6) = fi(b) = f3(0),  u(a,b) = fula) = f2(D). (14.17)

Consider an example: the functions

AG)=y(1=y), LO)=2(1-y), fHx)=x(1-x), filx)=3x(1-x) (14.18)

satisfy (14.17) on the sides of asquare 0 <x < 1, 0 <y < 1:

f1(0)=f3(0)=0,  f3(1) = f2(0) =0,
A1) =f20)=0,  fu(1) = f2(1)=0.

The numerical solution to the corresponding BVP (14.15) for the Laplace equation in the unit
square is illustrated by Fig. 15.3.

Fig. 15.4 shows the results of the numerical solution to the BVP for the Poisson equation in the
unit square

Au=p(x,y), u=uxy), 0<x<l, 0<y<l,
u(0,y)=0,  u(a,y)=0, (14.19)
u(x,0) =0, u(x,b) =0

The right-hand side p(x,y) is shown in Fig. 15.5.
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15.1 Approximation

To approximate the function u(x,y), x € [0,a], y € [0,b], and solve the BVP (14.1) numerically by
replacing it with a differential approximation divide intervals [0,a] and [0, 5] in (smaller) Ny and Ny
intervals, respectively, and specify functions’ (N — 1) and (N, — 1) x- and y-values at the nodes

x; = ihy and y; = jh, equally spaced with the distances h, = a and hy = 17:
n y

xi = ihy, i=0,1...,Ny, x=0<x; <xp < <xn,—1 <Xy, =a,
yi = Jjhy, j=01...Ny, yo=0<y; <y:<---<yn-1<yn,=b,. (15.1)

We approximate the Laplace and Poisson equations in (14.15) and (14.16) with the finite
differences at the points (x;,y;), where

Xj =X +ihy = ihe, yj=yo+ jhy = jhy, (15.2)
i=1,2,...,N,— 1, j=12,....,N,—1,
by the finite-difference expressions

Uim1,j— 205+ Uivj Wi j — 2+t pi (15.3)
h)% h% LI

i=1,2,... ,Ny—1,  j=12,...N—1,

+

where p; j = p(x;,y;) (Poisson equation) or p; ; = 0 (Laplace equation).
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) ) y=b ule,b) = fyla)
= -"\'-_n
Ny— 13— M
ull,w) = [y | ! ula, y) = foly
(0.5} = filw) [&=7] y) = fatu)
w =i lo = wie,y), D<o <a, U=y<b
&
R = o
YN,
i=1 — = —T— —]
=
) %=0 Y x=a
j=0

i=0 1 w@0)=[filr) y 1 i=pN,
pp=ily, i=0,1,2...;N-1, N,

Figure 15.1: Numerical solution of BVPs for the Laplace and Poisson equations in a rectangle.

Now suppose h, = hy, = h. Rewriting(15.3)

1
ujj = Z[“Hl,j Fuioy i 1] — B, (15.4)

we get (N — 1)(N, — 1) linear equations with unknowns u; ;. To obtain the corresponding linear
equation system, write u; ; as a vector

wij=ug, k=12,....N=(Ny—1)(Ny—1). (15.5)
We count unknowns under the rule
k=j+(Ny—1)(i—1), k=12,....N=(Ne—1)(N,—1), (15.6)
so that

k=12 ... N—1

(L)) = (L1)(1L,2)...(1N,~1)

k = NyNy+1...2N,—2
) = (2,1)(2,2)...(2,N,— 1)
)

(15.4) rewriting
U1 — 4+ up_q FUN,— 1)k T UN,—1)—k = thk, k=1,2,...,N=(N,— 1)(1\/y —1). (15.7)

Use (15.7) and write each equation at a point (x;,y;), i =1,2,..., Ny — 1; for example, at i = 1,

j =1 —4u+ur+uy,=—[fi(n)+ f3(x1)]
Jj = 2 w—4ur+us +Un+1 = —f3(x2)
j =3 u2—4u3—|—u4+bt1vy+2 = —f3(x3)

j = Ny—1 uy_1—duy,+un, = —[f2(y1) + f3(xn,)]
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i-1 i i+1

Figure 15.2: Difference approximation of the Laplace operator.

Finally, the system of equations (15.7) turns to a system of linear equations
Au=f (15.8)

with a symmetrical tridiagonal block matrix

(R I O 0
I R I 0
0 I R 0
N e (15.9)
0 0 O I
L0 0 O R |
Ris an N x N tridiagonal matrix,
[ —4 1 0 7
1 -4 1 0
1 -4 0
R— . . e ’ (15.10)
0O 0 O 1
L 0O 0 O —4 |
I'is a unit matrix of size N X N,
[1 0 0 0]
010 0
[— 0 0 1 0 ’
0 0O
L0 0 0 1
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u is a column vector of size N,
u={w}’, k=12,...,N, (15.11)
and f is a sum of two column vectors of size N,
f=1+1, (15.12)
where

fi=[(x) 0 0...0 0 fi(x)]7,
BL=[Ai1) 0...0 () fil) 0...0 fa(y2) fily3) 0...0 f(w)]", (15.13)

x={x=ih}, i=1,2,...,N,.

Figure 15.3: Example of numerical solution to BVP (14.15) for Laplace equation in the unit square
0 <x<1,0<y< 1. Boundary functions are defined in (14.17).
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4 L
¢
-4
%
3 -
i, .
08 G |
o — I}
04 e i
i e 4
- e
2 e az
P

Figure 15.4: Example of numerical solution to BVP (14.19) for Poisson equation Au = p(x,y) in
the unit square. Right-hand sidep (x,y) is shown in Fig. 15.5.

Figure 15.5: Right-hand side p(x,y) of Poisson equation Au = p(x,y) in the unit square.
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16. Introduction to the finite element method

Piecewise linear elements

An n-dimensional vector
a= [alaaZa s 7an]

is defined as an element of an n-dimensional space R" and is an ordered set of n components
ai,ap,...,a,. The n vectors

iy =1[1,0,0,...,0], i,=[0,1,0,...,0], ..., in=10,...,0,1]. (16.1)

form an (orthonormal) basis in R". Each vector a = a = [a;,az,...,a,] €R" can be written as a
linear combination of the basis vectors,

a=aqi1 +wmiy+...,+a,iy. (16.2)

To introduce the piecewise linear finite elements, divide, as in (15.1), interval [0, 1] in M (smaller)
intervals K; = [xj_1,x;], j=1,2,...,M (M > 2), with the points

=0<xn<n< <xy_1<xy=1

(in general, nonuniformly distributed with different distances between them h; = x; —x;_1, j =
1,2,...,M). The corresponding (M + 1)-dimensional vector

XM = [x0,X1,%2, -+, Xp—1,%M] (16.3)

is called partition of the base interval [0, 1].

1
Note that for the points x; uniformly distributed with the distance 7 = —,
n

x; = jh, j=0,1...M,
X0 = 0<xj=h<xx=2h<--<xy_1=M—-1)h<xy=Mh=1. (16.4)
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The corresponding partition
Xm = [0,h,2h,...,(M —1)h,1] = h[0,1,2,....M — 1, M]. (16.5)
The piecewise linear elements are defined as

0 xo <x<xj1,
X—Xj_1
UL i <x<x;
hi J ] .
q)](x): X_/+1J*x << x J:1>2M_1a
th XjS>X>Xjrl,
0 ijrleSxMa

hj:xj—xj,l, ]:l,Z,M (166)
Each ®;(x) is a piecewise linear ‘rectangular’ function such that

cpi(xj):{(l) i;j L i j=12...M—1, (16.7)

it does not equal 0 in each subinterval [x;_i,xj1] = K; UK, j=1,2,...,M —1 (see Fig. 16.1).

Figure 16.1: The piecewise linear elements.

Assume that Xy = [xo,x1,X2,-..,Xp—1,Xy] i a given partition of [0, 1] into M subinterval
Kj=xj_1,x], j=1,2,...,M (M > 2). Define the (M — 1)-dimensional space S, = S,(Xm) of
piecewise linear functions

Sp = {v € Sj,: valinear in each subinterval K;, v(0) = v(1) =0, h = maxh;}. (16.8)

Theorem 31 The set {®;(x)} of piecewise linear elements is a basis in space S; i.e., any piecewise
linear function can be written as a linear combination of ®;(x).

Proof. A piecewise linear function F = F (M;x) defined on the interval [0, 1] is a linear function
on each subinterval K; = [x;_1,x;], j =1,2,...,M. This function vanishes on the endpoints of
interval [0, 1] so, that F(M,0) = F(M,1) =0 and has M — 1 vertices and its derivative is undefined
in these points.

Thus the function F = F(M;x) is composed of M piecewise linear functions F;(x),

F(M;x)={ Fi(x), x€Kj;, , j=12...M, (16.9)
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Function F = F(M;x) € Sj, has values 7} in nodes x;, j =1,2,...,M —1 (i.e., the function goes
through the points (x;,7;), j = 0,1,2,...,M) and for endpoints of the interval is defined as
F(M,0):=Ty=0,and F(M,1) := Ty = 0, respectively. Thus any subfunction F;(x) goes through
the points (x;_1,7j—1), (xj,7;), and uniquely determined on each subinterval K; = [x;_1,x;] (as a
linear function) by

Fi(xj.1)=Tj-1, Fi(xj)=T; (16.10)

We obtain that any piecewise linear function F' = F(M;x) € S, which has values 7} in the nodes x;
is uniquely determined on the interval [0, 1] under the conditions

Fi(x))=T;, j=0,1,2,....M, Ty=Ty=0. (16.11)

Now let us show that any given piecewise linear function F = F(M;x) € S, which has values
T; in the nodes x;, j = 0,1,2,...,M, with Ty = Tjy = 0 is a linear combination of piecewise linear
base elements ®;(x). A linear combination of ®;(x) is

M—1
Fx)=) Tidi(x). (16.12)
i=1

F(x) is a piecewise linear function (as a sum of piecewise linear functions) and

M—1
F(xj) =Y TPi(x;)=T; (16.13)
i=1
B M—1 . M—1
F(xo) =) T®i(x0) =0, F(xy)= ) T:®Pi(xo) =0, (16.14)
i=1 i=1
according to (16.7), so
~ M—1
F(x) =Y Tidi(x) = F(M;x) € Sj. (16.15)
i=1

Consider a (M — 1)-dimensional space S, = (Xm) of piecewise linear functions. The minimal
value of parameter M = 2 gives us two subintervals K| = [xo,x;] and K» = [x1,x2]; Then the
corresponding partition

XZ = [X(),XI,XZ] = [O,X1, 1] (1616)

is a 3-dimensional vector. For this partition, we can define only piecewise linear ’triangular’
elements @ (x) by formula (16.6) for j = 1

hh=x1—xp=x1, h=x—x1=1-—x, (16.17)
which satisfies (according to (16.7))

Di(x)) =1, @ (x)=D1(0)=0, @ (x;)=D(1)=0, (16.18)
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and not equal to 0 on the whole interval [xp;x2] = K; UK, = [0, 1]. In this case M = 2 and the basic
element @ (x) (16.17) is an element of one-dimensional space S, = (x2) which consists of one
piecewise linear ’triangular’ functions v(x) := C®; (x) with an arbitrary C:

S, = Sh(Xz) = {C@] (X) VC € R},

v(x) € Sp(Xz) : v(x1) =C, v(x)=v(0)=0, v(x)=v(1)=0. (16.19)

In the same way one can show that in the case M > 2, the (M — 1)-dimensional space S, =
Si(Xm ) consisting of piecewise linear functions which take values 7j innodes x;, j=1,2,...,M —1
and vanishes in nodes xy = 0 and xj; = 1 (and can be written as (16.12)),

M-1
Sn=Sp(Xm) = { Y Ti®i(x), VIm= [T17T2,--~,TM—1]}- (16.20)
i=1

We can determine piecewise linear base elements ®;(x) € Sj,(Xm) with the base vectors (16.1)
and a piecewise linear function F = F(M;x) € S,(Xm) which takes values 7}, Ty = Tyy = 0, in
nodes xj, j =0,1,2,...,M —1,M. The (M — 1)-dimensional vector of the values is

Ty = [T, D, .., Tyi] (16.21)

The set C}(Ip) denotes a set of continuously differentiable in the closed interval = [0, 1]
functions f(x) which satisfy the following boundary conditions

fx) € Gollo) = f(0) =0, f(1)=0. (16.22)
A projection Py (f) of a function f(x) € C}(I) in the (M — 1)-dimensional space S;, = Sj,(Xm) of

piecewise linear functions with respect to a given partition (16.3) Xy = [x0,X1,...,xp] (M > 2) is
defined as (16.12)

S

1
Pu(f) = ) fx)®Pi(x). (16.23)

i

—_

We can determine the projection Py (f) as a (M — 1)-dimensional vector

Pyv=[fi, /o, fu—1],  fi=f(x). (16.24)

Numerical solution of BVPs using the finite element method

Consider a BVP for a linear differential equation of the second order

Ay =—(ay) +q(x)y=f(x), x€l=(0,1),
{y(O)—O, y(1) =0, (16.25)

where a(x), g(x) and f(x) are smooth functions satisfying the following conditions

a(x) >ap>0, gq(x)>0.
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Variational formulation
The Variation formulation of BVP (16.25), or weak formulation, is given by

a(y,0) = (f,9) V¢ € Cy(h), (16.26)

where
atr0) = [ Tao' a0, 1627
(10) = [ rwowas (16.28)

Divide an interval [0, 1] into M subintervals K; = [x;_1,x;] j=1,2,...,M. The corresponding
partition Xy = [x0,X1, ..., Xp—1,Xp] (M > 2). To implement the numerical method for solving BVP
(16.25), written in the weak form as integral equation (16.26), we replace functions a(x), y(x), g(x)
and f(x), for x € Iy = [0, 1], with their projections in the (M — 1)-dimensional space S, = S;,(Xm)
by piecewise linear functions with respect to a given partition Xy = [xo,x1, ..., Xp—1,xXp] (M > 2)
and (16.26) with a finite-dimensional approximation based on piecewise linear finite element (16.6).

Finite-dimensional approximation

Formulate a finite-dimensional problem which approximates BVP (16.25) or (16.26): find u;, €
Sp(Xm) such that

a(un, ¢n) = (f,0n) V¢ € Sp(Xm). (16.29)
Here uy, is given by
M—1
un =Y, Uj®;(x); (16.30)
j=1

it can be considered as the projection (16.23)
M—1
Py (u) =Y u(xi)®;i(x) (16.31)
i=1

of the unknown solution u(x) € C}(Ip) of BVP (16.25) in (M — 1)-dimensional space S, = S;,(Xm)
of piecewise linear functions with respect to partition (16.3)

Xm = [X0, X1, Xp—1,Xm] (M >2).

Insert (16.30) into (16.29) to find that (16.29) is equivalent to
M—1
Z Uia(®(x),Pi(x)) = (f,®;), i=12,.... M—1. (16.32)
j=1

or in the matrix form

AUy =f, (16.33)
where vector f = [fi, f2,..., fu—1] the load vector,
ari ap ... aim-1
A— [a. ] _ azy an) ce az M—1
= |dij| = 5

apm-11 AaM-12 --- AM-1M-1
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or
a(CD],CI)]) a(CI>1,CI>2) a(<I>1,<I>3) a(qDl,qDM_l)
a(Dy, D) a(Dy, D;) a(®y,@3) ... a(Py,Py-1)
A= a(CI>3,CI>1) a(CI)3,CI>2) a(<I>3,<I>3) a(<I>3,<I>M_1) (16.34)
a(®y-1,P1) a(®Py-1,P2) a(@y-1,P3) ... a(@y_1,Py 1)

is a stiffness matrix. The size (dimension) of matrix A is equal to (M — 1) x (M —1) and it is a
symmetric matrix: a;; = aj;.

Note that function @ ;(x) vanishes at the endpoints of the interval. The elements of the stiffness
matrix A of the BVP is determined by

1
a(®j(x), ®i(x))) = a(P;i(x),P;(x))) :/0 [P} + () Pi (x)P; (x) ¢ (x)]dx (16.35)
Some expressions ®;®P; and PP, vanish, e.g.

(®(x),Pi(x)) = (Pi(x),P;(x)) = /Oldbj(x)cbi(x)dx: 0, |i—jl>2(,j=12,....M—16.36)

Stiffness matrix A (16.34) of BVP (16.25) is a symmetric diagonal matrix of size (M — 1) x
(M—1)

c 0 0 O 0O 0 0 O
a —b a 0 0 O 0 O
0 a —b a 0O 0 0 O
o =1 R Do (16.37)
O 0 O 0 - a —b a O
0 O 0o 0 - 0 a —-b a
| 0 0 0 0 - 0 0 0 cn
with elements
ai;=0, |i—j|>2 (ij=12,...,M—1); (16.38)
namely
(ai ap 0 0 - 0 0 0 0
ayy axp a3 0 -+ 0 0 0 0
A= : R : : : (16.39)
0O 0 0 O 0 ay—om-—3 am—2m—2 am-—2M-1
. 0 0 0 0 - 0 0 am-1M-2 aM—-1.M—1 |

If g = const, we get

a(®j(x), Pi(x))

1
0
= (CI):7CI)/J) + Q(q)iv q)j)

a(Pi(x), P;(x)) = / (@D, + q@i(x)P;(x)p (x)]dx = (16.40)

and we can rewrite stiffness matrix A (16.34) as a matrix sum

A=01+0Q0, Q1=[(@,P)], Qo=ql(P:,®;). (16.41)
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Uniform partition

Consider an important case of the uniform partition (16.4) when points x; = jh, j=0,1...,M, are

distributed uniformly with the step & = i and piecewise linear base elements are determined as

0 X0 <x<xj_q,
X—Xj—|
- Xio] <x<x; .
Di(x)=< I, TI=T=N0 12 M1, (16.42)
J j+1
~—n Xj <x<Xxjy1,
0 Xjp1 <x <xy,

The expressions (P ;(x), ®;(x)) =0, |i — j| > 2 vanish according to (16.36). Nonzero elements are

Y] LA | 2
D) = —d —dx= "= 16.43
( ]’ J) x];l h2 er xj h2 X h’ ( )
Xj 1 1 1
AN / Sl (R . 16.44
(®)_1, D)) R\ TR ) (16.44)
X (x—xj_1)? X (xi —x)? 2h
(®;,®;) = / Tédx%— | ]de:?, (16.45)
Xj-1 Xj
Yio(x—xi_1) (x;j—x h
(@j-1,®)) = / ( - 1)(];1 )dx=6, (16.46)

(i,j=12,...,.M—1).

Constant coefficients

If g = const, then the stiffness matrix A is rewritten as a sum of tridiagonal matrices

2 -1 0 0 00 0 0
2 o 0 0 0 O
Or=[(@@)]=1| ¢ ¢ oo (16.47)
0 0 0 0 - 0 —1 2 -1
0 0 0 0 -0 0 —1 2 |
and
(4100 - 000 0]
L1410 0000
Q=[P ®j)l=q¢ | + ¢ 1 1 b p (16.48)
0000 -~ 01 4 1
(0000 001 4|

If g = 0, then the stiffness matrix A coincides with matrix Q;. The finite-dimensional problem
(16.25) approximates the following BVP

—'=f(x), x€l=(0,1),
{y(O):O, y(l):()7 (16.49)

or

AUy =T,
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where
2 -1 0 0
A== [ @)=+ . . . . (16.50)
0 0 -1 2

which coincides with the system obtained for BVP (16.49)

Y' —qx)y = f(x), di <x < da,
y(dr) = fo, y(d2) = fn. (16.51)

The forward and backward differences are determined as

h h
and
i1 —2Vi+yi-
O (16.53)
"o _ ik T2y —yic
Y T Y = Yix,i = 2 )
and
_y)fo:fi)i:laz)"‘aN_l? y0:07yN:07
or
yo = 0
H(=yici+2yi—yip1) = hfi, 1<i<N-1, (16.54)
w = 0.
(16.54) is a system of linear equations.
Approximate solution
Let U= [Uy,...,Uy_1] denote the solution of the linear system (16.33). The approximate solution

of BVP (16.25) is defined as a solution of corresponding finite-dimensional problem (16.25)
M—1
up(x) =Y U;j@j(x) (16.55)
J=1

The approximate solution uy, is an element of (M — 1)-dimensional space S, = Sj,(Xm ) of piecewise
linear functions with respect to partition (16.3) Xy = [xo,x1, ..., Xp—1,xm] (M > 2).

Error estimate
The error r = r(h) of the approximate solution of BVP (16.25) can be defined as

1
()= |y =11 = ¢ RZEER (1656
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where y(x) represents the exact solution of BVP (16.25) and 4 is the maximum length between
adjacent nodes.
The error can be calculated approximately as the Euclidean norm

M-1

r(h) ~|[Um—Ymll2 = | Y (Uj—y;)% (16.57)

i.e., length of the discrepancy vector Uy — Ym, where Ym = [y1, ..., ym—1] with y; = y(x;), j =
1,2,...M — 1, is the projection (16.31) Py (y) = Y1, ' y(x;)®;(x) of the sought for solution y(x) €
Co (o).

One can also determine the error approximately with the help of the maximum norm

r(h)%HUM_YMH":135-1152}31(71’Uj_yj" (1658)

One can show that the following estimates hold to the relative error

[len =yl

TS < Ch? (16.59)

with some constant C. This means that one can solve approximately the BVP using the finite
element method with sufficiently small step 4.

Example 25 M = 3 corresponds to three subintervals K; = [xo,x;], K2 = [x1,x2] and K3 = [x2,x3];
the corresponding partition is

X3 = [X(),Xl,)@,)(}] = [0,X1,x2, 1] (1660)

For this partition, we can define two piecewise linear ’triangular’ functions ®;(x) with j = 1,2

@) (x) = 0 OMO=X0 S XS e by —xa—xp: (166])
: Lot — bt omy <x<x, oA ATk R AL A
x—x; _ x—Mh
= omx; <x < x,
Dy(x) = hy hy hs=x3—x2=1—x2, hp =x2 —x1. (16.62
2(x) {)@hgleh;c omx <x<xp—1, BTHBTH 2, hy =x2—x1. ( )

which have values (as (16.7))
CD]()C]) = 1, (D](Xo) = (D](Xz) = 0, qu(Xz) = 1, CDQ(X]) = @2()63) =0 (16.63)

and are not equal to 0 in the intervals [x,x,] = K} UK and [x},x3] = K, UK3.
Let hy = hy = h3 = h=1/3 and g = const. The stiffness matrix is

aip  an
A=la;j] = [ W1 ] ,
or
1 2 -1 h| 4 1 g_f_@ gh 1
A= [((ID;,(IJ/].)—Fq(CI)i,(I)j)] :Q1+QO:z |: 1 2 :|—|—q6 [ | 4 :| = @_31 26+ﬁ
6 h h 3
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Example 26 In the case of M = 4 we obtain a system of linear equations with M — 1 = 3 unknowns
Ui, U, Us and 3 equations

anUy+anpl,+0xUs = fi,
anUy +anlUs+anls = f (16.64)
Ox Ui +anU,+aysUs = f3

Rewriting system (16.64) in the matrix form, we obtain
AU =f (16.65)
with tridiagonal matrix A (16.39) of size 3 x 3

ain app 0O
A= ay axn ax (16.66)
0 a3 as;

Example 27 Solve the BVP

W _
{ YVi+4dy=2, 0<x<I, (16.67)

with the help of the finite element method (uniform partition) by reducing it to a system of
linear equations with three unknowns. Calculate the approximate solution u; and determine the
(approximate) error ||u;, — y|| where y(x) is an exact solution of (16.67).

Solution. The weak formulation of BVP(16.67) is

a(y,9) = (f.9) V¢ € Cy(h), (16.68)

where

1 1 1
() = [ D0 +ayo(ldx = [ Vo'dxd [ ()00 = (/,0) +40:0). (16.69)

1
(f,0) =2 /0 0 (x)dx. (16.70)

The finite-dimensional problem, which approximates BVP (16.67) or equal weak problem
(16.68), is reduced to a system of linear equations with M — 1 = 3 unknowns U}, U,, Uz and three
equations. In the case M = 4 we obtain four subintervals

Ki = [xo,x1]=[0,h], K= [x1,x2] = [h,2h],
Ky = [x2,x3] = [2h,3h], Ky = [x3,x4] = [3h,4h] = [3h,1] (16.71)

with uniform partition
Xy = [x0,x1,X2,X3,x4] = [0,x1,x2,x3, 1] = [0,h,2h,3h,4h] = h[0,1,2,3,4], h=0.25.(16.72)

For this partition, we can define a piecewise linear base element @ ;(x) according to (16.6) with
j =1,2,3. The linear system of equation AU = f with three unknowns approximates BVP (16.67).
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The tridiagonal stiffness matrix A has a size 3 x 3. We have g = const = 4; the stiffness matrix A is
a sum of symmetric tridiagonal matrices

5 1 2 -1 0 8 —4 0
0 =@ @)} =, | -1 2 -1|=| 4 8 4| (16.73)
o -1 2 0O —4 8
410 2/3 1/6 0
Qo=[(®1,®)]=4>| 1 4 1|=|1/6 2/3 1/6 |, (16.74)
01 4 0 1/6 2/3
and
[ain a0 ]
A = ay an ap | = [(P, D)) +4(P;,P;)] =01+ 00 =
| 0 a3p a3 |
8 4 07 [2/3 1/6 0 26/3 —23/6 0
— | -4 8 —4l+|1/6 23 1/6|=]| —23/6 26/3 -23/6 | =
0 -4 8 | 0 1/6 2/3 0  —23/6 26/3
1 52 =23 0
= 3 -23 52 =23
0 —-23 52

The right side of system is determined as (16.70)
1 1 Xit1
fi=(f, @) = 2/ ®;(x)dx = 2/ &;(x)dx — 2/ ®(x)dx=2h=0.5, i=1,2,3.
0 0 Xi—1
Now we can write the linear system (16.64) AU = f with three unknowns which approximates

(16.67)

52U, -23U, = 3
—23U;1 452U, —-23Us = 3 (16.75)
—23U,+52U; = 3

(we multiply both sides by 6).
Solve this system using the Gaussian elimination:

23U, — (23%/52)U, = 3(23/52),
—23U;+52U,—-23U; = 3
23U, +52U0; = 3
23U, — (23%/52)U, = 3(23/52),
(52— (23%/52))U, —23U3 = 3(1+4(23/52))

—23U,+52U3 = 3

23U — (23%/52)U, 3(23/52),
23U, —23% /(52— (23%/52))Us 3.23(14(23/52))/(52 — (23%/52))
—23U,+52U; = 3
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23U, — (232 /52)U, = 3(23/52),
23U, — 232 /(52 — (23%/52))Us 3.23(14(23/52))/(52 — (23%/52))
(52-23%/(52—(23%/52)))Us = 3+3-23(1+(23/52))/(52—(23%/52))

The solution of system (16.75) is

225
= =2 01
Ui To46 ~ 0137
294
225
= =2 01
Us To46 ~ 0137

The error is approximately calculated using the Euclidean norm (16.57)

r(h) = [[Un—Yml = | Y (U —y))2 (16.76)

J=1

The exact solution of (16.67) is

1
y(x) = Ae2x+Be*2x+§, (16.77)
11—e?
A = —_—— — —U.
55— = —0.060,
1 e2—1
B = ———— =—0.440. 16.7
Sor 5 = 0440 (16.78)

Projection (16.23) Py (f) = Z?: 1 Y(x;)®;(x) can be identified with 3-dimensional vector (16.24)
YM = [)’17)’20’3],
] : ; 1
yi = y(u)=y(ih)=y (;) =Ae? +Be 40 i=1,2.3.
We have

yi = 0.5-0.06e">—0.44¢" /> =0.133,
y2 = 0.5—0.06¢—0.44¢ ' =0.175,
yi = 0.5-0.06¢>2—0.44¢3/> =0.133.

The target error

3

r(h) ~ [|[Um—Yml=,| Y (Ui—yj)?*=
=1
= /(0137 -0.133)2 4 (0.179 - 0.175) + (0.137 —0.133)2 = (16.79)

= V3.0.0042 = V12106 = 3.464- 10~ ~ 0.003.
The error can also be determined approximately with the help of the maximum norm (16.58)

r() = ||Uv — Ynalle = max [U; — ;[ = 0.004. (16.80)
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Problems

Problem

Define uniform partition of the interval [0, 1] and corresponding piecewise linear basic elements P ;.

Problem

Draw the piecewise linear basic elements ®; in the cases of a uniform partition of the interval [0, 1]
on

(a) two subintervals,

(b) three subintervals,

(c) four subintervals.

Problem

Let®;,i=1,2,...,N denote a piecewise linear basic element which corresponds to a uniform
partition {x;} on the interval [0, 1]. Plot the functions

(a) D1 +2P, 4 3P3,

(b) @ — Py + D3+ Py,

1
(©) y1P1 +y2P2 +y3P3 + yaPa, yi = y(x;), y(x) = x + P
Problem
Define uniform partition Xy = [xo, X1, .. .,Xm—1,Xy] (M > 2) on an interval [0, 1] and corresponding

piecewise linear basic element ® and determine the projection (16.23) in (M — 1)-dimensional
space S, = S;,(Xm) of piecewise linear functions with respect to self-defined partition (se (16.3)) of
the functions

(@) y(x) = PERE

(b) y(x) =x* +¢*,
(©) y(x) =sinx+1In(x+1).

Problem

Using nodes x; = i, i = 0,1,2,3, construct a piecewise linear function F(M;x) which coincides
with M + 1 given values y; =i,i =0,1,2,3.

Problem 10.6

Using nodes x; = i, i = 0,1,2,3,4, construct a piecewise linear function F(M;x) which coincides
with M + 1 given values y; = i%,i =0,1,2,3,4.

Problem

Solve the BVP

"o
{y y x, O0<x<1, (16.81)

y(0)=0, y(1)=0

with the help of the finite element method in the case of four sub-intervals. Calculate approximate
solution u;, and determine (approximately) the error ||u; — y||, where y(x) represents the exact
solution. Determine the approximate error by calculating the norm of deviation vector.



16.3.7

16.4
16.4.1

16.4.2

108 Chapter 16. Introduction to the finite element method

Problem

Solve the BVP

/!

Vi—dy=—-1, 0O0<x<1,

(16.82)
{ y(0)=0, y(1)=0

with the help of the finite element method in the case of four sub-intervals. Calculate approximate

solution uy, , where y(x) represents the exact solution.

Solution of two-dimensional BVPs using the finite element method

Strong formulation
As an example, consider BVP (14.19) for the Poisson equation —Au = f in the unit square
—Au=f(x), u=ux), x=(x,x), 0<x <1, 0<x<l,
u(0,x2) =0, u(l,x) =0, (16.83)
u(x1,0) =0, u(x;,1)=0
which we can rewrite in the form
Gu=—-Au=f(x), xeQ=II;=(0,1)x(0,1),
u’l" = Oa
where I" represents the square boundary curve and f(x) is a given continuous function in the square
Q =1[0,1] x [0,1]. Compare (16.84) with (16.25) and then the BVP (14.1) for two-dimensional
Laplace equation Au = 0 in a square I1,, = IT= {(x;,x2) : 0 <x; <a,0 <x, < b} (II={x,y):
0<x<a,0<y<b})

)

(16.84)

u=u(x;,x2), 0<x;<a, 0<x<b,

u € C3(IT) NC(IT),

M(07x2)= 1(x2), u(a,x) = fo(x2), 0<x, <b,
) ('xla ) X) nglgav

: Jal
f34(X1) EC([ al), fia(x2) eC([O, b)),
which we can rewrite in the form
{ Gu=—-Au=0, xell,;,=(0,a)x(0,b),
ulp = f(x).

Weak formulation

Denote by H} = H}(Q) the set of functions v = v(x,x2) whose first partial derivatives is square
integrable over Q and satisfies homogeneous boundary conditions

v[p =0. (16.85)

Multiplying both sides of the Poisson equation —Au = f by an arbitrary function v € H& (Q)
and integrating over the unit square Q with help of (16.85), we get

—/Q/ vAudx:/Q/Vu-Vvdx. (16.86)

It gives us the variation formulation (weak formulation) (16.84) of BVP (16.25)
a(u,v) = (f,v) YveH}(Q), (16.87)
where

a(u,v) = /Q/Vu-Vvdx, (16.88)

(fv) — /Q / Fo)v(x)dx. (16.89)
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Triangulation
Divide the unit square € into a set of triangles K forming a set .7, = {K}

Q = UkesK, (16.90)

hg = diam(K), h= maxhg. (16.91)
Ke 9,

Triangles vertices P (nodes) form a set of points such that triangles K form a uniform and homoge-
neous triangulating areas of the Q.
Define a finite-dimensional space .7, = Sj,(.7,) consisting of piecewise linear functions

Sh={ve .S visaline in each triangle K, v| = 0}. (16.92)

Let {Pi}?i’l € Q be the set of internal nodes that do not belong to the curve I'.
Define piecewise linear "pyramid’ functions @ ;(x) which meet the same conditions as piecewise
linear ’triangular’ functions (16.7)

1 omi=j, o
<I>i(Pj)—{ 0 Om#j i,j=1,2...My, (16.93)

and are different from O in every part triangle K having at least one vertex P; in the Q.
The set {®;(x)} of piecewise linear elements is a basis in a space .7}, i.e., each piecewise linear
function v, € .#}, can be written as a linear combination of piecewise linear basic element ®;(x)

M/l
n(x) =) T®;(x). (16.94)
i=1

(compare with (16.12)).

Finite-dimensional problems

Formulate a finite-dimensional problem which approximates BVP (16.84) or (16.87): Define
u, € .9, such that

a(uh,vh) = (f,vh) Yy, € y;,(%) (16.95)
Here
M,
up = Z Udij(x) (1696)
j=1

and can be considered as projection (16.23)
Py(u) =Y u(P)®;(x) (16.97)

of the target (unknown) solution u(x) € Hj () of BVP (16.87) in a Mj,-dimensional space .%,(.7},)
of piecewise linear functions with respect to triangulation .7},.
Inserting (16.96) in (16.95), we obtain an equivalent equation

My
Y Uia(®;(x), ®i(x)) = (f, @), i=12,....,M. (16.98)
j=1
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(16.98) is a system of linear equations with respect on M), unknowns U; (vector Uy = [U;,Us, ..., Un, |)
which can be written in the a matrix form

AUy =T, (16.99)

where vector f = [f1, f2, ..., fm,] is a load factor and stiffness matrix A is symmetric.

We see that the finite difference method may be considered as the simplest version of the finite
element method of triangulation to solve a BVPs for the Laplace or Poisson equation. The simplest
example is the uniform triangulation of the unit square obtained by dividing the x; - and x, -interval

[0,1] into N subintervals uniformly with the step h = N



	1 Course description
	2 Introduction
	3 Harmonic functions
	3.1 Definition. Fundamental solutions
	3.2 Green's formulas
	3.3 BVPs for Laplace equation
	3.4 Potentials with logarithmic kernels
	3.4.1 Properties of potentials
	3.4.2 Generalized potentials

	3.5 Reduction of BVPs to integral equations
	3.6 Problems
	3.6.1 Problem
	3.6.2 Problem
	3.6.3 Problem
	3.6.4 Problem


	4 Maxwell's equations
	4.1 Time-harmonic fields
	4.2 Simplest solutions: plane waves
	4.3 Fundamental polarizations. Normal waves
	4.4 Problems
	4.4.1 Problem
	4.4.2 Problem
	4.4.3 Problem
	4.4.4 Problem
	4.4.5 Problem


	5 BVPs for Helmholtz equation: classical theory
	5.1 Fundamental solutions of the Helmholtz equation, 3D-case
	5.2 Behavior of wave fields at infinity (2D-case)
	5.3 Fundamental solutions of the Helmholtz equation, 2D-case
	5.4 Integral representation of solution. Potentials
	5.5 Problems for the Helmholtz equation in bounded domains
	5.6 Normal waves
	5.7 Reduction to integral equations
	5.8 Problems in unbounded domains
	5.8.1 Conditions at infinity
	5.8.2 Uniqueness
	5.8.3 Statements of problems of the mathematical diffraction theory. Uniqueness

	5.9 Scalar problem of diffraction by a transparent body
	5.10 Vector problem of diffraction by a transparent body
	5.11 Problems
	5.11.1 Problem
	5.11.2 Problem
	5.11.3 Problem
	5.11.4 Problem
	5.11.5 Problem
	5.11.6 Problem
	5.11.7 Miniproject 1: solution to the Dirichlet problem for the Poisson equation
	5.11.8 Miniproject 2: example of inverse problem


	6 BVPs for Helmholtz equation: pseudodifferential approach
	6.1 Formulation of the problems
	6.2 Uniqueness and existence theorems

	7 Wave propagation and diffraction in guides
	7.1 Wave propagation in a guide
	7.2 Diffraction from a dielectric obstacle in a 2D-guide
	7.3 Diffraction from a dielectric obstacle in a 3D-guide
	7.4 Problems
	7.4.1 Problem
	7.4.2 Problem
	7.4.3 Miniproject: energy of electromagnetic wave
	7.4.4 Problem
	7.4.5 Problem
	7.4.6 Problem


	8 Short introduction to vector differential calculus.
	8.1 Gradient. Directional Derivative
	8.2 Surface normal vector
	8.3 Gradient fields and potentials
	8.4 Problems
	8.4.1 Problem 8.8.1
	8.4.2 Problem 8.9.1
	8.4.3 Problem 8.9.7

	8.5 Divergence and rotation of the vector field
	8.6 Rotation (curl) of a vector field
	8.7 Important vector differential identities
	8.8 Problems
	8.8.1 Problem 8.10.1
	8.8.2 Problem 8.10.2
	8.8.3 Problem 8.10.14
	8.8.4 Problem 8.11.3
	8.8.5 Problem 8.11.14
	8.8.6 Problem 8.11.15


	9 Line integrals
	9.1 Curves in a parametric form and line integrals
	9.2 Line integrals
	9.3 Problems
	9.3.1 Problem 9.1.1
	9.3.2 Problem 9.1.5
	9.3.3 Problem 9.2.2


	10 Green's Theorem in the Plane
	10.1 Problems
	10.1.1 Problem 9.4.1
	10.1.2 Problem 9.4.3


	11 Surfaces and integrals
	11.1 Surfaces in a parametric form
	11.2 Tangent Plane and Surface Normal
	11.3 Surface Integrals
	11.4 Problems
	11.4.1 Problem 9.5.1
	11.4.2 Problem 9.5.3
	11.4.3 Problem 9.5.24


	12 Divergence Theorem of Gauss
	12.1 Problems
	12.1.1 Problem 9.7.13
	12.1.2 Problem 9.7.15
	12.1.3 Problem 9.8.1


	13 Stokes's Theorem
	13.1 Problems
	13.1.1 Problem 9.9.1
	13.1.2 Problem 9.9.3


	14 BVPs for the Laplace equation
	14.1 Separation of variables in a rectangle
	14.2 Dirichlet BVP in a rectangle with a given boundary function
	14.3 Problem
	14.4 BVPs for the Laplace and Poisson equations

	15 Numerical solution of BVPs for the Laplace and Poisson equations
	15.1 Approximation

	16 Introduction to the finite element method
	16.1 Piecewise linear elements
	16.2 Numerical solution of BVPs using the finite element method
	16.2.1 Variational formulation
	16.2.2 Finite-dimensional approximation
	16.2.3 Uniform partition
	16.2.4 Constant coefficients
	16.2.5 Approximate solution
	16.2.6 Error estimate

	16.3 Problems
	16.3.1 Problem
	16.3.2 Problem
	16.3.3 Problem
	16.3.4 Problem
	16.3.5 Problem
	16.3.6 Problem
	16.3.7 Problem

	16.4 Solution of two-dimensional BVPs using the finite element method
	16.4.1 Strong formulation
	16.4.2 Weak formulation
	16.4.3 Triangulation
	16.4.4 Finite-dimensional problems



