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Preface

The “2018 URSI Commission B School for Young Scientists” is organized by URSI Commission B
and is arranged on the occasion of the “2018 URSI Atlantic Radio Science Conference” (URSI
AT-RASC 2018), May 28 - June 1, 2018, Gran Canaria, Spain. This School is a one-day event held
during URSI AT-RASC 2018, and is sponsored jointly by URSI Commission B and the URSI
AT-RASC 2018 Organizing Committee. The School offers a short, intensive course, where a series of
lectures will be delivered by a leading scientist in the Commission B community. Young scientists are
encouraged to learn the fundamentals and future directions in the area of electromagnetic theory from
these lectures.
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1. Course Title

Multiscale Computational Electromagnetics in Time Domain

2. Course Instructor

Prof. Qing Huo Liu
Department of Electrical and Computer Engineering, Duke University, USA

3. Course Program

Lecture 1
- Date and Time: 9:00-13:00, Sunday, May 27, 2018
- Venue: ExpoMeloneras Convention Centre, Gran Canaria, Spain
- Lecture Topics:
1D Time Domain Methods
The Finite Difference Time Domain (FDTD) Method
The Finite Element Time Domain (FETD) Method
The Fourier Pseudospectral Time Domain (PSTD) Method
The Chebyshev PSTD Method
The Frequency Domain Spectral Element Method (SEM)
The Spectral Element Time Domain (SETD) Method

Lecture 2
- Date and Time: 14:00-18:00, Sunday, May 27, 2018
- Venue: ExpoMeloneras Convention Centre, Gran Canaria, Spain
- Lecture Topics:
1D Multiscale DGTD Method
3D DGTD Methods
Nodal DGTD Methods
Vector (Subdomain) DGTD Method with EH Fields
Vector (Subdomain) DGTD Method with EB Fields
Vector DGTD Method with the Wave Equation
Vector DGTD Method for Coupling SE, FE and FDTD Methods






Lecture Abstract

Multiscale Computational Electromagnetics in Time Domain

Prof. Qing Huo Liu, PhD, FIEEE, FASA, FEMA, FOSA
Department of Electrical and Computer Engineering, Duke University, USA

www.ee.duke.edu/~qhliu
Email: ghliu@duke.edu

2018 edition of the URSI Commission B School for Young Scientists lectures by Prof. Qing Huo Liu
focuses on the multiscale computational electromagnetics. The objective of this short course is to
introduce the multiscale time-domain computational electromagnetics to address realistic
electromagnetic sensing and system-level design problems. Such problems are often multiscale and
contain three electrical scales, i.e., the fine scale (geometrical feature size much smaller than a
wavelength), the coarse scale (geometrical feature size greater than a wavelength), and the
intermediate scale between the two extremes. Most existing commercial solvers are based on single
methodologies (such as finite element method or finite-difference time-domain method), and are
unable to solve large multiscale problems. In this short course, we will present the discontinuous
Galerkin time-domain (DGTD) framework to combine the spectral element, finite difference, and
finite element time domain methods, using both explicit and implicit time integration techniques.
Numerical results show significant advantages of the multiscale method. Time permitting, we will
also overview some recent techniques in solving multiscale problems in the frequency domain.


mailto:lgurel@gmail.com

Biographical Sketch of Course Instructor

Qing Huo Liu received his B.S. and M.S. degrees
in physics from Xiamen University, China, and
Ph.D. degree in electrical engineering from the
University of Illinois at Urbana-Champaign. His
research  interests  include  computational
electromagnetics and acoustics, inverse problems,
and their application in nanophotonics, geophysics,
biomedical imaging, and electronic packaging.
He has published over 400 papers in refereed
journals and 500 papers in conference proceedings.
He was with the Electromagnetics Laboratory at
the University of Illinois at Urbana-Champaign as
a Research Assistant from September 1986 to
December 1988, and as a Postdoctoral Research
Associate from January 1989 to February 1990.
He was a Research Scientist and Program Leader
with Schlumberger-Doll Research, Ridgefield, CT
from 1990 to 1995. From 1996 to May 1999 he
was an Associate Professor with New Mexico
State University. Since June 1999 he has been with Duke University where he is now a
Professor of Electrical and Computer Engineering.

Dr. Liu is a Fellow of the IEEE, the Acoustical Society of America, the Electromagnetics
Academy, and the Optical Society of America. Currently he serves as the founding
Editor-in-Chief of the new [EEE Journal on Multiscale and Multiphysics Computational
Techniques, the Deputy Editor in Chief of Progress in Electromagnetics Research, an
Associate Editor for /[EEE Transactions on Geoscience and Remote Sensing, and an Editor of
Journal of Computational Acoustics. He received the 1996 Presidential Early Career Award
for Scientists and Engineers (PECASE) from the White House, the 1996 Early Career
Research Award from the Environmental Protection Agency, and the 1997 CAREER Award
from the National Science Foundation. He serves as an IEEE Antennas and Propagation
Society Distinguished Lecturer for 2014-2016. He received the ACES technical achievement
award in 2017.
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Chapter 1. 1-D Time Domain Methods

This chapter review the finite difference, finite element,
pseudospectral and spectral time domain methods for 1D
problems. In particular, large scale problems are of interest
where objects and domains are larger than the typical
wavelength.

Topics:

- The Finite Difference Time Domain (FDTD) Method

- The Finite Element Time Domain (FETD) Method

- The Fourier pseudospectral time domain (PSTD) method
The Chebyshev PSTD method
The frequency domain spectral element method (SEM)
The spectral element time domain (SETD) method
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1.1 Finite-Difference Time-Domain Method

In one-dimensional problems, the medium and fields
- depend only on one coordinate direction (say x),
- and independent of all other directions.

In this case, Maxwell’s equation can be decoupled into two
decoupled sets of problems:

Set 1: (Ey, H.) produced by (Jy, M.)
Set 2: (E,, Hy) produced by (J,, My).

Our objective in this section is to develop methods for Set 1.
The solution of Set 2 is similar.

Set 1: (Ey, H,) are governed by

OE, OH,
—_— = - —omH, — M, 1.1
Oz o =7 (1.1)
OH.  JE,
w - o oy — Jy (1.2)

* Jy is the y component of the electric current density.

Set 2: (E., Hy) are similarly governed by

OF, 0H,

= L H 4+ M 1.
B I 5 +onHy, + M, (1.3)
)i OF.
oy _ B+ J. 1.4
5 € 5 + o + J. (1.4)

10
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1.1.1 Finite-Difference Schemes

Common finite-difference schemes are

e Forward differencing scheme:

of(x,t)  flx+ Az, t) — f(x,t)
o AL + O(Ax) (1.5)

e Backward differencing scheme:

of(x,t)  f(x,t) — f(x — Ax,t)
b Ao + O(Ax) (1.6)

e Central differencing scheme as in Yee’s FDTD Method:

Az Az
3f((92, t) _ flz+ Tat)A—xf(ﬂf - 55 1) +o(az?)  (1.7)

The order of the error terms can be easily verified by Taylor
expansions.

1.1.2 The Finite-Difference Time-Domain Method

We first discretize the electric and magnetic fields at staggered
spatial points and temporal points.

The domain a < z < b= a + L is uniformly divided into I cells
with Az = b_Ta. The grid points for E, are at

¥ =a+ (i —1)Az,i=1,--- , I+ 1. The magnetic field H, is

located at af = af + Az, i=1,--- I
; 1
E;,n = Ey(xf: nAt)? H::_f = Hz(ﬂ??, (n + Q)At) (18)
2
E‘I E‘z ‘ E“‘-I E" E“\‘*l ‘ ‘ ]—‘Tl*l

Figure: 1.1  1-D FDTD grid with E field located at the boundaries
xz =a and x = b and at integer grid points, while H field located at
half-integer grid points. Note that the half integer index of H is
rounded down to integers for programming. The indexing for E and
H can be reversed.

11
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The staggered grid FDTD method (Yee scheme)

i g wti et
ra— B Hi—i—% i+3 HH—% +Hi+%
Y N T

-M (1.9)
2
n—&—l n—&—l
H. 2 —H_2 E _ pr EMl L gr
% = —&— AL == Oei— 9 = —J; (L10)
x

The source terms

oo L / e o Dands ~ g, Do
! A ) y(Z, 9 Y\Lio 2 3

e_ Az
A 2
1 a:?-l—% L
]WZ_% = Az /g;h_A; M, (z,nAt)dr ~ M,(x;,nAt),
The averaged p and o, at © =zl
1 3:?4—% 1 a:f-l—%
1= — x)d 1= d
/,LZ_,’_% Ax /g;?—A;” H(‘E) €z, Um71+% Ax /zil_Az’C Um(m) €Z

And the averaged € and o, at © = x§

(I ()d 1 @)
€ = —— €\r)axr Oci — —— ol\xr)axr
! Al’ x;_a_% ’ e AIII xle_i_M ’

12
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From these equations, it is easy to obtain a leap-frog scheme

n+% n—% n n n

1 1
n+3 n+s

1
EMY = AGEP — Ay(H TP —H T2 — A (112)

The FD coefficients are given by

2€i — O¢ zAt 2At
Ay =—F— 7, A1 = LAy = A1A
O 26+ oAt P24+ oeiAt) Az 2 1o
By 21 = Oy LA B _ 2At By — B As
2%4% + Um’i+%At (2,ui+% + Um’i+%At)A:r

Proper initial and boundary conditions are needed to obtain
unique solutions.

1.1.3 Initial Conditions

The initial conditions usually refer to field values at ¢t = 0.
However, since we discretize I and H at staggered temporal
points, we will use the initial value of

EY) = E,(x5,0) (1.13)

=

H

1
— h _—~
it = H,(x}, 2At) (1.14)

=N

for all integer values of .

13
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1.1.4 Boundary Conditions

A. PEC Boundary Conditions
EY=FE} =0 (1.15)

B. PMC Boundary Conditions
PMC Implementation 1: Let H, locate at PMC boundaries.

H, at integer points z!' = a + (i — 1)Az, and E, nodes at
x$ = al + %Am.
The PMC boundary conditions can be treated easily

H " =H =0 (1.16)
E,
Ho Hi
l o 1 ot ot ot o
a b

Figure § 1.02 First implementation of PMC boundary

PMC Implementation 2: Let E, locate at PMC boundaries.
The PMC boundary condition

OFE,(x =
H,(x=a)=0 or %:O
H, is an odd function at = = a, so at the virtual node
n+2 n+i
H_lZ — _Hl 2
2 2
The update equation for F4 is modified as
2At n—i—l
Ertt = B} - Z—HT? 1.17
1 1 EiA.fE 1 ( )
H, E, H, H,
o o | o
a

14
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C. Radiation Boundary Conditions

Incident field E™¢ from outside, and the scattered field
Esct =F— Einc'

e The radiation condition at the left boundary x = a
t ¢
oLy° 1 oL*

0z :cL ot (1.18)

where ¢y, is the speed of light for = < a.
Similarly, at the right boundary = = b, the radiation condition is

8E§Ct _ 1 8E§Ct
ox cp Ot

(1.19)

where cg is the speed of light for x > b.
These conditions are exact as long as the medium is
homogeneous for = < a and for x > b.

D — e —

|
|
€L, b Er,Ur

Figure § 1.04 Radiation boundary conditions for the 1D
problem where the scattered field travels outward. The material
discontinuities can occur as close as 1.5Ax from the boundaries

x=a and z = b.

The above radiation conditions can be written explicitly

EZCt(x,t) =f_(t+x/cy)at x=a (1.20)
B (x,t) = fr(t—x/cg) at x =b (1.21)

f—(t) ~ the time function of the waves propagating to the left
f+(t) ~ the time function of the waves propagating to the right

15
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Therefore, with linear interpolation, one has

BsMa,t+At) = fo(t+At+ai/er) = B (a+ cp At t)
~ sct . cr At sct ) cr, At
~ B (at)(1 - —=) + By (a + Az, ) —=

(1.22)

B3b,t+ At) = fo(t+ At —ap/cp) = B5U(b — crAt, 1)
~ sct crAt sct crAt
~ B0 )1 =) + B - Aa )=

(1.23)
a+at
| l I
| I [
a-+Ax

a
Figure § 1.06 Scattered field at x = a + Atcy, at the
previous time step can be interpolated from the values at two
adjacent grid points x = a and = = a + Ax.

Remark: One important thing about 1D incident
waves:

Unlike in 2D and 3D, the incident wave in 1D cannot be
distinguished from an internal source for the opposite boundary
that is NOT impinged by the wave.

For example, if the incident wave comes from left, E*¢ is not
zero for x = a; but to the boundary at x = b, this incident wave
cannot be distinguished from an internal source at a < x < b.
Hence the incident field is treated as zero for the boundary at

x = b, and vise versa.

16
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Now if the incident electric field are
E;}f(:ﬁ, t) from the left, and
E;‘}%(ac, t) from the right,

the updating equations for Ef“ and E?jr'll are

CLAt

EPth = EYe(xf, t+ At) + [E} — EJ(a$,1)](1 — Ar )
; CLAt
+[Ey — gl/nLC(xgvt)]E (1.24)
H i CRAt
Er = Wy (T7p1,t+ A + BTy — EJR (a7, 0)](1 - N )
; crAt
+[ET — %(ﬁ’t)]A—x (1.25)

Equations (1.24) and (1.25)
- together with (1.11) and (1.12) for i =2,--- , I

- complete the time stepping process.

E inc E inc
% %
S I S
a b

Figure § 1.07 Incident electric field from the left side and
from the right side.

17
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1.1.5 Accuracy and Stability Conditions

In order for the FDTD method to produce accurate results,
the spatial discretization must be fine enough.
If the maximum frequency of the pulse excitation is fiqz

(for example, fy,q is the frequency where the spectrum
decays to —40 dB of the peak value),

the minimum wavelength inside the domain is

A Cmin (1.26)

min —
fmaa:

* Cmin = min{1/,/pt€} is the minimum speed of light

in the material inside the domain.

For a moderate size of problem of several wavelengths,
- to obtain accuracy of the order of 1%,

- empirically the sampling density Sp should be chosen such
that the number of points per wavelength (PPWs)

>\mm
Sampling Density Sp = Ar > 10 (PPWs) (1.27)

If the problem size becomes large with respect to the minimum
wavelength,
this sampling density has to be increased.

In other words, the numerical dispersion error of the FDTD
method

increases with the problem size.

18
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v t

/

f max

Figure § 1.08 Pulse (top) and its spectrum magnitude. A

maximum frequency fp,.. is defined as one beyond which the

magnitude is negligible (for example —40 dB below the peak
magnitude).

Ah,__ N/
N AV

Figure § 1.09 The spatial sampling density is defined as the
number of points per wavelength (PPW) at f,4.-

19
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The stability condition for the FDTD method is

Az
At < ——— 1.28
" VDcemax ( )

where ¢pax = max{1/,/p€} is the maximum speed of light,
D is the dimensionality of the problem (in the 1D case,

D=1).
E, E,
| VAR,
| 7A —~
a a+Ax

Figure § 1.10 The stability condition will ensure that within
one time step the wave will propagate a distance within one cell
rather than over one cell.

1.1.6 Sources and Their Time Functions

Electromagnetic sources can be (a) internal electric and
magnetic sources; (b) ;‘}f incident from the left, and (c) ;j}%
incident from the right.

The time function of the source can be written as s(t). For
example, if the incident wave is from the left

;ff@, t) = Eps(t — (v — xo)/cL) (1.29)

where zg < a is the initial location of the incident wave.

If the incident wave is from the right,

Wk (2,1) = Eos(t + (x — x0) /cr) (1.30)

where xg > b is the initial location of the incident wave.

20
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Similarly, for an internal point source located inside the domain
ata<xr=xs<b

Jy(x,t) = Jod(x — z4)s(t) (1.31)

where s(t) is the time function of the pulse.

In this case, in the updating equation (1.12) the discrete current
source term is

xf—&—%Az
n+i 1 1
J HERN N / Oz —x5)s(t = (n+§)At)d;1:
zf—%Az
f s((n+ )AL ifaf — Ar < xg < af + %A(rl 39)
10 otherwise '

There are several commonly used time functions, including
(a) Gaussian pulse and its derivatives;

(b) Blackman-Harris window (BHW) function and its

derivatives:
n=3
i <t <
s =14 = ancos(2nmt/T) f0<t<T (1.33)
0 otherwise

aog = 0.35322222,a; = —0.488,
az = 0.145, az = —0.01022222

The characteristic frequency of BHW function is defined as
fen=1/T.
The maximum frequency of this BHW-1 pulse is

fmax = 3~351fch

21
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ANEVANA
IR

Figure § 1.11  Gaussian pulse (left), its first derivation
(center) and second derivative (right). All three have infinite
tails.

Finite

Az
V4

Figure § 1.12  Blackman-Harris window (BHW) function
(top), its first derivative (BHW-1, center) and second derivative
(BHW-2, bottom). All three have a finite duration 7" = 1/ f..
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finax (—40dB)

Figure § 1.13 The -40 dB truncation frequency fiqz is
related to the characteristic frequency of BHW-1 function as
fmaz =~ 3.351 fep.

1.2 The Finite Element Time Domain (FETD) Method

1.2.1 1-D Wave Equation for the Electric Field

9 _,0E, e(x)0%E,

— — = — b 1.34
ax:ur ox 2 atg Syv T e [av ] ( 3 )
-1
* the source term Sy(z,t) = —,uo%’i + %

* Jy ~ the electric current densities of the source
* M, ~ the magnetic current densities of the source

This equation is the strong form of the wave equation.

23
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The weak form of the wave equation can be obtained by
- multiplying (1.34) with a testing function w,, (z)

- integrating over the interval [a, b]:

b
0 _i, OB, &(x)0*E,]
/dZL'wm(:E) |:al‘lu7' (iU) ax 62 6t2 -

b
- / dewn(2)Sy(x,t)  (1.35)

Integrating by parts, we obtain the weak form equation

/dm[ Oom - (x)% = Er(f)wm(a:)Ey]

c
b
— [,ur_l(a:) 3 ] /dmwm y(x,t)
OH(x,1)]" b
. [wm(x)$] / drwn(z)S, (z,8)  (1.36)
* % = —/Lagz has been used.

Initial and boundary conditions must be applied to obtain
unique solutions.

24
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1.2.2 Perfect Electric-Conductor (PEC) Boundaries

As Fy = 0 is known at the outer boundaries, only the internal
field need to be expanded in terms of basis functions { f,,(z)}:

N
t) = en(t)fulx) (1.37)
n=1

where N = N, — 1 for the first-order basis functions.

X1 X2 Xy, T Ne
Figure § 1.23  Perfect electric-conductor (PEC) boundaries.

The surface term vanishes, and the boundary unknowns are
removed from the system.

With the Galerkin method, the semi-discretized equation
d’e

The elements of the mass matrix and stiffness matrix are

b
My —/dwer( )fm(@) () = (fin (), € () fn(z))0

b
Smn = —¢ /d Ton 1 Fn — _ 2041 (@), fo@))e

dx dr

Um = C T m 0 8x
_ 0J, O 'M.)
= <fm’“°¥* TR

If there are N, elements, the number of DoFs is N = N, — 1.
This is the essential boundary condition.

25
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1.2.3 Perfect Magnetic-Conductor (PMC) Boundaries

Boundary E, values remain unknowns, so N = N, + 1 for
first-order basis functions.
The surface term in (1.36) is zero as H, = 0 at PMC

boundaries.
[ | | | | [
a Ne
Figure § 1.24  Perfect magnetic-conductor (PMC)

boundaries.

The discretized equation remains the same as the PEC case
except N = N, + 1.

This PMC boundary condition is known as a natural
boundary condition for £,: Basis and testing functions do
not explicitly satisfy the boundary condition.

1.2.4 Radiation Boundary Conditions

Radiation boundary conditions for an unbounded domain:

1 oEsct OH3¢ct 1 oEsct
_ Y |z:a — z |z:a — __y|x:a (1.39)
pr Ox ot ny Ot
1 oEsct OH?3¢t 1 oEsct
ey = b = —— 5l (1.40)
ptr Oz ot nr Ot
where 1, g = /4 = are the wave impedance to the left and to

the right of the domain, respectively, and are assumed real.

S
+ e sct
E* 4 ER
<« - 5
| |
—_— ] 3
EII?C a b Ei{lc

Figure § 1.25 Radiation Boundary Conditions.
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The RBC for the total field H, = H™¢ + H3:

. 1 . 92 ..
H,|p—a = —n—LEy\m:a + L i le=a (1.41)
Hz‘x:b = _Ey’xzb - 77_R yR ’:(::b (1.42)

where E;’}f and E;%: are the incident electric field from left and
from right sides, respectively.

Substituting the RBCs into (1.36) yields

for[ 2 2 ]

ox c

— o[ win () Ey (b, 1) + 07 wm (@) Ey(a, )]
= =20 |1 win (B (0,8) + 1w (@) B} a, 1)

b
—/dmwm(x)Sy(x,t) (1.43)

If there are N, elements inside the domain, the number of DoF's
is N = Ng + 1.

27
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1.2.5 Galerkin’s method with triangular functions

Testing and basis functions are both triangular (piecewise
linear) functions.

a Ne b
xm«kld d
t t
S = — -zm . -1 _nd
Tm—1
(1_6m,1) (1_6m,N) . .
T Urm—1ATm—1  UrmAzy, ifn=m
(1_6m,N) . o
= ;LT,,&Agm ) fn=m+1
—Om,1 . - _
T 18T 1 fn=m-1
0 otherwise
Tm+1
Mpyn = / er (2t (z)tn(z)dx
Tm—1
(1—6m,1)€T§1—1A$m_1 + (1_5m,N)];(2)ET,mA$m e m
_ (1—5m,N)667,mAa:m Fnemal
(1—6m,1)Fr,én—1AI‘m_1 1
0 otherwise
Tm+1
Um = —C / daty (2)S, (2, 1)
Tm—1
s 1.fmc a,t S N inc b,t
—2/4003 Tyl (a,t) + m, yR( )

1L R
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For a point electric current source J, = Jod(x — zs) at x5, we
have Sy = —poJod(x — x5)$(t), and

Vyy = ,uoc(Q)Jotm(a:s)é(t)—%g

S Einc(a, t) . Om N EE (b, 1)
nL nR

1.2.6 Elemental Matrices and Assembly

The above is the node-based approach to obtain FETD
matrices.

An alternative way is the element-by-element approach, which
is often preferred in multidimensions. The FETD matrices are
first calculated element by element, then assembled globally.

/y >

Figure § 1.27 Element-by-element approach.
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The m-th element in 1D has two nodal points,z,, and z,,+1. We
use p,q = 1,2 as their local node indices in the e-th element.

* Local elemental matrices M,SZ), 51(92)7 and vl()e).

* Corresponding global indices when assembling the matrices
Ne
Man = 5 )
e
Ne

Sn =3 55

e

Ne
U = Z vl(,e)

The basis function written compactly with simplex coordinates,

L, zpp1—x

L(e) Tpi1 — :I:pv p ) ( )

* L, = xpy1 — x is the “distance” of z to zp41.

* L) =g, — x, is the “distance” from z, to 4.

* Az®) = |L)| = |z, 1 — 2| is the positive element length.
The simplex coordinate ¢, is thus the relative length from the

nodal point p+ 1. Indices (p,q) = (1,2) are cyclic with a period
of 2:

- In other words, p 4+ 2k = p for any integer k.
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The elemental matrices

e=Ne e=Ne¢
Mo = 3 M, S = 3 )
e=1
0 Om.NO.
Cmn _ —,UJ()C(Q) |: m,10n,1 + m,N n,N:|
L NR

The local indices (p, q) are mapped to the global indices (m,n).

e d i dr
e) _ 2 P q p —1 q
Sz(ﬂq) = —CO/%-,LLT (:r)d dr = — /d_ iy dédg
Tp 0
C2 .
(e)Ax(e) ifg=rp
= p‘(eTOx(e) lf q=7p ZI: 1
0 otherwise
Tp+1 1
MO = / e (2)0 ()l (2)dz = L©) / 0,(x)db,
Tp 0
D Aaple) .
S e
= Er %z(e) ifg=p£1
0 otherwise

The excitation vector for a point electric source is

Ne
U = Z vl(,e) - 2#00(2)
e=1

Om,1 151 (a, t) . Om, N BT (b, 1)
nL MR

(e) e ,U/OC()JOtp(:ES)S(t)
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1.2.7. Solution of Semi-Discrete Equation

d’e de
— +C— =S8 1.45
az TV ey (1.45)
We can rewrite this as a set of coupled first order ODEs
e
M=+ Ce = 3e +v
e

S — 1.46
é o (1.46)

Using a 2nd-order (instead of the better 4th-order) time
integration yields

A A
§E = (M4 L) (M- ST 4 Set 4]
el = "4 Ate"2

Note the diagonal mass matrix inversion is trivial and efficient.

Limitations of the low-order FETD method:

* Low-order convergence - error decreases slowly with the
sampling density (SD)

* A high SD is necessary: typically 20 points per wavelength
(PPW) for Errors < 1%

* Expensive and not very suitable for large-scale problems

Stability condition: Depending on the time integration scheme
and properties of system matrices.
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For a PDE time-domain solver, the numerical dispersion error
is linearly proportional to the length of time integration.
* To maintain an acceptable accuracy, the sampling rate

must be increased accordingly if a longer time window is
needed.

The required SD is determined by
1. the problem spatial size in terms of the wavelength, and
2. the length of time window in terms of the period.
Therefore, for a large-scale problem,the SD should be increased
* from the SD of a small-scale problem,

* thus making large-scale problems even more challenging.

1.3 One-Dimensional PSTD Methods

The single-domain pseudospectral time-domain (PSTD)
methods use

@ (a) trigonometric functions
@ (b) Chebyshev/Legendre polynomials

to approximate spatial derivatives with high accuracy.

The Fourier and Chebyshev PSTD methods have the spectral
accuracy if the medium is very smooth.
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1.3.1 Periodic 1D Problems

The spatial derivative can be found through a matrix notation.

A. Derivative Matrix for the 2nd-Order FD Method
The central differencing scheme

_ df (zm) - f(@m+1) = f(@m—1)
T ode 2Ax (1.47)

Um,

has a 2nd-order accuracy, i.e., the error is O(Az?).

This can be verified by Taylor expansion.

Now let’s assume a set of periodic data, {fm,,m=1,--- ,N}
where f,+nN = fm, for all integer m.

Written in terms of a differentiation matrix D

u=Df (1.48)
u:[ula"'qu]T7 fz[fh”'?fN]T
(1.49)
o 1.0 --- 0 -1
1 -1 0 1 0 0 150
C 2Az : Do . : : ( ' )
1 00 --- =1 0

Note Dy = @y—n is a Toeplitz matrix.
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Another view: Interpolation with 2nd-order polynomials p (x)
J@) & fue108(@) + fud? @) + frnrdr? (X)

1
= N [P (@), Tmo1 ST <mpr (151)
l(=—1

where gzﬁ,(?%) (z) are the Lagrange interpolation polynomials:

¢(—22($) - = xm;éx:c; Tm+1)
82)(95) — _(x—mm—l)(f—a:m+1)
Ax
(2) o (l’ — xm—l)(fﬂ . Im)
v 9742 (1.52)

Figure § 3.01  Derivative matrix for the 2nd-Order FD method.
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Hence the derivative at node z,, is given by

1 @),
. — df (xm) _ 3 medqjé—(lm) = Dpnfn  (1.53)

dx dx
=—1
The matrix is given by
D = ——1[5 Sromet] = ——[5 5 ]
mn — 2Ax n,m-+1 n,m—1] = 2AT m—n+1,0 m—n—1,0
ﬁ, n=m-+1
= Qpn = —ﬁ7 n=m — 1(1.54)
0, otherwise

Again D is a Toeplitz matrix with

1
ap = E[(Sk—l,o — Ok+1,0]

B. The 4th-Order FD Method
Similarly, for the fourth-order FD scheme, we have

2
F@)~pD (@) = 37 et (1), T <7 < 2mia (155)
(=—2

The derivative matrix is given by

Dy = amin
= %[85m—n+1,0 - 85m—n—1,0 - 5m—n+2,0 + 5m—n—2,0]

1

Az =M 2
2

T 3AZ’ n=m-—1
= _3ix’ n=m-+1
1;A1m’ n=m+2
0, otherwise
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C. The Nth-Order FD Method
Similarly, for the N-th order FD scheme with all N points

_ dey ()

Dmn
dx

(1.56)

where ¢§me () are the N-th order Lagrange polynomials.
The required N + 1 data points are provided by
- the N points in the domain, and

- the additional point from the periodic boundary condition.

D. Trigonometric Interpolation and FFT Method
The period of the computational domain: L = Zyq0 — Timin-

* Sampling points: x,, = T, + (M — 1)Ax
form=0,--- ,N—1and Az = L/N.
The periodic function is written as a truncated Fourier series
Nj2-1

f(:n):\v,% S femea)/Nas (L57)
p=—N/2
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The Fourier series coefficients are

Tmazx

P % f(l,)e—jQWp(z—xO)/NAzdx

Tmin

N-—1
~ D flwp)e 2N
- DFT(), (1.58)

Thus, from (1.57), we have the spatial derivative

Nj2-1 .
df(!L’m) ~ L Z ]27Tpfej27rmp/N
dz N2 Az P
p=—N/2
27 4. oA
= NAzx {DFT 1[.7pfp]}m
_ 4l —1p,
= o (DETp(DET(0)}}, (159

When substituting the Fourier series coefficients fn into (1.57),

one can obtain the explicit derivative matrix

N-1 N/2-1

d Tm 27 . j2m(m—n
f((iz) ~ NQ—MZf(ZUn) > gpelrimomeN
n=0 p=—N/2
N—-1
n=0
5 N/2-1
T .
Dy = —— Z jpe]2ﬂ'(m—n)p/N
2
N?Azx /2
T S m—n)mw
= ()" ot (%) (1= 6prno)
= Gm-n (1.61)

Therefore, the derivative matrix again is Toeplitz.
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The derivative vector is given by

% = Df = DFT ! {DFTJ[f] - DFT[a]} (1.62)

This derivative costs O(N log N) operations by FFT.

The accuracy of this algorithm is “spectral” for an analytic
function.

* The error decreases as O(a”) where 0 < a < 1.

E. The Fourier PS Method

1-D time domain EM problem for € [Zmin, Tmaz)

OE, OH,
v — o H, — M, L.
Oz o — 7 (1.63)
OH, OE

% = € 8ty — 0By — Jy (1.64)

with periodic boundary conditions
Ey(x + L,t) = Ey(z,t), H,(x+ L,t)=H,(z,t) (1.65)

where L = X402 — Tmin, and appropriate initial conditions.
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Spatial and Temporal Grids

In contrast to the FDTD method which uses a staggered grid,
- the Fourier PS method uses a collocated centered grid

- where all field components are located at the cell centers.

P H((i+ %)Ax, (n+ %)At) (1.66)

where Ax = % This centered grid provides an important
advantage over FDTD

* No need for material averaging in a staggered grid.
* No need for field averaging in anisotropic media.
Note that the time step is still staggered for £ and H.

Time Integration Scheme
For an isotropic medium, the central time differencing yields

H"% = CjH" 2 — Cja{ D, [E"] + M"} (1.67)

E"T! = O, E" + Cuo{ D, [H 2] — J73} (1.68)

e Here D, denotes the derivative operator

2m 1.
Dyff] = = {DF Ty '[jp{DFT[f]},]} (1.69)
The coefficients
o Atop, /2 B At
T ¥ Aten /20 " T i Aton /2
e — Ato./2 B At
Cel - 6+At0’e/27 Ce? - 6+At0’e/2 (170)

The 4th-order Runge-Kutta method can also be used for better
accuracy.
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Source Implementation is the PSTD Method

A point source is a discrete Delta function, so it will suffer from
the well-known Gibbs phenomenon.

* A point source is approximated as a smoothed source over
a few (4-6) cells.
Example: s(z) = Sp - BHWq(x — =) where © = x4 is the
point source location.

* An alternative method is to solve for the scattered field.

1.3.2 A Bounded 1-D Problem

Many problems in practice are bounded and thus not periodic
(for example, a PEC cavity). The Fourier PSTD method has
following issues:

* The discontinuity at boundaries will create the Gibbs
phenomena.

Furthermore, the wave field will “wrap around” (the
wrap-around effect)
- because of the periodicity,

- thus corrupting the fields inside the computational domain.

In addition, the uniform interpolation points will cause the
Runge phenomenon.
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A. Gibbs’ Phenomenon and Wrap-Around Effect
When the trigonometric interpolation

- is used to approximate a discontinuous function,
- it will introduce a large error near the discontinuities.

e This error is called the Gibbs’ phenomenon.

Furthermore, when a non-periodic function
- is interpolated by the trigonometric interpolation method,
- it will create the wrap-around effect

* when the wavefield from other periods will propagate into
the interested domain.

B. The Runge Phenomenon
If a uniform grid is used in the Lagrange interpolation method
to interpolate a non-periodic function,

- as one increases the order of the interpolation polynomials,

- the numerical error near the edges actually grows
exponentially.

e This is the so-called Runge phenomenon for a uniform grid.
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For uniform interpolation points

N+1

f@) Y fioN e (@), el <1 (1.71)
=1

Runge phenomenon: The error increases exponentially with N
near x = +1.

To avoid this Runge phenomenon, the grid points are clustered
near the edge.

A. Chebyshev Interpolation
The Chebyshev points:

- The grid density per unit length should change with N

- so that the density is proportional to
N

/1 — &2

An example is the Gauss-Chebyshev-Lobatto (GCL) points

§e[-1,1]

&m = —cos(mm/N), m=0,---,N (1.72)

If Tpmin < & < Zyge, we can first transform z into € by

1
T = Jiﬁf + §($mzn + xma:(:)

Jr = (Tmaz — Tmin)/2 is the Jacobian of the transformation.
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Given {fm = f(zm) = f(m)} (m=0,--- | N),

- the function can be interpolated by Lagrange polynomials

@) = I e
n=0,n#m (I‘m - xn)
N
n:(:Jl:L[;ém (&m —&n) P (€), m=0, )

The interpolation polynomial can be written into a closed form

2\ _1\m+1+N
80 (e) = 1 éciig\%((fg)(_fli) (1.73)

cm =1+ 5m,0 + 5m,N

Example: N =1, then {§y =—1,& =1

F© % 50 -Ofo+ 50+

a 1.1 1
de — J, [_§f°+ ifl]

At the grid points, the derivatives are

<Z(l)> _ p @) (1.74)

The derivative matrix

1 /-1 1
D<1>=ﬁ(_1 1) (1.75)
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Similarly, if N = 2, then §y = —1, & =0, & = 1, we have

£(&) = 5E(E ~ Do + (1= €y + 260+ 6o

df 1 1 1
Yo = _ —9 -
dr T (€ 2)f0 €f1+(5+2)f2
The derivative matrix
1 -3 4 -1
D@ = o (1.76)
N1 -4 3

The general formula for an arbitrary positive integer N

Cm _1m+n

ot me
S 1<m=n<N-1

D(N):i. 2(1—-¢2) N -
e e IN2 +1

T T m=n=20
2N? +1

T+ m=n=N
\

cm =1+ 5m,0 + 5m,N
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The straightforward way to find the derivative needs to multiple
this dense matrix D,(é\;) with the vector f

* Tt requires O(N?) operations.

This can be circumvented by the fast cosine transform.
Since the Lagrange polynomials used above are of order IV,
* we can represent function f(x) equivalently

by Chebyshev polynomials up to order N.

Function f(z) can be expanded with Chebyshev polynomials
T, (&) = cos[ncos™1(€)]:

N
FE) = anTu(€) (1.77)
n=0

a, are the expansion coefficients.

Examples of Chebyshev polynomials

o) = 1

i) = ¢

o) = 28°-1

T3¢ = 48 -3¢ (1.78)
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For Chebyshev polynomials, some recursion relations are

Tny1(§) = 26T (&) — Tha (€
Tn® _TH©

n+1 n—1
(1= EOT(E) = —n€Tn(€ ( )+ nTn- 1(
Therefore, from Ty (§) and T (),
one can obtain all higher-order Chebyshev polynomials.
Then, using (1.77), one can obtain the derivative of f(¢)

)
)
)
£) (1.79)

&) N~ AL v
=L = L) (1.50

The coefficients {b,,} can be derived through

the recursion relations of the Chebyshev polynomials.

With these relations, and by comparing (1.80) and derivative of
(1.77), we have

by =0

by_1 =2Nay

bN_2 = 2(N — 1)aN_1 (1.81)
bp—1 =bpy1 +2na,, n=N—-2,N—-3,---,2

bg = a1 + %bg
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With the choice of the grid points in (1.72),
- we can obtain the coefficients {a,} and {b,}
- using the fast cosine transform (FCT) algorithm.

First, a, can be obtained by the inverse fast cosine transform
since

N N
F(&m) =D anTu(ém) = Y ancos[nos™ (~cos %)]
n=0 n=0

N
mm
- Y a, _mr 1.82
nzoa cosn(m N) (1.82)

Step 1: Coefficients
{an} = FCT![f(&m)] (1.83)
Step 2: {b,} can be obtained by {a,} from (1.81)
{bn} = Blax] (1.84)
Step 3: Derivative at the grid points

d - N mm
{ f((ji )} = —FCT[b,] = T;]bn cosn(m — W) (1.85)

Symbolically, we can finally write the spatial derivative as

(Fnly — pocrif) = 2 FCTBECT [f(E)])] (1.56)

Thus, the cost of finding the derivative is O(N log N).
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B. Legendre Interpolation

A similar approach can be
- developed for Legendre interpolation method.
However, in this case,
- the cost is in general O(N?)
- as one cannot use the fast cosine transform algorithm
- to speed up the derivative computation.

Nevertheless, this is not a problem if N < 16 as it is usually
faster to do the direct matrix-vector multiply than FCT for
smaller N values.

C. 1-D Chebyshev PSTD Method

We can also use the collocated grid points for £, and H..
For an isotropic medium, the central time differencing yields

H"% = C,y H" 2 — Cpa{Dger[E"] + M} (1.87)
E"*! = CuE" + Cer{ Do [H™ 3] — 33} (1.88)

e Here Dgop denotes the derivative operator in (1.86)

2
Deerlf] = —% - FCT[B{FCT'[f]}] (1.89)
The coefficients
= Atop,/2 B At
O = w4+ Atoy, /2’ Cn2 = w4 Atopy, /2
e — Ato./2 At

Coqg = ————, Cop=———7+ 1.90
! €+ Ato. /2’ 7 e+ Ato./2 (1.90)

The 4th-order Runge-Kutta method can also be used for better
accuracy.
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1.3.3 The PSTD Method for an Unbounded Domain

For an unbounded domain, waves will propagate to outside the
domain. Wrap-around effect:

* The Fourier PS method makes waves travel periodically to
the domain to corrupt the late time solutions.
Fortunately, the perfectly matched layer (PML) saves the day.
* PML at one or both end attenuate waves without reflecting.
* PML attenuation can be adjusted to make the
wrap-around negligible.

* Thus the Fourier PSTD can completely model unbounded
media.

1-D time domain EM problem for = € [Zmin, Tmaz] With the
well-posed PML (GX Fan & QH Liu, 2001/2004)

ol oE, i
£ = - m T Hz_ m zH(l)_Mz

o1 oz (Om + wgpt) Omwy H

eaaEty = —a;iz — (0e + wme)Ey — (femez(/l) —Jy
(1) _

T = e
aH(l) R

a; = H,—w,HWY (1.91)

with periodic boundary conditions
Ey(x+L,t) = Ey(x,t), H.(x+L,t)=H,(z,t) (1.92)

where L = Tyar — Tmin, E’y =FE, + wxE?Sl), I;Tz =H, + waS).
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Collocated Spatial Grid and Staggered Temporal Grid

!
!

n
K3

y((i+ %)A:c, nAt)

il 3

+
SIS

7

(G + %)Am, (n + %)At) (1.93)

Time Integration Scheme

H(l)’n = AlH(l)’n_l + AQﬂn_%

EWnts = A\ EWn—3 4 A,E"

H"" 2 = Oy H" 2 — Cho{D,[E"] + 0w, HOM 4+ M"Y

Ertl = CLE" + Coo{ Dy [H" 2] + 0w, B2 — J7F3) (1.94)

e Here D, denotes the derivative operator

D,f) = 2T {DFT, [jp{DFT[f]},} (1.95)

The coeflicients

A - 1 —wyAt/2 A — At
LT TH A2 T T w,At)2
T At(opm + wap)/2 B At
M U Ao +wep)/2 T i Ao + wept) /2
o € — At(oe + wye)/2 At
el — e2 —

€+ At(oe + wye) /2’ €+ At(oe + wye)/2

The 4th-order Runge-Kutta method can also be used for better
accuracy.
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1.3.4 Dispersion Analysis and Stability Condition

Sample wave equation for = € [0, L]

ou(xz,t) 10u(x,t)
Z = > .
LS =0, ze(0L) t20  (196)

with a periodic boundary condition u(0,¢) = u(L,t) and an
initial condition u(z,0) = ¢*/¢, This PDE has an exact
solution

u(x, t) = @@/t (1.97)

In FD and PS methods, there can be numerical dispersion
errors in spatial and temporal discretization.

A. Approximations of Spatial Derivatives

Ou(z,t
MDD fue, 1)
where the derivative operator is given by
2r (.
ZF Il PS
D, f(x) = P/2 (1.98

S [fla+ (p— 5)A0) ~ f(z ~ (p— 5)Aw), FD
p=1

The 2nd-order FD method: P =2 and a; = 1;
The 4th-order FD method: P =4, a; = 27/24, and ag = —1/24.

For the PS method, F and F~! denote the forward and inverse
discrete Fourier transforms through an FFT algorithm.

52



Multiscale Computational Electromagnetics in Time Domain Part 1

B. Phase Dispersion Errors

Nyquist theorem for a smooth band-limited signal: D, is exact
in PS as long as w < w¢/Ax (i.e., Az < \/2 where A is the
wavelength). The phase error is zero.

The FD method gives a solution upp(z,t) = e®/c=8) with

P/2
> a;sinf(j — 1/2)wAz/c]

Blw) =1

(wAz/2c)
The phase (or dispersion) error is
e(w,t) = wifl = f(w)]

This dispersion error is linearly proportional to time.
The FD method requires a large SD for a long time window.

Dispersion Analysis and Stability Condition

The dispersion relations for the FDTD and PSTD methods in a
homogeneous lossless medium are

At
8 R k2R, PSTD

2
sin w_At = P/2 (1.99)
2 CAt ) . 2 )
Ax Z {Z%’ sin® [k, An(j — 1/2)]} , FDTD

n=x,y,z j=1

The corresponding CFL stability conditions can also be written

compactly as
cAt < 1

Az = avD
for a problem of dimensionality D, where o = 1 for FDTD, and
a=m/2~ 1.5708 for PSTD.
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The stability condition for the PSTD method is a factor of

7/2 ~ 1.57 more stringent than the FDTD method for the same
Azx.

However, because of much larger Ax afforded by the PSTD
method, At in the Fourier PSTD method

- need not be smaller than the FDTD method
- for the same accuracy.

In practice, for large-scale problems without small geometrical
features finer than a quarter wavelength, the choice of At in the
Fourier PSTD method

* is usually dictated by the accuracy

rather than the stability consideration.

1.4 The Spectral Element Method in Frequency Domain

The above PSTD methods are for smooth media. For
large-scale highly discontinuous media, the spectral element
method in time domain will be used. But we will first consider
the SEM in frequency domain.

1.4.1. Gauss-Legendre-Lobatto (GLL) Polynomials
* A special set of Lagrangian interpolation polynomials with
the nodal points located at the Gauss-Legendre-Lobatto
(GLL) points.
In a 1-D standard reference element £ € [—1, 1]
The N-th order GLL basis functions are defined by
(/>§N)(§) _ —1 (1- 52)LIN(§)
N(N+1)Ln(&) (€= §)

=0,---,N

(1.100)
where Ly () is the N-th order Legendre polynomial, and
L'\ (&) is its derivative.
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Within the element & € [—1,1] the nodal points {{;} are the
GLL points: The (N + 1) roots of equation

(1= &HLn(&) =0 (1.101)

Note that &g = —1, &y = 1.
Legendre polynomials satisfy the Legendre differential equation

%[(1—52)Lg—§§)]+N(N+1)LN(§) =0 (1.102)

These polynomials can be written as

1 4N

Ln(§) = W\rdg_fv[(fz - 1) (1.103)
Orthogonal relation
! 2
lle(i)Ln(ﬁ)dé = 55 10mn (1.104)

Examples of Legendre polynomials

Lo(§) = 1
Li(§) = ¢
L)) = 3(3-1)
Ly(e) = (530
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The derivative matrix with the GLL points is (Canuto et al.,

1988)

if m#n

I () (Em — &) #

N(N +1
D(N):i- —% if m=n=0
mn e]x
—N(N+1) if m=n=N
4

0 otherwise

GLL Quadrature

The integration of a smooth function f(z) by GLL quadrature:

Tmazx 1 N
I'= / f(@)de = |J,| / F@(£)dé m | Jal > wyf(x(&)(1.105)
Tmin —1 p=1

where {w,,} are the weights of the GLL quadrature.
This is exact if f(x) is a polynomial of degree 2N — 1 or
smaller.

Special Case: For f(z) = ¢££V)(§)¢1(1N) &)

Tmax 1
_ (N (V) (£14(N)
fon = / f(2)de = |J,] / o) ()N (6)de

N
~ | Jal > wpd (&) 0N (&) = | o wmbmm  (1.106)

p=0

since for a Lagrange interpolation function qb%v ) (&p) = Omp-
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1.4.2. The SEM in Frequency Domain

1-D Helmholtz equation for a domain with complex p,(x) and

e ()
d _dEy 2
— — + kje . By, = —Se 1.107
d:Elu’I‘ d.f]j + 06 Yy ( )
where S, = % — JwpigJy.

Spectral element expansion within each element (note the
continuity between elements)

Ng
Ey(r) =Y enn(a), €zl 2] (1.108)

n=0

The basis and testing functions will use the GLL polynomials.

Weak form Helmholtz equation

dz

= — [Mgl(x)wm(x)%r - /b dzwm (z)Sy ()

a

b
I E
| RS

a

b
= Jiomo [ @ H.@)), ~ [ deon(@S,0) (1109

Radiation boundary conditions
, 1 ,
HZ(x = a) = [ ;%c + Hj%]:”:a - "7_L[2 ;Tic - Ez]z:a

. 1 .
H,(x =b) = [H" + H%)pmp = n—[—2E§7§ + E.]p—p (1.110)
R

where 0, r = \/11/€|y—a- p+ are impedances for x < a and z > b.
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Weak form Helmholtz equation with radiation BCs

b
[ |-G @ + e un () B )
Ll (@) By () £ 7w (0) By 8]
= 2 [ i (@) B @)+ 1 (B G )]
b

—/dmwm(a:)Sy(x) (1.111)

a

We choose both testing and basis functions as the GLL
polynomials ¢,.

SEM Impedance Matrix and Excitation Vector

Zon = [ o | =202 1 0) 22 4 R ()10
_jw[m_;:lgﬁm(b)ﬁbn( )+77L1¢m( )én(a)]

= 22 o [ttty S
ne R

v, = — / dwdm (2)S, (z)

—j2w [ Gm (b) Byt (0) + 17, i (a) By (a)]

5m Einc(q 5m Einc b
_ /d:rgbm _]2 )1 yL( )+ N yR()]

L R

58



Multiscale Computational Electromagnetics in Time Domain Part 1

The elemental SEM impedance matrix

e=N,
' Om.10 SN0
Don, = Z(l,e) +Z(2,e) —jw[ m,109n,1 + m,N n,N:|
; [ rq pq ] n P

Local indices (p, q) are mapped to the global indices (m,n).

(e)

Tmax 1
do _ d¢ 2 do _ d¢
70 = _/_P. 1) %04 /_p 10,99
2(®) -1

mzn

2 B w dgy(&) doy(&)
- e)zur(l‘(én)) dg dg

()

Tmax

289 = 1 [ a@aa)e(e)ds

()

m'Ln

(e)
_ k2L €0 (2(6))p(€) by (€)dE
-1
- piS Zwe (6))60(E0)04(60)
= 0 9 n€r n p\Sn /¥ q\sSn
L(@)

= ko 9 wper (2(8p))0p.q

This gives a diagonal elemental mass matrix.
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The excitation vector for sources is

Ne inc inc
Vv, = Z V;)(e) — 2w 5m’1§zL (a) n 5m,N:i;;R (b)
L(e) 2M, n d n
‘/;fe) = an whoJy(2(6n))Pp(6n) + ( ((;gfL)(l) ¢2(§ )]
n= O "
Jwpo L ,u Lle ) dop(&n)
_ JWHo z(&p))wp + Z §n ) I()ié

for smooth sources, where the M, has been evaluated by
integration by parts, assuming that the magnetic current at the
element boundaries are zero. For point sources

Jy = J05(SC — I’J) and MZ = M05(SC — xM),

Mo dep(&(xar))

() — 5
V9 = jwpoJodp(§(z)) + o (20r) dg

A Note on the Source Implementation

To preserve the high-order convergence, the source excitation
implementation should be careful when the source is a
nonsmooth function inside an element. In that case, it is better
to solve for the scattered field instead of total field in the source
element (or even including the adjacent elements). The other
elements can still use the total field. This is the

total-field /scattered-field (TF/SF) formulation.

Alternative way: Approximate the singular source by a
smoothed source.

Once these matrix and vector are assembled, the solution can
be easily obtained by

I1=72"'v
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1.5. The Spectral Element Time Domain Method

1.5.1. The SETD Method for 1-D Wave Equation

To avoid basis functions for both fields, we consider the 1-D
wave equation for the special case where o, = 0:

0 _,0E, 1 8B, OE,
81:/“}’7‘ 81‘ 6267" 8t2 /J’OO-G 8t - Se (1112)

-1 .
where ¢ = 1/,/fo€o and S, = M - NO%Q'

xr
Spectral element expansion within each element (note the

continuity between elements)

Ng

Ey(z,t) = en(t)dn(x) (1.113)
n=0
Ng

Ho(2,t) =Y hn(t)ihn(@) (1.114)
n=0

The choice of basis functions should be carefully considered.

The Weak Form Helmholtz Equation in Time Domain

Weak form Helmholtz equation with radiation BCs

b
dwpm _y, \dE,
/dw [__d:r (@) =7

a

1 O*E,(x,t OFE,(x,t
_WM(x){CGET(x)% + NOUe%}
0Ey(a,t) O0Ey(b,t)

—[nilwm(a)T + nﬁlwm(b)T]

= —2 [0 wn(a) Eyif(a,t) + ng wn (0) i (b, 1)]

—/d:vwm(m)Sy(:v,t) (1.115)

a

Both testing and basis functions will be the GLL polynomials.
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Radiation Boundary Conditions in Time Domain

0Ey(a,t)  O0H.(a,t) 1

1 _ L Yine | T
pe (@)= n —nL[z e — Eyla—a (1.116)
1. 0F, (bt OH, (b, t 1 e

7 (b) y(bt) _ OH:(b.1) _ — 2B + Eyl,—y (1.117)

ox ot N R

where a dot over a variable denotes its time derivative.

The elemental SETD matrices:

Tmaz Ng / ’
(e) _— _ % -1 % _ 2 wn¢p(§’ﬂ)¢q(§n)
st Z R
ke ©
1 Lle
Me(fp)q = 3 / er(m)qu(a:)qu(x)dm:Wwper(m(fp)ﬁp,q
()
The
C(e) = o 06(37)@5 (x)gb (T)da:—{— ¢p(£)¢q(£)|a + ¢p(£)¢q(£)|b
or 2 P L MR
e
= [“OL wpoe(i(€,)) + 21000 | JeNeOpNe |5
nL MR

Note the diagonal elemental mass matrices for ¢, and o..
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The excitation vector for sources is

Ne . 5 [6 1 Einc(]’t) S 7NEinc(b, t)
Up = 6511};())—27 p i]i p gR
— «© Mz (&), t) doy(&n
Uz(>e) E Wp, qu )¢p(§n) ( ((f(é;)) (2 Z(; )]
9 J 'lUp + E n)) pé

for smooth sources, where the M, term has been evaluated by
integration by parts, assuming that the magnetic current at the
element boundaries are zero. For point sources

Jy = Jo(t)0(x — x2;5) and M, = Mo(t)é(z — =),

Mo(t) dép(E(zar))
pr(xar)  dg

o) = o) () +

The System Equation in Time Domain

d’e de
M— — = 1.11
72 +C 7 Se +v (1.118)
We can rewrite this as a set of coupled first order ODEs
dé
Md_(z +Ce = 3e +v
e

& = — 1.119
é o (1.119)

Using a 2nd-order (instead of the better 4th-order) time
integration yields
At At

¢ = (M+ O (M= Z-C)e" 2 +Se” + V]

e"tl = e+ Ate"t2

Note the diagonal mass matrix inversion is trivial and efficient.
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Magnetic field from electric field

Once the electric field is solved, H can be obtained by
Faraday’s law

0B, OE,
=—— —-M, 1.12
ot Ox (1.120)
By central time differencing, we have
nal o1l
b, 2 =b, ? —At(De" + m?) (1.121)

where D is the derivative matrix.
B, is in general not continuous between adjacent elements.

1.5.2. The SETD Method for 1st-Order EH Equations

1-D time domain EM problem for = € [a, b]

OE, OH.

— = — —omH, — M, 1.122
Dz For =7 (1.122)
oH.  0OE,

w - o ocEy — Jy (1.123)

Spectral element expansion within each element (note the
continuity between elements)

Ng Ny
Ey(z,t) = Z en(t)gn(z), H:(z,t) = Z ha (8) o () (1.124)
n=0 n=0

The choice of basis functions should be carefully considered.

64



Multiscale Computational Electromagnetics in Time Domain Part 1

Weak Form Equations

Integration by parts for the magnetic field

OH, I, 0P,

(P %m = —<W7Hz>ﬂ + [pmH. ], = _<W7Hz>9
N [bm (=2EJ + Byl [0m(2E}I° — Ey)la
R L
Weak form equations
a2 )y = (i, O g .~ M (1125)
8E 0P,

<¢m7 > = <W7 Hz>Q - <¢mageEy + Jy>Q
B [qu( 2E,% + Ey)lp N [0m(2E1° — Ey)la
R nr

The above boundary terms are zero for PEC and PMC outer
boundaries. Furthermore, removal of the corresponding E
unknowns on the PEC boundary is needed.

(1.126)

The System Equation in Time Domain
M. = S;h—C.e—j (1.127)
Mh = -S.e—Cyh—m (1.128)

The elemental SETD matrices are:

1
7pq = (¢p, €dg)a, = “’(N )L(e)e(l’p)@),q

2
1
7pq <d’pa/“/)q> == §w;l()NH)L(e)/J/(mp)5pvq
cl) ,0edq)a, + e, [ %] e [ -¢NE]
e,pq <¢p U¢q>ﬂ 1 ¢p L z:a“‘ ,Ne ¢p Y

1 .
= §w;(>NE)L(e)Ue(xp)5p,q + 0e,10p,0/ML + e N.Op, Ny /MR

e 1 .
C}(L ,pq <,l/}p7 Um¢q> 2 ]()NH)L( )Um (mp)épyq
,Pq <77Z]p ¢Q>Qe = w (Vi) ¢q(§P)

M<%%Q—ZwM%&M@wwM%@>

n=0
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The elemental excitation vectors for smooth sources are

‘ 2E¢(a,t) 2E}% (a,t)
.71(76) = <¢p7 Jy> + Lépyode,l + un 5P7NE557N6
nL "R
e N
LS g a0,
n=0
2E7(a,t 2B (b, t
—’—ﬂ p,05€71 + wdpJVEé@yNe
nrL R
L(e) (NE)J ,t 2Einc a,t 2Ene b,t
e wp y(xp ) + yL ( )517,056,1 + M($I77A]\[E567]V(i
2 N MR (M)
) 1(e) Nu N L(e)prH Mz(xp, t)
) = G M) = S Sl )0n(n) =

for smooth sources, where the M, term has been evaluated by
integration by parts, assuming that the magnetic current at the
element boundaries are zero.

For point sources J, = Jy(t)d(x — z;) and
M, = My(t)o(x — xpm),

_ 2E7¢(a,t) 2E7¢(b, 1)
389 = J®)p(&(zs)) + 0,001 + %R—R‘SvaEéevNe

nr
m{ = My(t)vp(&(znr))

But again it’s better to used TF/SF formulation or smoothed
sources in this case.
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The Time Integration for E and H

By using central differencing we can obtain

W= (M) %Ch)_l[(Mh - %Ch)h”‘% — At(Sce” +m")]
A A
et = (M. + the)_l[(Me - {Ce)e" + At(S,h" T2 — jite)]

Note the diagonal elemental matrices for M., My, C. and Cy,
so the above matrix inversion is trivial and efficient.

Remarks: Higher order (such as the 4th-order) Runge-Kutta
methods can be used to improve time integration accuracy.

1.5.3. The SETD Method for 1st-Order EB Equations

The above discussions hint a better 1-D time domain EM
system based on EB (or similarly DH) fields

B. E _

881: - _aaxy — oppt By — M, (1.129)
0E, O B,

el = "m — 0 By — J, (1.130)

Spectral element expansion within each element (note the
continuity between elements)

Ng Np
Ey(xvt) = Z en(t)¢n(x)7 Bz(xvt) = Z bn(t)wn($) (1’131)
n=0 n=0

where in fact B, does not need to be continuous between
elements in 1D, so here ), (x) is only defined within each
element.
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Weak Form Equations

Integration by parts for the magnetic field yields the weak form

equations
W S5 )0 = (s 5t — o™ B = Mo (1132)
dE 0bm  _
<¢m» > = <%7 M le>Q + <¢ma UeEy + Jy>Q

_ [¢m( 2E;7}L%C + Ey)]b _ [¢m(2E;ﬁ,C B Ey)]a
MR N

(1.133)

The above boundary terms are zero for PEC and PMC outer
boundaries. Furthermore, removal of the corresponding E
unknowns on the PEC boundary is needed.

The System Equation in Time Domain
M. = S;b—C.e—j (1.134)
Myb = —S.e—Cyb—-m (1.135)

The elemental SETD matrices are:

1 [
7pq = (¢p, €dg)a, = 2“’(N JL( )6(171))51)41

1 e
lfp)q = (Vp, Yg)o. = §w1(oNB)L( )5Pq

C(?pq <¢p7 05¢Q>Q + 66 1 [¢p j;z:| —a + 59,Ne |:¢p ' QZ\;E :| b

1 .
= §w;(>NE)L(e)Ue(xp)5p ¢t 0e10p0/0L + 0 N.Op N5 /TR

e — Om\T e
C( <¢p70mﬂ 11/’q> = (p) NB)L( )5p,q

2,“(3510)
,pq = (Up, Py, = prB ()
© Ng (Ng) wVB)
Sypa = (Op 1 Vada = D~ dp (Gn)¥a(n) & — 6l (&)
n=0 lu’(x ) IU’( )
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The elemental excitation vectors for smooth sources are
‘ 2E!"%(a,t) 2B (a,t)
B = (G Jy) + —L———0p00e1 + —L——"8p N0 N,
nL MR
e Ne
- 2 Z wglNE)']y(wm ) Pp(&n)
=0

2B (a, ) 2EMe (b, t)
T p705671 + yn—RépWEée,Ne

L
e (NE)J ’ 9 Finc a,t 9 Frinc b, t
wyp y(xp, 1) M2 ( )5p’056?1 + it ( )5p7NE567N6
2 "R
(e Np L(e)w}(JNB)Mz(xpv t)

ml(,e) = (¢p, M. Zw(NB (@, O)Vp(&n) =

2

for smooth sources, where the M, term has been evaluated by
integration by parts, assuming that the magnetic current at the
element boundaries are zero.

For point sources J, = Jy(t)d(x — z;) and
M, = My(t)o(x — xpm),

_ 2E7¢(a,t) 2E7¢(b, 1)
389 = J®)p(&(zs)) + 0,001 + %R—R‘SvaEéevNe

nr
m{ = My(t)vp(&(znr))

But again it’s better to used TF/SF formulation or smoothed
sources in this case.
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The Time Integration for E and B

By using central differencing we can obtain

At At

BT = (My+ - Cy) 7 [(My — S-Cy)b" 2 — Al(See” + m")
A A
et = (M. + the)_l[(Me - {Ce)e" + AH(Spb"tE — jita)]

Note the diagonal elemental matrices for M., My, C. and Gy,
so the above matrix inversion is trivial and efficient.

Remarks: Higher order (such as the 4th-order) Runge-Kutta
methods can be used to improve time integration accuracy.

EB Formulation Versus EH Formulation

The EH Formulation

@ Basis functions for H, and £, both continuous across
elements.

@ Spurious modes in 3D if Ny = Ng - compatibility issue.
How about 1D?

@ More unknowns to obtain the Ng-order accuracy, as
Ny = Ng + 1.

@ The E,H,+1 scheme.
The EB (or DH) formulation
e Basis functions for B, discontinuous across elements.
@ No spurious modes.
@ Np = Ng — 1 produces the Ng-order accuracy.

Fewer unknowns than the EH formulation.

Thus, the EB formulation is favored.
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QHL/DGTD
‘ h
URSI AT-RASC Short Course

Multiscale Computational
Electromagnetics in Time Domain

Qing Huo Liu
Department of Electrical and Computer Engineering
Duke University

May 27, 2018

QHL/DGTD

-

1D Multiscale DGTD Method

i Chapter 2

= Typical multiscale problems

= Why DGTD method for multiscale
problems?

= Conservation form of wave equations
= Subdomain-based DGTD method

= Fluxes at the subdomain interfaces

= Hybrid time integration methods
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DUKE

DMUND T. PRATT, JR.
HOOL OF _

-

QHL/DGTDM Typical Multiscale Problems

= Wavelength (1) as the reference scale (in
frequency domain, skin depth may be also a scale)

= Coarse scale: L, > A
= Fine scale: L < 1

= Intermediate scale (L,,,) between coarse and fine
scales

QH;mh Why DGTD method for multiscale problems?

= SETD method efficient for coarse scale, but not
fine scale. Why?

= Explicit FETD and FDTD methods are good for
intermediate scale, but not fine scale or coarse
scale. Why?

= Stability condition of SETD, FETD, and FDTD
methods

FDTD: At < %

o \/Ecmax

Tiny At for electrically fine cells
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QHL/DGTD

-

SETD and FETD (and/or FDTD)

h Approach: Multiscale DGTD: Hybridization of [i@

s Use SETD for the coarse and intermediate scale
subdomains

s Use FETD for the fine-scale subdomains

| SE i >F
|

SD;  SD,SD, SD,

QHL/DGTD

™ i DGTD Method with SETD and FETD

= 1D Maxwell’s equations

0E, OJu 'B
y z _
€ aat + aEax = —0.E, —J,
B, y Om
+—2=_Tp _M
ot  0Ox u z

= Expansion in the i-th subdomain
Eji, = z el ol (x), Bl= Z bLk (x), L discontinuous
n

n

Use Galerkin’s method for testing the above
equations
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o Numerical Flux for Interfaces Between
- Subdomains

= Testing and integration by parts

[ aEy [ [ *
bm EW + GeEy +]y = (ax¢m» Hz)m - <¢mr Hz>aQi
Qi

. 0B o
<1p,‘n, atZ + TmBZ +M,

= —(Pi, axEy)Qi + (i, (Ey — E;)>aﬂi

0l

Note that twice integration by parts yields the second equation

= (Ey, Hy) is the numerical flux at subdomain
interfaces between adjacent subdomains

= Numerical Flux 1: Central Flux

= The simplest numerical flux is the central flux by
averaging the tangential fields as the tangential E and H
should be continuous

y_f[ y y]

. 1 . i
H, ZE[Hé +Hz]

= For 3D problems, the central

: 1 . . : .
ﬁle*=§[ﬁ‘xEl+ﬁle1]

. 1 . . . .

' Xx H =§[ﬁl X H' + 7' X H/]
A1 —1B *_1 AL Bi A1 BJ
nX([,l ) —E[n X“(i)+n XW]
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-

QHL/DGTDM Numerical Flux 2: Upwind Flux

= Characteristics in 1D Maxwell’s equations

oD, ou B
y z _
o T ax ety Ty
0B, 0€e 'D, Om
+ =-mp M
ot 0x u z

Ignore the losses and source terms

du J(Au
+ ( )=O

dx
1

ot
D 0 I
_ |~y _
where u = BZ],A = [M_l 0

-

QHL,DGTDM Eigenvalue Problem of A

= Eigenpair A and v
Av = Av

= Eigenvalues and eigen vectors

C 0
My =Fc== > A=[h ]

Vﬂ‘rer, Lo
_Mm [
”1‘[1]'V2‘l1]
= Transformation matrix

- ._lr1m
V=l =[] ] Vlz%[—m
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-

QHL,DGTDM Eigenvalue Problem of A (continued)

= Transformation of Aby Aand V
AV = VA, A=vav!

= Wave equation

6u+6(Au)_0
ot ox

ol . O(AT) 0
at = ox
= Characteristics for 1, , = *c

QHLIDGTD Alternative Derivation
-
= Characteristics in 1D Maxwell’s equations
oL, N 0H, o
€ = —0, —
0 7t agx T
H, y Om
+—==—-—B,—M
K9t ™ ax y 2 Ve
Ignore the losses and source terms
M du Aau _ 0
ot ox

E e 0 0 1
— y — —
whereu—lHJ,M—[O M]’A_ll 0
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-

QHL,DGTDM Eigenvalue Problem of A

= Eigenpair 2 and v
M~ 1Av = Av

= Eigenvalues and eigen vectors

Co A, 0
AMoy=Fc=+ , A=|"1 ]
b — VUrEr 0 4

v =] ve =[]
= Transformation matrix

- q_Ltr1m
V= l=[17, Vlz%[—m

-

QHumi Eigenvalue Problem of A (continued)

= Transformation of A by Aand V
AV = VA, A=vav?

= Wave equation

Jdu Aau _ 0
ot ox
ou  J(AT)
ot T Tox 0

= Characteristics for 1, , = *c

u Vie=ii(t—— u (t F x)
Uy, = u=ul|t——-—J]=1u —
1,2 11’2 c
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QHL/DGTD

- h Characteristics and Riemann Solver

= Riemann Solver: For all characteristic i
—AMu™ —ut]+ [(Au)” — (Aw)*] =0

Applying this to i = 1,2 yields

cM[uw—ul]+[(Aw) — (Au)"] =0
—c*TM*u* —ut] + [(Auw)* — (Au)*] =0

Q"Di Upwind Flux

Combining the two yields

(c"M™ + ¢c*M*)(Au)*
=c M (AW +c™™MT(Au)" + c ¢ctM M+ [u™ — u™]

Upwind Flux

o Y"E, +YTES +HZ+ — H;
Yo y-4Y+ Y- +Y+

- _Z"H; +ZTH} +E; —E;
2 Z- 4zt -+ 7t
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QHL/DGTD

- Upwind Flux in 3D
R n; x (Y'E'+Y/E)) 7; xA; X (WB/ — u/BY)
n; XxXE* = . . + —
yi+ Yy pl p (Yi+yh)
R Wy x (WZ'B'+u'Z/B))  f; x1i; x (E/ —EY)
ni XH* = ; - - - + - -
ut pl(Z4+27) (Z+27)
QHL/DGTD . . .
- Solution of 1D Equations with DGTD

= Testing and integration by parts

aEl .
<¢m: + UeEl +]y> = (axqbrln' ) <¢mr >aﬂl

Ql

)z
lp‘]':n) +7B1+M

= (i 0By o — (b By = B) 5
Ql

= (E}, H;) are now replaced by the numerical flux

viEL+vIiE]
;= ’Zl;j = (alL+1)EL + all, Bi+ al,B) + aJ), B)
ZiH.+ Z/H] E) —E}

. y j j
H; Zix 7l T 7irzi - = al}, B! + all.E}+ abeE +a), B
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QHL/DGTD

-

= Coefficients

Yi i
Qee Zyiyyi
. YyJ .
lj _ lj
aee_yi+yj’ Aep =
A
b =TT 7T
A
“bb T 7T 70

Aep = —

Ape = —

j _
abe —

1
pr(Yt+Y7)
1
uwI(Yt+Y7)
1
1

QHL/DGTD

-

= Final weak form equations

aEi ;
oL, € —2 4 a.Ey + ],

= <ax¢rin' (ui)_le>

Ol

6 ‘ Om
u Qi
(¢m,a E‘) <¢m, al,E} + al

<q5m,a Bl +a” E‘+ a

be™y

j
L Bi+ aeeEy

ij pJ
+ aebBZ>

lj EJ _I_al] B]

>aﬂi

o0l
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'DUKE
QHL/DGTD E
= (Ey, H,) are expanded in terms basis functions
Ny N
B =) e ©ph), B =) bl @)
n=0 n=0
= Then we obtain the system equations
M, %—eti =SL,bt — Cl.el —j — Z,-(Aﬁ,jeef +A2jbbj)
Mli,b aa—lzi = —Sf,eei — Cli)bbi —m' - Z].(A‘geef +A2jbbf)
'DUKE
QHL/DGTD I
- e

ENGINEERING

= Then we obtain the system equations for
all subdomainsi =1,---, Ny

OVt D
Mi—— = — E Livi — fi
Jt :
j

= Here the matrices are
Vi — [ei] fi — ji
bil’ m’

A}, +6;;CL, A}, — &S,
AJ, +6;;Sh. AL, +6;Ch,

M! = [ ee . ,Ll] —
0 My,
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QHL/DGTD

- Hybrid Time Integration: s-Stage Explicit + Implicit

= Explicit Runge-Kutta Method for Coarse Subdomains

vi o =Vvi+At Z brul
=1

Nsup k-1
Miu = — z Lif(v,]1+AtZ W) — Fi(t + CAt)

= Butcher Tableau

€2 | 21 0

C3|aszy as2 0

QHL/DGTD

-

= Explicit Singly Diagonally Implicit RK (ESDIRK)
Butcher Tableau

0la®™ 0 ... ... 0
co |ayy aysy 0

1

1m m 1m

CB {13! 1 fia ! 2 {13 !3
0

1m

1m m im
Ce |agy agy ...oagy gy oagy
by bo b L b

= Coefficients 6 and c are exactly the same for Ex-RK
and ESDIRK
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- IMEX Time Integration

= Implicit Runge-Kutta Method for Fine Subdomains

V1il+1 =V;,'+At2 bku;(, [ = 1,"',Nsub =Nim+Nex
k=1

Nim k
Miuk = — Z LY < V£+Atz amu ) —f (t, + ciAt)

=1 =
Ngsup k-1
— Z LY | v +At Z agsu,
j=Nim+1 =

= Need to invert a system matrix for the IM part

- y=f(ty), y(to) =y

QHUDGTD‘ Popular Explicit Time Integration Schemes

1. Second-Order RK Methods
1
0 Yne1 = Yn + A[(1 - 5)f (tn, Yn)

1
ﬂf(t" + ah, y, + ahf (tn, )]

(o] (a4

_|_

1 1
(I-3%) %

2. The mid-point method is a special case with a = %

0

h h
olie Yne1 = Yn T RS (tn + E»Yn + Ef(tn» Yn))

0 1
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3. Fourth-Order 4-Stage RK Method

0 ki = f(tn, yn)

h h
172[172 k, = f(tn +§;}’n +Ek1>
12| 0 172

1({0 0 1

h h
ks =f tn"’i:)’n"'zkz

kf == f(tn + h,yn + hk3)

h
Yner = Yn +h ) biki = o+ 2 (ks + 2ky + 2k3 + k)

=1

1/6 1/3 1/3 1/6

QHL/DGTD

-

y=f(ty), y(to) =y

i Popular Implicit Time Integration Schemes

1. Second-Order Implicit RK Method — Trapezoidal

Rule
kq =f(tn:yn)
ojo o B h h
1 ‘1/2 1/2 kZ _f<tn+2;yn+§(k1+k2))
(12 12

h
Yn+1 = Yn T E(kl + k)
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I Popular Hybrid IMEX Time Integration Schemes
™ y=f&y), y(t) =0

1. Second-Order IMEX RK Method

First perform time integration in explicit subdomains (¢ = 1)

oo o kP = £ (tn, Yn)

1 |1 0 kS* = f&(tn + h,yn™ + hki™)
h
= [1/2 172 Y = Ve o (K + k)

Then in implicit subdomains

-- ki.m = fim(tn: Yn)

, . : h, . :
L |12 12 k= (g, + by s (A kT
M [1/2 172 2

. . h, . .
yimy = A+ 5 (ki + kg

+ Popular Hybrid IMEX Time Integration Schemes
L | y=f&y), y(t) =0

2. Fourth-Order IMEX RK Method

First perform time integration in explicit subdomains
k1™ = [ (tn, yn)

i—1
ki* = fe*| t, + c;h, y5* + hE aiif ki* |,i =234
j=1

YEks = YS¥ + h(bikEX + bykS™ + byk§™ + byks®)
Then in implicit subdomains
KM = I, Yr)

-1
j=1

Vit =y + h(biki™ + byki™ + b3ki™ + byki"
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C2
= 1767732205903
/2027836641118

c3 =3/5

c,=1

IM

= 1767732205903
/2027836641118

c3 =3/5

=1

EX

Time Integration Scheme

= 1767732205903
/4055673282236

azi
= 2746238789719
/10658868560708

QA4
= 1471266399579
/7840856788654

by
= 1471266399579
/7840856788654

= 1767732205903
/2027836641118

az1
= 5535828885825
/10492691773637

(751
= 6485989280629
/16251701735622

by
= 1471266399579
/7840856788654

= 1767732205903
/4055673282236

azz
= —640167445237
/6845629431997

Q42
= —4482444167858
/7529755066697

by
= —4482444167858
/7529755066697

azz
= 788022342437
/10882634858940

Q42
= —4246266847089
/9704473918619

by
= —4482444167858
/7529755066697

azz
= 1767732205903

/4055673282236

Q43
=11266239266428
/11593286722821

by
= 11266239266428
/11593286722821

Q43
= 10755448449292
/10357097424841

by
= 11266239266428
/11593286722821

Butcher Tableau for the Fourth-Order Hybrid IMEX

QAyq
= 1767732205903
/4055673282236

by
= 1767732205903
/4055673282236

by
= 1767732205903
/4055673282236

DD LTI
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-

Summary

= 1D DGTD methods include “element-based DGTD"” and
“subdomain-based DGTD” methods
= Element-based DGTD method has one element per
subdomain.
= Subdomain-based DGTD method has multiple
elements per subdomain, thus can have fewer DoFs
than the element-based DGTD method.
= Element-based DGTD can be considered a special case
of subdomain-based DGTD method when the number
of elements becomes one.

EDMUND T, PRATT, .

SCHOOL OF
ENGINEERING
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URSI AT-RASC Short Course

Multiscale Computational
Electromagnetics in Time Domain

Qing Huo Liu
Department of Electrical and Computer Engineering
Duke University

May 27, 2018

'DUKE

-

SSSSSSSS
ENGINEERING

h Chapter 3. 3D DGTD Methods

= References: Duke Ph.D. dissertations and
related papers (Q. H. Liu Group)

= Tian Xiao (Ph.D. 2004)

= Gang Zhao (Ph.D. 2005)

= Jiefu Chen (Ph.D. 2010)

= Luis Tobon (Ph.D. 2013)

= Qiang Ren (Ph.D. 2015)

= Qingtao Sun (Ph.D. 2017)

= Following slides are adapted from the slides
in these Ph.D. defenses.
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o+ Outline
-

s Nodal DGTD Methods
= DGTD and DG-PSTD Methods

s Subdomain DGTD Method with EH Fields
s Subdomain DGTD Method with EB Fields
= Comparison of Various DGTD Methods

or{fbeTo Governing Equations
-
4 Maxwell’s Equations )
Topological Laws Constitutive Relations

%):VxH—JC—JS D =¢E
—%—?:VxE+MC+MS B =uH
V-D=p, J.=0.E

V-B=pn M, =0,H

o /
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- 3.1 Nodal DGTD Methods

s Nodal DGTD Methods with Tetrahedron Elements

= Tian Xiao, High-order/Spectral Methods For Transient Wave
Equations, Ph.D. Dissertation, Duke University, 2004.

= T. Xiao, and Q. H. Liu, “Three-dimensional unstructured-grid
discontinuous Galerkin method for Maxwell’s equations with well-
posed perfectly matched layer,” Microwave Opt. Technol. Lett., vol.
46, no. 5, pp. 459-463, 2005.

= Nodal DGTD Methods with Hexahedron Elements
= Gang Zhao, The 3-D Multi-Domain Pseudospectral Time-domain
Method For Electromagnetic Modeling, Ph.D. Dissertation, Duke
University, 2005.
= Q. H. Liu, and G. Zhao, “Advances in PSTD Techniques.” Chapter 17,

Computational Electromagnetics: The Finite-Difference Time-Domain
Method, A. Taflove, and S. Hagness, Artech House, Inc., 2005.

= 't FEMand Spectral-Based DGTD Methods

= Nodal Discontinuous Galerkin Time Domain Method
= FEM basis and testing functions
= Spectral nodal basis and testing functions

= Discontinuous approximation across element interfaces
= Face-based communication between adjacent elements
= Support hp adaptivity
= Spectral accuracy with p
= High-order accuracy with h
= Amenable to parallel computation
= Weakly enforcement of differential equations and B.C.s
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d Nodal DGTD Method

= Domain Decomposition
m General Formulation

O(uH) Maxwell ~  Nodal Basis
L — VxE, B(x.t) ~ Y E;(t)L;(x),
ot =
. N
e Het) ~ 0 H(4)L(5)
7=1

. Testing
/ (d(p&H) + V x E) Li(x)dv = 0,
D ot

/ (3(_;]«3) ~VxH+ JE) Li(x)dv = 0.
o\ ot

Qw‘vem Nodal DGTD Methods

s Each element is one subdomain
= Scalar basis functions can be used

= At an interface between two elements, the

DoFs are redundant (thus more DoFs than
continuous Galerkin)
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/ L.V x Edv = / V x (L;E)dv — / VL x Edv.
D D D

b

/ V x (L;E)dv = jé Lin x E'|ds
D 5D

/ L;V x Edv = f Lin x EY|ds|— [ VL; x Edv.
b 8D D 1ntegrate by parts

) . (YE-nxH)"+(YE+nxH)"
E*|;p = :
nx E*sp =nx Vv ,

ZH+nxE)" "+ (ZH—-nx E)t
1A1><H*\5D:f1><( T Z?"i(ZJF o x E) :

Upwind Flux

oisel  Upwind Flux for 2D (Similar for 3D)

H™ cosf  sinf 0 H* T
HT = —sinf cosf® 0 HY n
F* 0 0 1 E*

oH"  OE OH 9E°  OE* OHT OH"
Mo T T or oo T on Tot T om or ct Z*

M—+A—+B—=0 W H" 7 0
Wi H" 0 01

11,2,3 =dq,—C, 0 fOI’ M_lA

Upwind components W, _ and W, are not affected by interface.
W,_ and W, are modified by the interface through BCs

B2\ (B

H™ )~ \ HZ
—n- - Wi\ _( —n+ 4 Wiy
1o W 11 Way

91
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EZ\N_(BEL\_ ([ —nx nz Wi
BTN ST 1 1 Wi, )’
where Wi = W;_ and W5, =Wy,

W5 = H™ is a non-propagating wave and does not

need to be corrected.
o Y"E; + YYE} N Hf —H?
z Y- +Y* Y- +Y*

- _Z H; +Z*H} +EZ+ —E;
t Z-+47¢ 7=+ Zt

HI. cos) —sint 0 HT
H i,c = sinf  cosf 0 H?

u“ Upwind Flux for 3D

(YE—fxH) +(YE+1nxH)*

nxE'sp =nx . -
| Y-+Y+

(ZH+axE)"+ (ZH-a x E)*
Z-+ 2t ‘

nx H'|s;p =n x

Upwind Flux

= PEC boundary condition
[AXE]=-2AXE_ [AXH]|=0

= PMC boundary condition
[AxH]=-2nxH_[AXE]=0
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Semi-discrete form

dE Vel g vrev=1 1, e . ZT[H] —n x [E]
= (M)TIS < H - o (M) ME + (M) F(nx e

aD

dH -1 g Ve —1 . Y*T[E]+n x H]
pr (M*)" SxE—(M")" F (l] X T

M;; = (Li(x),L;(x))p ,
M = (Li(x),e(x)Li(x))p, - M = (Li(x), p(x) L;(x)) p

Sij = (Li(x), VL;(x))p, Fy = (Li(x), Li(x))sp -

Runge-Kutta schemes for time stepping

Q%DG“’ DGTD Method on a Unstructured Mesh

= Nodal distribution M M=2
= Denser when closer to
boundary
= N=M+1)(M+2)(M+3)/6
nodes in each element.

= L =(M+1)(M+2)/2 nodes on : ,
each face.
m Reference Tetrahedron
s s
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= Accuracy Validation — by a cube cavity

0 -2 .
O Numerical
—— 3rd-Order
-5 -4 — — 4th-order ||
5 s
W -10 g -6
g g
-15 -8} e
_20 4th order ©
o 2 4 6 8 10 0 DGMs used: 1.5
Polynomial Order Log(1/H)
Spectral Accuracy with p High-order Accuracy with A
DUKE|
QHL/DGTD .

EDMUND T, PRATT, JR.

- A Dipole at center of a dielectric sphere

SCHOOL OF
ENGINEERING

(a)
0.5

A 6t order DGTD
with 4 order RK ¢ |
time stepping are *
used.

- " Tme ) X 10°

Relative Error

PML Tl
0 0.5 1 .
Time (s) X 10 Time (s) x107°
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*ee® Acoustic Plane wave incident on a rigid sphere

-
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Z T T T T T
gl —— Analytical ||
— — Numerical
I|. .'{\_
B———" T
\/\

Normalized Pressure

4 B ——

Q@
2 |
_/\,\f\_ =

\ |

\/ . i . . i
0 0.5 5| 1.5 2 25
Time(s) 10

A 5t order DGTD is used.

‘%‘5“’ Staggered Time Stepping for Unstructured DGTD

Unstructured DGTD is at best 219 order accurate for curved
objects due to linear geometry approximation.

Higher-order RK time stepping is a waste of time since it
require more stages per time step without achieving
higher-order accurate solution.

e.g. Though 4™ order 5 stage RK allows a about 1.4 times bigger
maximal stable time step, it is still 5/1.4/2=1.78 times slower than 2"d
order 2 stage RK.

m Second-order time stepping is sufficient.

Staggered time stepping is optimal among second-order
time stepping.
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m E and H at different time levels.

m Predictor-Corrector Method

= Predictor
Ert/2_gn ﬁ [(M)™'V x H? + (M) ™' MoE™
+(M)'F (ﬁ x

o)
= Corrector
En—f—l:Eﬂ T+ Af [(1\15)—1 V % Hﬂ+1f’2 T (I\-"IE)_I I\-"IO'EH—H*Q

+ n+l1/2 _ o n+1/2
LMo (ax B —ax (b .
7+ + Z- oD

= More efficient than 2" order 2 stage RK.

ZYH]"M? —h < [E]"
T+ Z-

QHU‘M A Dipole in a Dielectric Cylinder

SCHOOL OF
ENGINEERING

(a)

(b)
4 4
A 31 order
—— Runge-Kutta —— Runge-Kutta

DGTD is applied. | J\/\M\/i

0 02 04 06 08 1 h 02 04 06 08

(c)

(d)
— — Staggered — — Staggered
10 — Runge-Kutta | | — Runge-Kutta

5
N
w
0

02 04 06 08 1 04 06 08
Time (< 1 o® s) Time (% 10° s)

PML
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QHL/DGTD Scaffold Photonic Structure

Band gap: 0.390 —— 0.425

10
gw‘-
g 1072}
10_;.2 Oi3 D:4 0.5
Frequency, normalized by c/a
Scaffold:
Dielectric Constant 13
Thickness 1/8 a. A 3rd order DGM
Background: 15 app“ed )

Dielectric Constant 1

Z
2
E

SCHOOL OF
ENGINEERING

%G"’ DGTD on Quadratic Simplex Grids

m Use quadratic curvilinear elements

= Can achieve 3" order accuracy for curved geometries.
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Q“U‘DGTD Electric dipole in a sphere PEC Cavity

Straight-sided elements Quadratic elements

HL/DGTD 1
° ”l L A 3" order DGTD is used
Straight-sided Elements Quadratic Elements
— coarse — coarse
41| — midian 1 4r| — midian
—— dense ! — dense
SlL— accurate
N N
w w
0

0 50 100 150 200 0 50 100 150 200
Time steps Time steps

Quadratic mesh converges much faster than straight-sided.
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-
Accuracy Order
e 08 ; ;
& O Quadratic
n e —— 3rd-order
‘*K\ * Straight-sided
— "y -—- 2nd-order
5 6 '
)
e
-10}
-2 ;
0 1 2 3 4
Log(1/h)
QH@D Hybrid DGTD with Different Orders

= Hybrid Element = Mixed Order
= Tetrahedrons = High Order
= Regular Prisms = Low Order
= Cubes = Different order in

different domain
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-
= Flexible Hybridization
= Non-matching nodes across interfaces
= Non-matching faces between adjacent elements which
make the mesh generation very easy
A A—A A—A
A A A A A
A A A A A
A A—A A—ah
QHL/DGTD
-

» Face-Based Communication by interpolation

= Domain Decomposition Strategies
= Use large cubes as much as possible

= Use tetrahedrons or prisms to capture boundary
curvature

= Use methods with proper orders
= For large cubes, use high-order method
= For fine details, use low-order method

= For tetrahedrons for curved objects, use low-order order
method

= Try to avoid a wide rage of time steps
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2D Examples — Cavity with 2 Materials

(a) (c)
1m 1
Air Dielectric
51:1 91:‘E,625 IN 0
=1 u,=1
P =8 P,=10
Om ! & -1
Om 05m 1.5m
180 185 190 195 200
Time (x period)
(b) (d)
—— Analytical
— — Numerical 0
1 5 -1
i g -2
o
0 2 3
-4
=1
0 4 8 12 16 2 4 8 8
Time (x period) P

EDMUND T. PRATT, JR.

SCHOOL OF
ENGINEERING

QHL/DGTD
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2D Examples —

Cavity with 3 Materials

(a) (c)
o ~ — Analytical
£y52 — — Numerical
Hy=2
_ P,=8 1
£4 E | P P ﬂ I
W= N 1IN |
1 05m L f LI l\ / ’ {r\] f‘
P,=0 £,=4 0 | [ \ I | ‘ \
W IL U i \j i }
P=7 |
. ; i an
B Ll B 0 4 8 12 16
Time (x pericd)
(b) x107° (d)
1 4 ‘ I
i, g S
e &
=9 : 20
g 2 5
a .5 &
-4 -4
2 4 6 8 0 4 8 12 16

Time (x period)

EDMUND T, PRATT, JR.

SCHOOL OF
ENGINEERING
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Q@m The Grid Applied

EDMUND T TRATE.
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X Aixs

QHL/DGTD
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EDMUND T, PRATT, JR.
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3D Examples

= Efficient Implementation
for PML Regions
= High-Order DGTD for cubes
on PML region

= DGTD for tetrahedrons on
inner computational domain
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DUKE
Homogeneous Case — i| "
QHL/DGTD .
™ A Dipole Source e
e 7t order DGTD for s
tetrahedrons in inner M = Jnl | I
- ] |' | --- Numerical 5 I II.-’-.,\
computational domain. ," '| 5 I 5 of e
e 7t order DGTD for p oo | N |\)".| LAY
cubes in PML region. o— | / | O\ vV
-0.05 |||| ;‘f B I'\," M
01 V. . . . | : ) .
Non_PML 0 1 2 Times 4 Msﬂ42 0 1 2 Tim: 4 xfo*a
10"
IPII — Anarylical- i ||']'
0.2 ' il -~ Numerical |/ i J‘ L -
lll i o |” |L. AN/
A E ||
0.1 | | w | ‘
uf [ 2 s |
0 < ||I r & \ ‘
|| i -0 ||
-0.1 _ ilu.'ll , U _ , ,
PML T Y T S e Y
DUKE
Inhomogeneous Case —
QHL/DGTD . .
‘ A DleleCtnC Sphere DT
e 4th order DGTD for — x10°
tetrahedrons in inner — Numerisl ;
computational domain. ~ °% 5
e 7t order DGTD for i 2 g
cubes in PML region. ’ S
-2
-0.05
Non-PML °
0 0 2 4 6
Time x10°
x10°
o1  Numercal 2
o1
i} 0.05 'j.ut, 0
L 0 é y
o
-0.05 -2
PML s
-0.1
0 0 4 6
Time x10°%
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QH{/DGTD Summar
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m Spectral-Based DGTD Methods

= Discontinuous Galerkin Time Domain Method has several good
features: face-based communication, weakly enforcement of BC,
support hp adaptivity, easiness for parallel computation.

= Staggered Time Stepping for unstructured DGTD is introduced to
avoid the waste of high-order RK schemes for curved objects.

= Quadratic Simplex Elements can achieve 3™ order accuracy for
curved objects.

= Hybrid DGTD is powerful for complex problems. It allows hybrid
elements, mixed order, and flexible hybridization.

s DGTD can be combined with PSTD to perform fast spatial

derivatives (stiffness matrices). [G. Zhao, 2005; Q. H. Liu and G.
Zhao, 2005)]

. Potential Drawbacks of the Nodal
b DGTD Method

m Each subdomain must be one element, so the boundary
DoFs are always redundant. For lower order methods, this
can produce much more DoFs than the CGTD method.

m For implicit regions, the redundant DoFs do not bring
noticeable benefits.

m Numerical experiments show that long term instability may
be an issue, although filtering can reduce this problem.
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3.2 Vector (Subdomain) DGTD
Method with EH Fields

SCHOOL OF
ENGINEERING

= Vector (Subdomain) DGTD Methods with Tetrahedron
Elements and Hexahedron Elements

J. Chen, A Hybrid Spectral-Element / Finite-Element Time-Domain Method for
Multiscale Electromagnetic Simulations, Ph.D. Dissertation, Duke University,
2010.

J. Chen, and Q. H. Liu, “A non-spurious vector spectral element method for
Maxwell’s equations,” Progress Electromag. Res., PIER 96, pp. 205-215, 2009.

J. Chen, Q. H. Liu, M. Chai, and J. A. Mix, “A non-spurious 3-D vector
discontinuous Galerkin finite-element time-domain method,” IEEE Microwave
Wireless Compon. Lett., vol. 20, no. 1, pp. 1-3, Jan. 2010.

J. Chen, and Q. H. Liu, “Discontinuous Galerkin time-domain methods for
multiscale electromagnetic simulations: A review,” invited review paper, Proc.
IEEE, vol. 101, no. 2, pp. 242-253, Feb. 2013.

L. Tobon, J. Chen, and Q. H. Liu, “Spurious solutions in mixed finite element
method for Maxwell’s equations: Dispersion analysis and new basis functions,” J.
Computat. Phys., vol. 30, 7300-7310, 2011.

QHL/DGTD
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Outline
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Multiscale electromagnetic problems

A non-spurious mixed finite element method (FEM)
A non-spurious mixed spectral element method (SEM)
The hybrid FEM/SEM spatial discretization

The hybrid implicit-explicit (IMEX) time stepping
Numerical examples

Conclusion and future work
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o+ Introduction and Motivation:
™ Multiscale Electromagnetic Problems

EDMUND T PRATE .
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(100 um)

(mm)

Small structures
Package

Very small structures

Solder pads

Conductor traces On-Chip traces

Dimension ~ 0.01 X, ~ | mm Dimension = 0.00001 A, = 10 nm

Multiscale Factor = Largest A /Smallest 6 ~100000

A multiscale case: reverberation
QHL/DGTD
™ chamber

EDMUND T, PRATT, R

SCHOOL OF
ENGINEERING

multiscale factor > 1000

empty space in cavity
largest dimension > 10 A

stirers, device under test
smallest dimension < 1/100 A\
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& Conventional Time-Domain Metho
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ENGINEERING

= Finite-difference time-domain (FDTD)
= Finite-element time-domain (FETD) with E&B
= Solve 1st-order Maxwell’s equations with PML

= Require a sampling density >20 points per wavelength;
inefficient for electrically large regions

m Challenges both 1n spatial and temporal
discretization

-

QHUDGTDL Challenges for conventional methods

= Spatial discretization

= finite difference: too many unknowns

= finite element: inversion of matrices

= Time integration

= explicit scheme: very small ~ A\¢

= implicit scheme: inversion of matrices FDTD grid
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A Hybrid method based on domain
.| decomposition

EDMUND T. PRATT, JR..
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coarse subdomains

fine subdomai
m Spatial discretization

= finite element for fine parts

4

Y

[N

X

= spectral element for coarse parts

R R e e (T Y

A T I NN Y N Y

S

= Time integration

= explicit schemes for coarse mesh

= implicit schemes for dense mesh hybrid mesh

Governing equations for
- electromagnetics

SCHOOL OF _
ENGINEERING

wave equation Maxwell’'s equations

OH
VxE=0
u8t+ X

|

I

I

|

I

0%E | OE _ 9Js :
OE :
I

I

I

|

I

|

I
I
I
I
I
I
I
m2+0m ot :
I
I
I
I
|
I
I

VX(EVXE)—l—e
I

Ea‘I—JE—VXHZ—Jb

conventional FEM mixed FEM

desirable for hybrid method
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QHL/DGTD

Flux communication between
subdomains

subdomain 1 subdomain 2

XE

n
Poynting vector

(energy flow)

Energy flow on interface is based on both E and H

DD LTI

SCHOOL OF
ENGINEERING

QHL/DGTD

-

The hybrid SETD/FETD method

SETD for electrically coarse structure

FETD for electrically fine structure

m Spatial discretization

Domain decomposition

Spectral element + finite element
SETD/FETD meshes

= Time Itegration divide into 4 subdomains

o . coarsest PPW =~ 10
Explicit schemes for coarse subdomains total unknowns: ~ 50,000

. . . Al ~1/10 period
Implicit schemes for fine subdomains /10p

DUKE

EDMIND T FRATT IR

SCHOOL OF
ENGINEERING
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DUKE|
me Non-spurious elements for Maxwell’'s equations
Bl =) ehly(n), B = ) Rhh ()
o n
FETD
3
’ e IfE and H are
o used, E_ . H_ or
@ 6 E .,H, are
® required to avoid
H spurious modes.
- E.H, will
produce spurious
modes.
¢
Q——.
' ~
DUKE]|
ng Frequency domain results
Lo B0 No spurious modes ~ Many spurious modes
f% +oE-VxH=-J 14- ._.-“'.L: . /7
joML e! =S, ht I=":
joMj,hi = =S e =
—g i -’
Eigenvalue problem il
. oo—1 . .. 8
Seh(M;lh) She e' = széeel I
. E5H4 ./ E5H5
?ercr L?‘cigciﬂfalucjgichcnig 1) v [éirder oi‘oggenv:ffc (schse[:?m 2) 0

Eigenvalues of the cavity by (left) SEM scheme
1 and (right) SEM scheme 2.
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Example |: Spurious modes in

S mixed FEM

EDMUND T. PRATT, JR.
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broadband source

t=0ns
| 100F '
= 5r
I : ¢
w” el
i 0ok
< > 0 01 02 03 04 05 08 07 08 09 1
® [m)
6 A w.r.t. the highest mode analytical solution
t=0ns

sooF : . : . : : . : . .
_—

E 100 B

H 100k B
—_

'QDD _ 1 1 1 1 1 1 1 1 1 |

0 0.1 0z 0.3 0.4 0.5 0.6 oy [IR] [IR=] 1

% ()

mixed FEM

E, (V/m)

common interpolation

Mixed interpolation is free of spurious
QHL/DGTD
- modes

SCHOOL OF
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1 1 1 1 | 1 1 | 1
o 01 02 03 04 05 0B 07 08 08 1
Sy

time-varying results
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QHL/DGTD . . . .
- Dispersion analysis for mixed FEM &=
For common interpolation (E1H1)
kd = 3sin(kd)/(2 + cos(kd))
For mixed interpolation (E2H1)
e 5(3 — cos(kd))(1 — cos(kd)) + sin?(kd)
—\ (3 — cos(kd))(2 + cos(kd))
3t = : : :
= —> mixed interpolation
% ol —> ideal results
s T T e > common interpolation
g 1 L
N
\,
% 05 1 15 2 25 3
real kd
QHL/DGTD

- 3D non-spurious mixed vector FEM

SCHOOL OF
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2nd order edge element 1st order edge element
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SEM is a special kind of higher order
FEM

EDMUND T. PRATT, JR.
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VI TN

0.5¢ ° ° L] 05
o] ] L] [ ] L] L (1] ] L] L] [ ] L ]
-0.5¢ L[] L] L] L] =05
4th Order FEM r* * ° 1 4thOrder SEM
-1 - - - -1 i - >

100 -

0.1 1
1E-4 ]
1E-6
1E-8 1

1E-10

Average Error [%]

1E-12 = T T T T T T T T T
3 4 5 6 7 8 9 10 11 12
Number of orders ( N==N“=Nc )

FEM v.s. SEM (3D cavity)

Higher order SEM is efficient for
coarse structure

1)\ X 1A x 1\ homogeneous space

10 x 10 x 10 1st order FEM 1 x1x15th order SEM
total number of unknowns: 6000 total number of unknowns: 750

about 90% of unknowns are saved by higher order SEM
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3D Non-spurious mixed vector

_— SEM

EDMUND T. PRATT, JR.
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E H

2nd order spectral element  1st order spectral element

QH”‘WD Example |l: 3D PEC cavity

SEM scheme 1: EbH4
SEM scheme 2: ESH5

Dipole position: (-0.014, -0.236, 0.011) cm
Dipole polarization: —0.62% 4 0.62y + 0.47Z2
time function: BHW pulse with f. = 9.4 GHz
Time-stepping: RK4 with At = 0.5 ps

Alcm x 0.5 cm x 0.75 cm metallic cavity filled with air.
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DUKE)|
Q- Time domain results g sl | |
‘ EDMUND T. PRATT, JR.
ENGINEERING |
— reference
- 2 ' ' ' + SEM scheme |
E LS == SEM scheme 2 '
a 1 o ') n 7 1|
- e 1 ; ‘l H ;5 ' T
m I g 1 b | . I Y 1 I
= 0‘: ! ! : 'l |'ll- S}t L :—
N ] ! 1 ; \ ! W A 1
E ! B ‘R " :
g 1 5 1\' ; v :
: N 1 ¥ 1 1 1 1 ‘J
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
time (s) <10~
10"
g0’
s
k|
2 —B- iiﬂlm
10 —— ‘0”
10 o TE
111
1 2 3 4 5 6 7
interpolation order of M (N=M+1)
Spectral accuracy by non-spurious SEM

QHL/DGTD

-

The hybrid SEM/FEM spatial
discretization

Electrically fine structures: lower order tetrahedral FEM

|
= FElectrically coarse structures: higher order hexahedral SEM
= Interface between different subdomains: Riemann solver

FETD subdomain for fine SETD subdomain for coarse  SETD subdomain in PML region
structures in physical region  structures in physical region

A schematic mesh for the hybrid SEM/FEM discretization

DUKE

EDMUND T, PRATT, .
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Galerkin’s weak form and surface

. integration =
Maxwell’'s equations Galerkin’s weak form
e%f+aeE-vXH:-Js /V‘I"(G%‘i‘O'eE—VXH-l-Js)dV:O
pO% + omH +V X B = - M, [ (#%_?JFJWHJFV y E+M) iV =0

perform integration by parts

|
/<I>-(ea—E+er+JS)dV=fchI)-HdVJrl/i»-(an)dS
Vv ot v Vs

Riemann solver for surface
QHL/DGTD . .
- Integration

Galerkin’s weak form with integration by parts

' OE [

]@- cd——{—aﬂE—l—Js dV:/VX@-HdV+y@-(nXH]dS I
v ot v Vs

[ I

[ 1

[

I

[i’- ;LE—{-(I.,,,,H—}—MS dV:—/VXlI'-EdVI—/‘I‘-(an)dS
Jv ot Jv I Js

surface integration
Riemann solver for interface between adjacent subdomains

VAQESYA))

(nx H) =

n x (y(i)E(i) + y(j)E(j)) —nxn X (H(f-J — H(j))
YY) Yy G)

(nx E) =
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A Non-conforming interface between
‘_h subdomains

interface of subdomgin < @ @

interface of subdomain 2

DUKE
Integration on non-conforming ﬁ
interface =

‘@l
. .
A 7
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e Discretized system of equations

The discretized SETD/FETD system with N subdomains is
D S L) 4 0
M TZZLV +f ? ?”:1=°":N

j=1

The hybrid implicit-explicit time
- stepping

= Electrically coarse subdomains: explicit Runge-Kutta scheme
= Electrically fine subdomains: implicit Runge-Kutta scheme

= Adjacent explicit and implicit subdomains: IMEX-RK scheme

At of coarse subdomain (explicit)
I BN BN BN B .

At of fine subdomain (explicit)

conventional explicit scheme hybrid explicit-implicit scheme
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Three time stepping scenarios

QHL/DGTD
coarse coarse
1. mesh mesh
2 coarse
] mesh
3.

Local explicit RK scheme

Implicit-explicit RK scheme

Local implicit RK scheme
subdomain-based iterative
algorithm

QHL/DGTD

-

Local explicit Runge-Kutta scheme

coarse
mesh

coarse
mesh

0 0 0o ... ... 0
ex [ azy 0

ex ex
cz | agy azy 0

Cs aﬁ’fl ai“fQ . ag’;_l
by by b3 - bs
explicit RK

Mlllrllew = Nitg™™ (L(lgl)u(fld -+ L(lgg) ugld) + q

Mous®™ = Ata®™ (L(z,l)ll(fld [ L(z,z)ugld) +q2
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QHL/DGTD

-

Implicit-explcit Runge-Kutta
scheme

im

DUKE

EDMUND T. PRATT, JR.

SCHOOL OF
ENGINEERING

oN 0 0 0 a0 0
ez [lagy 0 : B oadh 0 :
& |5y agy 0 oS ool al
e o afy ... a0 ol oy ... an ) an
b b - b b b .. B
explicit RK B implicit R
1 .
Mlu’few = AtGeXL(ljl)u(f d T At&lmL(ljg) ugld s q1
(Mg — AtaimL(g,g)) u,"" = AtaexL(le)uclﬂd + Q2
DUKE
oteeel | ocal implicit Runge-Kutta scheme

-

SCHOOL OF
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0am 0 0
co|a¥y a3y O :
c3 aflgml ag"“z “.lsnfi
Cs | Gy Qg ... Qg g Oy
by by b3 bs
implicit RK
M, O im | L,y Lag u || an
0 My Tl Ly Lesg u; q2
(subdomain-based) block Jacobian iteration
M, — Atal™ L ) 0 w |7 - 0 Luoy |[w], [a
. , ) :AL 1171 (1,2) +
|: 0 M2 — Att’lz?kL(g_‘Q) U9 Wk L(gj]] 0 u9 (o]

block Gauss-Seidel, SOR, CG, BICG, etc. can also be employed here
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Block Thomas algorithm for layered
- structures

EDMUND T. PRATT, JR.
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llnngiludinal direction

J layer N

llayerN—1 [ B] C1 0 0 Tr u 7 B ql T
EEENR Ao By G . | |w | |
1 layer N-3 - - - .
: > 0 A By . 0 ST
. T Iay:rd N CN_l ll: '
EgEEgERE o3 | 0 ... 0 Ay By JLUVI LAy
layer 2
[ oy block tri-diagonal system
([ C, =B,'C,
fori=2:N-1
C,=(B;-AC_)'C,
end
f; = B7'f,
) fori=2:N
f/= (B, — AC, ) ' (fi— A )

end

qn = fjy . . .

fori=N-1:-1:1The block Thomas algorithm will eliminate

i =f/ — Clq; . . . . .
Cndq Bi+1 iterations during time stepping

QHL/DGTD

- Example lll: reverberation chamber

EDMUND T, PRATT,JR

SCHOOL OF
ENGINEERING

< 1.6m >
o
N
Vs
A
Giem chip in chamber:

top: 5 X5 mm >
bottom: 10 X 10 mm
thickness: 1 mm

] thickness of stirrers: 5 mm

multiscale factor = 1600
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Numerical results by SETD/FETD

. and FDTD
) ﬂ n —-SETD/FETrD
PR AR

| | | | |
10 20 30 40 50 60 70
time (ns)

receiver @ (-0.5m, 0.3 m, 0.1 m)

-500
0

Computational costs of FDTD and hybrid SETD/FETD methods

FDTD hybrid SETD/FETD
number of unknowns 16,692,480 103,240
At (ps) 1 100
number of time steps 100,000 1,000
memory (MB) 501 315
CPU time (minutes) 156.6 11.3

- Example IV: antenna array

S

thickness of patch antenna: 1 mm

multiscale factor = 250
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Numerical results by SETD/FETD

QHL/DGTD
06 - - - -
=== FDTD
= = SETD/FETD
g 04r ” .
&
= 027
g
=]
e 0
&
E \
[
] _0-2 -
_04 1 1 I 1
0 1 2 3 4 5
time (ns)
hybrid SETD/FETD FDTD
At(ps) 10 0.1
number of time steps 500 50,000
memory (MB) 277 438
CPU time (hours) 2.2 34
’ Domain decomposition can save
QHL/DGTD
L memory |
2000 - -
—— SETD/FETD
—— FDTD
m 1500}

1000

memaory cost (MB

500+

0 20 40 60 80 100
number of cells
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QHL/DGTD

- Example V: interconnect package

EDMUND T. PRATT, JR.
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port 2

DUKE

Q“”‘DGTD FDTD grid and SETD/FETD mesh

EDMUND T, PRATT, .
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SETD / FETD mesh

PPW=40
cells: 511 X 323 X 60 44 subdomains
total DoF: > 50 million total DoF: 152,356

2t = 3.98 fs 2t = 500 fs
nt = 125,628 nt =1,000

124



Multiscale Computational Electromagnetics in Time Domain Part 2

QHL/DGTD

-

Numerical results by three methods

10
O
) o‘rﬁ-’j
S 10t .“.‘.h'." ]
s .| g — S, by HFSS
®
£ F 4 A S, byFDTD
g —30f m S, byDG-FETD |
o - = S,, by HFSS
? 40t "
e S, byFDTD
50l ¢ S, byDG-FETD |

2 4 6 8 10 12 14
frequency (GHz)

Comparison of computational costs by different methods

hybrid SETD/FETD FDTD HFSS
memory (MB) 371 1,627 1,433
CPU time (minutes) 13.1 522 319

QHL/DGTD

-

Summary

The 3D FETD method with E_H, ., bases for Maxwell’s equations. This
method is used to discretize electrically fine structures.

The 3D SETD method with E_ H, ,, bases for Maxwell’s equations. This
method is used to discretize electrically coarse structures.

The hybrid SEM/FEM DGTD method for multiscale structures.

Integrated the hybrid implicit-explicit time stepping scheme into the
hybrid SETD/FETD method

Applied the block Thomas algorithm to speed up the hybrid SETD/FETD
method for layered structures
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. 3.3 Vector (Subdomain) DGTD
- Method with EB Fields

EDMUND T. PRATT, JR.
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= Vector (Subdomain) DGTD Methods with the EB Fields and

Tetrahedron Elements and Hexahedron Elements

= L. E. Tobon, Numerical Solution of Multiscale Electromagnetic Systems, Ph.D. Dissertation, Duke
University, 2013.

= L. E. Tobon, Q. Ren, and Q. H. Liu, “A new efficient 3D Discontinuous Galerkin Time Domain (DGTD)
method for large and multiscale electromagnetic simulations,” J. Computat. Phys., vol. 283, pp. 374-387,
Feb. 2015.

= Q. Ren, Compatible Subdomain Level Isotropic/Anisotropic Discontinuous Galerkin Time Domain
(DGTD) Method for Multiscale Simulation, Ph.D. Dissertation, Duke University, 2015.

= Q. Ren, L. E. Tobon, Q. T. Sun, and Q. H. Liu, “A New 3-D Nonspurious Discontinuous Galerkin
Spectral Element Time-Domain (DG-SETD) Method for Maxwell’s Equations,” IEEE Trans. Antennas
Propagat., vol.63, no. 6, pp. 2585-2594, 2015.

= Q. T.Sun, L. E. Tobon, Q. Ren, Y. Hu, and Q. H. Liu, “Efficient Noniterative Implicit Time-Stepping
Scheme Based On E And B Fields For Sequential DG-FETD Systems,” IEEE Trans. Components
Packaging And Manufacturing Technology, vol. 5, no. 12, pp. 1839-1849, Dec. 2015.

= Q.Ren, Q. Sun, L. Tobdn, Q. Zhan, and Q. H. Liu, "EB Scheme-Based Hybrid SE-FE DGTD Method for
Multiscale EM Simulations," IEEE Trans. Antennas Propagat., vol. 64, no. 9, pp. 4088-4091, Sep. 2016.

= Q. Ren, Q. Zhan, Q. H. Liu, “An Improved Subdomain Level Nonconformal Discontinuous Galerkin
Time Domain (DGTD) Method for Materials With Full-Tensor Constitutive Parameters”, IEEE
Photonics J., vol. 9, no. 2, p. 2600113, Apr. 2017.

o hallen
S Challenges

EDMUND T, PRATT, &
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The FDTD method: high discretimh / Domain Decomposition \
density required to capture the geometric Method

characteristics of electrically fine structures. .I - .I . -I + .I

. .I = .I * .I = .I
Hi-H-Hl-

The FETD method: requires solving matrix
equations, huge matrix for multiscale problems,
either directly or iteratively.

Explicit time stepping: very small time
steps = large number of steps.

Implicit time stepping: solution of large

dense matrix each step. 5X 5 X 4 subdomains Interfaces between
subdomains
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Spatial Discretization and Time

QHL/DGTD . 4
- I N teg I’atl on r_:;ﬂ’g;f;'f‘
V/
)
e, /a,}. Cs/ - - coarse subdomains
S o, % fine subdomains 3
A9 S ¥
Implicit
<1 ] cN-BT leite 10':<c>
% 0° -
E CN-GS 3
© Hvbrid Prism 1
g1 | 1008
h IMEX B Q0
~0° Local TS S
< - hybrid mesh
1 Brick {J,10
T \ 4
Multiscale Factor = Largest A /Smallest &
QHL/DGTD

- Summary (L. Tobon & Q. Ren) {

SCHOOL OF
ENGINEERING.

1. A unified framework based on the theory of differential forms and the finite
element method. 1t is used to analyze the discretization of the Maxwell’s
equations.

2. Numerical analysis based on modal analysis for one- and two- dimensional
spectral elements. Comparison with analytical formulas of numerical dispersion
based on semidiscrete analysis.

3. Study of dispersive Hodge Operator. Phase velocity analysis provides same
conclusion as previous dispersion analysis.

4. Implementation, analysis and application of Spectral-Prism element for EH DGTD;
including single domain performance analysis, and applications to multiple domain
and multi-layered EM cases.

5. Formulation, implementation and application of new LDU algorithm for highly
multiscale EM cases decomposed in sequential order.

6. Implementation of first and second order divergence-conforming tetrahedral
element for EB DGTD; including single domain performance analysis, and
applications to multiple domain and multiscale EM cases.

7. DGTD for anisotropic media.
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QHL/DGTD

-

Maxwell’'s Equations

Ampere-Maxwell’s law

Faraday-Lenz’ law

Electric Gauss’ law

Magnetic Gauss’ law

Topological Laws

Constitutive Laws

%:vachst D =¢E
O
9B G E M, M. B = uH
V.D=p J.=oE
v.Bep M. =0, H
Vx V-
E —- B — -
Pm | Tonti diagram for
o € - nT electromagnetics
. X
pe — D <+ H

DD LTI

SCHOOL OF
ENGINEERING

QHL/DGTD

-

Maxwell Equations

SCHOOL OF
ENGINEERING

Physics FEM Differential Forms
E S B Y ol [H'SHEw) B H@) S L [0 & o0 4 2 4 ¢
v- E; V% ﬁ:‘,JHT De Rham sequence i * d i * d I * d I *
P = R R T
Tonti diagram
Cochain complex
f 0 — form i) 1 —form i) 2 — form i)» 3 —form \
(Scalar Potentials) (Intensity fields) (Flux densities) (Charge densities)
Ht -‘ H (curl) H (div): A
O g E bl B : X i
g xu-1 41 %,
i il D X H | & Dy
L2 H (div) H (curl) /5
i 2 — form <i 1 — form ris

K3 — form

0 — form /
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o The Weak F
- e vvea orm
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Discrete Representation The weak form
4 N )
/ & aD \

Ng Np / 91’) ' (‘)7 = V X H - J dV = O
E~Y @ || DxY 4w J !

j=1 j=1

. . OB

N Np 5 qu-(——VxE—M)dVO
H~~» h®!'| | Bz ) 0,¥] ot

& = ) N\ J

\- AN

Curl-Conforming Div-Conforming

QHL/DGTE Linear Systems
- y

EDMIND T FRATT IR
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[ de )  (Mass matrices (M) = (5. e )ve )
Mee— — Kehh + Ceee +j (M ) ('I'f-ﬂ‘t’;{)li
EH dt (Mg = (W7 97y,
dh (Mdri);;! = (I'i;w ‘I’!D)‘l
M;;,— = K;.e+ Cph +m . . o
L Rt he€ + Cnplt F ) |[Damping matrices (C..)j, = (@] .0.®f)v.
(Chn)iy = (D] o, @)
( de . \ (CM!):!.‘I = (‘I’}{) Uiu."l_l‘yf)li.
MEEE = Kab+ Cece + Stiffness matrices (Kuj; = (2. V x /')y,
EB db (Kio iy = —(®f. 7 x ®F)y,
w— = Kpee + Cyb + m (Kaliy = (V x ®F 0¥y,
dt y (Kl = (0.9 x @)y,
where (f.gh, = [T gdV
e N L e )
dd ) V.
Maa— = Kanh + Cece + (Hodge operators @ =*¢=MiMae )
E H D B t b = %,h = 11M;;'M,,h
M db K Cih e =% d = éM;}M, ad
g ~ e Bt b = ey = MM
\_ J \_ 17 b = Ve VD )
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Curl-conforming basis functions in
SETD (hexahedron element)

ENGINEERING

(E)

@Efkﬂrf} g@{ﬂff 1}(6)(,?5 Mr}( }‘lﬁkﬁrﬂ(cj 'I-—U ﬂf—l,(j,k}:ﬂ, ,ftf
& = ™ () TV m)ep (€)= 0, M = 1;(i,k) =0, | M
BGM0 = LM ©)0M oM D) k=0, M~ 1;(i,5) = 0, , M

(M) —(1 —2?)Liy(z) L GLL polynomials
o () = NN DIn@m) -z ™ =0 M e based

: I
=
A
-
-
v
o
|
|
Y
\l
q-—--
I

> » »

1 -1

31 grder reference element

. . . . DUKE
Divergence-conforming basis functions
Q%DG“’ in SETD (hexahedron element)
(B)
T = €00 (£)9lM ”(nw;‘" '(¢)i=0,---  M;(j,k) =0,--- M —1
e A (3] ““() Q)i =0, M (i, k) =0,--- M —1
TGN = LMV (M TV el (€, k=0, M; (3,5) =0,--- , M — 1
—(1—2%)Liy(x) o GLL polynomial
@) = NN Do) =2 "= %M i
Face-based
o EEER LT
' : A TR S s-'i’_::— I:_=_i— =

31 order reference element
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Curl-conforming basis functions in
- FETD (tetrahedron element)

-

EDMUND T. PRATT, JR.
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Constant Tangential- Linear Normal (Ct/Ln) (E1) Linear Tangential- Quadratic Normal (Lt/Qn)
(E2)
i LtQn _ . reference element
‘I)‘:'j = siVsj — sjVsi 6 'I'ij = SLVSJ 12
s, is the barycentric coordinate of the p-th vertex.
F i s PLn _ si5,Vs; — 5;5:Vs; 8

ijk

RIS
S

% —
s 05+ NS S
0 ./‘"
o N - 1 I e ]
08 10 05 05 e 05
n n g

Divergence-conforming basis functions
- (tetrahedron element)

-

Constant Normal - Linear Tangential (Cn/Lt) (B1) Linear Normal - Quadratic Tangential (Ln/Qt)

(B2)
- reference element
_ . = nit —
\Ilg’,:l"‘ = 2(8;Ujk + S;0hi + SkTi5) 4 Wik = SiTjk 12
LnQt = _, -
Wi =281 (s:Ujk + SjUks + SETij) 3
where Uij = Vs x Vs;.
1 B " A
a8
I o Ak SN,
SRS 27 N,
w05 :-g’i:" MY wr 0.5 o SN
f s S\ s e\
—_— <SSl A, = £l 3 - )
o- A ol 48 — .\
e e . — (; — o =
e W © 05 4 05 1
1
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Curl-conforming basis functions in
R prism element
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reference element

Low order (Elnor Hln)

J
>

I
0" (€ m9) =0 € n ol (5) Lo i
I -
J
~ (1,N) . (N=1) 4 4 0’5: =
Qg (Em) =S (G 7 (<) T
P ,: —_Josss
where e A n
- N,
Name rule of basis functions in :‘,-9 g \\\
O (¢,1) = (521 Vsiza — Sit2Vsit1) prism element: i L~
(1 - 2L (@) 15t digit is the order of triangles
M) () — —(1—2)Ly o
9" = T DIy =0 M 2nd digit is thfa orde.r ofPLL
polynomials in z direction
QHL/DGTD

EDMUND T, PRATT,JR.
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High Order (E2n or H2n)

L @N) .
”h?k Emns) =05 Ene. ()  Horizontal

~ (2,N) " N—
Qi (61,9 =<Li; (6O V() Vertical

s

M) () — =(1 =)Ly (x) _
where  ¢n"'(x) = L ES O CEr ™ L

ol (em=sVs, i=123 j=123% i#j
87 (€)= (1—si—5;)5;Vsi — (L—si—5;)s:Vs;, i=13% j=12% i#j
Lij {{,n) = {251 = 1)8,‘, — ]., 2,3

Lij (&m) = sisj, 6.J=1,23; i#]

A
~os 0.8660 o
// o8
0
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Divergence-conforming basis functions
in prism element

DD LTI
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QHL/DGTD

-

Low order (Bln or D1n)

Elg’m (&.m,6) = Tgl) (&,m) qﬁch*l) (s)  Horizontal
LN . )
. (Ea n, C) = CC(ﬁéN) (() Vertical

=24k

where

TEIJ (€,7m) =¢ % (841 Vsite — 5:10Vsi1)

. —(1— )iy (2)
(@) = NN + 1)LN(z,,3r(g: ey ™0 M

o A
0 0
-1 -1
0.8660 0.8660
n
DUKE
QHL/DGTD
‘ EDNUND . PUATL .
SCHOOL OF
ENGINEERING
4 4
High order (B2n or D2n) I !
(2,N) 2 N-1 &
Elgj,'& (f"‘?: ‘:) =¢x @Ej} (fa '?) ‘35}, ) (’;) Horizontal \\‘
. 2N .
S (Eme) —dsiofM) () Vertieal ®
s ™ e \"\‘
where
®
e T

o (en)=5Vs;, i=123% j=123 i#j

65) (&m) =(1—s;—8;)8Vs; — (1 —8; —3;)8; Vs, i=12 4j=12; i#j

(1 — 22V
Q-

o (@) = NV + D In (@m)(& — Zm)’
7

Total DoF in one prism element for divergence-conforming B2n or D2n: 8N+ 3(N+1)

1
|
/-‘D,ESEC
il
—_— "_D 7
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me Comparison of EH and EB Basis Functions

EDMUND T TRATE.
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DoFs comparison

I sw:mm Tetrahedron Hexahedron
S ([ EH, 26 66 |
EB, 10 18
E,H, 92 180
Freiincy {éeuzl 2 \ E2B2 35 90 Yy
[ EH, 408 |
0
R | EB, 252
S
8 = EB Scheme has much less DoFs
g -40
FETD E1B1
e analytical
o 0.1 02 03 0.4
Frequency (GHz)
. . DUKE|
Eigenvalue Problem for Analysis of
QHL/DGTD _

EDMUND T, PRATT, JR.

- Spurious Modes

SCHOOL OF
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Assuming harmonic variation % — jw

Yv = xyXv
Y = —K5 [Mps] Kg,

Ref.: L. Tobon, J. Chen, and Q. H. Liu, “Spurious solutions in mixed finite element method for Maxwell’s equations:
Dispersion analysis and new basis functions,” J. Computat. Phys., vol. 30, 7300-7310, 2011.
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-

Eigenvalues, 1D periodic domain

T v oNz ow | Periodicy, .
,' '~ Boundary
: L I "
Condition
L=1m
. . ko = 2mi
Eigenvalues with N=100:
| Amnalytical ‘ Mode E1HI | Numerical EIHI ‘ Mode E2HI | Numerical E2HI ‘
s 2 0.00000125 1 0.0000044 1
6.28318531 4 628318476 3 6.28318616
12.56637061 6§ 12.56635317 5 1256640743
. / 8 18.80005824 > - .
SpurlOUS 18.84955592 10 18.84942316 7 1.8‘1983387 No SpUI‘:lOUS
Modes !! \*2:':.1327“23 12 2513217993 9 25.13390293 modes in
:%W-l 14 31.41420634 11 31.41943484 E2H1
o 16 37.30580267 C -

EmHn represents m — th order in E, and n— th order in H

DUKE|

EDMUND T PRATE .
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Analytical Mode ETHI Numerieal ETHI

2 0000001275
62831803 1 i 25
1256637061 6

£ | 1RE0005320
L&, 819555492 10 15849402316
25.13274123 12 2513217993
F1A150265 [T ALATL20GE

16 | AT.A0R026T

Eigenvectors of E1HT:

1

/ 1:‘“1 2l
~ 05 T s / \{& osf | [ Iy
@ @ / W @ \ | @
LT T DA A & A ATAR |
Lo Lo\ L
IO I AN MERVARYI
0 05 1 0 05 1 0 05 1
X X X .
L (i e I o Spurious!
S os} | [V [l{a os NI jUs astfl [l ° .
2 Ve T Y N 2"d kind
B L] A R -1 ] S T A T - ar [V \|| H
g FLf )V 2 IVt 1 E AL E
w05\ “.‘ w054 || || 1] | -0s]] “\‘ “‘. || 1] w08
P A VAN VA ) LV R VR 1
05 1 0 05 1 0 05 1
X X X

DUKE|

EDMUND T, PRATT, R
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Eigenvalues, 1D transient problem

Position
Source:
1st derivative of
BHW
fc=1.29GHz
Located in 0.35 m
time
[Ji%)
-C_‘ £
1m
15

/ Spurious \ 1

bma(s)

EDMUND T PRATE .

SCHOOL OF
ENGINEERING

Observations

 Spurious with
faster group
velocities.

« Rapid change
in space.

» Slow and
difficult to
found in time
variation.

QHL/DGTD

-

Eigenvalues, 3D cavity

Dipole Source
Loc. (0.1,0.1,0.03)

Pol. (1,1,1)
Fc=2GHz \
0.03m

I8

SN

Dipole Receiver
Loc.
(0.20,0.07,0.013)

Mesh: _
Brick elements By _Q%d
A=0.01x0.01x0.01 == = = = = =

e <5
B o
e
e e e o
e "‘!l
e P
""1‘:"4‘..:‘:"‘!‘ &
e s

E1H2

Eigenvalues

EDMUND T, PRATT, R

SCHOOL OF
ENGINEERING

E1H1

o 5 10 15
order of elgenvalue (E1HZ)

e

Eigenvectors E1H2

o 500 1000
order of eigenvalue (E1H1)

Eigenvecfors E1H1
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Dipole Source
Loc. (0.1,0.1,0.03)

Pol. (1,1,1)
Fc=2GHz \ .
B( O.23m//
Y

Dipole Receiver
Loc.
(0.20,0.07,0.013)

~
0.03m
\.

R

0.11m

Mesh:
Brick elements
A=0.01x0.01x0.(_)_1‘

x 10°

ﬁf\%/

SETD/FETD E1HZ2 |
— — — SETD/FETD E1H1 |
+  Wavenclogy

1.5 2
time (ns)

FFTEz

Eigenvalues, 3D cavity

'DUKE

EDMUND T. PRATT, JR.
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# * FRE K R F EW

= SETD/FETD E1H2
SETD/FETD E1H1
— — — Wavenology
*  Theory

' ] ] [
I | o 'l v
_____ oM NI ’JI‘“ b h_,nn i
1 15 2z 25 3 35 4 45 &
Frequency (GHz)

QHL/DGTD

-

L=1Im

Ampere-Maxwell’s law
dH. —0

wk, + —=
]€ Yy !l

Faraday-Lenz’ law

Periodic

Boundary'::>

Condition

Weak form:

p=

L
dE,
L >S5, [
i =1}
Discretization | .
ZE,,()(” ZH N (2
p=1 g=1

n,
J;v'v'z Ep]fz:[\” [\”
L 0

. )
lﬂr”p f’f+IWZH”/;H(U:_[)\]HI;—ll

i=1.N

N-3 kon, = 2mi

dyN
ZH,,] .fr”‘ b h -0
I"J

p=1

ny

p=1
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Dispersion analysis, 1D semidiscrete analysis

SCHOOL OF
ENGINEERING

o E1H1 Num
3 ) O 31|l o E2H1Num
i ‘ sin (€) — Ideal behavior :
52]%1,&;1 — ( H) 2,51 | ——E1H1 Theo oo
n, R - --E2H1 Th 3
CcOS (SL‘{) + 2 2k | - - walter a:c?Carey 06“@00
o 5(3 o (S_ZR)) (1 ~ eos (QR)) © sin? (QR) 05k
n,B2HT ™ (3 — COS (QR)) (2 -+ Cos (QR)) 0 05 1 15 : 25 3
Q
wL Non monotonic behavior using elements with
0 = Pin (My, M) common interpolation

Spurious Modes

QHL/DGTD

-

Dispersion analysis, 2D semidiscrete analysis

EDMUND T, PRATT,JR

SCHOOL OF
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2D
“tnM1H 1

-] B2
=1

Ivl

, 1/2
] [Z sin? Q, (1 + cos Q) }

]
by (24+cosQ)" (24 cosQls)

bo

Sin % (—I + cos Li)i) (:«'iuQ,, ——lﬁin%‘)

2D _ 5
0 1w = Z N ) Q ’ g ‘
. o fmmy (2 4+ cos Q) [(2 + cos —jﬂ-) (2 + Cos T) + 1_)] Q::';.-I(-,,-,f =,/ + Qi

o E1H1 Num Blue% E1 H1
| | Red > E1H2
2 --—-azalvlﬂe::nec?Carey 06@@50’ . Green 9 Ideal
d= B a
1 This approach becomes
cumbersome for higher

orders basis functions.
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Dispersion analysis, modal analysis

0. Periodic Boundary Condition

1. Assume harmonic plane wave solution

2. Approx. discrete harmonic plape wave
qth element: € = /‘Pé‘w - Eq (0) exp (k- 1) dV
v

T
e! Ye L

¥ 12 ~ ~32 a a ke

Yv = yXv|mh{X el Xe, Pmin (Mp, M)

3. Approx. eigenvalue

Rayleigh quotient Normalized wavenumber

-

QHL/DGTD DlsperS|On mOdaI analyS|S, Quadrilateral TE, _SF;;;;*;;

ELH1B1D1[ > T
V X - .
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Dispersion modal analysis, E1H1 {_

o (EH)

Small error, less that
4% for large
wavenumbers

+ |deal
A Origin of
35t |—45° ~
s Spurioys
o _podes
15 . \
1 ] ‘\\“ ]
05 LR
05 1 15 2 25 %3 .3.5: N 45
L] ~ -

n

22T T N 2,
3 ] 1

Phase velocity

s:o::s\?

e N\
Bl
G.roul|::ilvj¢I;cizty

SCHOOL OF
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Phase velocity
goes to zero
for large
wavenumbers

Negative
Group
velocity for
large
wavenumbers

\ 4

Spurious
solutions

QHL/DGTD
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Dispersion modal analysis, E1B1 |

3 5,

T
I
":‘\\\1\ AR

0 05 1 15
I

Good behavior

2 25 2

2 2
(=]

No spurious solutions

o sl v

Phase velocity

-

0 05 1 15 2 25 3
Q

Group velocity
=
- Qﬂ /

) |

Q I? (e Th

L

3

“‘:q_;_:“_*:-.‘\a

(] 05 1 1.5 2 25

Qx

SCHOOL OF
ENGINEERING |

Phase
velocity a
Little bit
faster
than one

Positive
group
velocity
for all
wavenum
bers
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L @' Dispersion modal analysis, Quadrilateral TE, {58

r-

E1H281D2+ +EV—X>B§@§
:___)._.' ]
kel e Ty | | I
;4‘_*)4‘_;' V x ?--@--q?
-ALAL D = HO-0-b
NP O-b--0

ENGINEERING

QHL/DGTD

E2H2B2D2A A A v. o]0

$§$*¢ E = B

Q1@ !
>l
kel e T | T
sty v 99
‘AN A! D e H @@C:)
94:)4-) ®-6--0

- h Dispersion modal analysis, Quadrilateral TE, [

ENGINEERING
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- Dispersion modal analysis, E2H2 =

N
Group veloci _
: # " Negative
and fast
. group

v&cities

" Spurious
solutions

- Dispersion modal analysis, E2B2 i

Phase velocity

T

2sp, Zr_/-\?"—“'f
Ty f
a ,-A,nr”’_"_\ |

L)

CINEEE

os No spurigus modes

05 1 15 2 25 3 35 4 45
2l
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- Study of tetrahedral element e
E1 H2 B1 D2
@ = '

! ®
E2 B2
QHL/DGTD . . ‘
- Elgenvalue anaIyS|s, tetrahedral element  |ss

first mode (TEi10) second mode (TEqq)
75 10 mm e
| Vv i
A OOOAT I
smm KIS :
AV o) E E
mvmexgxgg%gﬁﬂm : :

Sou rce. (\/Emm. V2 mm, \/Emm)
Recelver: ((Jﬂ mm, 4v/2 mm, 2/2 mm)

Time function: 1%t d. BHW

fmax=30 GHz }‘min=10 mm
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==
=
T
W
d

NN AK
PO
VA
gmmmmﬂ
AVAVAVAVAVAVA%

N

VAVAVAN)

e

Sourdg? mm. vZmm. vZmn)
Receiy(6y2 mm. 4v2 mm, 2v/2 mm)

Time function: 1st d. BHW
frax=30 GHzA .,.=10 mm

Error eigenvector

first mode (TEj10)

\\}DA(L‘.\'D T. PRATT, JR.

SCHOOL OF
ENGINEERING

second mode (TEjq)

Error eigenvector

QHL/DGTD

-

Transient solution, tetrahedral element

SOU rce: (vZmm, 2 mm, v2 mm)
ReCE|Ver: (6v2mm, 42 mm, 2v/2 mm)

Time function: 1std. BHW
fnax=30 GHz 2_..=10 mm

A=2.00 mm

{mm'\n T. PRATT, JR.

SCHOOL OF
ENGINEERING.

A=1.50 mm
E 2 -\
5‘-" 0 - 0 .. . . .|
™ ) & ¢ = 0
w2 o Rel. FOTD
- = E1H2
A=1.00 mm ---E1B1
— E2B2
2 \ . .
E 0“'\ "" -‘- & r', \-\ ‘ R il - X .
NREIAN S Y 1 g e E1H2 is the most

A=0.75 mm

dispersive method

E2B2 is the
most accurate

550

600
Time (ns)

650 method
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Study of spectral prism element
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S“UN Algebraic and exponential convergence =

N
© ;""—--.——-‘/
% X ~———
g 5N h ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ [ ]
ﬂg}’ 1 \\ \"'"'—-._.---’
E [ ~
; \\ Nl 1
E —=TE,  SEM :'n.. L
© -e-TE,, SEM M A
2 10 M~ =
510 f_o TE, FEM
. o ~— 1
-y -TE,,, FEM 1 L N y/
—— Exponential . A I I g
- - - Algebraic
b ¢
P 20 (b) (¢)

10 15
Points Per Wavelength
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Spectral prism element, convergence

S
Wy AVAYS (.
Wava®
':*‘Aﬁsa'.

/ Algebraic \

'DUKE

\\HJA(L‘.\'D T. PRATT, JR.
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—a—Hex
—o—Tet
—4— Prism

™~

~——

-

Exponential \

Relative Errar of TEM,

T~

L

[=}

E
Mode | Frequency (GHz) 10 =
rI\EhI] T-l(j-lt\l.l MNumber of unknowns g
TEM, 14.980622 “E
rlel-].l 15.846394 _:__:_‘;" %
TE; . 20.490442 Eh o prem 2
TEM; 22500000 # ; -

B
TEi1s 26.478448 s : : _ :
TEs 28.160966 £ 2 4 6 8 10
TEM, 29.979246 L. Order of Intepolation
\ v /
Numbar of unknowns
DUKE
QHL/DGTD

EB Scheme Upwind Flux DG Formulation

(i x p'BY) =

4 )
Weak Forms of Maxwell’s Equations with DG
jcif (e, LI +£Ji)dv = coijé)‘ ' Bidv Jrcojci>i -(R' x 2 'BHdS
\ at 80 80 \ S
~ OB . M . . A A
[ (B O My —¢, [ Vx BV +c, [ ¥ (@' x E)dS —c, [ W' (@' x B')dS
Y ot H \/g v Y S
. J/
( )
EB Scheme Riemann Solver
(8 x BY) — o' x (YE' +Y/E) @ x i’ x (u;B' — p;B)

Yit+ Vi pipt; (Y4 Y7)

il x (2B + @ Z/BY) @ x il x (B )
pipi (2 + Z9) VAR A
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Non-Conformal Mesh

Allow different kinds of Allow a sharp change of element
elements size

Non-conformal mesh applies to any element type.

Shared Interface

KR

ng
N

g
5

<>

2
TAVAVA N S
7

| >
Vs X

ININININN

q
VA‘A‘%

AN

7AY)
ININININZ
LVAN

#VAVAVAVA

\VAVAVAVY

1& AAARAD
TR
\WAVAVAVAVAV

NININY

7
N/

AN
\Va
%

T
oL

<>

QHL/DGTD

-

DGTD, EB scheme

EDMUND T, PRATT, &

SCHOOL OF
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(.‘-)h’e{” (i) (i) (i) (i) + (i) s (if) G) . _,\
M) —— = Kb + Ce” +j¥ + Y Ly'p9, i=1,...N
d
Jj=1
(i) db® . K(‘f) (1) C('i)b(r’) (i) EN :L(i.‘f) (j) 5 _ 1 N
bl dl" o be e + bb +m + be e, 1 =1,...

\ J
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DGTD, Cavity case

\\}DA(L‘.\'D T. PRATT, JR.
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1 1 P A f‘ "\ J.\ - /

Single domain A=1 mm STy AR VRS VARS!
Lo~ oepn Vip el g

o Ref. FDTD P ST R S A LR TN LT
i g AT AR P E N PN PR e i

S T I"{ w/ \',“". ol “." war b
oyl

l

z
-
o

Relative Emor E
S

500 550 600 650 700
Time (ns)

1. The EB scheme is more
accurate than EH scheme.

2. Dispersion error in the
E1H2 scheme is very high.

500 550 600 650 700
Time (ns)

3. Numerical dispersion
in the E2B2 scheme is
the lowest.

QHL/DGTD

Maxwellian ODE Non-Convolutional PML

~N
Coordinate Stretching [ Auxiliary E quati ons \
- | PO N _ - g =

N\ A = diag{w,,wy, w: }

PML Profile
) In— naf?” Ay =diag{(wy — wy)(wy — w2), (wy — wz)(wy — w.), (wz — wy)(w. —wy)}
wy = Kinaaw & (n=u,y, 2)
Ptk Ay =dm9{(wm - wy)(wr - WZ)a (wy - w:ﬂ)(wy - wz).- (Wz - Wz)(wz - wy)}
\ I(ma.r, =5-12 p=0-2 ) K )
o de N N )
LS KL RLE 4 SLE 4§+ ) LB+ ) LS
dt p i Advantage
1 . N 1. Unsplit, Maxwellian (FE
M, —— =K & + Ry b +S,b' +m'+ > LL & +> Lib’ Rt (
dt j:I j:I SE)
Miee d_e _ Mieeéi " Teieai Mibb di _ MLbf)i " T,ibBi 2. Non-convolutional
\ dt dt ) -t 13

4. Ordinary differential
equations
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DG-TD, Time Stepping schemes

Rewritting previous DGTD equations

l‘.\"r
_ Z LDy @) 4 @)
j=1

N

| Aceuracy I

Stability

l CPU time | Memory |

Cases

'DUKE

EDMUND T. PRATT, JR.
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ExRK High Conditional Fast Low EH. EB. high order elements
ImExRIK Middle Conditional fast Medium | EH, EB, multiscale structures
CN-GS Low Unconditional Slow Medium EH. EB. small structures
CN-BT .High Unconditional Fast Hi:_’,'ll EH. EB. r-.n-:|11:'lll‘i.'|1 Cases
CN-LDU High Unconditional Fast Medinm EH. sequential cases
CN- CN-BT
ExRK ExRK : CN-
CN- | GS CNBT | 1 hy [ coarse
ExRK ExRK GS CN CN- T
= LDU CN- .
ExRK ImRK GS U |:| Fine

QHL/DGTD
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DG-TD, ImEx Runge-Kutta

EDMUND T, PRATT, JR.
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( . AT AT
VH+] i + Af Z b,l" 11;\ = Lo vs oy i\"im + 4\(\
k=1
Explicit Implicit
Ni+ N , el ()\ (M© — Atal LY u = £9(t,, + ¢, At)
Z LU | v 4 At z ag '
=Nim+1 =1 ]

Nim

+ZL”

+£O(t, + et

( + At Za}f'}u,

)

J

0 O 0 0
co|lasy 0
c3lasy agy 0
: : w0
cs |aly aly ... al_, 0
b]. b2 b:} be

e

DALY oty
=1

)

\

Nim+Nex k—1
+ Z L” +_\1‘E u“uJ
\ 3=Nim+1 /
0a™ 0 0
n ]IIl l[ll
co | ay ayy 0
(-,:; al}l]}l (,il;n) ul}l]lg
0

co |aff ay ... al, all

b by  bs b
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- DGTD, Crank-Nicholson method =
Sequential order of subdomains:
4 Reflections \L
(i-1)-th subdomain | i-th subdomain | (+1)-th subdomain
Transmissions 2
(fv s
i:3) 3 (9) _
- ;Z]L Dy 4 £ 1,...M
Crank-Nicholson implicit method:
Gxr i+1
(1\_.1(1)\_,21 _ At, Zl L tJ}:,\’ﬂJJ)rl) _ (vag) + % ZlL(l.;)VE)) n fﬂ,} — g
v ’ =
Block tridiagonall!!
'DUKE
QHL/DGTD .
- DGTD, LDU algorlthm (1) jmarssnass

2
T2

LDL decomposition

olumes Surface to volume Volume
Af 0 0 AL ot 0 0 0 |1 [f wi|]
0 AZ 0 0 AR, AR, 0 .
0 0 A3 );/ 0 iai"oq_ z.; 3; :

1
_XSJrV

. “ HS+
0 asﬂ,/_@/ T AZ, B ul,
0o 0 ‘a3, 0 | ][]

Interfaces Interface

Volume to surface /
Connection
Usually are zeros

etween interfaces in same domain.
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Interfaces source tn voliime

N, 0DoofwL, o 0 0 ”l"- 'x:

0 I 0 o000 m 1 ol 0 w2 owe 0 i v

0 1] I o000 o 1| o 0 4 wa ud, o

(WL 0 0 1 oo o0 0 0 — U s - ut = | viy

0 wz)" 0 Jo1oow oo 0 1 D0 g v

0 [\\-i_]l 0o jJoo 1o oo 0 0 1 0 ud, ,2

o o w2 )" o 0 0 1 oo 0 0 0 1 ug v
Volume source to interfaces 9 Interfaces BT

Advantages:

1. Highly parallelizable
2. Smaller matrices

3. Memory cost

4. CPU time

DUKE

QHL/DGTD

-

DG-TD, LDU algorithm evaluation

EDMUND T, PRATT,JR
SCHOOL OF
ENGINEERING |

tal 128112
Total 106 N
Total 85274 .
Total 6384 g
Total 425¢ »
y -
g /

1 2 3 4 5 & T
Mumber of subdomains

160 T
_'_,_F."_'_E
140
120
£ &
£ —
a 5 £ 100
h =
o 5 10 15 20 &
S
g R "m“mﬁfyﬁ?* i 4 £ 80
= j S
& =
=, 10 15 20 Y B0 —a—BT
It ——LDU_
=0 + oy N
Z of £ a0
& & 2 3 4 [
o ° S oy * @ % 5 ) 15 20 Number of subdomains
time (ns)
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Q%DGTD Multilayer MW filter

EDMUND T FRATT I

SCHOOL OF
ENGINEERING

J DG_FETD j DG_FETD
0.4 ! x10 + FDTD 0.4 u ! 10 + FDTD
Layer 4 = ' = '
= T 0z
g8 g
Q : £
Layer3 g g
1 i = Z oz
. o E - I 0.4
i i 0
: ] f &
' | : = 0
oF ——DG-FETD
o FDTD
-20
0.5 1 15 2 0.5 1 15 2
Frequency (GHz) Frequency (GHz)
Thickness of plates FDTD | CST | DGFEID
H H i er of unknowns | 37632 330345: 2212 i
in Iayers 1' 2 and 3is6 \lm\m}; r of 11;1\1]1[1;;]‘\11. 3 EI;I;]\“:IIJ I!:[.:]*:;lz‘l .;,]-““ Brlck element
. . Memory e LR L
Multiscale G0mm. — 10000 At 866 | mo6 | 20 |CN-GS
Factor pm CPU time (I) 5.0 10.2 0.4

QHL/DGTD

™ Multilayer MW filter -

SCHOOL OF
ENGINEERING

Resonant frequency
l f.
0.45mm 1.34GHz
0.65mm 1.22GHz
0.85mm 1.14GHz

Resonance Tunning

’ —rodsmn This analysis
- -ossmm takes less than
i 20 1.5 hours.
' < 5.9 hours for one
oo simulation using
i 403 FDTD
—50.:‘

0.5 1 1.5 2
Frequency (GHz)
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QHL/DGTD

- Packaging-to-Chip interconnect

EDMUND T. PRATT, JR.

SCHOOL OF
ENGINEERING

Port 4

Port5 ;.
Connectors Port 6

Port

Active port: Port 1 (50 Ohms)
Passive port: Port 4 (50 Ohms)
V. BHW fc=2.6 GHz

Port 2

QHL/DGTD

™ Packaging-to-Chip interconnect

SCHOOL OF
ENGINEERING

/ 7 Layer-Domains\

04
03 —— V1 ref. FDTD
- = =Vd4 ref. FOTD
0.2 E + V1 DG-FETD
t + V4 DG-FETD _
s 0.1 i 2.
% o 4 £
. : 5
= -04 t & _pof — S11 DG-FETD
: @ | ——S41DG-FETD
-0.2 « SN FDTD
{ Bl siro
-03 _an| ¢ STIHFSS
* 541 HFSS
04 0 1 15 2 1 2 3 4 1
time (ns) Frequency (GHz)
Method Memory (MB) | CPU time (s)
Explicit FDTD 1.4 2160
HFSS 66 G806
Prism DG-FETD &0 360
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QHL/DGTD

™ Highly multiscale

EDMUND T. PRATT, JR.
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1/10 th

1"-layer n i"-layer

interface with
(i+1)"-Jayer,

interface with
2% layer

Multiscale factor = 1cm/0.15pum
~ 67000

Top

*7 interface with
<1 (1) layer

Fron: | [ ]| | e [y | | | [ |

interface with
(N=1)*layer

QHL/DGTD

-

EDMUND T, PRATT, &

SCHOOL OF
ENGINEERING

0.4

i, "[—V1DGTD
FDTD o2} | 3 |- Vsoemf
Grid: 108 x 140 x 39 ©_V5FDTD

Voltage (V)

time (ns)

COMPUTATIONAL COSTS

Explicit FDTD | Implicit DGTD | Gain _

Number of unknowns 3.5 mullions 138514 25 s

At 036 T 2 ps 5700 §

Number of steps for 8 ns 22.8 millions 4000 5700 5

CPU time per time step (s) 0.0117 0.6 0.02 E
Total CPU time (s) 265712 2400 110
Memory (MB) 56 1340 0.04

5 10
Frequency (GHz)
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™ EB scheme:

EDMUND T. PRATT, JR.

SCHOOL OF
ENGINEERING

————————————

FDTD Grid i

L=17 mm % 3 X Amq
W=0.06 mm =~ (1/125) X A,
T=0.05 mm =~ (1/125) X Ay,

QHL/DGTD

™ EB scheme: Long MSL

EDMUND T, PRATT,JR

SCHOOL OF
ENGINEERING

0.5 R o Ref. Port 1 0 e Ca
] o Ref. Port 2 i o
- - -E2B2 ppw=20 Port 1 @ -10 ‘ [ oo K oy o
— —_— - o
= E2B2 ppw=20 Port 2 ‘?_: . F’EQQ a D\m I,n o :D lF"I b
o 3 _opf >~ li.hn V7 wh N 1 WP !
=) © L s ! ! uo F!ﬂ ! !
o £ PR o 1! h " [ "
= ] A Nl o h | ] u
2 & =30 = I Hl V | '
5 2 b
= = 1
3 5405 0 o Si1rel.
A o S21ref.
| S - --S11E2B2
: ——S21 E2B2
-60 L
0 0.1 0.2 0.3 0.4 0.5 10 20 30
Time (ns) Frequency (GHz)

Table 2: Computional Cost, long MSL
FDTD ‘ DGTD | gain |
Unknowns | 6.9 MDoF | 1 MDoF | 6.9
Memory 284 MB 1.7 GB 0.17 CN-BT
At 0.5 fs 1 ps 2000
CPUtime [ 10h2lm | 1Th2m 10
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QHL/DGTD

-

EB scheme: 3D IC

23 subdomains

}DR(}'.\'D T. PRATT, JR.
SCHOOL OF
ENGINEERING |

QHL/DGTD

EB scheme: 3D IC

0.3
o Ref. FDTD
—EBDGTD 04 e E;’-DZDTTUDI
0.2 04 ——
0.2 )
s o 01
: g ~
= & 0.1 C]‘
-0.2 1
-0.3
-0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0 01 0z 0.3 0.4 05 0B
Time (ns) Time (ns}
0.0: 0.015
o Rel. FOTD o Ral. FOTD
0.oms EB DGTD % —— EBDGTD
0.0
0.01
0.005
. 0.005 = CH ? ‘% %
Ed -
it : Aiaitanatay
€ = oy
& . £ ‘1 44 o
—0.005 0005 J @
0.01 q
0.01
-0015
@
o2 _0.015
00z oo 01 02z 03 04 05 06

(LA ]

02

0.3 0.4 05 0.6
Tima (ns)

Time {ns)

S-Parameters (dB)

o 511 Rel FOTD

511 EB DGTD
o 521 Rel. FOTD
——§21 EB DGTD
¥ 531 Rel. FOTD
531 EB DGTD

¢ 541 Rel FOTD
— 341 EB DGTD

10 15
Fraquency (GHz)

EDMUND T, PRATT,JR
SCHOOL OF
ENGINEERING |

FDTD

DGTD

gain

Unknowns

1.1 TDoF

1.6 MDoF

le6

Memory

24 GB

9.5 GB

2.5

At

11 fs

25 1s

2.3

CPU time

10d 13 h 4m

1d18h8m

6

156



Multiscale Computational Electromagnetics in Time Domain Part 2

Anisotropic Media and Riemann
Qu‘ : Solver =

SCHOOL OF
ENGINEERING |

Operator Splitting V=—n+V, i

AR e
L H =

7ix E=

dxH™ [

o

Problem A =

—1 ] {
oH _, 0 o9 _ , %4 &=z gy | &
Tt T NXE=0 | oy | — = AT :
ot on ot on e ,L_fl
OE —1 5 Alvarez, J., Luis D. Angulo, A. Rubio Bretones,
— — =0
—& nxH= , , and S. Gonzalez Garcia. "3D discontinuous
at an 0 0 Hi,  —Hy, Galerkin time domain method for anisotropic
0 0 'ur —/1' materials." IEEE Antennas and Wireless
_ 22 21 T Propagation Letters 11 (2012): 1182-1185.
A= —g' g 0 0 q:[Htl’Ht2’Et19Et2]
12 1 R. J. Leveque, Finite-Volume Methods for
—g! g! 0 0 Hyperbolic Problems. Cambridge: Cambridge
Problem B z A University Press, 2004.

6_H+ 'V .xE=0
ot HsTET EB Scheme Anisotropic Riemann Solver
oE _ @' xg"BY=T"(Z'+ 2 '[Z'T® x (7' )"'BY+Z'T(' x(z')'B")-Th' xn' x (B! —E")]
E— VS xH=0

@' xEY =T (Y +Y)'[YT@E xE)+ Y'T@'xE") + Th' xA' x (') 'B! - (') "'B")]

QHL/DGTD "

Time Domain Anisotropic PML (1)

* Diagonal time-domain anisotropic PML

4 )

Wang, Shumin, Robert Lee, and Fernando L. Teixeira. "Anisotropic-medium PML for A
vector FETD with modified basis functions." Antennas and Propagation, |IEEE B _
Transactions on 54, no. 1 (2006): 20-27. Sy SZ

Gedney, Stephen D. "An anisotropic PML absorbing media for the FDTD simulation of Sx
fields in lossy and dispersive media." Electromagnetics 16, no. 4 (1996): 399-415.

Zhao, Li, and Andreas C. Cangellaris. "GT-PML: Generalized theory of perfectly matched — 0
layers and its application to the reflectionless truncation of finite-difference time-domain S
\ grids." Microwave Theory and Techniques, IEEE Transactions on 44, no. 12 (1996): 2555- y j

2563.
563 O 0 Sx Sy
» Non-diagonal-time-domain-anisotropie-RME
SproTIvI 5 Sz ~
Garcia, S. Gonzalez, R. Gomez Martin, and B. Garcia Olmedo. "Extension of Berenger's

L absorbing boundary conditions to match dielectric anisotropic media." Microwave and Guided Seml-analytlcal, 1’10t Spllt'
\WaverlotiorsrHEEEmrrorie( 9302 Oe -
generalized field

Zhao, An Ping. "Generalized-material-independent PML absorbers used for the FDTD D B
simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic E H B D O O
media." Microwave Theory and Techniques, IEEE Transactions on 46, no. 10 (1998): 1511-

1513.

T T R S o tromiemmredam b p J

£ =) J J P
microwave and guided wave letters 9, no. 2 (1999): 48-50 fleld
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QHL/DGTD

Time Domain Anisotropic PML (2)

A compact form of the governing equations for PML
region: 5
- B -
VxE = _% - (Emlt_[I + Al + /7Ao/[1 )B - Azam/jilB(z) - (Alamﬁq - Eon/jA + /7A3/771 - AlﬁAoﬁi] + Az )BU)
g OFE T4 7AF =E® = _ 5 A2 = =\ED
Vxu B :7‘*(0} +AEe+EA)E+AGE" +(A G, -0, A, +EA;—AEA,+AE)E
XD _goapr  E_ge B g gaaBY BY _go
ot ot ot ot
whe A =diagio +o,,0,+o,0+0) A, =diagioo, 00,00, 1. Unsplit, Maxwellian (FE,
re SE)
2. Non-convolutional
3. Ordinary differential
equations
DUKE
QHL/DGTD H

Anisotropic PEC Cavity

[3.1253
-0.8283
| 0.6657

-0.8283
1.5524

-0.7651 2.3223

0.1310
0.9997
2.8087
-0.7578
0.2165
1.4375

0.3750
-0.5413

2.0625

0.6657
| -0.7651
N

— Comsol
~ = -EnBn DGTD
- EnHn DGTD

— Comsol
-0.2|-~--EnBn DGTD
Entn DGTD
\ 0.3 L Enin*1 DGTO : N
[} 10 20 30 40 50 o 10 20 30 40 50
Time (ns) Time (ns)

[ 1.0302
=-0.1099
| 0.1310

-0.1099
3.1612
0.9997

EnHn+1DGTD|

— Comsal — Comsol

~ - -EnBn DGTD
=== EnHn DGTD
EnHn+1DGTD| |

[2.3125
=-0.3750
| -0.7578

12500
ty, =| 02165

-0.3750
2.2500
-0.3750

Hy (A/m)
o

0.2165
2.6875
-0.5413

0 10 20 30 40 50 ] 10 20 30 40 50
Time (ns)

0.3750

Time (ns)

-0.0005
0.0016
-0.0001

0.0001 0.0010

Ez (V/m)
o

i k i
¥ | ——Comsol
—=-EnBn DGTD

EnHn+1DGTD

| ——Comsol
~~~EnBn DGTD
--=--EnHn DGTD
03 EnHn+1DGTO|

0 10 20 30 40
Time (ns)

o 20 a0 60
= Time (ns)

0.0014
6, =| -0.0005

Blackman- Harris
Window (BHW)
pulse

f ch=100 MHz

0.0010
o,=| 0

0
0.0011
0.0003

0.0001
-0.0001

0
0.0003
0.0019
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Anisotropic M-PML Case (1)

——Comsol SBC
\ ---------- Reference
----- DGTD PML
— 100 ---DGTD M-PML
£
2
N
u 0 1.3750 -0.0777 -0.4779 1.9375 0.2296 0.0765
g, =(-0.0777 10161 0.0990 | 4 =|0.2296 11562 -02812
-0.4779 -0.0990 1.6089 0.0765 -0.2812 1.9062
-100
0 10 . 20 30 40 Blackman- Harris Window (BHW) pulse
Time (ns)
f ch=89.5
MHz
DUKE
QHL/DGTD

Ez (V/m)

Anisotropic M-PML Case (2)

400

0.4 - . .
h ——DGTD PML
— H - - -DGTD MPML
o= Pt
—_ 1
5 02 ' '
& L N
2 ; TN
E 0 ' ) ;’-_' LS W
@ 1
o v
\Vr"
-0.2
10 20 30 40 50
Time (ns)
1000
---DGTD PML
—DGTD M-PML
500 ¥
JI‘NH
o
8 o
il
i
-500 i
-1000
0 100 200 300
Time (ns)

1040
= 10%°
5
@« .
400 Relative larger error
from M-PML than
1020 classical MPL, but
0 200 400 600 800 1000 . .
Time (ns) long time stability.
107°
=107
E 5
a 3e’steps
w 10»15 eqe
stability
10720
200 400 600 800 1000
Time (ns)
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QHL/DGTD

e?jnc,p == (Einc:(I)j,p> binc,p — <Binca \I’j,p>

_ T
Vijine = [einc,la y €inek binc,l: T binc,l]

Time delay

r,; atrix
flt— == Advantages:
F. — ‘ 1.Space time
v . separation @ One controlling point in triangle
f(t _ Ti,m+n ) 2.Mu1ti-functi0n B  One controlling point in rectangle
c - ==+ Edge basis function in rectangle
?‘%; gl Igt@]%ace: —— Edge basis function in triangle
dv; t C —= Plane incident wave
M, dt =Livi+ Z Lijv‘j +F Z Lijv‘?"inc lln ﬁgq’? — Wave front
j j conformal =
| TF/SF interface
mesh L. =

connector
2. DG interface
3. Source surface

-0.0777 10161  0.0990
-0.4779 -0.0990 1.6089

{1,3750 -0.0777 -0.4779]
& =

x(m)

0.2296 1.1562 -0.2812

Field records at the
0.0765 -0.2812 19062 |

{1.9375 0.2296  0.0765 ]
H=

T == ] R refelv%—f" j == J = ) =
B A— | £, | £y £ £ Blackman- Harris
ul U i ']]| "ut a1 ; _1[ Window (BHW) pulse
g g 2 : . 1 " "'i L i planetyvaﬁle
L ;--‘:.] B oW B W v m W w0 o» _.-:L O R I I L nl:c B 100 "¢ =895
MHz
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Negative Refraction (1)

1 00
4.0671 0 0 01 o
. _ Hyp =
In principal & =| © 40671 0 A 0 01
axial 0 0 5.0661
45666 0  -0.4995 45666 0 0.4995 1 00
“e=l 0 40671 0 | &s=| 0 40671 0 | Hg=|0 10
-0.4995 0 4.5666 0.4995 0 4.5666 0 0 1
®Y
X
YV 04 blcrystal C. M. Krowne and Y. Zhang, Physics of Negative Refraction and Negative Index Materials. Springer, 2007
DUKE
QHL/DGTD _

Anisotropic Time Domain Half Space TF/SF Boundary Condition

Half Space TF/SF Boundary Condition

L

X ¥
P: add incident and reflected waves
Q: add refracted wave
z i = = = Ordinary Light
1
E | TESEInterfieed Extraordinary Light
I ey
. @ H +  TF/SF Interface B
. Plane incident wave y [ Plane Incident Wave Front
L1 TE/SFinterface A
....... X
i TF/SF Interface B —
T E,=f(t-t)E + f(t-t)E,  E,=f(t-t)E,

The M-PML is divided into two b=l/vpa t=0,+O0P)/v .  t;=(,+0Q)/v g

halves, each half has the same
material as the physical domain it is The refracted and reflected VoA an
matched for.

Voe

%%]ﬁ?:’calculated via the state-variable appr%ach for layered media

T61
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Negative Refraction (2)

Normal Refraction 1 Sxwi) imes a5 10 Scowm) imects 0%
0.3 0.3
0.2 0.2
05 105
=01 _ 01
.E, 0 £
o i N_m’ }
0.2 0.2
-na’ 5 oe 45
02 0 02 02 0 02
X (pem) X (pm)
S (Wim?), time: 4 fs S’ e 0 s
03
02 2l : it —3s008°
= corlifttIle s =
M-PML: Material A E o 5 “'!qmuﬁ””J-"!--'--'—|5.61u2'
I N werre: P Ll iRk e
-- TR B L L —
Plane incident wave i |1 EA MG ST —
i X Y ”mt;mgm.\..._ 03
l dall K
:_ 1 TF/SF Interface A 02 0 02 £02 0 02
——— III'mJ X {um)

2 chadaniy

:  TF/SF Interface B

fannnaad 0 _ _100

0.3
0.2
0.1

z (um)

0.1
0.2
0.3

IRRAR AR
03]
it

01
1]

Z (um)

0.1
-0.2
<03

0.2

Sx (Wim?), time: 8 1s 102,
0.5
-1
15
0.2 0 0.2
% (pm)

S (Wim®), time: 8 fs
-3.5008"
i

| RE R

]

X (pm)

0.2

QHL/DGTD

Negative Refraction (3)

Normal Refraction 2

4
M-PML: Material A

Plane incident wave

L__1 TF/SFinterface A

wen

TF/SF Interface B

0

e 3 Sx (Wim?), time: 70415 <107
Sx (Wim?), time: 5.281s =10
14 |4
3 3
E
2 =
2 ~N
1 1
0 [}
S (Wim2), time: 5.28 fs (Wim?), me: 7.04 fs 4
P
03 03y, 7%, 40.4431° 03|
0.2) 02177, " 17y, S— 02|
010 0| TE i 0.1
N 2 1 Ty, T
ol * 7% E 0 P L S g
b li%y 32.4020° = 2850 S v
Fro. «fle. »: P TR ) o1l
R R A T S P — 01 P R, 0.
iy 1Ty, 77 324020
0.2 . “"':'n i 0.2 bl V7 A— -0.2|
i Pl b it
-0.3 :/;‘:-‘:'a’{?f” 0.3 P -0 3:
02 0 0.2 0.2 0 0.2
x {pm} % {pm)

Sx (Wim?), time: 8.81s <107
|
14
3
2
1
02 0 02 o
X (pm)
S (Wim?), time: 8.8 s
P
A A v
e . /,-";.,
1000, TTF 4044310
AL —
s E
o 2l
s
it
02 0 [¥]
K {um)
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Negative Refraction (4)

. . Sx (Wim?), time: 5,285 <107 Sx (Wim?), time: 7.04fs  *10°
Negative Refraction .
£ 0
-5
S (Wim®), time: 3.52 fs S (Wim?), time: 5.28 fs 5 (Wim?), time: 7.04 fs
IR RN R R AR RN RRRAR RS
Z 03 2: “!mrmmnmlrmlr.ﬂ
02 A i 2 g e e T
oiitassls o=
A\ Lo O
Plane incident wave @ DTN —g2557. 07 01
e X ¥ T2 e 02 ne
L1 TF/SFInterface A ool TR it iz
------- 2 o 02 o 02
©Y TR/SF Interface B W 02 B Ll
"sssmmnan
0=0
QHL/DGTD

Negative Refraction (5)

60
40
y More cases are simulated.
En 20
] |
I R eSS They all agree with the analytical
E -20 | Analytical Solution.
T ! o Numerical
x |
40 ;
" : The relative errors of incidence and

60 40 20 0 20 40 60 refraction angles (respect to energy)
Insitendangia ) are all less than 1%.
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. 3.4 Vector DGTD Method with the
- Wave Equation

= Vector (Subdomain) DGTD Method with the Wave Equation

= Q. Sun, Q. Zhan, Q. Ren, and Q. H. Liu, “Wave Equation-Based Implicit Subdomain DGTD Method for
Modeling of Electrically Small Problems”, IEEE Trans. Microw. Theory Tech., vol. 65, no. 4, pp. 1111-

1119, Apr. 2017.

= Q. Sun, Discontinuous Galerkin Based Multi-Domain Multi-Solver Technique for Efficient Multiscale

Electromagnetic Modeling, Ph.D. Dissertation, Duke University, 2017.

= Q. Sun, R. Zhang, Q. Zhan, and Q. H. Liu, “A Novel Coupling Algorithm for Perfectly Matched Layer

with Wave Equation Based Discontinuous Galerkin Time Domain Method”, IEEE Trans. Antennas
Propagat., vol. 66, no. 1, pp. 255-261, Jan. 2018.

= Slides in 5.4 - 5.6 are modified from Q. Sun’s PhD defense.
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Qw‘m The First-Order Maxwell’'s Curl Equations

* Governing equations (EB) * Weak form
: . OE(M) g ; -
(ﬁ—E =Vxu'B-oE-J f ‘i'g) ’ fm%dv = j VX ‘1’9) -ut?) 'B®av
ot Qi) Q)
B VY xE-o,u 'B-M, - j 8. (ggz)E(i) +J§1)) dv
ot Qi)
Frm———————
+ 1 95 o) (A9 x u~1B") ds
* Riemann solver (upwind flux) loy _ _ _ v\_l
Numerical flux
-G (D)l ey . (i) . )
A x BT — alt) % (YOBRO +y [”EUJ}_ J v ‘rfr v o= - f Wl (v x BO)dv
Y@ 4y o ¢ ato
A0 x 4 x (ﬂ(a}—‘nm _“u]—]m.ﬂ) _ f o). (,,5;),1[‘]—']3(.-; MEJ;)H,‘_,
o Yy 4 y i) 20 L o o - - -

z 1 2 y =1 -1 \If:::}.(ﬂ{';] XE.)‘!S :

Al (zm“m B 4 () u(3) ]3(.;:) . |

A x pmIBY = - \ : - Z If"“' ! |

Z(i) 4 Z() (1) | (a03) (i)Y 48
A0 » A6 x (E{”—E“]J + o (n x E )(ff)l
+ O350 s enty ]

* Question: Can one use only E (or H) as an unknown field in a
wave equation to reduce the unknowns?

DUKE]|

EDMUND T, PRATT, .

SCHOOL OF
ENGINEERING
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- The Second-Order Wave Equation

* Governing equation (EHs) *  Weak form
. | . . SR
2 'E nJ, —[v x @0 07« B0V Y f F DG e
V(i 'V xE) {r{,—, -r:r,.{T= {_— Vox (ML) ! R
ot of ot [T Fre)
¥ i (-EU:I L _(—]-'I- -
. __d(h x Ex I ,[Ix-l“.m'-” ——dV fq-’-'-‘-u"]x sl
Subjectto: @ x (VxE)=, rpw. on I'ype o ot :1'.'. ) )
P . ."r-:Tr‘\ AP % B x @ald \
* Modified Riemann solver | j 20\ B XD s
e Numerical
o fH A0 x (ZOHO 4 7G)HD, Al x /) x (‘Lr':r' %) 23
T ZU) 4 Z0) + 7200+ 70) J. Pl ” dv j o d L 0 N Py
1K) P

\\HJA(L‘.\'D T. PRATT, JR.

SCHOOL OF
ENGINEERING |

flux

it

(i) o[i}
Firr Uiy

Y0 4y
ot YO 1+ Y0 YO + Y0

* Semi-discretized sub-systems

Vil 4 Y
APali

N = ()
. Caem - . .
M T + 2‘ LU = + Sl’f?u[r] _ qfle
i " (&
J=1

For electrically fine domains, this equation is solved by the Newmark beta method.

y _ 3 g = (i) (i) dBELY i) B

. = (i) o [ vo(i) 6B () EEW) 2 (6) o (i) dH'Y aHY 3 - JEMY L RETX () rl P )
o 0B AU (} b=+ YW E ) i) s 7l ( L L ) E> J ol L 40 dS — J' ReC) 15
TR =

. N JHIO aHW)
Al pld (—I.'r — '—l!r )
J o : SLdS.
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- Coupling with PML

* The physical region (EHs) * The PML region (EB)
- 2R Fal Of B ol ] . ( } 9B i ~ \
V % (u \—XE]ifﬁ|U<F— F Vo (o 'MG) vfof(j?—AleAgB
prgl) N ol \% X;r‘lB:r(;];] +eA B+ eAsB
Aqli) (i.4) (i) 48} — li) s N
M pr +;L = + 5" q", i=1,...N,
OB - _ 0B - _
\m‘ “E-AE 55 =B-AB

2 (i)
@t
—

N
T M TLENFE) 4 gWgl B =N +1
= % ot Z‘ e v ! o
. B = ’ ]
Physical region gs ant

M‘”n—f =MPE" + TOa" i = N+ 1.V
)

T
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- Numerical Results, Resonant cavity TR
===
—e—DGTD
10
E -2
% 107
(4
107
Spatial and temperal‘sampling densities
E .
< * —oG™
" 10
0 20 40 60 80 100 & 1o
Time (ns) E]
. N10—5
- The wave equation based DGTD method shows &
approximately the second-order convergence; L
+ The proposed method is unconditionally stable, WO wo om0 a0 5o
. . . . . Time (n:
and has no obvious numerical dissipation to e
physical fields.
QHL/DGTD .
- Numerical Results, pipole radiation =
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E o
z —L Cavit
20 20 40 60 80 100 120
—_ Time (ns)
g 1xm"
E ——DGTD PML
g _10 20 40 60 80 100 120
Time (ns)
*
« The novel coupling method of PML with wave — &1*
equation based DGTD shows good accuracy; H
« Energy evolution for a long time window is 2
observed, and no instability occurs, demonstrating 0
that PML works properly in the novel coupling
0 100 200 300 400 500 600
method. Time (ns)
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Numerical RGSUltS, Patch antenna radiation
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0 1.72cm 0.01 ——FDTD
£ - - -DGTD
= 0
. ui™
PML regign, -0.01

——DGTD-PML
- - -DGTD-1% ABC

0 5 10 15 20 25 30 35
Time (ns)

Relative Difference
o

Patch antenna

+ The novel coupling method of PML with wave equation based DGTD shows good
agreement;

« On the same mesh PML shows better accuracy than the first-order absorbing boundary
condition.
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‘ Numerical RGSUltS, Long microstrip line
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05
8 ~——Port 1 Maxw
o - = -Port 2 Maxw
-’é a Port 1 Wave
' o Port 2 Wave
°
'

-0

i
'
&
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#‘—,&—h—-
s @
i e

'
'

Scattered Voltages (V)
o

i
?
°
e
'y
op

!
05 _ &

100 200 300 400 500

@ ey,
L

B -10
Table 2.3: Computational statistics of the long microstrip line model é-zo
Intel(R) Xeon(R) E5645 | DGTD-Maxw ~ DGTD-Wave 5
(2.40 GHz) (Implicit LDU) (Implicit LDU) g-%0
DoFs (million) L0 0.43 % o
Total CPU time (h.) 24 0.6 . o Shwaw
Memaory (GB) 14.8 7.6 -50

o 10 20
Frequency (GHz)

+ The DGTD-Wave shows good agreement and lower computational
overheads.
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02 ’ . ' Port 1

Scattered Voltages (V)
.

Table 2.4: Computational statistics of the integrated package model

Intel(R) Xeon(R) E5645 | DGTD-Maxw  DGTD-Wave
(2.40 GHz) (Implicit GS) (Implicit LDU)

DoFs (million) 1.9 0.8
CPU time for

g

g
i 200.5 & i = S11FDTD
preprocessing (min.) a1 200.5 £ e —Sioem
CPU time 301 20 § 20/ - - -521DGTD
per time step (s) e ’ § M gg: ;'gg
Total CPU time (h.) 13.0 6.8 -100 + S41FDTD
Memory (GB) 18.7 27.2 120 — S5

o 5 1 15 20 25 30

Freguency (GHz)

+ The DGTD-Wave shows good agreement and smaller CPU time.
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™ Summary
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v" Propose a new DGTD method based on the second-order wave equation

— introduces a modified Riemann solver to evaluate the flux;

— has fewer DoFs for each subdomain with implicit time integration;

— shows better performance than the first-order Maxwell’s curl equations
based DGTD methods.

v" Propose a novel coupling scheme of PML for the second-order wave
equation based DGTD method

— physical and PML regions employ different governing equations;
— shows better accuracy than the first-order absorbing boundary condition.
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. 3.5 Vector DGTD Method for Coupling
.- SE, FE and FDTD Methods
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= Vector (Subdomain) DGTD Method to couple SE, FE and
FDTD methods

= B.Zhu,J. Chen, W. Zhong, and Q. H. Liu, “A Hybrid FETD-FDTD Method with Nonconforming
Meshes,” Commun. Comput. Phys., vol. 9, no. 3, pp. 828-842,2011. doi: 10.4208/cicp.230909.140410s.

= B.Zhu,J. Chen, W. Zhong, and Q. H. Liu, “Analysis of photonic crystals using the hybrid finite
element/finite-difference time domain technique based on the discontinuous Galerkin method,” Intl. J.
Numer. Methods Eng., vol. 92, no. 5, pp. 495-506, 2012.

= B.Zhu,J. Chen, W. Zhong, and Q. H. Liu, “Hybrid finite-element/finite-difference method with an
implicit-explicit time-stepping scheme for Maxwell’s equations,” Intl. J. Numer. Modelling-Electronic
Networks Devices and Fields, vol. 25, no. 5-6, Special Issue, pp. 607-620, DOI: 10.1002/jnm.1853, 2012.

= Q. Sun, Q. Ren, Q. Zhan, and Q. H. Liu, “3-D Domain Decomposition Based Hybrid Finite-Difference
Time-Domain/Finite-Element Time-Domain Method with Nonconformal Meshes”, IEEE Trans. Microw.
Theory Tech., Vol. 65, no. 10, pp. 3682-3688, Oct. 2017.

EDMUND T, PRATT, JR.

- Hybrid FDTD-SETD-FETD ]

Galerkin’s Weak Form Strong Form Hybrid FDTD-SETD-FETD

FE (Tetrahedron) SE (Hexahedron) FD (Yee’s grid)

Key advantages:
* FD: linear complexity

T‘, . « FE: simplex elements
T e * SE: spectral accuracy
LR
. ) PR s 1] Key issues:
: LU * meshing strategy

« field coupling schemes
* |ate time instability
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Hybrid FDTD-SETD-FETD with a Buffer Zone

Typical approaches:
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Limitations:
FDTD region FDTD region

FETD region Tansitione! * Quasi-conformal mesh:
lement R . .
interpolation approach, Nitsche's
method;
» Conformal mesh: pyramid element;
(a)

» Meshing is not flexible.

el
(b)

Proposed scheme:

Three regions
+ FDTD region: Cartesian grid, as
conventional;

+ Buffer zone: Cartesian grid,
conformal with FDTD region;

» FETD region: tetrahedron element,
non-conformal with Buffer zone.

QHL/DGTD

Elements & Basis Functions

EDMUND T, PRATT, &
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FETD region SETD/Buffer zone FDTD region
(Tetrahedron) (Hexahedron, Brick) (Brick)
Curl-Conforming /r ¥ : wl t/./
EA / A
. E4 R H H,

Div-Conforming

/ H ;
S |/
y .
S - Staggered Yee’s grid

« FETD region: tetrahedron element, high order basis; * Buffer zone: brick element, 1t order basis;
» SETD region: hexahedron element, high order basis; + FDTD region: brick element, staggered Yee's grid.
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Global Explicit Leapfrog Time Integration
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FDTD region
(1) En—uz to En+1,’2
En+1/2 gt Interface 1 € B" in both FDTD and buffer;

+1
(2) B tom FETD Region

Buffer Zone

B+1 at Interface 1 € EM+1/2 3t Interface 1; FOTD Region

téxface 1

SETD/ FETD and buffer regions

(3) Er12 (o Brtl/2
&l? L - &l? . N
) mty o n—% i\j i L(é
M(EQ lAt b :2 :(L((:E,J)ESE% +L§)’"’)b£f)) +_|£fj

i=1

(4) B" to Bn+l

)bl — b S ) o) i) )
M) = = D el L) bl
=1
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-

Implicit-Explicit CN-LF Time Integration {
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FDTD region (LF)

(4) Sub-step 2: Crank-Nicolson (SETD/FETD region)

(1) Er12 to grtl/2

() (i) 5]

En+1/2 at Interface 1 € BM in both FDTD and buffer; MO S o) ZL._,,J,uffil + u
At n+ 2

byl
Jex Jdim

(2) B” to Bn+1

Bn+1 at Interface 1 < EM+1/2at Interface 1; (5) Sub-step 3: reversed pseudo-forward Euler (buffer zone)
(i) (4]
n+l 1

(1} "3 Vg lad) L) (1.7, 03} Vi bea) o) (i7) (3} (#)
M =) (L e/l + Ly b”__%]+L(Lb,_ el + Ly byll) +m
Jim

SETD/FETD and buffer regions At/2 =
(3) Sub-step 1: pseudo-forward Euler (buffer zone) el —e Z 0 it () Z 0 e G .
1\_.1(;] vy (L“'”B ] +L -’-.J.'b I )+ [L“"‘]B i) +L LN} b a) ) +j.u_
) ) ce At/2 ee ”.__% el LB [ ntl el n+1 ,”_%
(@ I / fea i
e — ey .
i)ty i) (i i) (G (i),
M SALETBY + L) + 57,
] - b{"l
ML‘*AT = Y (L by 4 [,jjj-”p.:j_’%) (L7 bl 4+ el 4 11|:::_%
‘ Jex Jim
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Numerical RGSUltS, Resonant cavity

f,,=2.98 GHz (BHW pulse)

Model configuration
(the cavity centers at the origin)

Buffer zone

s
{
0

"'.'"
‘. .“
Y

-0
b

i
b

D N W

&

I T

S S S S S SR
IR N N N L W
RN SN N VY RN,

FETD region

FETD region )

SETD region SETD region

Non-conformal mesh
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Numerical RESU'tS, Resonant cavity

* Field comparison

120 . .
——Ref. FDTD
1007 - = =Hybrid FDTD-SETD
80 --— Hybrid FDTD-FETD
Hybrid FDTD-SETD-FETD
60
E L
£ 40
o 200
0
-20
_40-
%% 1 2 3 4 5
Time (ns)
10° . .
——FDTD (48 PPWs)
- - —Hybrid FDTD-SETD (48 PPWSs)
. -~ Hybrid FDTD-FETD (48 PPWs)
10 -+ Hybrid FDTD-SETD-FETD (48 PPWs)
g
w
°
3
=
T
o

2 3
Time (ns)

* Eigenspectrum comparison

@ I s = T i i
2 600! 1| —FDTD ' [ 1
= ] L} t L} 1 1
s ] ‘ === Hybrid ] I i
@ | — ;
£ 400} i Analytical | ¢ : i
= ' i ]
E00l A ] !
[+
g |/} i i
0 i i i A L
2 25 2 a5 4 45 5

Frequency (Hz) % 10!"-

* Long time behavior

1 million time steps

L, norm (E field)

0 50 100 150

Time {ns)
 The hybrid method shows good agreement
with the references;

» The hybrid method shows long time
stability.
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a0 . '
——DG-SETD-FETD
= ~~—-Hybrid FDTD-FETD
R
b
i 5% 0 ) 60 30 100
Infinitely Time (ns)
thin shell 8
4 subdomains = 0.04 ——E
9 z
O
E o002 1
e
E Q
w
o L '

Numerical Results, PEC hormn shell

&
2
o

20 20 60 80 100
Time (ns)

Table 3.1: Computational statistics for the PEC horn shell

Intel 15-2320 (3.0 GHz) ‘ Hybrid SETD-FETD Hybrid FDTD-FETD

DoFs 6.4% 10° 1.3x108
At (ps) 19.2 19.2
Total CPU time (l.) 5.6 0.35
Memory (GB) 3.8 0.61

* The hybrid FDTD-FETD shows good agreement with the reference;

* The hybrid FDTD-FETD consumes lower computational overheads than the
reference.

DUKE
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Numerical Results, Pseudo-elliptic waveguide filter

n

o S
@ -5
:?4,‘710
515
&
b 20
25 521 FDTD
WRI0 waveguide 30 _— s !
7 75 & 85 9 95 10
Frequency (GHz)
200
180} 1Y
Table 3.2: Computational statistics for the waveguide filter 100 i
Intel i5-2320 (3.0 GHz) | FDTD Hybrid FDTD-FETD % g i
2 90 }
DoFs 1.0x107 1.6x10% 8 i
£ -50F
At (ps) 0.26 0.38 = 100 i S11FOTD
Total CPU time (h.) 3.8 0.50 A50hy L\b o ST
Memory (GB) 1.2 0.98 0 - o2t bybid] ‘ )
T s g 85 9 85 10

Freguency (GHz)

* The hybrid method shows good agreement with the reference;

* The hybrid method consumes lower computational overheads than FDTD.

DUKE]|
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Numerical Results, csem example

1k -3 km 3 km 10°

X ' 2
Sea water —— 1 kmno reservoir FOTD
source —2 kmno reservoir FOTD
om il 3 km no reservoir FOTD
10" H --~1 kmreservoir FDTD

== =2kmreservoir FDTD
| 3 km reservoir FDTD
[l ® 1 kmreservoir Hybrid
|
|
1

Reservoir Seabed
2kmx 2km x 100m

* 2kmreservoir Hybrid
*iv Gl resenolr thbd

Time (s)

—— 1kmno reservoir FDTD |
=2 km no reserveir FDTD
~——3 km no reservoir FDTD |
¢ | ===-1 km reservoir FDTD |
===2kmreservoir FDTD 5
. n T . . . - = 3kmreservoir FDTD |
Intel i5-2320 (3.0 GHz) | FDTD Hybrid FDTD-SETD 5 o 1 km reservoir Hybrid

=

I

10'“ * 2 km reservoir Hybrid

Table 3.3: Computational statistics for the CSEM example 10

At (ms) 0.19 1.59

Total CPU time (h.) 10.25 1.46
Memory (GB) 0.85 105

Time(s)

* The hybrid method shows good agreement with the reference;

* The hybrid method consumes smaller CPU time than FDTD with implicit-explicit time
integration.
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Summary of the Hybrid FDTD-SETD-FETD

v" Propose a hybrid FDTD-SETD-FETD method with buffer
— allows non-conformal mesh,;
— introduces a buffer zone between SETD/FETD and FDTD;
— shows good accuracy and long time stability.

v" Propose efficient time integration schemes

— introduces an explicit global leapfrog time integration;

— for practical application, introduce an implicit-explicit time integration scheme;

— shows better performance than FDTD.

v" Propose an advanced hybrid FDTD-SETD-FETD method without buffer

— allows non-conformal mesh,;
— shows similar accuracy but better performance w.r.t. the one with buffer.
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uo Summary
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e

In this work we have reviewed the concepts, the formulations, and the implementation of discontinuous Galerkin time domain method for multiscale electromagnetic
simulations. Several different DGTD schemes are discussed in a general DG framework.
= Spurious solutions
= Non-physical modes with high values of wavenumber
= Transient solutions with rapid spatial variations
= p-forms/FEM
= Field intensities (E and H) are associated to 1-forms and curl-conforming basis func
= Flux densities (D and B) are associated to 2-forms and div-conforming basis functic
= Hodge Operator transform p-form in (p+1)-form, and vice versa.
= Dispersion analysis
= Semidiscrete and modal dispersion analysis
= Dispersive Hodge operator

H (div) o

= Fields belonging to different p-form (e.g., E and B) uses basis functions with same order or interp ‘/”/f _:/-I;:Af:ﬁ
= Different order of interpolation must be used if two fields belong to the same p-form (e.g., Eand 1 . :’-3* /A : ::f::—{;ﬁ:

= Elements and Basis functions Port 1
= New Spectral-Prism Element: DDM + Non-conforming triangular meshes +high-order in he
= Tetrahedral elements: curl- and div-conforming basis functions

= DG-TD
= DGTD works accurately and efficiently for highly multiscale EM systems.
=« CN-BT-DGTD and LDU-DGTD
= EB-DGTD shows improvements in all numerical features: eigenvalues, eigenvectors, disper
= EB-DGTD is a promising method to solve large, multiscale, and complex EM problems.
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