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Preface 

The “2018 URSI Commission B School for Young Scientists” is organized by URSI Commission B 

and is arranged on the occasion of the “2018 URSI Atlantic Radio Science Conference” (URSI 

AT-RASC 2018), May 28 - June 1, 2018, Gran Canaria, Spain. This School is a one-day event held 

during URSI AT-RASC 2018, and is sponsored jointly by URSI Commission B and the URSI 

AT-RASC 2018 Organizing Committee. The School offers a short, intensive course, where a series of 

lectures will be delivered by a leading scientist in the Commission B community. Young scientists are 

encouraged to learn the fundamentals and future directions in the area of electromagnetic theory from 

these lectures. 
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Program 

1. Course Title

Multiscale Computational Electromagnetics in Time Domain 

2. Course Instructor

Prof. Qing Huo Liu 

Department of Electrical and Computer Engineering, Duke University, USA 

3. Course Program

Lecture 1 

- Date and Time: 9:00-13:00, Sunday, May 27, 2018

- Venue:  ExpoMeloneras Convention Centre, Gran Canaria, Spain

- Lecture Topics:

1D Time Domain Methods

The Finite Difference Time Domain (FDTD) Method

The Finite Element Time Domain (FETD) Method

The Fourier Pseudospectral Time Domain (PSTD) Method

The Chebyshev PSTD Method

The Frequency Domain Spectral Element Method (SEM)

The Spectral Element Time Domain (SETD) Method

Lecture 2 

- Date and Time: 14:00-18:00, Sunday, May 27, 2018

- Venue:  ExpoMeloneras Convention Centre, Gran Canaria, Spain

- Lecture Topics:

1D Multiscale DGTD Method

3D DGTD Methods

Nodal DGTD Methods

Vector (Subdomain) DGTD Method with EH Fields

Vector (Subdomain) DGTD Method with EB Fields

Vector DGTD Method with the Wave Equation

Vector DGTD Method for Coupling SE, FE and FDTD Methods
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Lecture Abstract 

Multiscale Computational Electromagnetics in Time Domain 

Prof. Qing Huo Liu, PhD, FIEEE, FASA, FEMA, FOSA 

Department of Electrical and Computer Engineering, Duke University, USA 

www.ee.duke.edu/~qhliu 

Email: qhliu@duke.edu 

2018 edition of the URSI Commission B School for Young Scientists lectures by Prof. Qing Huo Liu 

focuses on the multiscale computational electromagnetics. The objective of this short course is to 

introduce the multiscale time-domain computational electromagnetics to address realistic 

electromagnetic sensing and system-level design problems. Such problems are often multiscale and 

contain three electrical scales, i.e., the fine scale (geometrical feature size much smaller than a 

wavelength), the coarse scale (geometrical feature size greater than a wavelength), and the 

intermediate scale between the two extremes.  Most existing commercial solvers are based on single 

methodologies (such as finite element method or finite-difference time-domain method), and are 

unable to solve large multiscale problems. In this short course, we will present the discontinuous 

Galerkin time-domain (DGTD) framework to combine the spectral element, finite difference, and 

finite element time domain methods, using both explicit and implicit time integration techniques. 

Numerical results show significant advantages of the multiscale method.  Time permitting, we will 

also overview some recent techniques in solving multiscale problems in the frequency domain. 
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Biographical Sketch of Course Instructor 

Qing Huo Liu received his B.S. and M.S. degrees 

in physics from Xiamen University, China, and 

Ph.D. degree in electrical engineering from the 

University of Illinois at Urbana-Champaign. His 

research interests include computational 

electromagnetics and acoustics, inverse problems, 

and their application in nanophotonics, geophysics, 

biomedical imaging, and electronic packaging. 

He has published over 400 papers in refereed 

journals and 500 papers in conference proceedings. 

He was with the Electromagnetics Laboratory at 

the University of Illinois at Urbana-Champaign as 

a Research Assistant from September 1986 to 

December 1988, and as a Postdoctoral Research 

Associate from January 1989 to February 1990. 

He was a Research Scientist and Program Leader 

with Schlumberger-Doll Research, Ridgefield, CT 

from 1990 to 1995.  From 1996 to May 1999 he 

was an Associate Professor with New Mexico 

State University. Since June 1999 he has been with Duke University where he is now a 

Professor of Electrical and Computer Engineering. 

Dr. Liu is a Fellow of the IEEE, the Acoustical Society of America, the Electromagnetics 

Academy, and the Optical Society of America. Currently he serves as the founding 

Editor-in-Chief of the new IEEE Journal on Multiscale and Multiphysics Computational 

Techniques, the Deputy Editor in Chief of Progress in Electromagnetics Research, an 

Associate Editor for IEEE Transactions on Geoscience and Remote Sensing, and an Editor of 

Journal of Computational Acoustics. He received the 1996 Presidential Early Career Award 

for Scientists and Engineers (PECASE) from the White House, the 1996 Early Career 

Research Award from the Environmental Protection Agency, and the 1997 CAREER Award 

from the National Science Foundation. He serves as an IEEE Antennas and Propagation 

Society Distinguished Lecturer for 2014-2016. He received the ACES technical achievement 

award in 2017. 
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URSI AT-RASC Short Course

Multiscale Computational 
Electromagnetics in Time Domain

Qing Huo Liu
Department of Electrical and Computer Engineering

Duke University

May 27, 2018

Chapter 2
1D Multiscale DGTD Method

Typical multiscale problems
Why DGTD method for multiscale 
problems?
Conservation form of wave equations
Subdomain-based DGTD method
Fluxes at the subdomain interfaces
Hybrid time integration methods
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Typical Multiscale Problems

Wavelength ( ) as the reference scale (in 
frequency domain, skin depth may be also a scale)
Coarse scale: 
Fine scale: 
Intermediate scale ( ) between coarse and fine 
scales

Why DGTD method for multiscale problems?

SETD method efficient for coarse scale, but not 
fine scale.  Why?
Explicit FETD and FDTD methods are good for 
intermediate scale, but not fine scale or coarse 
scale.  Why?
Stability condition of SETD, FETD, and FDTD 
methods

FDTD:  Tiny for electrically fine cells

Multiscale Computational Electromagnetics in Time Domain   Part 2

72



Approach: Multiscale DGTD: Hybridization of 
SETD and FETD (and/or FDTD)

Use SETD for the coarse and intermediate scale 
subdomains
Use FETD for the fine-scale subdomains

SDSE SEFESD SD SD

DGTD Method with SETD and FETD

1D Maxwell’s equations+ =+ =
Expansion in the -th subdomain= , = ( ) ,

Use Galerkin’s method for testing the above 
equations
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Numerical Flux for Interfaces Between 
Subdomains

Testing and integration by parts, + + = , ,
, + + = , + , ( )

Note that twice integration  by parts  yields the second equation
( , ) is the numerical flux at subdomain 
interfaces between adjacent subdomains

Numerical Flux 1: Central Flux

The simplest numerical flux is the central flux by 
averaging the tangential fields as the tangential E and H 
should be continuous = 12 [ + ]= 12 [ + ]
For 3D problems, the central × = 12 [ × + × ]× = 12 [ × + × ]× ( ) = 12 [ × + × ]
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Numerical Flux 2: Upwind Flux

Characteristics in 1D Maxwell’s equations+ =+ =
Ignore the losses and source terms+ ( ) = 0
where = , = 0 0

Eigenvalue Problem of A

Eigenpair and =
Eigenvalues and eigen vectors, = ± ± , = 0 0

= 1 , v = 1
Transformation matrix= = 1 1 , = 1 11
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Eigenvalue Problem of A (continued)

Transformation of A by and = , A =
Wave equation + ( ) = 0

+ ( ) = 0
Characteristics for , = ±

, = = , =
Alternative Derivation

Characteristics in 1D Maxwell’s equations+ =+ =
Ignore the losses and source terms+ = 0
where = , = 00 , = 0 11 0
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Eigenvalue Problem of A

Eigenpair and =
Eigenvalues and eigen vectors, = ± ± , = 0 0

= 1 , v = 1
Transformation matrix= = 1 1 , = 1 11

Eigenvalue Problem of A (continued)

Transformation of A by and = , A =
Wave equation + = 0

+ ( ) = 0
Characteristics for , = ±

, = = , =
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Characteristics and Riemann Solver==
Riemann Solver: For all characteristic + = 0

Applying this to = 1,2 yields+ = 0+ = 0
Upwind Flux

Combining the two yields

Upwind Flux

( + )= + +
= ++ + += ++ + +
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Upwind Flux in 3D

× = × ( + )+ + × × ( )( + )
× = × ( + )( + ) + × × ( )( + )

Solution of 1D Equations with DGTD

Testing and integration by parts, + + = , ,
, + + = , ,

( , ) are now replaced by the numerical flux= + ( +1) + + +
= ++ + + + + +
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Coefficients = + 1, = 1( + )= + , = 1( + )= /+ , = 1( + )= /+ , = 1( + )

Final weak form equations

, + += , , + + +, + += , , + + +
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( , ) are expanded in terms basis functions

, = , , ( ) , , = , ,
Then we obtain the system equations= ( + )

= ( + )

Then we obtain the system equations for all subdomains = 1, ,
=

Here the matrices are

= 0 0 , = ++ +
= , =
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Hybrid Time Integration: s-Stage Explicit + Implicit

Explicit Runge-Kutta Method for Coarse Subdomains= +
= ( + , ) ( + )

Butcher Tableau 

Explicit Singly Diagonally Implicit RK (ESDIRK) 
Butcher Tableau 

Coefficients b and c are exactly the same for Ex-RK 
and ESDIRK
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IMEX Time Integration

Implicit Runge-Kutta Method for Fine Subdomains= + , = 1, , = +
= + , ( + )

+ ,
Need to invert a system matrix for the IM part

Popular Explicit Time Integration Schemes= , , =
1. Second-Order RK Methods= + [(1 1 ) ,+ 1 + , + , ]
2. The mid-point method is a special case with == + + 2 , + 2 ,
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3. Fourth-Order 4-Stage RK Method= ,= + 2 , + 2= + 2 , + 2= + , += + = + 6 + 2 + 2 +

Popular Implicit Time Integration Schemes= , , =
1. Second-Order Implicit RK Method – Trapezoidal 

Rule = ,= + 2 , + 2 += + 2 +
0 0 0
1 1/2 1/2

1/2 1/2
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Popular Hybrid IMEX Time Integration Schemes= , , =

0 0 0
1 1/2 1/2
IM 1/2 1/2

0 0 0
1 1 0
EX 1/2 1/2

1. Second-Order IMEX RK MethodFirst perform time integration in explicit subdomains ( = 1)= ,k = + , += + 2 +Then in implicit subdomains= ,= + , + 2 += + 2 +
Popular Hybrid IMEX Time Integration Schemes= , , =

2. Fourth-Order IMEX RK MethodFirst perform time integration in explicit subdomains= ,k = + , + , = 2,3,4= + + + +Then in implicit subdomains= ,= + , + + , = 2,3,4= + + + +
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Butcher Tableau for the Fourth-Order Hybrid IMEX 
Time Integration Scheme

= 0
= 1767732205903/2027836641118 = 1767732205903/2027836641118= 3/5 = 5535828885825/10492691773637 = 788022342437/10882634858940= 1 = 6485989280629/16251701735622 = 4246266847089/9704473918619 = 10755448449292/10357097424841

EX = 1471266399579/7840856788654 = 4482444167858/7529755066697 = 11266239266428/11593286722821 = 1767732205903/4055673282236

= 0
= 1767732205903/2027836641118 = 1767732205903/4055673282236 = 1767732205903/4055673282236

= 3/5 = 2746238789719/10658868560708 = 640167445237/6845629431997 = 1767732205903/4055673282236
= 1 = 1471266399579/7840856788654 = 4482444167858/7529755066697 = 11266239266428/11593286722821 = 1767732205903/4055673282236

IM = 1471266399579/7840856788654 = 4482444167858/7529755066697 = 11266239266428/11593286722821 = 1767732205903/4055673282236

Summary

1D DGTD methods include “element-based DGTD” and 
“subdomain-based DGTD” methods
Element-based DGTD method has one element per 
subdomain. 
Subdomain-based DGTD method has multiple 
elements per subdomain, thus can have fewer DoFs
than the element-based DGTD method.
Element-based DGTD can be considered a special case 
of subdomain-based DGTD method when the number 
of elements becomes one.
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URSI AT-RASC Short Course

Multiscale Computational 
Electromagnetics in Time Domain

Qing Huo Liu
Department of Electrical and Computer Engineering

Duke University

May 27, 2018

Chapter 3. 3D DGTD Methods

References: Duke Ph.D. dissertations and 
related papers (Q. H. Liu Group)

Tian Xiao (Ph.D. 2004)
Gang Zhao (Ph.D. 2005)
Jiefu Chen (Ph.D. 2010)
Luis Tobon (Ph.D. 2013)
Qiang Ren (Ph.D. 2015)
Qingtao Sun (Ph.D. 2017)

Following slides are adapted from the slides 
in these Ph.D. defenses.
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Outline

Nodal DGTD Methods
DGTD and DG-PSTD Methods

Subdomain DGTD Method with EH Fields
Subdomain DGTD Method with EB Fields
Comparison of Various DGTD Methods

Topological Laws Constitutive Relations

Maxwell’s Equations

Governing Equations
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3.1 Nodal DGTD Methods

Nodal DGTD Methods with Tetrahedron Elements
Tian Xiao, High-order/Spectral Methods For Transient Wave 
Equations, Ph.D. Dissertation, Duke University, 2004.
T. Xiao, and Q. H. Liu, “Three-dimensional unstructured-grid 
discontinuous Galerkin method for Maxwell’s equations with well-
posed perfectly matched layer,” Microwave Opt. Technol. Lett., vol. 
46, no. 5, pp. 459-463, 2005.

Nodal DGTD Methods with Hexahedron Elements
Gang Zhao, The 3-D Multi-Domain Pseudospectral Time-domain 
Method For Electromagnetic Modeling, Ph.D. Dissertation, Duke 
University, 2005.
Q. H. Liu, and G. Zhao, “Advances in PSTD Techniques.” Chapter 17, 
Computational Electromagnetics: The Finite-Difference Time-Domain 
Method, A. Taflove, and S. Hagness, Artech House, Inc., 2005. 

FEM and Spectral-Based DGTD Methods

Nodal Discontinuous Galerkin Time Domain Method
FEM basis and testing functions
Spectral nodal basis and testing functions

Discontinuous approximation across element interfaces
Face-based communication between adjacent elements
Support hp adaptivity

Spectral accuracy with p
High-order accuracy with h

Amenable to parallel computation
Weakly enforcement of differential equations and B.C.s
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Nodal DGTD Method

Domain Decomposition
General Formulation

Maxwell Nodal Basis

Testing

Nodal DGTD Methods

Each element is one subdomain
Scalar basis functions can be used
At an interface between two elements, the 
DoFs are redundant (thus more DoFs than 
continuous Galerkin)
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Integrate by parts

Upwind Flux

Upwind Flux for 2D (Similar for 3D)

, ,
, , = , , 0 for M A

Upwind components and are not affected by interface.
and are modified by the interface through BCs

+ + = 0
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= is a non-propagating wave and does not 
need to be corrected.= ++ + += ++ + +

Upwind Flux for 3D

PEC boundary condition

Upwind Flux

PMC boundary condition
× = 2 × , × = 0
× = 2 × , × = 0
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Semi-discrete form

Runge-Kutta schemes for time stepping

DGTD Method on a Unstructured Mesh

Nodal distribution
Denser when closer to 
boundary
N = (M+1)(M+2)(M+3)/6 
nodes in each element.
L = (M+1)(M+2)/2 nodes on 
each face.

Reference Tetrahedron
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Examples

Accuracy Validation – by a cube cavity

Spectral Accuracy with p High-order Accuracy with h

4th order 
DGM is used.

A Dipole at center of a dielectric sphere

A 6th order DGTD
with 4th order RK 
time stepping are 
used.

PML
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Acoustic Plane wave incident on a rigid sphere

z

0.08

Plane Wave

A 5th order DGTD is used.

Staggered Time Stepping for Unstructured DGTD

Unstructured DGTD is at best 2nd order accurate for curved 
objects due to linear geometry approximation.
Higher-order RK time stepping is a waste of time since it 
require more stages per time step without achieving 
higher-order accurate solution.
e.g. Though 4th order 5 stage RK allows a about 1.4 times bigger 
maximal stable time step, it is still 5/1.4/2=1.78 times slower than 2nd

order 2 stage RK.
Second-order time stepping is sufficient.
Staggered time stepping is optimal among second-order 
time stepping.
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Formulation

E and H at different time levels.
Predictor-Corrector Method

Predictor

Corrector

More efficient than 2nd order 2 stage RK.

A Dipole in a Dielectric Cylinder

A 3rd order 
DGTD is applied.

PML
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Scaffold:
Dielectric Constant 13
Thickness 1/8 a.

Background:
Dielectric Constant 1

A 3rd order DGM
is applied.

Scaffold Photonic Structure

DGTD on Quadratic Simplex Grids

Use quadratic curvilinear elements instead of straight-sided 
tetrahedrons
Can achieve 3rd order accuracy for curved geometries.
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Electric dipole in a sphere PEC Cavity

Straight-sided elements Quadratic elements

Quadratic mesh converges much faster than straight-sided.

A 3rd order DGTD is used
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Accuracy Order

Hybrid DGTD with Different Orders

Hybrid Element
Tetrahedrons
Regular Prisms
Cubes

Mixed Order
High Order
Low Order
Different order in 
different domain
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Flexible Hybridization
Non-matching nodes across interfaces
Non-matching faces between adjacent elements which 
make the mesh generation very easy

Face-Based Communication by interpolation
Domain Decomposition Strategies

Use large cubes as much as possible
Use tetrahedrons or prisms to capture boundary 
curvature
Use methods with proper orders

For large cubes, use high-order method
For fine details, use low-order method
For tetrahedrons for curved objects, use low-order order 
method
Try to avoid a wide rage of time steps
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2D Examples – Cavity with 2 Materials

2D Examples – Cavity with 3 Materials

Multiscale Computational Electromagnetics in Time Domain   Part 2

101



The Grid Applied

3D Examples

Efficient Implementation 
for PML Regions

High-Order DGTD for cubes 
on PML region
DGTD for tetrahedrons on 
inner computational domain
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Homogeneous Case –
A Dipole Source

• 7th order DGTD for 
tetrahedrons in inner 
computational domain. 

• 7th order DGTD for 
cubes in PML region.

PML

Non-PML

Inhomogeneous Case –
A Dielectric Sphere

• 4th order DGTD for 
tetrahedrons in inner 
computational domain. 

• 7th order DGTD for 
cubes in PML region.

PML

Non-PML
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Summary

Spectral-Based DGTD Methods
Discontinuous Galerkin Time Domain Method has several good 
features: face-based communication, weakly enforcement of BC, 
support hp adaptivity, easiness for parallel computation.
Staggered Time Stepping for unstructured DGTD is introduced to 
avoid the waste of high-order RK schemes for curved objects.
Quadratic Simplex Elements can achieve 3rd order accuracy for 
curved objects.
Hybrid DGTD is powerful for complex problems. It allows hybrid 
elements, mixed order, and flexible hybridization.
DGTD can be combined with PSTD to perform fast spatial 
derivatives (stiffness matrices).  [G. Zhao, 2005; Q. H. Liu and G. 
Zhao, 2005)]

Potential Drawbacks of the Nodal 
DGTD Method

Each subdomain must be one element, so the boundary 
DoFs are always redundant. For lower order methods, this 
can produce much more DoFs than the CGTD method.
For implicit regions, the redundant DoFs do not bring 
noticeable benefits.
Numerical experiments show that long term instability may 
be an issue, although filtering can reduce this problem.
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3.2 Vector (Subdomain) DGTD 
Method with EH Fields

Vector (Subdomain) DGTD Methods with Tetrahedron 
Elements and Hexahedron Elements

J. Chen, A Hybrid Spectral-Element / Finite-Element Time-Domain Method for 
Multiscale Electromagnetic Simulations, Ph.D. Dissertation, Duke University, 
2010.
J. Chen, and Q. H. Liu, “A non-spurious vector spectral element method for 
Maxwell’s equations,” Progress Electromag. Res., PIER 96, pp. 205-215, 2009.
J. Chen, Q. H. Liu, M. Chai, and J. A. Mix, “A non-spurious 3-D vector 
discontinuous Galerkin finite-element time-domain method,” IEEE Microwave 
Wireless Compon. Lett., vol. 20, no. 1, pp. 1-3, Jan. 2010.
J. Chen, and Q. H. Liu, “Discontinuous Galerkin time-domain methods for 
multiscale electromagnetic simulations: A review,” invited review paper, Proc. 
IEEE, vol. 101, no. 2, pp. 242-253, Feb. 2013.
L. Tobon, J. Chen, and Q. H. Liu, “Spurious solutions in mixed finite element 
method for Maxwell’s equations: Dispersion analysis and new basis functions,” J.
Computat. Phys., vol. 30, 7300-7310, 2011.

Outline

Multiscale electromagnetic problems

A non-spurious mixed finite element method (FEM)

A non-spurious mixed spectral element method (SEM)

The hybrid FEM/SEM spatial discretization

The hybrid implicit-explicit (IMEX) time stepping

Numerical examples

Conclusion and future work
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Small structures
Package
Conductor traces

Dimension 0.01 min 1 mm

Very small structures
Solder pads

On-Chip traces

Dimension 0.00001 min 10 nm

Multiscale Factor = Largest /Smallest 100000

(online source)

A multiscale case: reverberation 
chamber

stirers, device under test

empty space in cavity
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Conventional Time-Domain Methods

Finite-difference time-domain (FDTD)
Finite-element time-domain (FETD) with E&B
Solve 1st-order Maxwell’s equations with PML

Require a sampling density >20 points per wavelength; 
inefficient for electrically large regions

Challenges both in spatial and temporal 
discretization

Challenges for conventional methods

Spatial discretization
finite difference: too many unknowns 

finite element: inversion of matrices

Time integration
explicit scheme: very small 

implicit scheme: inversion of matrices
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Hybrid method based on domain 
decomposition

Spatial discretization
finite element for fine parts 

spectral element for coarse parts

Time integration
explicit schemes for coarse mesh

implicit schemes for dense mesh

coarse subdomains
fine subdomains

Governing equations for 
electromagnetics

Maxwell’s equationswave equation

desirable for hybrid method

conventional FEM mixed FEM
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Flux communication between 
subdomains

Energy flow on interface is based on both E and H

n X E
n X H

Poynting vector 
(energy flow)

subdomain 2subdomain 1

n

The hybrid SETD/FETD method

Spatial discretization
Domain decomposition

Spectral element + finite element

Time integration
Explicit schemes for coarse subdomains

Implicit schemes for fine subdomains

SETD for electrically coarse structure

FETD for electrically fine structure
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Non-spurious elements for Maxwell’s equations

E H

• If E and H are 
used, En+1Hn or 
En+1Hn are 
required to avoid 
spurious modes.

• EnHn will 
produce spurious 
modes.

FETD

SETD

= , =

Frequency domain results

No spurious modes Many spurious modes

E5H4 E5H5

=j =
Eigenvalue problem

=
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Example I: Spurious modes in 
mixed FEM

broadband source

analytical solution

mixed FEMcommon interpolation

E

H

Mixed interpolation is free of spurious 
modes

E

H

mixed interpolation

time-varying results

common interpolation

E

H
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common interpolation

Dispersion analysis for mixed FEM

ideal results
mixed interpolation

3D non-spurious mixed vector FEM

EE H

2nd order edge element 1st order edge element
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SEM is a special kind of higher order 
FEM

4th Order FEM 4th Order SEM

non-uniform sampling pointsuniform sampling points

Runge phenomenon

FEM v.s. SEM (3D cavity)

Higher order SEM is efficient for 
coarse structure

about 90% of unknowns are saved by higher order SEM
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3D Non-spurious mixed vector 
SEM

EE H

2nd order spectral element 1st order spectral element

Example II: 3D PEC cavity
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Time domain results

Spectral accuracy by non-spurious SEM

The hybrid SEM/FEM spatial 
discretization

A schematic mesh for the hybrid SEM/FEM discretization

Electrically fine structures: lower order tetrahedral FEM
Electrically coarse structures: higher order hexahedral SEM
Interface between different subdomains: Riemann solver
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Galerkin’s weak form and surface 
integration

Maxwell’s equations Galerkin’s weak form

perform integration by parts

surface integration

Riemann solver for surface 
integration

Galerkin’s weak form with integration by parts

Riemann solver for interface between adjacent subdomains

surface integration
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Non-conforming interface between 
subdomains

interface of subdomain 1

interface of subdomain 2
…

Integration on non-conforming 
interface
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Discretized system of equations

The hybrid implicit-explicit time 
stepping

Electrically coarse subdomains: explicit Runge-Kutta scheme

Electrically fine subdomains: implicit Runge-Kutta scheme

Adjacent explicit and implicit subdomains: IMEX-RK scheme

t of fine subdomain (implicit)

t of coarse subdomain (explicit)

t of fine subdomain (explicit)

global t of discretized system

t of coarse subdomain (explicit)

global t of discretized system

conventional explicit scheme hybrid explicit-implicit scheme
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Three time stepping scenarios

coarse 
mesh

coarse 
mesh

coarse 
mesh

dense 
mesh

dense 
mesh

dense 
mesh

1.

2.

3.

Local explicit RK scheme

Implicit-explicit RK scheme

Local implicit RK scheme
subdomain-based iterative 

algorithm

Local explicit Runge-Kutta scheme

coarse 
mesh

coarse 
mesh

explicit RK
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coarse 
mesh

dense 
mesh

Implicit-explcit Runge-Kutta 
scheme

explicit RK implicit RK

dense 
mesh

dense 
mesh

Local implicit Runge-Kutta scheme

implicit RK

(subdomain-based) block Jacobian iteration

block Gauss-Seidel, SOR, CG, BiCG, etc. can also be employed here
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Block Thomas algorithm for layered 
structures

block tri-diagonal system

The block Thomas algorithm will eliminate 
iterations during time stepping

Example III: reverberation chamber
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Numerical results by SETD/FETD 
and FDTD

Example IV: antenna array
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Numerical results by SETD/FETD 
and FDTD

Domain decomposition can save 
memory
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Example V: interconnect package

FDTD grid and SETD/FETD mesh

t t = 500 fs
nt = 1,000
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Numerical results by three methods

Summary

The 3D FETD method with EnHn+1 bases for Maxwell’s equations. This 
method is used to discretize electrically fine structures.

The 3D SETD method with EnHn+1 bases for Maxwell’s equations. This 
method is used to discretize electrically coarse structures.

The hybrid SEM/FEM DGTD method for multiscale structures.

Integrated the hybrid implicit-explicit time stepping scheme into the 
hybrid SETD/FETD method

Applied the block Thomas algorithm to speed up the hybrid SETD/FETD 
method for layered structures
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3.3 Vector (Subdomain) DGTD 
Method with EB Fields

Vector (Subdomain) DGTD Methods with the EB Fields and 
Tetrahedron Elements and Hexahedron Elements

L. E. Tobon, Numerical Solution of Multiscale Electromagnetic Systems, Ph.D. Dissertation, Duke 
University, 2013.
L. E. Tobon, Q. Ren, and Q. H. Liu, “A new efficient 3D Discontinuous Galerkin Time Domain (DGTD) 
method for large and multiscale electromagnetic simulations,” J. Computat. Phys., vol. 283, pp. 374-387, 
Feb. 2015.
Q. Ren, Compatible Subdomain Level Isotropic/Anisotropic Discontinuous Galerkin Time Domain 
(DGTD) Method for Multiscale Simulation, Ph.D. Dissertation, Duke University, 2015. 
Q. Ren, L. E. Tobon, Q. T. Sun, and Q. H. Liu, “A New 3-D Nonspurious Discontinuous Galerkin
Spectral Element Time-Domain (DG-SETD) Method for Maxwell’s Equations,” IEEE Trans. Antennas 
Propagat., vol.63, no. 6, pp. 2585-2594, 2015.
Q. T. Sun, L. E. Tobon, Q. Ren, Y. Hu, and Q. H. Liu, “Efficient Noniterative Implicit Time-Stepping 
Scheme Based On E And B Fields For Sequential DG-FETD Systems,” IEEE Trans. Components 
Packaging And Manufacturing Technology, vol. 5, no. 12, pp. 1839-1849, Dec. 2015.
Q. Ren, Q. Sun, L. Tobón, Q. Zhan, and Q. H. Liu, "EB Scheme-Based Hybrid SE-FE DGTD Method for 
Multiscale EM Simulations," IEEE Trans. Antennas Propagat., vol. 64, no. 9, pp. 4088-4091, Sep. 2016.
Q. Ren, Q. Zhan, Q. H. Liu, “An Improved Subdomain Level Nonconformal Discontinuous Galerkin
Time Domain (DGTD) Method for Materials With Full-Tensor Constitutive Parameters”, IEEE 
Photonics J., vol. 9, no. 2, p. 2600113, Apr. 2017.

The FDTD method: high discretization
density required to capture the geometric
characteristics of electrically fine structures.

The FETD method: requires solving matrix
equations, huge matrix for multiscale problems,
either directly or iteratively.

Explicit time stepping: very small time
steps large number of steps.

Implicit time stepping: solution of large
dense matrix each step. 5 X 5 X 4 subdomains Interfaces between 

subdomains

Domain Decomposition
Method

Challenges
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coarse subdomains
fine subdomains

Ex-RK

Implicit
CN-BT
CN-GS

Hybrid
IMEX

Local TS

Low to
High

High

Low

Brick

Tetra

Prism

Hex/S
m

al
le

st
 

La
rg

es
t 

10

1
05

1
03

10

100

10-1

Multiscale Factor = Largest /Smallest 

Spatial Discretization and Time 
Integration

1. A unified framework based on the theory of differential forms and the finite
element method. It is used to analyze the discretization of the Maxwell’s
equations.

2. Numerical analysis based on modal analysis for one- and two- dimensional
spectral elements. Comparison with analytical formulas of numerical dispersion
based on semidiscrete analysis.

3. Study of dispersive Hodge Operator. Phase velocity analysis provides same
conclusion as previous dispersion analysis.

4. Implementation, analysis and application of Spectral-Prism element for EH DGTD;
including single domain performance analysis, and applications to multiple domain
and multi-layered EM cases.

5. Formulation, implementation and application of new LDU algorithm for highly
multiscale EM cases decomposed in sequential order.

6. Implementation of first and second order divergence-conforming tetrahedral
element for EB DGTD; including single domain performance analysis, and
applications to multiple domain and multiscale EM cases.

7. DGTD for anisotropic media.

Summary (L. Tobon & Q. Ren)
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Topological Laws

Ampere-Maxwell’s law

Faraday-Lenz’ law

Electric Gauss’ law

Magnetic Gauss’ law

Constitutive Laws

Tonti diagram for 
electromagnetics

Maxwell’s Equations

Physics FEM Differential Forms

Tonti diagram

De Rham sequence

Cochain complex

Maxwell Equations
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Discrete Representation

Curl-Conforming Div-Conforming

The weak form

The Weak Form

Mass matrices

Damping matrices

Stiffness matrices

where

EH

EB

EHDB
Hodge operators

Linear Systems
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Edge-based

GLL polynomials

(E)

3rd order reference element

Curl-conforming basis functions in 
SETD (hexahedron element)

GLL polynomials

(B)

3rd order reference element

Face-based

Divergence-conforming basis functions 
in SETD (hexahedron element)
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Constant Tangential- Linear Normal (Ct/Ln) (E1)

6

8

12

Linear Tangential- Quadratic Normal (Lt/Qn)
(E2)

reference element

Curl-conforming basis functions in 
FETD (tetrahedron element)

Constant Normal - Linear Tangential (Cn/Lt) (B1) Linear Normal - Quadratic Tangential (Ln/Qt)
(B2)

4

3

12

where

reference element

Divergence-conforming basis functions 
(tetrahedron element)
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reference element

Low order  (E1n or H1n)

Horizontal

Vertical

where
Name rule of basis functions in 
prism element:
1st digit is the order of triangles
2nd digit is the order of PLL 
polynomials in z direction

Curl-conforming basis functions in 
prism element

High Order    (E2n or H2n)

Horizontal

Vertical

where
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Low order  (B1n or D1n)

Horizontal

Vertical

where

Divergence-conforming basis functions 
in prism element

High order  (B2n or D2n)

Horizontal

Vertical

where

Total DoF in one prism element for divergence-conforming B2n or D2n: 8N+ 3(N+1)
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Tetrahedron Hexahedron

1 2E H

1 1E B 10

26

DoFs comparison

EB Scheme has much less DoFs

2 3E H

2 2E B 35

92

3 4E H

3 3E B

18

66

90

180

252

408

Comparison of EH and EB Basis Functions

Assuming harmonic variation

Eigenvalue Problem for Analysis of 
Spurious Modes

Ref.: L. Tobon, J. Chen, and Q. H. Liu, “Spurious solutions in mixed finite element method for Maxwell’s equations:
Dispersion analysis and new basis functions,” J. Computat. Phys., vol. 30, 7300-7310, 2011.
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Periodic 
Boundary 
Condition

Eigenvalues with N=100:

No spurious 
modes in 
E2H1 

Spurious 
Modes !!

L=1m

Eigenvalues, 1D periodic domain

Eigenvectors of E1H1:

Spurious!
2nd kind
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0.24 ns

0.48 ns

0.72 ns

Spurious

Source:
1st derivative of 
BHW
fc=1.29GHz
Located in 0.35 m

Observations 

• Spurious with 
faster group 
velocities.

• Rapid change 
in space.

• Slow and 
difficult to 
found in time 
variation.

Eigenvalues, 1D transient problem

Eigenvalues, 3D cavity

Mesh:
Brick elements

=0.01x0.01x0.01

0.11m
0.23m

0.03m

Dipole Source
Loc. (0.1,0.1,0.03)
Pol. (1,1,1)
Fc=2GHz

Dipole Receiver
Loc. 
(0.20,0.07,0.013)

E1H2 E1H1
Eigenvalues

Eigenvectors E1H2 Eigenvectors E1H1
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Eigenvalues, 3D cavity

Mesh:
Brick elements

=0.01x0.01x0.01

0.11m
0.23m

0.03m

Dipole Source
Loc. (0.1,0.1,0.03)
Pol. (1,1,1)
Fc=2GHz

Dipole Receiver
Loc. 
(0.20,0.07,0.013)

Dispersion analysis, 1D semidiscrete analysis

Periodic 
Boundary 
ConditionL=1m

Discretization

Ampere-Maxwell’s law

Faraday-Lenz’ law

Weak form:
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Dispersion analysis, 1D semidiscrete analysis

Similarly,

Non monotonic behavior using elements with 
common interpolation 

Spurious Modes

Dispersion analysis, 2D semidiscrete analysis

Blue E1H1
Red E1H2
Green Ideal

This approach becomes 
cumbersome for higher 
orders basis functions.
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Dispersion analysis, modal analysis

0.   Periodic Boundary Condition

1. Assume harmonic plane wave solution

2. Approx. discrete harmonic plane wave

3. Approx. eigenvalue Rayleigh quotient Normalized wavenumber

qth element:

Dispersion modal analysis, Quadrilateral TEz

B

D

E

H

E1 H1 B1 D1
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Dispersion modal analysis, E1H1

Origin of 
Spurious
modes

Small error, less that
4% for large
wavenumbers

Phase velocity

Group velocity

Phase velocity
goes to zero
for large
wavenumbers

Negative
Group
velocity for
large
wavenumbers

Spurious
solutions

Dispersion modal analysis, E1B1

No spurious solutions

Good behavior

Phase velocity

Group velocity

Phase
velocity a
Little bit 
faster
than one

Positive 
group
velocity 
for all
wavenum
bers
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Dispersion modal analysis, Quadrilateral TEz

B

D

E

H

E1 H2 B1 D2

Dispersion modal analysis, Quadrilateral TEz

B

D

E

H

E2 H2 B2 D2
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Dispersion modal analysis, E2H2

Phase velocity

Group velocity
Negative
and fast
group
velocities

Spurious
solutions

Dispersion modal analysis, E2B2

No spurious modes

Phase velocity

Group velocity
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Study of tetrahedral element

E1 H2 B1 D2

E2 B2

Eigenvalue analysis, tetrahedral element

10 mm

5 mm

7.5 mm

Receiver: 
Source: 

Time function: 1st d. BHW
min=10 mmfmax=30 GHz
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Eigenvector analysis, tetrahedral element

10 mm

5 mm

7.5 mm

Receiver: vvvvvvvvvvvvvvvvvvvvvvvveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr:::::::::::::::::::::::::::::
Source: 

Time function: 1st d. BHW
min=10 mmfmax=30 GHz

Transient solution, tetrahedral element

10 mm

5 mm

7.5 mm

Receiver: 
Source: 

Time function: 1st d. BHW
min=10 mmfmax=30 GHz

E1H2 is the most 
dispersive method

E2B2 is the 
most accurate 
method
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Study of spectral prism element

Algebraic and exponential convergence

h-refinement

p-refinement
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Spectral prism element, convergence

Algebraic

Exponential

EB Scheme Upwind Flux DG Formulation

0 1 1
0 0

0 0

ˆˆ ˆ ˆ ˆ ˆ ˆˆ( ) ( )
i

i i i i i i i te
r r r

V SV

dV c dV c dS
t

E E J B n B

Weak Forms of Maxwell’s Equations  with DG

0 0 0
0

ˆˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ( ) ( ) ( )
i i

i i i i i i i i i tm

V SV V

dV c dV c dS c dS
t

B MB E n E n E

EB Scheme Riemann Solver 

=
0

ˆ /B B
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Non-Conformal Mesh

Allow different kinds of 
elements

Allow a sharp change of element 
size 

DGTD, EB scheme
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DGTD, Cavity case

1. The EB scheme is more
accurate than EH scheme.
2. Dispersion error in the
E1H2 scheme is very high.

3. Numerical dispersion
in the E2B2 scheme is
the lowest.

Maxwellian ODE Non-Convolutional PML

Advantage
s1. Unsplit, Maxwellian (FE, 

SE)
2. Non-convolutional
3. Long-time stability
4. Ordinary differential 

equations

1 1

i N N
i i i i i i i i ij j ij j
ee eb ee ee eb ee

j j

d
dt
eM K b R e S e j L b L e

1 1

i N N
i i i i i i i i ij j ij j
bb be bb bb be bb

j j

d
dt
bM K e R b S b m L e L b

i i
i i i i i i i i i i
ee ee ee bb bb bb

d d
dt dt
e bM M e T e M M b T b

Auxiliary EquationsCoordinate Stretching

PML Profile

dtE dtB B
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DG-TD, Time Stepping schemes

Rewritting previous DGTD equations

ExRK
ExRK

ExRK

Coarse

Fine
ExRK

ExRK

ImRK

CN-
GS

CN-
GS
CN-
GS

CN-BT
CN-
LDU

CN-BT
CN-
LDU

CN-BT
CN-
LDU

DG-TD, ImEx Runge-Kutta

Explicit Implicit
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DGTD, Crank-Nicholson method

(i-1)-th subdomain (i+1)-th subdomaini-th subdomain

Reflections

Transmissions

Sequential order of subdomains:

Crank-Nicholson  implicit method:

Block tridiagonal!!

DGTD, LDU algorithm (1)

LDL decomposition

1 2
S1 S2M1 M2T12

T21

3S3 M3T32

T23

Volumes

Interfaces

No Transpose

Volume

Interface

Surface to volume

Volume to surface
Connection between interfaces in same domain.
Usually are zeros
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DGTD, LDU algorithm (2)

1 2
S1 S2M1 M2T12

T21

3S3 M3T32

T23

Volumes

Interfaces  BBTVolume source to interfaces

Interfaces source to volume

LDL-Block decomposition

1
3

4

Advantages:
1. Highly parallelizable
2. Smaller matrices
3. Memory cost
4. CPU time

to volume2

DG-TD, LDU algorithm evaluation

Total  42555
Total  638494444444444444444444444444444444444444444444444444449999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

Total  8527000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Total  10669191111Total  128112

LDU LDU

LDU

LDU
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EH scheme: Multilayer MW filter 

Thickness of  plates 
in layers 1, 2 and 3 is 6 

m.mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm.Multiscale
Factor

2
2 1

Brick element
CN-GS

EH scheme: Multilayer MW filter 

Resonance Tunning

Resonant frequency
li fr

0.45mm 1.34GHz
0.65mm 1.22GHz
0.85mm 1.14GHz

This analysis 
takes less than 
1.5 hours. 
5.9 hours for one 
simulation using 
FDTD
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EH scheme: Packaging-to-Chip interconnect

GND

Connectors

IC
Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Active port: Port 1 (50 Ohms)
Passive port: Port 4 (50 Ohms)
Vs: BHW fc=2.6 GHz

11 mm 6 mm

EH scheme: Packaging-to-Chip interconnect

7 Layer-Domains
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EH scheme: Highly multiscale

1/10 th 1/10 th

Multiscale factor = 1cm/0.15 m
67000

EH scheme: Highly multiscale

FDTD
Grid: 108 x 140 x 39

Multiscale Computational Electromagnetics in Time Domain   Part 2

154



EB scheme: Long MSL

FDTD Grid

DGTD MeshL=17 mm 3 x min
W=0.06 mm (1/125) x min
T=0.05 mm (1/125) x min

EB scheme: Long MSL

CN-BT
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EB scheme: 3D IC

23 subdomains

EB scheme: 3D IC
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Alvarez, J., Luis D. Angulo, A. Rubio Bretones,
and S. Gonzalez Garcia. "3D discontinuous
Galerkin time domain method for anisotropic
materials." IEEE Antennas and Wireless
Propagation Letters 11 (2012): 1182-1185.

Operator Splitting

1 2 1 2[ , , , ]T
t t t tq H H E E

ˆ Sn
n

t n
q qA1

1

0

0

n
t n

n
t n

H E

E H

1

1

0

0

S

S

t

t

H E

E H

12 11

22 21

12 11

22 21

0 0
0 0

0 0
0 0

A

1

1

Problem A

Problem B
R. J. Leveque, Finite-Volume Methods for
Hyperbolic Problems. Cambridge: Cambridge
University Press, 2004.

Anisotropic Media and  Riemann 
Solver

1 1 1 1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ( ) ) ( ( ) ) ( )]i t i j i i i i j i j j i i j in B T Z Z Z T n B Z T n B Tn n E E

1 1 1 1ˆ ˆ ˆ ˆ ˆ( ) ( ) [ ( ) ( ) (( ) ( ) )]i t i j i i i j i j i i j j i in E T Y Y Y T n E Y T n E Tn n B B

EB Scheme Anisotropic Riemann Solver 

Time Domain Anisotropic PML (1)

• Diagonal time-domain anisotropic PML 
Wang, Shumin, Robert Lee, and Fernando L. Teixeira. "Anisotropic-medium PML for
vector FETD with modified basis functions." Antennas and Propagation, IEEE
Transactions on 54, no. 1 (2006): 20-27.

Gedney, Stephen D. "An anisotropic PML absorbing media for the FDTD simulation of
fields in lossy and dispersive media." Electromagnetics 16, no. 4 (1996): 399-415.

Zhao, Li, and Andreas C. Cangellaris. "GT-PML: Generalized theory of perfectly matched
layers and its application to the reflectionless truncation of finite-difference time-domain
grids." Microwave Theory and Techniques, IEEE Transactions on 44, no. 12 (1996): 2555-
2563.

• Non-diagonal time-domain anisotropic PML 
Garcia, S. González, R. Gomez Martin, and B. García Olmedo. "Extension of Berenger's
absorbing boundary conditions to match dielectric anisotropic media." Microwave and Guided 
Wave Letters, IEEE 7, no. 9 (1997): 302-304.

Zhao, An Ping. "Generalized-material-independent PML absorbers used for the FDTD 
simulation of electromagnetic waves in 3-D arbitrary anisotropic dielectric and magnetic 
media." Microwave Theory and Techniques, IEEE Transactions on 46, no. 10 (1998): 1511-
1513.

Liu, Qing Huo. "PML and PSTD algorithm for arbitrary lossy anisotropic media."IEEE
microwave and guided wave letters 9, no. 2 (1999): 48-50

= 0 00 00 0
E H B D D B

Semi-analytical, not 
generalized 

Split-
field  

Split-
field  
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Time Domain Anisotropic PML (2)

A compact form of the governing equations for PML 
region:  

1 1 1 (2) 1 1 2 1 1 (1)
1 0 2 1 0 0 1 0 2( ) ( )m m m mt

BE B B B

1 (2) 2 (1)
1 0 2 1 0 0 1 0 2( ) ( )e e e et

EB E E E

(1) (2) (1) (2)
(1) (1) 1 (1) (1)

0 0t t t t
E E B BE E E B B B

whe
re

1 { , , }y z z x x ydiag 2 { , , }y z z x x ydiag 1. Unsplit, Maxwellian (FE, 
SE)

2. Non-convolutional
3. Ordinary differential 

equations

Anisotropic PEC Cavity  

,1

3.1253 -0.8283 0.6657
-0.8283 1.5524 -0.7651
0.6657 -0.7651 2.3223

r

,2

1.0302 -0.1099 0.1310
-0.1099 3.1612 0.9997
0.1310 0.9997 2.8087

r

1

0.0014 -0.0005 0.0001
-0.0005 0.0016 -0.0001
0.0001 -0.0001 0.0010

2

0.0010 0 0
0 0.0011 0.0003
0 0.0003 0.0019

,2

1.2500 0.2165 0.3750
0.2165 2.6875 -0.5413
0.3750 -0.5413 2.0625

r

,1

2.3125 -0.3750 -0.7578
-0.3750 2.2500 0.2165
-0.7578 -0.3750 1.4375

r

L=2 m

Blackman- Harris 
Window (BHW) 
pulse

f_ch=100 MHz
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Anisotropic M-PML Case (1)

1.3750 -0.0777 -0.4779
-0.0777 1.0161 0.0990
-0.4779 -0.0990 1.6089

r

1.9375 0.2296 0.0765
0.2296 1.1562 -0.2812
0.0765 -0.2812 1.9062

r

Blackman- Harris Window (BHW) pulse

f_ch=89.5 
MHz

Anisotropic M-PML Case (2)

Relative larger error 
from M-PML than 
classical MPL, but 
long time stability.

3 steps 
stability
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Space-Time  Separated Non-Conformal TF/SF BC for VBF (1)

Time delay 
matrix

Advantages: 
1.Space time 
separation
2.Multi-function 
of the TF/SF 
interface
TF/SF interface:
1. Non-

conformal 
mesh 
connector

2. DG interface
3. Source surface

Space-Time  Separated Non-Conformal TF/SF BC for VBF (2)

1.3750 -0.0777 -0.4779
-0.0777 1.0161 0.0990
-0.4779 -0.0990 1.6089

r

1.9375 0.2296 0.0765
0.2296 1.1562 -0.2812
0.0765 -0.2812 1.9062

r

Blackman- Harris 
Window (BHW) pulse 
plane wave

f_ch=89.5 
MHz

Field records at the 
receiver 

B
x

E
y

Multiscale Computational Electromagnetics in Time Domain   Part 2

160



Negative Refraction (1)

bicrystal

4.0671 0 0
0 4.0671 0
0 0 5.0661

r

,

4.5666 0 -0.4995
0 4.0671 0

-0.4995 0 4.5666
r A ,

4.5666 0 0.4995
0 4.0671 0

0.4995 0 4.5666
r B

In principal 
axial

,

1 0 0
0 1 0
0 0 1

r A

,

1 0 0
0 1 0
0 0 1

r B

C. M. Krowne and Y. Zhang, Physics of Negative Refraction and Negative Index Materials. Springer, 2007

Anisotropic Time Domain Half Space TF/SF Boundary Condition

Half Space TF/SF Boundary Condition

The M-PML is divided into two 
halves, each half has the same 
material as the physical domain it is 
matched for.

P:  add incident and reflected waves
Q:  add refracted wave

1 1 2 2( ) ( )P f t t f t tE E E 3 3( )Q f t tE E

1 1 ,/ p At l v 2 2 ,( ) / p At l OP v 3 2 ,( ) / p Bt l OQ v

,p Bv,p Av an
d

The refracted and reflected 
angles,  can be calculated via the state-variable approach for layered media 
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Negative Refraction (2)

Normal Refraction 1   

10

Negative Refraction (3)

Normal Refraction 2   

35
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Negative Refraction (4)

Negative Refraction   

0

Negative Refraction (5)

More cases are simulated. 

They all agree with the analytical 
solution.

The relative errors of incidence and 
refraction angles (respect to energy) 
are all less than 1%.
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3.4 Vector DGTD Method with the 
Wave Equation

Vector (Subdomain) DGTD Method with the Wave Equation
Q. Sun, Q. Zhan, Q. Ren, and Q. H. Liu, “Wave Equation-Based Implicit Subdomain DGTD Method for 
Modeling of Electrically Small Problems”, IEEE Trans. Microw. Theory Tech., vol. 65, no. 4, pp. 1111-
1119, Apr. 2017.
Q. Sun, Discontinuous Galerkin Based Multi-Domain Multi-Solver Technique for Efficient Multiscale 
Electromagnetic Modeling, Ph.D. Dissertation, Duke University, 2017. 
Q. Sun, R. Zhang, Q. Zhan, and Q. H. Liu, “A Novel Coupling Algorithm for Perfectly Matched Layer 
with Wave Equation Based Discontinuous Galerkin Time Domain Method”, IEEE Trans. Antennas 
Propagat., vol. 66, no. 1, pp. 255-261, Jan. 2018.

Slides in 5.4 - 5.6 are modified from Q. Sun’s PhD defense.

• Riemann solver (upwind flux)
Numerical flux

• Governing equations (EB) • Weak form

The First-Order Maxwell’s Curl Equations

• Question: Can one use only E (or H) as an unknown field in a 
wave equation to reduce the unknowns?
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The Second-Order Wave Equation

• Modified Riemann solver
Numerical flux

• Weak form• Governing equation (EHs)

Subject to:

• Semi-discretized sub-systems

• For electrically fine domains, this equation is solved by the Newmark beta method.

Coupling with PML

• The physical region (EHs) • The PML region (EB)

Physical region

PML region
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Numerical Results, Resonant cavity

• The wave equation based DGTD method shows
approximately the second-order convergence;

• The proposed method is unconditionally stable,
and has no obvious numerical dissipation to
physical fields.

Numerical Results, Dipole radiation

• The novel coupling method of PML with wave
equation based DGTD shows good accuracy;

• Energy evolution for a long time window is
observed, and no instability occurs, demonstrating
that PML works properly in the novel coupling
method.

Physical region

PML region
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Physical region

PML region

Patch antenna

P

Numerical Results, Patch antenna radiation

• The novel coupling method of PML with wave equation based DGTD shows good
agreement;

• On the same mesh PML shows better accuracy than the first-order absorbing boundary
condition.

Numerical Results, Long microstrip line

• The DGTD-Wave shows good agreement and lower computational
overheads.
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Numerical Results, Interconnect package

• The DGTD-Wave shows good agreement and smaller CPU time.

Summary

Propose a new DGTD method based on the second-order wave equation
– introduces a modified Riemann solver to evaluate the flux;
– has fewer DoFs for each subdomain with implicit time integration;
– shows better performance than the first-order Maxwell’s curl equations 

based DGTD methods.

Propose a novel coupling scheme of PML for the second-order wave 
equation based DGTD method
– physical and PML regions employ different governing equations;
– shows better accuracy than the first-order absorbing boundary condition.
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3.5 Vector DGTD Method for Coupling 
SE, FE and FDTD Methods

Vector (Subdomain) DGTD Method to couple SE, FE and 
FDTD methods

B. Zhu, J. Chen, W. Zhong, and Q. H. Liu, “A Hybrid FETD-FDTD Method with Nonconforming 
Meshes,” Commun. Comput. Phys., vol. 9, no. 3, pp. 828-842, 2011. doi: 10.4208/cicp.230909.140410s.
B. Zhu, J. Chen, W. Zhong, and Q. H. Liu, “Analysis of photonic crystals using the hybrid finite 
element/finite-difference time domain technique based on the discontinuous Galerkin method,” Intl. J. 
Numer. Methods Eng., vol. 92, no. 5, pp. 495-506, 2012. 
B. Zhu, J. Chen, W. Zhong, and Q. H. Liu, “Hybrid finite-element/finite-difference method with an 
implicit-explicit time-stepping scheme for Maxwell’s equations,” Intl. J. Numer. Modelling-Electronic 
Networks Devices and Fields, vol. 25, no. 5-6, Special Issue, pp. 607-620, DOI: 10.1002/jnm.1853, 2012.
Q. Sun, Q. Ren, Q. Zhan, and Q. H. Liu, “3-D Domain Decomposition Based Hybrid Finite-Difference 
Time-Domain/Finite-Element Time-Domain Method with Nonconformal Meshes”, IEEE Trans. Microw.
Theory Tech., Vol. 65, no. 10, pp. 3682-3688, Oct. 2017.

Hybrid FDTD-SETD-FETD
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Hybrid FDTD-SETD-FETD with a Buffer Zone

Typical approaches: 

Proposed scheme:

• Quasi-conformal mesh: 
interpolation approach, Nitsche’s
method;

• Conformal mesh: pyramid element;
• Meshing is not flexible.

• FDTD region: Cartesian grid, as 
conventional;

• Buffer zone: Cartesian grid, 
conformal with FDTD region;

• FETD region: tetrahedron element, 
non-conformal with Buffer zone.

Three regions

Limitations:

Elements & Basis Functions

FETD region
(Tetrahedron)

SETD/Buffer zone
(Hexahedron, Brick)

FDTD region
(Brick)

Staggered Yee’s grid

Curl-Conforming

Div-Conforming

• FETD region: tetrahedron element, high order basis;
• SETD region: hexahedron element, high order basis;

• Buffer zone: brick element, 1st order basis;
• FDTD region: brick element, staggered Yee’s grid.
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Global Explicit Leapfrog Time Integration

En+1/2 at Interface 1 Bn in both FDTD and buffer;

Bn+1 at Interface 1 En+1/2 at Interface 1;

FDTD region 

SETD/ FETD and buffer regions

(1)

(2)

(3)

(4)

Implicit-Explicit CN-LF Time Integration

(3) Sub-step 1: pseudo-forward Euler (buffer zone)  

En+1/2 at Interface 1 Bn in both FDTD and buffer;

Bn+1 at Interface 1 En+1/2 at Interface 1;

FDTD region (LF) 

SETD/FETD and buffer regions

(4) Sub-step 2: Crank-Nicolson (SETD/FETD region)

(5) Sub-step 3: reversed pseudo-forward Euler (buffer zone)

(1)

(2)
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Numerical Results, Resonant cavity

Model configuration
(the cavity centers at the origin)

fch = 2.98 GHz (BHW pulse)

Non-conformal mesh

Numerical Results, Resonant cavity

• The hybrid method shows good agreement 
with the references;

• The hybrid method shows long time 
stability.

• Eigenspectrum comparison

• Long time behavior

1 million time steps

• Field comparison
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Numerical Results, PEC horn shell

• The hybrid FDTD-FETD shows good agreement with the reference;
• The hybrid FDTD-FETD consumes lower computational overheads than the 

reference.

Infinitely 
thin shell

Numerical Results, Pseudo-elliptic waveguide filter

WR90 waveguide

• The hybrid method shows good agreement with the reference;
• The hybrid method consumes lower computational overheads than FDTD.
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Numerical Results, CSEM example

• The hybrid method shows good agreement with the reference;
• The hybrid method consumes smaller CPU time than FDTD with implicit-explicit time 

integration.

Summary of the Hybrid FDTD-SETD-FETD

Propose a hybrid FDTD-SETD-FETD method with buffer
– allows non-conformal mesh;
– introduces a buffer zone between SETD/FETD and FDTD;
– shows good accuracy and long time stability.

Propose efficient time integration schemes
– introduces an explicit global leapfrog time integration;
– for practical application, introduce an implicit-explicit time integration scheme;
– shows better performance than FDTD.

Propose an advanced hybrid FDTD-SETD-FETD method without buffer
– allows non-conformal mesh;
– shows similar accuracy but better performance w.r.t. the one with buffer.
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In this work we have reviewed the concepts, the formulations, and the implementation of discontinuous Galerkin time domain method for multiscale electromagnetic
simulations. Several different DGTD schemes are discussed in a general DG framework.

Spurious solutions
Non-physical modes with high values of wavenumber
Transient solutions with rapid spatial variations

p-forms/FEM
Field intensities (E and H) are associated to 1-forms and curl-conforming basis functions.
Flux densities (D and B) are associated to 2-forms and div-conforming basis functions.
Hodge Operator transform p-form in (p+1)-form, and vice versa.

Dispersion analysis
Semidiscrete and modal dispersion analysis
Dispersive Hodge operator
Fields belonging to different p-form (e.g., E and B) uses basis functions with same order of interpolation.
Different order of interpolation must be used if two fields belong to the same p-form (e.g., E and H).

Elements and Basis functions
New Spectral-Prism Element: DDM + Non-conforming triangular meshes +high-order in height
Tetrahedral elements: curl- and div-conforming basis functions

DG-TD
DGTD works accurately and efficiently for highly multiscale EM systems.
CN-BT-DGTD and LDU-DGTD
EB-DGTD shows improvements in all numerical features: eigenvalues, eigenvectors, dispersion, and comp. costs.
EB-DGTD is a promising method to solve large, multiscale, and complex EM problems.

s.
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Summary
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