
Evaluating Performance and Energy in File System Server Workloads
Priya Sehgal, Vasily Tarasov, and Erez Zadok

Stony Brook University

Abstract

Recently, power has emerged as a critical factor in de-
signing components of storage systems, especially for
power-hungry data centers. While there is some research
into power-aware storage stack components, there are no
systematic studies evaluating each component’s impact
separately. This paper evaluates the file system’s impact
on energy consumption and performance. We studied
several popular Linux file systems, with various mount
and format options, using the FileBench workload gen-
erator to emulate four server workloads: Web, database,
mail, and file server. In case of a server node con-
sisting of a single disk, CPU power generally exceeds
disk-power consumption. However, file system design,
implementation, and available features have a signifi-
cant effect on CPU/disk utilization, and hence on perfor-
mance and power. We discovered that default file system
options are often suboptimal, and even poor. We show
that a careful matching of expected workloads to file sys-
tem types and options can improve power-performance
efficiency by a factor ranging from 1.05 to 9.4 times.

1 Introduction
Performance has a long tradition in storage research. Re-
cently, power consumption has become a growing con-
cern. Recent studies show that the energy used inside all
U.S. data centers is 1–2% of total U.S. energy consump-
tion [42], with more spent by other IT infrastructures
outside the data centers [44]. Storage stacks have grown
more complex with the addition of virtualization layers
(RAID, LVM), stackable drivers and file systems, vir-
tual machines, and network-based storage and file sys-
tem protocols. It is challenging today to understand the
behavior of storage layers, especially when using com-
plex applications.

Performance and energy use have a non-trivial, poorly
understood relationship: sometimes they are opposites
(e.g., spinning a disk faster costs more power but im-
proves performance); but at other times they go hand in
hand (e.g., localizing writes into adjacent sectors can im-
prove performance while reducing the energy). Worse,
the growing number of storage layers further perturb ac-
cess patterns each time applications’ requests traverse
the layers, further obfuscating these relationships.

Traditional energy-saving techniques useright-sizing.
These techniques adjust node’s computational power to
fit the current load. Examples include spinning disks
down [12, 28, 30], reducing CPU frequencies and volt-
ages [46], shutting down individual CPU cores, and
putting entire machines into lower power states [13, 32].
Less work has been done onworkload-reductiontech-

niques: better algorithms and data-structures to improve
power/performance [14, 19, 24]. A few efforts focused
on energy-performance tradeoffs in parts of the storage
stack [8, 18, 29]. However, they were limited to one
problem domain or a specific workload scenario.

Many factors affect power and performance in the
storage stack, especially workloads. Traditional file sys-
tems and I/O schedulers were designed for generality,
which is ill-suited for today’s specialized servers with
long-running services (Web, database, email). We be-
lieve that to improve performance and reduce energy
use, custom storage layers are needed for specialized
workloads. But before that, thorough systematic stud-
ies are needed to recognize the features affecting power-
performance under specific workloads.

This paper studies the impact of server work-
loads on both power and performance. We used the
FileBench [16] workload generator due to its flexibil-
ity, accuracy, and ability to scale and stress any server.
We selected FileBench’s Web, database, email, and file
server workloads as they represent most common server
workloads, yet they differ from each other. Modern stor-
age stacks consist of multiple layers. Each layer inde-
pendently affects the performance and power consump-
tion of a system, and together the layers make such in-
teraction rather complex. Here, we focused on the file
system layer only; to make this study a useful stepping
stone towards understanding the entire storage stack, we
did not use LVM, RAID, or virtualization. We experi-
mented with Linux’s four most popular and stable local
file systems: Ext2, Ext3, XFS, and Reiserfs; and we var-
ied several common format- and mount-time options to
evaluate their impact on power/performance.

We ran many experiments on a server-class ma-
chine, collected detailed performance and power mea-
surements, and analyzed them. We found that different
workloads, not too surprisingly, have a large impact on
system behavior. No single file system worked best for
all workloads. Moreover, default file system format and
mount options were often suboptimal. Some file system
features helped power/performance and others hurt it.
Our experiments revealed a strong linearity between the
power efficiency and performance of a file system. Over-
all, we found significant variations in the amount of use-
ful work that can be accomplished per unit time or unit
energy, with possible improvements over default config-
urations ranging from 5% to 9.4×. We conclude that
long-running servers should be carefully configured at
installation time. For busy servers this can yield signifi-
cant performance and power savings over time. We hope
this study will inspire other studies (e.g., distributed file

systems), and lead to novel storage layer designs.
The rest of this paper is organized as follows. Sec-

tion 2 surveys related work. Section 3 introduces our
experimental methodology. Section 4 provides useful
information about energy measurements. The bulk of
our evaluation and analysis is in Section 5. We conclude
in Section 6 and describe future directions in Section 7.

2 Related Work
Past power-conservation research for storage focused on
portable battery-operated computers [12, 25]. Recently,
researchers investigated data centers [9, 28, 43]. As our
focus is file systems’ power and performance, we dis-
cuss three areas of related work that mainly cover both
power and performance: file system studies, lower-level
storage studies, and benchmarks commonly used to eval-
uate systems’ power efficiency.

File system studies. Disk-head seeks consume a large
portion of hard-disk energy [2]. A popular approach to
optimize file system power-performance is to localize
on-disk data to incur fewer head movements. Huang et
al. replicated data on disk and picked the closest replica
to the head’s position at runtime [19]. The Energy-
Efficient File System (EEFS) groups files with high tem-
poral access locality [24]. Essary and Amer developed
predictive data grouping and replication schemes to re-
duce head movements [14].

Some suggested other file-system—level techniques
to reduce power consumption without degrading perfor-
mance. BlueFS is an energy-efficient distributed file sys-
tem for mobile devices [29]. When applications request
data, BlueFS chooses a replica that best optimizes en-
ergy and performance. GreenFS is a stackable file sys-
tem that combines a remote network disk and a local
flash-based memory buffer to keep the local disk idling
for as long as possible [20]. Kothiyal et al. examined file
compression to improve power and performance [23].

These studies propose new designs for storage soft-
ware, which limit their applicability to existing systems.
Also, they often focus on narrow problem domains. We,
however, focus on servers, several common workloads,
and use existing unmodified software.

Lower-level storage studies. A disk drive’s platters
usually keep spinning even if there are no incoming I/O
requests. Turning the spindle motor off during idle pe-
riods can reduce disk energy use by 60% [28]. Sev-
eral studies suggest ways to predict or prolong idle peri-
ods and shut the disk down appropriately [10, 12]. Un-
like laptop and desktop systems, idle periods in server
workloads are commonly too short, making such ap-
proaches ineffective. This was addressed using I/O
off-loading [28], power-aware (sometimes flash-based)
caches [5, 49], prefetching [26, 30], and a combination

of these techniques [11, 43]. Massive Array of Idle
Disks (MAID) augments RAID technology with auto-
matic shut down of idle disks [9]. Pinheiro and Bian-
chini used the fact that regularly only a small subset of
data is accessed by a system, and migrated frequently
accessed data to a small number of active disks, keeping
the remaining disks off [31]. Other approaches dynami-
cally control the platters’ rotation speed [35] or combine
low- and high-speed disks [8].

These approaches depend primarily on having or pro-
longing idle periods, which is less likely on busy servers.
For those, aggressive use of shutdown, slowdown, or
spin-down techniques can have adverse effects on per-
formance and energy use (e.g., disk spin-up is slow and
costs energy); such aggressive techniques can also hurt
hardware reliability. Whereas idle-time techniques are
complementary to our study, we examine file systems’
features that increase performance and reduce energy
use inactivesystems.

Benchmarks and systematic studies. Researchers
use a wide range of benchmarks to evaluate the per-
formance of computer systems [39, 41] and file systems
specifically [7, 16, 22, 40]. Far fewer benchmarks exist
to determine system power efficiency. The Standard Per-
formance Evaluation Corporation (SPEC) proposed the
SPECpowerssj benchmark to evaluate the energy effi-
ciency of systems [38]. SPECpowerssj stresses a Java
server with standardized workload at different load lev-
els. It combines results and reports the number of Java
operations per second per watt. Rivoire et al. used a large
sorting problem (guaranteed to exceed main memory) to
evaluate a system’s power efficiency [34]; they report
the number of sorted records per joule. We use similar
metrics, but applied for file systems.

Our goal was to conduct a systematic power-
performance study of file systems. Gurumurthi et al.
carried out a similar study for various RAID configu-
rations [18], but focused on database workloads alone.
They noted that tuning RAID parameters affected power
and performance more than many traditional optimiza-
tion techniques. We observed similar trends, but for file
systems. In 2002, Bryant et al. evaluated Linux file sys-
tem performance [6], focusing on scalability and concur-
rency. However, that study was conducted on an older
Linux 2.4 system. As hardware and software change
so rapidly, it is difficult to extrapolate from such older
studies—another motivation for our study here.

3 Methodology
This section details the experimental hardware and soft-
ware setup for our evaluations. We describe our testbed
in Section 3.1. In Section 3.2 we describe our bench-
marks and tools used. Sections 3.3 and 3.4 motivate our
selection of workloads and file systems, respectively.

3.1 Experimental Setup
We conducted our experiments on a Dell Pow-
erEdge SC1425 server consisting of 2 dual-core IntelR©

XeonTM CPUs at 2.8GHz, 2GB RAM, and two
73GB internal SATA disks. The server was run-
ning the CentOS 5.3 Linux distribution with kernel
2.6.18-128.1.16.el5.centos.plus. All the benchmarks
were executed on an external 18GB, 15K RPM AT-
LAS15K 18WLS Maxtor SCSI disk connected through
Adaptec ASC-39320D Ultra320 SCSI Card.

As one of our goals was to evaluate file systems’
impact on CPU and disk power consumption, we con-
nected the machine and the external disk to two separate
WattsUP Pro ES [45] power meters. This is an in-line
power meter that measures the energy drawn by a device
plugged into the meter’s receptacle. The power meter
uses non-volatile memory to store measurements every
second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600
Joules) resolution for energy measurements; the accu-
racy is±1.5% of the measured value plus a constant er-
ror of±0.3 Watt-hours. We used awattsup Linux util-
ity to download the recorded data from the meter over a
USB interface to the test machine. We kept the temper-
ature in the server room constant.

3.2 Software Tools and Benchmarks
We usedFileBench[16], an application level workload
generator that allowed us to emulate a large variety of
workloads. It was developed by Sun Microsystems and
was used for performance analysis of Solaris operating
system [27] and in other studies [1, 17]. FileBench can
emulate different workloads thanks to its flexibleWork-
load Model Language(WML), used to describe a work-
load. A WML workload description is called aper-
sonality. Personalities define one or more groups of file
system operations (e.g., read, write, append, stat), to be
executed by multiple threads. Each thread performs the
group of operations repeatedly, over a configurable pe-
riod of time. At the end of the run, FileBench reports
the total number of performed operations. WML allows
one to specify synchronization points between threads
and the amount of memory used by each thread, to em-
ulate real-world application more accurately. Personal-
ities also describe the directory structure(s) typical for
a specific workload: average file size, directory depth,
the total number of files, and alpha parameters govern-
ing the file and directory sizes that are based on a gamma
random distribution.

To emulate a real application accurately, one needs
to collect system call traces of an application and con-
vert them to a personality. FileBench includes several
predefined personalities—Web, file, mail and database
servers—which were created by analyzing the traces
of corresponding applications in the enterprise environ-

ment [16]. We used these personalities in our study.
We used Auto-pilot [47] to drive FileBench. We built

an Auto-pilot plug-in to communicate with the power
meter and modified FileBench to clear the two watt
meters’ internal memory before each run. After each
benchmark run, Auto-Pilot extracts the energy readings
from both watt-meters. FileBench reports file system
performance in operations per second, which Auto-pilot
collects. We ran all tests at least five times and com-
puted the 95% confidence intervals for the mean opera-
tions per second, and disk and CPU energy readings us-
ing the Student’s-t distribution. Unless otherwise noted,
the half widths of the intervals were less than 5% of the
mean—shown as error bars in our bar graphs. To reduce
the impact of the watt-meter’s constant error (0.3 Watt-
hours) we increased FileBench’s default runtime from
one to 10 minutes. Our test code, configuration files,
logs, and results are available atwww.fsl.cs.sunysb.

edu/docs/fsgreen-bench/.

3.3 Workload Categories
One of our main goals was to evaluate the impact of dif-
ferent file system workloads on performance and power
use. We selected four common server workloads: Web
server, file server, mail server, and database server. The
distinguishing workload features were: file size distribu-
tions, directory depths, read-write ratios, meta-data vs.
data activity, and access patterns (i.e., sequential vs. ran-
dom vs. append). Table 1 summarizes our workloads’
properties, which we detail next.

Web Server. The Web server workload uses a read-
write ratio of 10:1, and reads entire files sequentially
by multiple threads, as if reading Web pages. All the
threads append 16KB to a common Web log, thereby
contending for that common resource. This workload
not only exercises fast lookups and sequential reads of
small-sized files, but it also considers concurrent data
and meta-data updates into a single, growing Web log.

File Server. The file server workload emulates a server
that hosts home directories of multiple users (threads).
Users are assumed to access files and directories be-
longing only to their respective home directories. Each
thread picks up a different set of files based on its thread
id. Each thread performs a sequence of create, delete,
append, read, write, and stat operations, exercising both
the meta-data and data paths of the file system.

Mail Server. The mail server workload (varmail) emu-
lates an electronic mail server, similar to Postmark [22],
but it is multi-threaded. FileBench performs a sequence
of operations to mimic reading mails (open, read whole
file, and close), composing (open/create, append, close,
and fsync) and deleting mails. Unlike the file server and
Web server workloads, the mail server workload uses a

Workload
Average Average Number I/O sizes Number of

R/W Ratio
file size directory depth of files read write append threads

Web Server 32KB 3.3 20,000 1MB - 16KB 100 10:1
File Server 256KB 3.6 50,000 1MB 1MB 16KB 100 1:2
Mail Server 16KB 0.8 50,000 1MB - 16KB 100 1:1
DB Server 0.5GB 0.3 10 2KB 2KB - 200 + 10 20:1

Table 1: FileBench workload characteristics. The databaseworkload uses 200 readers and 10 writers.
flat directory structure, with all the files in one directory.
This exercises large directory support and fast lookups.
The average file size for this workload is 16KB, which
is the smallest amongst all other workloads. This initial
file size, however, grows later due to appends.

Database Server. This workload targets a specific
class of systems, calledonline transaction processing
(OLTP). OLTP databases handle real-time transaction-
oriented applications (e.g., e-commerce). The database
emulator performs random asynchronous writes, ran-
dom synchronous reads, and moderate (256KB) syn-
chronous writes to the log file. It launches 200 reader
processes, 10 asynchronous writers, and a single log
writer. This workload exercises large file management,
extensive concurrency, and random reads/writes. This
leads to frequent cache misses and on-disk file ac-
cess, thereby exploring the storage stack’s efficiency for
caching, paging, and I/O.

3.4 File System and Properties
We ran our workloads on four different file systems:
Ext2, Ext3, Reiserfs, and XFS. We evaluated both the
default and variants of mount and format options for
each file system. We selected these file systems for their
widespread use on Linux servers and the variation in
their features. Distinguishing file system features were:

• B+/S+ Tree vs. linear fixed sized data structures
• Fixed block size vs. variable-sized extent
• Different allocation strategies
• Different journal modes
• Other specialized features (e.g., tail packing)

For each file system, we tested the impact of vari-
ous format and mount options that are believed to affect
performance. We considered two common format op-
tions: block size and inode size. Large block sizes im-
prove I/O performance of applications using large files
due to fewer number of indirections, but they increase
fragmentation for small files. We tested block sizes of
1KB, 2KB, and 4KB. We excluded 8KB block sizes due
to lack of full support [15, 48]. Larger inodes can im-
prove data locality by embedding as much data as possi-
ble inside the inode. For example, large enough inodes
can hold small directory entries and small files directly,
avoiding the need for disk block indirections. Moreover,
larger inodes help storing the extent file maps. We tested
the default (256B and 128B for XFS and Ext2/Ext3, re-

spectively) and 1KB inode size for all file systems except
Reiserfs, as it does not explicitly have an inode object.

We evaluated various mount options:noatime,
journal vs. no journal, and different journalling modes.
The noatime option improves performance in read-
intensive workloads, as it skips updating an inode’s last
access time. Journalling provides reliability, but incurs
an extra cost in logging information. Some file systems
support different journalling modes: data, ordered, and
writeback. The data journalling mode logs both data and
meta-data. This is the safest but slowest mode. Ordered
mode (default in Ext3 and Reiserfs) logs only meta-data,
but ensures that data blocks are written before meta-
data. The writeback mode logs meta-data without or-
dering data/meta-data writes. Ext3 and Reiserfs support
all three modes, whereas XFS supports only the write-
back mode. We also assessed a few file-system specific
mount and format options, described next.

Ext2 and Ext3. Ext2 [4] and Ext3 [15] have been
the default file systems on most Linux distributions for
years. Ext2 divides the disk partition into fixed sized
blocks, which are further grouped into similar-sized
block groups. Each block group manages its own set
of inodes, a free data block bitmap, and the actual files’
data. The block groups can reduce file fragmentation
and increase reference locality by keeping files in the
same parent directory and their data in the same block
group. The maximum block group size is constrained by
the block size. Ext3 has an identical on-disk structure as
Ext2, but adds journalling. Whereas journalling might
degrade performance due to extra writes, we found cer-
tain cases where Ext3 outperforms Ext2. One of Ext2
and Ext3’s major limitations is their poor scalability to
large files and file systems because of the fixed num-
ber of inodes, fixed block sizes, and their simple array-
indexing mechanism [6].

XFS. XFS [37] was designed for scalability: support-
ing terabyte sized files on 64-bit systems, an unlimited
number of files, and large directories. XFS employs
B+ trees to manage dynamic allocation of inodes, free
space, and to map the data and meta-data of files/di-
rectories. XFS stores all data and meta-data in variable
sized, contiguousextents. Further, XFS’s partition is di-
vided into fixed-sized regions calledallocation groups
(AGs), which are similar to block groups in Ext2/3, but
are designed for scalability and parallelism. Each AG

manages the free space and inodes of its group inde-
pendently; increasing the number of allocation groups
scales up the number of parallel file system requests, but
too many AGs also increases fragmentation. The default
AG count value is 16. XFS creates a cluster of inodes in
an AG as needed, thus not limiting the maximum num-
ber of files. XFS uses a delayed allocation policy that
helps in getting large contiguous extents, and increases
the performance of applications using large-sized files
(e.g., databases). However, this increases memory uti-
lization. XFS tracks AG free space using two B+ trees:
the first B+ tree tracks free space by block number and
the second tracks by the size of the free space block.
XFS supports only meta-data journalling (writeback).
Although XFS was designed for scalability, we evaluate
all file systems using different file sizes and directory
depths. Apart from evaluating XFS’s common format
and mount options, we also varied its AG count.

Reiserfs. The Reiserfs partition is divided into blocks
of fixed size. Reiserfs uses abalanced S+ tree[33] to
optimize lookups, reference locality, and space-efficient
packing. The S+ tree consists of internal nodes, for-
matted leaf nodes, and unformatted nodes. Each inter-
nal node consists of key-pointer pairs to its children.
The formatted nodes pack objects tightly, calleditems;
each item is referenced through a unique key (akin to
an inode number). These items include:stat items(file
meta-data),directory items(directory entries),indirect
items(similar to inode block lists), anddirect items(tails
of files less than 4K). A formatted node accommodates
items of different files and directories. Unformatted
nodes contain raw data and do not assist in tree lookup.
The direct items and the pointers inside indirect items
point to these unformatted nodes. The internal and for-
matted nodes are sorted according to their keys. As a
file’s meta-data and data is searched through the com-
bined S+ tree using keys, Reiserfs scales well for a large
and deep file system hierarchy. Reiserfs has a unique
feature we evaluated calledtail packing, intended to re-
duce internal fragmentation and optimize the I/O perfor-
mance of small sized files (less than 4K). Tail-packing
support is enabled by default, and groups different files
in the same node. These are referenced using direct
pointers, called the tail of the file. Although the tail op-
tion looks attractive in terms of space efficiency and per-
formance, it incurs an extra cost during reads if the tail is
spread across different nodes. Similarly, additional ap-
pends to existing tail objects lead to unnecessary copy
and movement of the tail data, hurting performance. We
evaluated all three journalling modes of Reiserfs.

4 Energy Breakdown
Active vs. passive energy. Even when a server does
not perform any work, it consumes some energy. We

call this energyidle or passive. The file system selec-
tion alone cannot reduce idle power, but combined with
right-sizing techniques, it can improve power efficiency
by prolonging idle periods. Theactivepower of a node
is an additional power drawn by the system when it per-
forms useful work. Different file systems exercise the
system’s resources differently, directly affecting active
power. Although file systems affect active energy only,
users often care about total energy used. Therefore, we
report only total power used.

Hard disk vs. node power. We collected power con-
sumption readings for the external disk drive and the test
node separately. We measured our hard disk’s idle power
to be 7 watts, matching its specification. We wrote a tool
that constantly performs direct I/O to distant disk tracks
to maximize its power consumption, and measured a
maximum power of 22 watts. However, the average disk
power consumed for our experiments was only 14 watts
with little variations. This is because the workloads ex-
hibited high locality, heavy CPU/memory use, and many
I/O requests were satisfied from caches. Whenever the
workloads did exercise the disk, its power consumption
was still small relative to the total power. Therefore, for
the rest of this paper, we report only total system power
consumption (disk included).

A node’s power consumption consists of its compo-
nents’ power. Our server’s measured idle-to-peak power
is 214–279W. The CPU tends to be a major contribu-
tor, in our case from 86–165W (i.e., Intel’s SpeedStep
technology). However, the behavior of power consump-
tion within a computer is complex due to thermal ef-
fects and feedback loops. For example, our CPU’s core
power use can drop to a mere 27W if its temperature is
cooled to50 ◦C, whereas it consumes 165W at a normal
temperature of76 ◦C. Motherboards today include dy-
namic system and CPU fans which turn on/off or change
their speeds; while they reduce power elsewhere, the
fans consume some power themselves. For simplicity,
our paper reports only total system power consumption.

FS vs. other software power consumption. It is rea-
sonable to question how much energy does a file sys-
tem consume compared to other software components.
According to Almeida et al., a Web server saturated by
client requests spends 90% of the time in kernel space,
invoking mostly file system related system calls [3]. In
general, if a user-space program is not computationally
intensive, it frequently invokes system calls and spends
a lot of time in kernel space. Therefore, it makes sense
to focus the efforts on analyzing energy efficiency of file
systems. Moreover, our results in Section 5 support this
fact: changing only the file system type can increase
power/performance numbers up to a factor of 9.

5 Evaluation
This section details our results and analysis. We abbrevi-
ated the terms Ext2, Ext3, Reiserfs, and XFS ase2, e3,
r, andx, respectively. File systems formatted with block
size of 1K and 2K are denotedblk1k andblk2k, re-
spectively;isz1k denotes 1K inode sizes;bg16k de-
notes 16K block group sizes;dtlg andwrbck denote
data and writeback journal modes, respectively;nolog
denotes Reiserfs’s no-logging feature; allocation group
count is abbreviated asagc followed by number of
groups (8, 32, etc.), no-atime is denoted asnoatm.

Section 5.1 overviews our metrics and terms. We de-
tail the Web, File, Mail, and DB workload results in Sec-
tions 5.2–5.5. Section 5.6 provides recommendations for
selecting and designing efficient file systems.

5.1 Overview
In all our tests, we collected two raw metrics: perfor-
mance (from FileBench), and the average power of the
machine and disk (from watt-meters). FileBench reports
file system performance under different workloads in
units ofoperations per second(ops/sec). As each work-
load targets a different application domain, this metric
is not comparable across workloads: A Web server’s
ops/sec are not the same as, say, the database server’s.
Their magnitude also varies: the Web server’s rates num-
bers are two orders of magnitude larger than other work-
loads. Therefore, we report Web server performance in
1,000 ops/sec, and just ops/sec for the rest.

Electrical power, measured in Watts, is defined as the
rate at which electrical energy is transferred by a circuit.
Instead of reporting the raw power numbers, we selected
a derived metric calledoperations per joule(ops/joule),
which better explains power efficiency. This is defined
as the amount of work a file system can accomplish in 1
Joule of energy (1Joule = 1watt × 1sec). The higher
the value, the more power-efficient the system is. This
metric is similar to SPEC’s (ssj ops

watt
) metric, used by

SPECPowerssj2008 [38]. Note that we report the Web
server’s power efficiency in ops/joule, and use ops/kilo-
joule for the rest.

A system’s active power consumption depends on
how much it is being utilized by software, in our case
a file system. We measured that the higher the sys-
tem/CPU utilization, the greater the power consumption.
We therefore ran experiments to measure the power con-
sumption of a workload at different load levels (i.e., op-
s/sec), for all four file systems, with default format and
mount options. Figure 1 shows the average power con-
sumed (in Watts) by each file system, increasing Web
server loads from 3,000 to 70,000 ops/sec. We found
that all file systems consumed almost the same amount
of energy at a certain performance levels, but only a few
could withstand more load than the others. For example,

 220

 240

 260

 280

 300

 320

 0 10 20 30 40 50 60 70

A
ve

ra
ge

 P
ow

er
 (

W
at

ts
)

Load (1000 ops/sec)

Ext2
Ext3
XFS

Reiserfs

Figure 1: Webserver: Mean power consumption by Ext2, Ext3,
Reiserfs, and XFS at different load levels. They-axis scale
starts at 220 Watts. Ext2 does not scale above 10,000 ops/sec.

Figure 2: Average CPU utilization for the Webserver workload

Ext2 had a maximum of only 8,160 Web ops/sec with an
average power consumption of 239W, while XFS peaked
at 70,992 ops/sec, with only 29% more power consump-
tion. Figure 2 shows the percentages of CPU utilization,
I/O wait, and idle time for each file system at its maxi-
mum load. Ext2 and Reiserfs spend more time waiting
for I/O than any other file system, thereby performing
less useful work, as per Figure 1. XFS consumes al-
most the same amount of energy as the other three file
systems at lower load levels, but it handles much higher
Web server loads, winning over others in both power ef-
ficiency and performance. We observed similar trends
for other workloads: only one file system outperformed
the rest in terms of both power and performance, at all
load levels. Thus, in the rest of this paper we report only
peak performance figures.

5.2 Webserver Workload

As we see in Figures 3(a) and 3(b), XFS proved to be
the most power- and performance-efficient file system.
XFS performed 9 times better than Ext2, as well as 2
times better than Reiserfs, in terms of both power and
performance. Ext3 lagged behind XFS by 22%. XFS
wins over all the other file systems as it handles con-
current updates to a single file efficiently, without incur-
ring a lot of I/O wait (Figure 2), thanks to its journal
design. XFS maintains an active item list, which it uses
to prevent meta-data buffers from being written multiple
times if they belong to multiple transactions. XFS pins
a meta-data buffer to prevent it from being written to the
disk until the log is committed. As XFS batches multiple
updates to a common inode together, it utilizes the CPU
better. We observed a linear relationship between power-
efficiency and performance for the Web server workload,

 0

 20

 40

 60

 80

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

P
er

fo
rm

an
ce

 (
10

00
 o

ps
/s

ec
)

8.2

58.4

29.6

71.0

2.9 2.9

38.7
51.5

8.1
14.4

69.5 70.8

5.4

58.3

76.8

13.1

57.1

71.2 71.4 71.8 71.8

5.2

60.8

71.0 73.8
67.6

30.1 27.6
20.1

21.9

42.7

(a) File system Webserver workload performance (in 1000 ops/sec)

 0

 50

 100

 150

 200

 250

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

E
ne

rg
y

E
ffi

ci
en

cy
 (

op
s/

jo
ul

e)

32

196

109

229

11 11

137
174

33
58

223 227

21

191

242

49

190

230 230 232 231

21

205
230 239

215

111 102
78

83

151

(b) File system energy efficiency for Webserver workload (inops/joule)
Figure 3: File system performance and energy efficiency under the Webserver workload

so we report below on the basis of performance alone.

Ext2 performed the worst and exhibited inconsistent
behavior. Its standard deviation was as high as 80%,
even after 30 runs. We plotted the performance val-
ues on a histogram and observed that Ext2 had a non-
Gaussian (long-tailed) distribution. Out of 30 runs, 21
runs (70%) consumed less than 25% of the CPU, while
the remaining ones used up to 50%, 75%, and 100%
of the CPU (three runs in each bucket). We wrote
a micro-benchmark which ran for a fixed time period
and appended to 3 common files shared between 100
threads. We found that Ext3 performed 13% fewer
appends than XFS, while Ext2 was 2.5 times slower
than XFS. We then ran a modified Web server work-
load with only reads and no log appends. In this case,
Ext2 and Ext3 performed the same, with XFS lagging
behind by 11%. This is because XFS’slookup oper-
ation takes more time than other file systems for deeper
hierarchy (see Section 5.3). As XFS handles concur-
rent writes better than the others, it overcomes the per-
formance degradation due to slow lookups and outper-
forms in the Web server workload. OSprof results [21]
revealed that the average latency ofwrite super for
Ext2 was 6 times larger than Ext3. Analyzing the
file systems’ source code helped explain this inconsis-
tency. First, as Ext2 does not have a journal, it com-
mits superblock and inode changes to the on-disk im-
age immediately, without batching changes. Second,
Ext2 takes the global kernel lock (aka BKL) while call-
ing ext2 write super andext2 write inode,
which further reduce parallelism: all processes using
Ext2 which try to sync an inode or the superblock to
disk will contend with each other, increasing wait times
significantly. On the contrary, Ext3 batches all updates
to the inodes in the journal and only when the JBD
layer callsjournal commit transaction are all

the metadata updates actually synced to the disk (af-
ter committing the data). Although journalling was de-
signed primarily for reliability reasons, we conclude that
a careful journal design can help some concurrent-write
workloads akin to LFS [36].

Reiserfs exhibits poor performance for different rea-
sons than Ext2 and Ext3. As Figures 3(a) and 3(b) show,
Reiserfs (default) performed worse than both XFS and
Ext3, but Reiserfs with thenotail mount option out-
performed Ext3 by 15% and the default Reiserfs by 2.25
times. The reason is that by default thetail option
is enabled in Reiserfs, which tries to pack all files less
than 4KB in one block. As the Web server has an aver-
age file size of just 32KB, it has many files smaller than
4KB. We confirmed this by runningdebugreiserfs
on the Reiserfs partition: it showed that many small files
had their data spread across the different blocks (packed
along with other files’ data). This resulted in more than
one data block access for each file read, thereby increas-
ing I/O, as seen in Figure 2. We concluded that unlike
Ext2 and Ext3, the default Reiserfs experienced a per-
formance hit due to its small file read design, rather than
concurrent appends. This demonstrates that even simple
Web server workload can still exercise different parts of
file systems’ code.

An interesting observation was that thenoatime
mount option improved the performance of Reiserfs by
a factor of 2.5 times. In other file systems, this op-
tion did not have such a significant impact. The reason
is that thereiserfs dirty inode function, which
updates the access time field, acquires the BKL and then
searches for the stat item corresponding to the inode in
its S+ tree to update theatime. As the BKL is held
while updating each inode’s access time in a path, it
hurts parallelism and reduces performance significantly.
Also, noatime boosts Reiserfs’s performance by this

 0

 100

 200

 300

 400

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

P
er

fo
rm

an
ce

 (
op

s/
se

c)

325 310

443

232 215

298

225

301

115

242
275 269

321 320

227

332 307

222 234

285 298
321 311

233

445 443 442 423

254
285 279

(a) Performance of file systems for the file server workload (in ops/sec)

 0

 500

 1000

 1500

 2000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

E
ne

rg
y

E
ffi

ci
en

cy
 (

op
s/

ki
lo

jo
ul

e)

1314 1235

1846

938 853

1202

894

1207

482

1019
1100 1078

1297 1259

937

1329
1223

890 951

1173
1005

1297 1241

937

1819 1850 1848
1711

1064 1126 1169

(b) Energy efficiency of file systems for the file server workload (in ops/kilojoule)
Figure 4: Performance and energy efficiency of file systems under the file server workload

muchonly in the read-intensive Web server workload.

Reducing the block-size during format generally hurt
performance, except in XFS. XFS was unaffected thanks
to its delayed allocation policy that allocates a large con-
tiguous extent, irrespective of the block size; this sug-
gests that modern file systems should try to pre-allocate
large contiguous extents in anticipation of files’ growth.
Reiserfs observed a drastic degradation of 2–3× after
decreasing the block size from 4KB (default) to 2KB and
1KB, respectively. We found fromdebugreiserfs
that this led to an increase in the number of internal and
formatted nodes used to manage the file system names-
pace and objects. Also, the height of the S+ tree grew
from 4 to 5, in case of 1KB. As the internal and for-
matted nodes depend on the block size, a smaller block
size reduces the number of entries packed inside each
of these nodes, thereby increasing the number of nodes,
and increasing I/O times to fetch these nodes from the
disk during lookup. Ext2 and Ext3 saw a degradation of
2× and 12%, respectively, because of the extra indirec-
tions needed to reference a single file. Note that Ext2’s
2× degradation was coupled with a high standard varia-
tion of 20–49%, for the same reasons explained above.

Quadrupling the XFS inode size from 256B to 1KB
improved performance by only 8%. We found using
xfs db that a large inode allowed XFS to embed more
extent information and directory entries inside the inode
itself, speeding lookups. As expected, the data jour-
nalling mode hurt performance for both Reiserfs and
Ext3 by 32% and 27%, respectively. The writeback
journalling mode of Ext3 and Reiserfs degraded perfor-
mance by 2× and 7%, respectively, compared to their
default ordered journalling mode. Increasing the block
group count of Ext3 and the allocation group count of
XFS had a negligible impact. The reason is that the Web
server is a read-intensive workload, and does not need to

update the different group’s metadata as frequently as a
write-intensive workload would.

5.3 File Server Workload

Figures 4(a) and 4(b) show that Reiserfs outperformed
Ext2, Ext3, XFS by 37%, 43%, and 91%, respectively.
Compared to the Web server workload, Reiserfs per-
formed better than all others, even with thetail op-
tion on. This is because the file server workload has
an average file size of 256KB (8 times larger than the
Web server workload): it does not have many small files
spread across different nodes, thereby showing no differ-
ence between Reiserfs’s (tail) andno-tail options.

Analyzing using OSprof revealed that XFS consumed
14% and 12% more time inlookup andcreate, re-
spectively, than Reiserfs. Ext2 and Ext3 spent 6% more
time in bothlookup andcreate than Reiserfs. To ex-
ercise only the lookup path, we executed a simple micro-
benchmark that only performed open and close opera-
tions on 50,000 files by 100 threads, and we used the
same fileset parameters as that of the file server work-
load (see Table 1). We found that XFS performed 5%
fewer operations than Reiserfs, while Ext2 and Ext3 per-
formed close to Reiserfs. As Reiserfs packs data and
meta-data all in one node and maintains a balanced tree,
it has faster lookups thanks to improved spatial local-
ity. Moreover, Reiserfs stores objects by sorted keys,
further speeding lookup times. Although XFS uses B+
trees to maintain its file system objects, its spatial local-
ity is worse than that of Reiserfs, as XFS has to perform
more hops between tree nodes.

Unlike the Web server results, Ext2 performed bet-
ter than Ext3, and did not show high standard devia-
tions. This was because in a file server workload, each
thread works on an independent set of files, with little
contention to update a common inode.

 0

 500

 1000

 1500

 2000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

P
er

fo
rm

an
ce

 (
op

s/
se

c)

946

1350
1446

319

554

781
638

940

597

1223

406 377

971

1462

307

1002

1300

326 328 326 329

966

1360

312

1518

1858

1326
1448

1157
1274

1384

(a) Performance of file systems under the varmail workload (in ops/sec)

 0

 2000

 4000

 6000

 8000

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

E
ne

rg
y

E
ffi

ci
en

cy
 (

op
s/

ki
lo

jo
ul

e)

4003

5797 6047

1366

2348

3300
2699

4009

2560

5110

1725 1602

4089

6250

1312

4219

5507

1397 1397 1392 1408

3979

5813

1305

6339

7716

5573 6037

4781
5470 5722

(b) Energy efficiency of file systems under the varmail workload (in ops/kilojoule)
Figure 5: Performance and energy efficiency of file systems under the varmail workload

We discovered an interesting result when varying
XFS’s allocation group (AG) count from 8 to 128, in
powers of two (default is 16). XFS’s performance in-
creased from 4% to 34% (compared to AG of 8). But,
XFS’s power efficiency increased linearly only until the
AG count hit 64, after which the ops/kilojoule count
dropped by 14% (for AG count of 128). Therefore, XFS’
AG count exhibited anon-linear relationship between
power-efficiency and performance. As the number of
AGs increases, XFS’s parallelism improves too, boost-
ing performance even when dirtying each AG at a faster
rate. However, all AGs share a common journal: as the
number of AGs increases, updating the AG descriptors
in the log becomes a bottleneck; we see diminishing re-
turns beyond AG count of 64. Another interesting obser-
vation is that AG count increases had a negligible effect
of only 1% improvement for the Web server, but a signif-
icant impact in file server workload. This is because the
file server has a greater number of meta-data activities
and writes than the Web server (see Section 3), thereby
accessing/modifying the AG descriptors frequently. We
conclude that the AG count is sensitive to the work-
load, especially read-write and meta-data update ratios.
Lastly, the block group count increase in Ext2 and Ext3
had a small impact of less than 1%.

Reducing the block size from 4KB to 2KB improved
the performance of XFS by 16%, while a further reduc-
tion to 1KB improved the performance by 18%. Ext2,
Ext3, and Reiserfs saw a drop in performance, for the
reasons explained in Section 5.2. Ext2 and Ext3 experi-
enced a performance drop of 8% and 3%, respectively,
when going from 4KB to 2KB; reducing the block size
from 2KB to 1KB degraded their performance further
by 34% and 27%, respectively. Reiserfs’s performance
declined by a 45% and 75% when we reduced the block
size to 2KB and 1KB, respectively. This is due to the in-

creased number of internal node lookups, which increase
disk I/O as discussed in Section 5.2.

Theno-atime options did not affect performance or
power efficiency of any file system because this work-
load is not read-intensive and had a ratio of two writes
for each read. Changing the inode size did not have an
effect on Ext2, Ext3, or XFS. As expected, data jour-
nalling reduced the performance of Ext3 and Reiserfs
by 10% and 43%, respectively. Writeback-mode jour-
nalling also showed a performance reduction by 8% and
4% for Ext3 and Reiserfs, respectively.

5.4 Mail Server

As seen in Figures 5(a) and 5(b), Reiserfs performed
the best amongst all, followed by Ext3 which differed
by 7%. Reiserfs beats Ext2 and XFS by 43% and 4×,
respectively. Although the mail server’s personality in
FileBench is similar to the file server’s, we observed dif-
ferences in their results, because the mail server work-
load callsfsync after each append, which is not in-
voked in the file server workload. Thefsync operation
hurts the non-journalling version of file systems: hurting
Ext2 by 30% and Reiserfs-nolog by 8% as compared to
Ext3 and default Reiserfs, respectively. We confirmed
this by running a micro-benchmark in FileBench which
created the same directory structure as the mail server
workload and performed the following sequence of op-
erations: create, append, fsync, open, append, and fsync.
This showed that Ext2 was 29% slower than Ext3. When
we repeated this after removing all fsync calls, Ext2 and
Ext3 performed the same. Ext2’s poor performance with
fsync calls is because itsext2 sync file call ulti-
mately invokesext2 write inode, which exhibits a
larger latency than thewrite inode function of other
file systems. XFS’s poor performance was due to its
slowerlookup operations.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

P
er

fo
rm

an
ce

 (
op

s/
se

c)

182
217 209 220

361

429
392

429

377
402

442 442

210 213 217
194 199 215 215 217 220

182
216 218 205 207 206 206

271

207 194

(a) Performance of file systems for the OLTP workload (in ops/sec)

 0

 200

 400

 600

 800

 1000

 1200

 1400

e3-dtlg

e3-wrbck

r-dtlg
r-wrbck

r-nolog

r-notail

r-noatm

x-noatm

e3-noatm

e2-noatm

x-agc128

x-agc64

x-agc32

x-agc8

e3-bg16k

e2-bg16k

x-isz1k

e3-isz1k

e2-isz1k

x-blk2k

x-blk1k

r-blk2k

r-blk1k

e3-blk2k

e3-blk1k

e2-blk2k

e2-blk1k

x-def
r-def

e3-def

e2-def

E
ne

rg
y

E
ffi

ci
en

cy
 (

op
s/

ki
lo

jo
ul

e)

525
630 611 641

1048

1245
1138

1242

1097
1167

1279 1277

609 620 628
560 575 622 622 629 637

527
628 632 594 603 602 602

787

601 547

(b) Energy efficiency of file systems for the OLTP workload (inops/kilojoule)
Figure 6: Performance and energy efficiency of file systems for the OLTP workload

Figure 5(a) shows that Reiserfs withno-tail beats
all the variants of mount and format options, improving
over default Reiserfs by 29%. As the average file size
here was 16KB, theno-tail option boosted the per-
formance similar to the Web server workload.

As in the Web server workload, when the block size
was reduced from 4KB to 1KB, the performance of Ext2
and Ext3 dropped by 41% and 53%, respectively. Reis-
erfs’s performance dropped by 59% and 15% for 1KB
and 2KB, respectively. Although the performance of
Reiserfs decreased upon reducing the block size, the per-
centage degradation was less than seen in the Web and
file server. The flat hierarchy of the mail server attributed
to this reduction in degradation; as all files resided in
one large directory, the spatial locality of the meta data
of these files increases, helping performance a bit even
with smaller block sizes. Similar to the file server work-
load, reduction in block size increased the overall per-
formance of XFS.

XFS’s allocation group (AG) count and the block
group count of Ext2 and Ext3 had minimal effect within
the confidence interval. Similarly, theno-atime op-
tion and inode size did not impact the efficiency of
file server significantly. The data journalling mode de-
creased Reiserfs’s performance by 20%, but had a mini-
mal effect on Ext3. Finally, the writeback journal mode
decreased Ext3’s performance by 6%.

5.5 Database Server Workload (OLTP)

Figures 6(a) and 6(b) show that all four file systems
perform equally well in terms of both performance and
power-efficiency with the default mount/format options,
except for Ext2. It experiences a performance degrada-
tion of about 20% as compared to XFS. As explained in
Section 5.2, Ext2’s lack of a journal makes its random
write performance worse than any other journalled file

system, as they batch inode updates.

In contrast to other workloads, the performance ofall
file systems increases by a factor of around 2× if we
decrease the block size of the file system from the default
4KB to 2KB. This is because the 2KB block size better
matches the I/O size of OLTP workload (see Table 1),
so every OLTP write request fits perfectly into the file
system’s block size. But, a file-system block size of 4KB
turns a 2KB write into a read-modify-write sequence,
requiring an extra read per I/O request. This proves an
important point that keeping the file system block size
close to the workload’s I/O size can impact the efficiency
of the system significantly. OLTP’s performance also
increased when using a 1KB block size, but was slightly
lower than that obtained by 2KB block size, due to an
increased number of I/O requests.

An interesting observation was that on decreasing the
number of blocks per group from 32KB (default) to
16KB, Ext2’s performance improved by 7%. Moreover,
increasing the inode size up to 1KB improved perfor-
mance by 15% as compared to the default configuration.
Enlarging the inode size in Ext2 has an indirect effect on
the blocks per group: the larger the inode size, the fewer
the number of blocks per group. A 1KB inode size re-
sulted in 8KB blocks per group, thereby doubling the
number of block groups and increasing the performance
as compared to thee2-bg16K case. Varying the AG
count had a negligible effect on XFS’s numbers. Unlike
Ext2, the inode size increase did not affect any other file
system.

Interestingly, we observed that the performance of
Reiserfs increased by 30% on switching from the de-
fault ordered mode to the data journalling mode. In data
journalling mode as all the data is first written to the log,
random writes become logically sequential and achieve
better performance than the other journalling modes.

FS
Option Webserver Fileserver Varmail Database

Type Name Perf. Pow. Perf. Pow. Perf. Pow. Perf. Pow.

Ext2

mount noatime -37%† -35% - - - - - -
format blk1k -64%† -65% -34% -35% -41% -41% +98% +100%

blk2k -65% -65% -8% -9% -17% -18% +136% +137%
isz1k -34%† -35% - - - - +15% +16%
bg16k +60% † +53% - - +6% +5% +7% +7%

Ext3

mount noatime +4% +5% - - - - - -
dtlg -27% -23% -10% -5% - - -11% -13%

wrbck -63% -57% -8% -9% -6% -5% -5% -5%
format blk1k -34% -30% -27% -28% -53% -53% +81% +81%

blk2k -12% -11% - - -30% -31% +98% +97%
isz1k - - - - +8% +8% - -
bg16k - - - - -4% -5% -8% -9%

Reiserfs

mount noatime +149% +119% - - +5% +5% - -
notail +128% +96% - - +29% +28% - -
nolog - - - - -8% -8% - -
wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% -43% -42% -20% -21% +30% +29%

format blk1k -73% -70% -74% -74% -59% -58% +80% +80%
blk2k -51% -47% -45% -45% -15% -16% +92% +91%

XFS

mount noatime - - - - - - - -
format blk1k - - +18% +17% +27% +17% +101% +100%

blk2k - - +16% +15% +18% +17% +101% +99%
isz1k +8% +6% - - - - - -
agcnt8 - - -4% -5% - - - -
agcnt32 - - - - - - - -
agcnt64 - - +23% +25% - - - -
agcnt128 - - +29% +8% - - - -

Table 2: File systems’ performance and power, varying options, relative to the default ones for each file system. Improvements are
highlighted in bold. A† denotes the results with coefficient of variation over 40%. Adash signifies statistically indistinguishable
results.

In contrast to the Web server workload, the
no-atime option does not have any effect on the per-
formance of Reiserfs, although the read-write ratio is
20:1. This is because the database workload consists
of only 10 large files and hence the meta-data of these
small number of files (i.e., stat items) accommodate in
a few formatted nodes as compared to the Web server
workload which consists of 20,000 files with their meta-
data scattered across multiple formatted nodes. Reiserfs’
no-tail option had no effect on the OLTP workload
due to the large size of its files.

5.6 Summary and Recommendations

We now summarize the combined results of our study.
We then offer advice to server operators, as well as de-
signers of future systems.

Staying within a file system type. Switching to a dif-
ferent file system type can be a difficult decision, es-
pecially in enterprise environments where policies may
require using specific file systems or demand exten-
sive testing before changing one. Table 2 compares the

power efficiency and performance numbers that can be
achieved while staying within a file system; each cell is
a percentage of improvement (plus sign and bold font),
or degradation (minus sign) compared to thedefaultfor-
mat and mount options for that file system. Dashes de-
note results that were statistically indistinguishable from
default. We compare to the default case because file sys-
tems are often configured with default options.

Format and mount options represent different levels of
optimization complexity. Remounting a file system with
new options is usually seamless, while reformatting ex-
isting file systems requires costly data migration. Thus,
we group mount and format options together.

From Table 2 we conclude that often there is a better
selection of parameters than the default ones. A careful
choice of file system parameters cuts energy use in half
and more than doubles the performance (Reiserfs with
no-tail option). On the other hand, a careless se-
lection of parameters may lead to serious degradations:
up to 64% drop in both energy and performance (e.g.,
legacy Ext2 file systems with 1K block size). Until Oc-
tober 1999,mkfs.ext2used 1KB block sizes by default.

File systems formatted prior to the time that Linux ven-
dors picked up this change, still use small block sizes:
performance-powernumbers of a Web-server running on
top of such a file system are 65% lower than today’s de-
fault and over 4 times worse than best possible.

Given Table 2, we feel that even moderate improve-
ments are worth a costly file system reformatting, be-
cause the savings accumulate for long-running servers.

Selecting the most suitable file system.When users
can change to any file system, or choose one initially,
we offer Table 3. For each workload we present the
most power-performance efficient file system and its pa-
rameters. We also show the range of improvements in
both ops/sec and ops/joule as compared to the best and
worst defaultfile systems. From the table we conclude
that it is often possible to improve the efficiency by at
least 8%. For the file server workload, where the de-
fault Reiserfs configuration performs the best, we ob-
serve a performance boost of up to 2× as compared to
the worst default file system (XFS). As seen in Figure 5,
for mail server workload Reiserfs withno-tail im-
proves the efficiency by 30% over default Reiserfs (best
default), and by 5× over default XFS (worst default).
For the database workload, XFS with a block size of
2KB improved the efficiency of the system by at least
two-fold. Whereas in most cases, performance and en-
ergy improved by nearly the same factor, in XFS they
did not: for the Webserver workload, XFS with 1K in-
ode sizes increased performance by a factor of 9.4 and
energy improved by a factor of 7.5.

Some file system parameters listed in Table 2 can be
combined, possibly yielding cumulative improvements.
We analyzed several such combinations and concluded
that each case requires careful investigation. For ex-
ample, Reiserfs’snotail andnoatime options, in-
dependently, improved the Webserver’s performance by
149% and 128%, respectively; but their combined effect
only improved performance by 155%. The reason for
this was that both parameters affected the same perfor-
mance component—wait time—either by reducing BKL
contention slightly or by reducing I/O wait time. How-
ever, the CPU’s utilization remained high and dominated
overall performance. On the other hand, XFS’sblk2k
andagcnt64 format options, which improved perfor-
mance by 18% and 23%, respectively—combined to-
gether to yield a cumulative improvement of 41%. The
reason here is that these were options which affected dif-
ferent code paths without having other limiting factors.

Selecting file system features for a workload. We of-
fer recommendations to assist in selecting the best file
system feature(s) for specific workloads. These guide-
line can also help future file system designers.

Server Recom. FS Ops/Sec Ops/Joule
Web x-isz1k 1.08–9.4× 1.06–7.5×
File r-def 1.0–1.9× 1.0–2.0×
Mail r-notail 1.3–5.8× 1.3–5.7×
DB x-blk2k 2–2.4× 2–2.4×

Table 3: Recommended file systems and their parameters for
our workloads. We provide the range of performance and
power-efficiency improvements achieved compared to the best
and the worst default configured file systems.

• File size: If the workload generates or uses files
with an average file size of a few 100KB, we rec-
ommend to use fixed sized data blocks, addressed
by a balanced tree (e.g., Reiserfs). Large sized
files (GB, TB) would benefit from extent-based bal-
anced trees with delayed allocation (e.g., XFS).
Packing small files together in one block (e.g.,
Reiserfs’s tail-packing) is not recommended, as it
often degrades performance.

• Directory depth: Workloads using a deep direc-
tory structure should focus on faster lookups using
intelligent data structures and mechanisms. One
recommendation is to localize as much data to-
gether with inodes and directories, embedding data
into large inodes (XFS). Another is to sort all in-
odes/names and provide efficient balanced trees
(e.g., XFS or Reiserfs).

• Access pattern and parallelism: If the work-
load has a mix of read, write, and metadata oper-
ations, it is recommended to use at least 64 allo-
cation groups, each managing their own group and
free data allocation independently, to increase par-
allelism (e.g., XFS). For workloads having multi-
ple concurrent writes to the same file(s), we rec-
ommend to switch on journalling, so that updates
to the same file system objects can be batched to-
gether. We recommend turning offatime updates
for read-intensive operations, if the workload does
not care about access-times.

6 Conclusions

Proper benchmarking and analysis are tedious, time-
consuming tasks. Yet their results can be invaluable for
years to come. We conducted a comprehensive study
of file systems on modern systems, evaluated popular
server workloads, and varied many parameters. We col-
lected and analyzed performance and power metrics.

We discovered and explained significant variations in
both performance and energy use. We found that there
are no universally good configurations for all workloads,
and we explained complex behavior that go against com-
mon conventions. We concluded that default file sys-
tem types and options are often suboptimal: simple
changes within a file system, like mount options, can im-
prove power/performance from 5% to 149%; and chang-

ing format options can boost the efficiency from 6% to
136%. Switching to a different file system can result in
improvements ranging from 2 to 9 times.

We recommend that servers be tested and optimized
for expected workloads before used in production. En-
ergy technologies lag far behind computing speed im-
provements. Given the long-running nature of busy In-
ternet servers, software-based optimization techniques
can have significant, cumulative long-term benefits.

7 Future Work
We plan to expand our study to include less mature file
systems (e.g., Ext4, Reiser4, and BTRFS), as we be-
lieve they have greater optimization opportunities. We
are currently evaluating power-performance of network-
based and distributed file systems (e.g., NFS, CIFS, and
Lustre). Those represent additional complexity: proto-
col design, client vs. server implementations, and net-
work software and hardware efficiency. Early experi-
ments comparing NFSv4 client/server OS implementa-
tions revealed performance variations as high as 3×.

Computer hardware changes constantly—e.g., adding
more cores, and supporting more energy-saving fea-
tures. As energy consumption outside of the data cen-
ter exceeds that inside [44], we are continually repeating
our studies on a range of computers spanning several
years of age. We also plan to conduct a similar study
on faster solid-state disks, and machines with more ad-
vanced DVFS support.

Our long-term goal is to develop custom file systems
that best match a given workload. This could be bene-
ficial because many application designers and adminis-
trators know their data set and access patterns ahead of
time, allowing storage stacks designs with better cache
behavior and minimal I/O latencies.

Acknowledgments. We thank the anonymous Usenix
FAST reviewers and our shepherd, Steve Schlosser, for
their helpful comments. We would also like to thank
Richard Spillane, Sujay Godbole, and Saumitra Bhan-
age for their help. This work was made possible in part
thanks to NSF awards CCF-0621463 and CCF-0937854,
an IBM Faculty award, and a NetApp gift.

References
[1] A. Ermolinskiy and R. Tewari. C2Cfs: A Collective

Caching Architecture for Distributed File Access. Tech-
nical Report UCB/EECS-2009-40, University of Califor-
nia, Berkeley, 2009.

[2] M. Allalouf, Y. Arbitman, M. Factor, R. I. Kat, K. Meth,
and D. Naor. Storage Modeling for Power Estimation.
In Proceedings of the Israeli Experimental Systems Con-
ference (SYSTOR ’09), Haifa, Israel, May 2009. ACM.

[3] J. Almeida, V. Almeida, and D. Yates. Measuring the
Behavior of a World-Wide Web Server. Technical report,
Boston University, Boston, MA, USA, 1996.

[4] R. Appleton. A Non-Technical Look Inside the Ext2 File
System.Linux Journal, August 1997.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid
Disk-Aware Spin-Down Algorithm with I/O Subsystem
Support. InIEEE 2007 Performance, Computing, and
Communications Conference, 2007.

[6] R. Bryant, R. Forester, and J. Hawkes. Filesystem
Performance and Scalability in Linux 2.4.17. InPro-
ceedings of the Annual USENIX Technical Conference,
FREENIX Track, pages 259–274, Monterey, CA, June
2002. USENIX Association.

[7] D. Capps. IOzone Filesystem Benchmark.www.
iozone.org/, July 2008.

[8] E. Carrera, E. Pinheiro, and R. Bianchini. Conserving
Disk Energy in Network Servers. In17th International
Conference on Supercomputing, 2003.

[9] D. Colarelli and D. Grunwald. Massive Arrays of Idle
Disks for Storage Archives. InProceedings of the 2002
ACM/IEEE conference on Supercomputing, pages 1–11,
2002.

[10] M. Craven and A. Amer. Predictive Reduction of Power
and Latency (PuRPLe). InProceedings of the 22nd
IEEE/13th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST’05), pages 237–244,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] Y. Deng and F. Helian. EED: Energy Efficient Disk Drive
Architecture.Information Sciences, 2008.

[12] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the
Power-Hungry Disk. InProceedings of the 1994 Winter
USENIX Conference, pages 293–306, 1994.

[13] E. N. Elnozahy, M. Kistler, and R. Rajamony. Energy-
Efficient Server Clusters. InProceedings of the 2nd
Workshop on Power-Aware Computing Systems, pages
179–196, 2002.

[14] D. Essary and A. Amer. Predictive Data Grouping:
Defining the Bounds of Energy and Latency Reduction
through Predictive Data Grouping and Replication.ACM
Transactions on Storage (TOS), 4(1):1–23, May 2008.

[15] ext3.http://en.wikipedia.org/wiki/Ext3.
[16] FileBench, July 2008.www.solarisinternals.

com/wiki/index.php/FileBench.
[17] A. Gulati, M. Naik, and R. Tewari. Nache: Design and

Implementation of a Caching Proxy for NFSv4. InPro-
ceedings of the Fifth USENIX Conference on File and
Storage Technologies (FAST ’07), pages 199–214, San
Jose, CA, February 2007. USENIX Association.

[18] S. Gurumurthi, J. Zhang, A. Sivasubramaniam, M. Kan-
demir, H. Franke, N. Vijaykrishnan, and M. J. Irwin.
Interplay of Energy and Performance for Disk Arrays
Running Transaction Processing Workloads. InIEEE In-
ternational Symposium on Performance Analysis of Sys-
tems and Software, pages 123–132, 2003.

[19] H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Per-
formance and Energy Consumption. InProceedings of
the 20th ACM Symposium on Operating Systems Princi-
ples (SOSP ’05), pages 263–276, Brighton, UK, October
2005. ACM Press.

[20] N. Joukov and J. Sipek. GreenFS: Making Enterprise
Computers Greener by Protecting Them Better. InPro-
ceedings of the 3rd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2008 (EuroSys 2008),
Glasgow, Scotland, April 2008. ACM.

[21] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and
E. Zadok. Operating System Profiling via Latency Anal-
ysis. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
89–102, Seattle, WA, November 2006. ACM SIGOPS.

[22] J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.

[23] R. Kothiyal, V. Tarasov, P. Sehgal, and E. Zadok. Energy
and Performance Evaluation of Lossless File Data Com-
pression on Server Systems. InProceedings of the Israeli
Experimental Systems Conference (ACM SYSTOR ’09),
Haifa, Israel, May 2009. ACM.

[24] D. Li. High Performance Energy Efficient File Storage
System. PhD thesis, Computer Science Department, Uni-
versity of Nebraska, Lincoln, 2006.

[25] K. Li, R. Kumpf, P. Horton, and T. Anderson. A Quan-
titative Analysis of Disk Drive Power Management in
Portable Computers. InProceedings of the 1994 Winter
USENIX Conference, pages 279–291, 1994.

[26] A. Manzanares, K. Bellam, and X. Qin. A Prefetching
Scheme for Energy Conservation in Parallel Disk Sys-
tems. InProceedings of the IEEE International Sym-
posium on Parallel and Distributed Processing (IPDPS
2008), pages 1–5, April 2008.

[27] R. McDougall, J. Mauro, and B. Gregg.Solaris Perfor-
mance and Tools. Prentice Hall, New Jersey, 2007.

[28] D. Narayanan, A. Donnelly, and A. Rowstron. Write
off-loading: practical power management for enterprise
storage. InProceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST 2008), 2008.

[29] E. B. Nightingale and J. Flinn. Energy-Efficiency and
Storage Flexibility in the Blue File System. InProceed-
ings of the 6th Symposium on Operating Systems Design
and Implementation (OSDI 2004), pages 363–378, San
Francisco, CA, December 2004. ACM SIGOPS.

[30] A. E. Papathanasiou and M. L. Scott. Increasing Disk
Burstiness for Energy Efficiency. Technical Report 792,
University of Rochester, 2002.

[31] E. Pinheiro and R. Bianchini. Energy Conservation
Techniques for Disk Array-Based Servers. InProceed-
ings of the 18th International Conference on Supercom-
puting (ICS 2004), pages 68–78, 2004.

[32] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load
Balancing and Unbalancing for Power and Performance
in Cluster-Based Systems. InInternational Conference
on Parallel Architectures and Compilation Techniques,
Barcelona, Spain, 2001.

[33] H. Reiser. ReiserFS v.3 Whitepaper.http://web.
archive.org/web/20031015041320/http:
//namesys.com/.

[34] S. Rivoire, M. A. Shah, P. Ranganathan, and
C. Kozyrakis. JouleSort: A Balanced Energy-Efficiency

Benchmark. InProceedings of the ACM SIGMOD In-
ternational Conference on Management of Data (SIG-
MOD), Beijing, China, June 2007.

[35] S. Gurumurthi and A. Sivasubramaniam and M. Kan-
demir and H. Franke. DRPM: Dynamic Speed Control
for Power Management in Server Class Disks. InPro-
ceedings of the 30th annual international symposium on
Computer architecture, pages 169–181, 2003.

[36] M. I. Seltzer. Transaction Support in a Log-Structured
File System. InProceedings of the Ninth International
Conference on Data Engineering, pages 503–510, Vi-
enna, Austria, April 1993.

[37] SGI. XFS Filesystem Structure. http:
//oss.sgi.com/projects/xfs/papers/
xfs_filesystem_structure.pdf.

[38] SPEC. SPECpowerssj2008 v1.01.www.spec.org/
power_ssj2008/.

[39] SPEC. SPECweb99.www.spec.org/web99, Octo-
ber 2005.

[40] SPEC. SPECsfs2008.www.spec.org/sfs2008,
July 2008.

[41] The Standard Performance Evaluation Corporation.
SPEC HPC Suite.www.spec.org/hpc2002/, Au-
gust 2004.

[42] U.S. Environmental Protection Agency. Report to
Congress on Server and Data Center Energy Efficiency.
Public Law 109-431, August 2007.

[43] J. Wang, H. Zhu, and Dong Li. eRAID: Conserv-
ing Energy in Conventional Disk-Based RAID Sys-
tem. IEEE Transactions on Computers, 57(3):359–374,
March 2008.

[44] D. Washburn. More Energy Is Consumed Outside Of
The Data Center, 2008.

[45] Watts up? PRO ES Power Meter. www.
wattsupmeters.com/secure/products.php.

[46] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. InProceedings of
the 1st USENIX conference on Operating Systems De-
sign and Implementation, 1994.

[47] C. P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and
E. Zadok. Auto-pilot: A Platform for System Software
Benchmarking. InProceedings of the Annual USENIX
Technical Conference, FREENIX Track, pages 175–187,
Anaheim, CA, April 2005. USENIX Association.

[48] OSDIR mail archive for XFS. http:
//osdir.com/ml/file-systems.xfs.
general/2002-06/msg00071.html.

[49] Q. Zhu, F. M. David, C. F. Devaraj, Z. Li, Y. Zhou,
and P. Cao. Reducing Energy Consumption of Disk
Storage Using Power-Aware Cache Management. In
Proceedings of the 10th International Symposium on
High-Performance Computer Architecture, pages 118–
129, 2004.

