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Abstract niques: better algorithms and data-structures to improve
power/performance [14, 19, 24]. A few efforts focused

_Recently, power has emerged as a critical factor in degy energy-performance tradeoffs in parts of the storage
signing components of storage systems, especially fog;, -k [8,18,29]. However, they were limited to one
power-hungry data centers. While there is some researcllgmmem domain or a specific workload scenario.
into power-aware storage stack components, there are no Manv factors affect power and performance in the
systematic studies evaluating each component’s impact y P P

separately. This paper evaluates the file system’s impa (t?torage stack, especially workloads. Traditional file sys-

. . tems and 1/0O schedulers were designed for generality,
on energy consumption and performance. We studied’, .~ = " . ) o .
. ) . . which is ill-suited for today’s specialized servers with
several popular Linux file systems, with various mount . . :
. . . long-running services (Web, database, email). We be-
and format options, using the FileBench workload gen-. .
) lieve that to improve performance and reduce energy
erator to emulate four server workloads: Web, database

) . Use, custom storage layers are needed for specialized
mail, and file server. In case of a server node con-

sisting of a single disk, CPU power generally eXceedsworkloads. But before that, thorough systematic stud-

disk-power consumption. However, file system design,les are needed to recognize the features affecting power-

implementation, and available features have a Signiﬁ_performance under specific workloads.

cant effect on CPU/disk utilization, and hence on perfor- 1his paper studies the impact of server work-
mance and power. We discovered that default file systen2ds on both power and performance. We used the
options are often suboptimal, and even poor. We Sho\,\!,zlleBench [16] workl_o_ad generator due to its flexibil-
that a careful matching of expected workloads to file sys{tY, accuracy, and ability to scale and stress any server.
tem types and options can improve power-performancéNe selected FileBench’s Web, database, email, and file

efficiency by a factor ranging from 1.05 to 9.4 times. server workloads as they represent most common server
workloads, yet they differ from each other. Modern stor-

1 Introduction age stacks consist of multiple layers. Each layer inde-
Performance has a long tradition in storage research. Réendently affects the performance and power consump-
cently, power consumption has become a growing contion of a system, and together the layers make such in-
cern. Recent studies show that the energy used inside dgraction rather complex. Here, we focused on the file
U.S. data centers is 1-2% of total U.S. energy consumpsystem layer only; to make this study a useful stepping
tion [42], with more spent by other IT infrastructures Stone towards understanding the entire storage stack, we
outside the data centers [44]. Storage stacks have growdid not use LVM, RAID, or virtualization. We experi-
more complex with the addition of virtualization layers mented with Linux’s four most popular and stable local
(RAID, LVM), stackable drivers and file systems, vir- file systems: Ext2, Ext3, XFS, and Reiserfs; and we var-
tual machines, and network-based storage and file syded several common format- and mount-time options to
tem protocols. It is challenging today to understand theevaluate their impact on power/performance.
behavior of storage layers, especially when using com- We ran many experiments on a server-class ma-
plex applications. chine, collected detailed performance and power mea-
Performance and energy use have a non-trivial, poorlysurements, and analyzed them. We found that different
understood relationship: sometimes they are oppositeworkloads, not too surprisingly, have a large impact on
(e.g., spinning a disk faster costs more power but im-system behavior. No single file system worked best for
proves performance); but at other times they go hand irall workloads. Moreover, default file system format and
hand (e.g., localizing writes into adjacent sectors can immount options were often suboptimal. Some file system
prove performance while reducing the energy). Worsefeatures helped power/performance and others hurt it.
the growing number of storage layers further perturb ac-Our experiments revealed a strong linearity between the
cess patterns each time applications’ requests travergmwer efficiency and performance of a file system. Over-
the layers, further obfuscating these relationships. all, we found significant variations in the amount of use-
Traditional energy-saving techniques uiggt-sizing  ful work that can be accomplished per unit time or unit
These techniques adjust node’s computational power tenergy, with possible improvements over default config-
fit the current load. Examples include spinning disksurations ranging from 5% to 9:4. We conclude that
down [12, 28, 30], reducing CPU frequencies and volt-long-running servers should be carefully configured at
ages [46], shutting down individual CPU cores, andinstallation time. For busy servers this can yield signifi-
putting entire machines into lower power states [13, 32].cant performance and power savings over time. We hope
Less work has been done avorkload-reductiortech-  this study will inspire other studies (e.qg., distributee fil



systems), and lead to novel storage layer designs. of these techniques [11,43]. Massive Array of Idle
The rest of this paper is organized as follows. Sec-Disks (MAID) augments RAID technology with auto-
tion 2 surveys related work. Section 3 introduces ourmatic shut down of idle disks [9]. Pinheiro and Bian-
experimental methodology. Section 4 provides usefulchini used the fact that regularly only a small subset of
information about energy measurements. The bulk ofdata is accessed by a system, and migrated frequently
our evaluation and analysis is in Section 5. We concludeaccessed data to a small number of active disks, keeping
in Section 6 and describe future directions in Section 7.the remaining disks off [31]. Other approaches dynami-
cally control the platters’ rotation speed [35] or combine
2 Related Work low- and high-speed disks [8].
Past power-conservation research for storage focused on These approaches depend primarily on having or pro-
portable battery-operated computers [12, 25]. Recentlylonging idle periods, which is less likely on busy servers.
researchers investigated data centers [9, 28,43]. As ouror those, aggressive use of shutdown, slowdown, or
focus is file systems’ power and performance, we dis-spin-down techniques can have adverse effects on per-
cuss three areas of related work that mainly cover botformance and energy use (e.qg., disk spin-up is slow and
power and performance: file system studies, lower-levetosts energy); such aggressive techniques can also hurt
storage studies, and benchmarks commonly used to evatardware reliability. Whereas idle-time techniques are
uate systems’ power efficiency. complementary to our study, we examine file systems’

) ] ) features that increase performance and reduce energy
File system studies. Disk-head seeks consume alarge ¢ inactivesystems.

portion of hard-disk energy [2]. A popular approach to
optimize file system power-performance is to localizeBenchmarks and systematic studies. Researchers
on-disk data to incur fewer head movements. Huang etise a wide range of benchmarks to evaluate the per-
al. replicated data on disk and picked the closest replicdormance of computer systems [39, 41] and file systems
to the head’s position at runtime [19]. The Energy- specifically [7, 16,22, 40]. Far fewer benchmarks exist
Efficient File System (EEFS) groups files with high tem- to determine system power efficiency. The Standard Per-
poral access locality [24]. Essary and Amer developedormance Evaluation Corporation (SPEC) proposed the
predictive data grouping and replication schemes to reSPECpowesssj benchmark to evaluate the energy effi-
duce head movements [14]. ciency of systems [38]. SPECpowssj stresses a Java
Some suggested other file-system—Ilevel techniquegerver with standardized workload at different load lev-

to reduce power consumption without degrading perfor_els. It combines results and reports the number of Java
mance. BlueFS is an energy-efficient distributed file sys-OPerations per second per watt. Rivoire etal. used a large
tem for mobile devices [29]. When applications requestsorting problem (guaranteed to exceed main memory) to
data, BlueFS chooses a replica that best optimizes erfvaluate a system’'s power efficiency [34]; they report
ergy and performance. GreenFS is a stackable file syghe number of sorted records per joule. We use similar
tem that combines a remote network disk and a locametrics, but applied for file systems.
flash-based memory buffer to keep the local disk idling Our goal was to conduct a systematic power-
for as long as possible [20]. Kothiyal et al. examined file performance study of file systems. Gurumurthi et al.
Compression to improve power and performance [23] Carried out a similar StUdy for various RAID Configu-
These studies propose new designs for storage soft&tions [18], but foc_used on database workloads alone.
ware, which limit their applicability to existing systems. They noted that tuning RAID parameters affected power
Also, they often focus on narrow problem domains. We,and performance more than many traditional optimiza-

tem performance [6], focusing on scalability and concur-
Lower-level storage studies. A disk drive’s platters  rency. However, that study was conducted on an older
usually keep spinning even if there are no incoming I/OLinux 2.4 system. As hardware and software change
requests. Turning the spindle motor off during idle pe-so rapidly, it is difficult to extrapolate from such older

riods can reduce disk energy use by 60% [28]. Sev-studies—another motivation for our study here.
eral studies suggest ways to predict or prolong idle peri-

ods and shut the disk down appropriately [10, 12]. Un-3 Methodology

like laptop and desktop systems, idle periods in serveiThis section details the experimental hardware and soft-
workloads are commonly too short, making such ap-ware setup for our evaluations. We describe our testbed
proaches ineffective. This was addressed using 1/0n Section 3.1. In Section 3.2 we describe our bench-
off-loading [28], power-aware (sometimes flash-basedmarks and tools used. Sections 3.3 and 3.4 motivate our
caches [5, 49], prefetching [26, 30], and a combinationselection of workloads and file systems, respectively.



3.1 Experimental Setup ment [16]. We used these personalities in our study.
We conducted our experiments on a Dell Pow- We used Auto-pilot [47] to drive FileBench. We built

erEdge SC1425 server consisting of 2 dual-core @tel @n Auto-pilot plug-in to communicate with the power
Xeon™ CPUs at 2.8GHz, 2GB RAM, and two meter and modified FileBench to clear the two watt

73GB internal SATA disks. The server was run- Meters’ internal memory before each run. After each
ning the CentOS 5.3 Linux distribution with kernel benchmark run, Auto-Pilot extracts the energy readings

2.6.18-128.1.16.¢el5.centos.plus.  All the benchmarkdrom both watt-meters. FileBench reports file system
were executed on an external 18GB. 15K RPM AT.Performance in operations per second, which Auto-pilot

LAS15K_18WLS Maxtor SCSI disk connected through collects. We ran all tests at least five times and com-
Adaptec ASC-39320D Ultra320 SCSI Card. puted the 95% confidence intervals for the mean opera-
As one of our goals was to evaluate file systems’,tions per second, and disk and CPU energy readings us-

impact on CPU and disk power consumption, we con-N9 the Student's-distribution. Unless otherwise noted,

nected the machine and the external disk to two separaf@® half widths of the intervals were less than 5% of the
mean—shown as error bars in our bar graphs. To reduce

WattsUP Pro ES [45] power meters. This is an in-line : ,
power meter that measures the energy drawn by a devidie impact of the watt-meter’s constant error (0.3 Watt-

plugged into the meter's receptacle. The power metefioUrs) we inpreased FileBench’s default_ runtime from
uses non-volatile memory to store measurements ever?ne to 10 minutes. Ou.r test code, configuration files,
second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600 0gs, and results are availableaav. f sl . cs. sunysb.
Joules) resolution for energy measurements; the accfdy/ docs/ fsgreen-bench/.

racy is+1.5% of the measured value plus a constanter-3 3 \Workload Categories

ror of 0.3 Watt-hours. We usedwat t sup Linux util- ¢ ) | | hei £ dif
ity to download the recorded data from the meter over a2 Of Our main goals was to evaluate the impact of dif-

USB interface to the test machine. We kept the temper1‘erent file system workloads on performance and power
ature in the server room constant use. We selected four common server workloads: Web

server, file server, mail server, and database server. The
3.2 Software Tools and Benchmarks distinguishing workload features were: file size distribu-

We usedFileBench[16], an application level workload tions, dl_re_ctory((jjepths, read-wrlte_ratlos, meta_-dlata VS
generator that allowed us to emulate a large variety O]data activity, and ac_ltzesls pftterns (|.e_., sequennakwlls. (rja,
workloads. It was developed by Sun Microsystems anodom vs. append). Table 1 summarizes our workloads

was used for performance analysis of Solaris operatiné)mpert'es’ which we detail next.

system [27] and in other studies [1,17]. FileBench canweb Server. The Web server workload uses a read-
emulate different workloads thanks to its flexirk-  write ratio of 10:1, and reads entire files sequentially
load Model Languag@/VML), used to describe a work- by multiple threads, as if reading Web pages. All the
load. A WML workload description is called ger-  threads append 16KB to a common Web log, thereby
sonality Personalities define one or more groups of filecontending for that common resource. This workload
system operations (e.g., read, write, append, stat), to beot only exercises fast lookups and sequential reads of
executed by multiple threads. Each thread performs themall-sized files, but it also considers concurrent data
group of operations repeatedly, over a configurable peand meta-data updates into a single, growing Web log.

riod of time. At the end of the run, FileBench reports File S The fil Kload lat
the total number of performed operations. WML allows e Server. e fiie serverworkioad emuiates a server
that hosts home directories of multiple users (threads).

one to specify synchronization points between thread?.)sers are assumed to access files and directories be-
and the amount of memory used by each thread, to en\bnging only to their respective home directories. Each
ulate real-world application more accurately. Personal- :

ities also describe the directory structure(s) typical for.thread picks up a different set of files based on its thread

a specific workload: average file size, directory depth,'d' Each thread performs a sequence of creat_e_, delete,
' append, read, write, and stat operations, exercising both
the total number of files, and alpha parameters govern- !
ing the file and directory sizes that are based on a gammtgIe meta-data and data paths of the file system.
random distribution. Mail Server. The mail server workload (varmail) emu-
To emulate a real application accurately, one needsates an electronic mail server, similar to Postmark [22],
to collect system call traces of an application and con-but it is multi-threaded. FileBench performs a sequence
vert them to a personality. FileBench includes severabf operations to mimic reading mails (open, read whole
predefined personalities—Web, file, mail and databaséle, and close), composing (open/create, append, close,
servers—which were created by analyzing the tracesnd fsync) and deleting mails. Unlike the file server and

of corresponding applications in the enterprise environ\Web server workloads, the mail server workload uses a



Average Average Number I/O sizes Number of .
Workload file size | directory depth | offiles | read | write | append | threads RIW Ratio
Web Server| 32KB 3.3 20,000 | 1MB - 16KB 100 10:1
File Server | 256KB 3.6 50,000 | 1IMB | 1IMB | 16KB 100 1:2
Mail Server| 16KB 0.8 50,000 | 1MB - 16KB 100 1:1
DB Server | 0.5GB 0.3 10 2KB | 2KB - 200 + 10 20:1

Table 1: FileBench workload characteristics. The databasekload uses 200 readers and 10 writers.

flat directory structure, with all the files in one directory. spectively) and 1KB inode size for all file systems except

This exercises large directory support and fast lookupsReiserfs, as it does not explicitly have an inode object.

The average file size for this workload is 16KB, which  We evaluated various mount optionsioat i e,

is the smallest amongst all other workloads. This initialjournal vs. no journal, and different journalling modes.

file size, however, grows later due to appends. The noat i me option improves performance in read-

Database Server. This workload targets a specific intensivg workloads, as it skip; updat?ng_gn inodg’s last
access time. Journalling provides reliability, but incurs

class of systems, callednline transaction processing ; oS . i
(OLTP). OLTP databases handle real-time transaction®" extra cost in logging information. Some file systems
upport different journalling modes: data, ordered, and

oriented applications (e.g., e-commerce). The database | . .

emulator performs random asynchronous writes, ran>" nttebgcl(. T_Pﬁ dgt?dournfalhtng Tolde Iogts boéh dz(i)ta:jand q

dom synchronous reads, and moderate (256KB) syn[ne a-gata. 1his IS the salest but Sowest mode. Lrdere
ode (default in Ext3 and Reiserfs) logs only meta-data,

chronous writes to the log file. It launches 200 reade but ensures that data blocks are written before meta-

processes, 10 asynchronous writers, and a single lo : .
writer. This workload exercises large file management,gata' The writeback mode logs meta-data without or

extensive concurrency, and random reads/writes. Thigenng data/meta-data writes. Ext3 and Reiserfs support

leads to frequent cache misses and on-disk file ac‘:’I" three modes, whereas XFS supports only the write-

cess, thereby exploring the storage stack’s efficiency foPaCk mode. We also gssessed "’?fe‘” file-system specific
. : mount and format options, described next.
caching, paging, and /0.

3.4 File Syst dp fi Ext2 and Ext3. Ext2 [4] and Ext3 [15] have been

: lie System an roperties the default file systems on most Linux distributions for
We ran our workloads on four different file systems: years. Ext2 divides the disk partition into fixed sized
Ext2, Ext3, Reiserfs, and XFS. We evaluated both theblocks, which are further grouped into similar-sized
default and variants of mount and format options forblock groups Each block group manages its own set
each file system. We selected these file systems for thewf inodes, a free data block bitmap, and the actual files’
widespread use on Linux servers and the variation indata. The block groups can reduce file fragmentation
their features. Distinguishing file system features were:and increase reference locality by keeping files in the
same parent directory and their data in the same block
group. The maximum block group size is constrained by
the block size. Ext3 has an identical on-disk structure as
Ext2, but adds journalling. Whereas journalling might
degrade performance due to extra writes, we found cer-
tain cases where Ext3 outperforms Ext2. One of Ext2

For each file system, we tested the |rr_1pact of Val and Ext3's major limitations is their poor scalability to
ous format and mount options that are believed to aﬁeCFarge files and file systems because of the fixed num-

performance. We considered two common format 0per of ingdes, fixed block sizes, and their simple array-
tions: block size and inode size. Large block sizes 'm'indexing mechanism [6].

prove I/O performance of applications using large files

due to fewer number of indirections, but they increaseXFS. XFS [37] was designed for scalability: support-
fragmentation for small files. We tested block sizes ofing terabyte sized files on 64-bit systems, an unlimited
1KB, 2KB, and 4KB. We excluded 8KB block sizes due number of files, and large directories. XFS employs
to lack of full support [15,48]. Larger inodes can im- B+ trees to manage dynamic allocation of inodes, free
prove data locality by embedding as much data as possspace, and to map the data and meta-data of files/di-
ble inside the inode. For example, large enough inodesectories. XFS stores all data and meta-data in variable
can hold small directory entries and small files directly, sized, contiguousxtents Further, XFS's partition is di-
avoiding the need for disk block indirections. Moreover, vided into fixed-sized regions callelocation groups
larger inodes help storing the extent file maps. We testedAGs), which are similar to block groups in Ext2/3, but
the default (256B and 128B for XFS and Ext2/Ext3, re-are designed for scalability and parallelism. Each AG

B+/S+ Tree vs. linear fixed sized data structures
Fixed block size vs. variable-sized extent
Different allocation strategies

Different journal modes

Other specialized features (e.g., tail packing)



manages the free space and inodes of its group indezall this energyidle or passive The file system selec-
pendently; increasing the number of allocation groupgion alone cannot reduce idle power, but combined with
scales up the number of parallel file system requests, buight-sizing techniques, it can improve power efficiency
too many AGs also increases fragmentation. The defaulby prolonging idle periods. Thactivepower of a node
AG count value is 16. XFS creates a cluster of inodes inis an additional power drawn by the system when it per-
an AG as needed, thus not limiting the maximum num-forms useful work. Different file systems exercise the
ber of files. XFS uses a delayed allocation policy thatsystem’s resources differently, directly affecting aetiv
helps in getting large contiguous extents, and increasegower. Although file systems affect active energy only,
the performance of applications using large-sized filesusers often care about total energy used. Therefore, we
(e.g., databases). However, this increases memory utreport only total power used.
lization. XFS tracks AG free space using two B+ trees:
the first B+ tree tracks free space by block number ancHard disk vs. node power. We collected power con-
the second tracks by the size of the free space blocksumption readings for the external disk drive and the test
XFS supports only meta-data journalling (writeback). node separately. We measured our hard disk’s idle power
Although XFS was designed for scalability, we evaluateto be 7 watts, matching its specification. We wrote a tool
all file systems using different file sizes and directory that constantly performs direct I/O to distant disk tracks
depths. Apart from evaluating XFS’s common formatto maximize its power consumption, and measured a
and mount options, we also varied its AG count. maximum power of 22 watts. However, the average disk
Reiserfs. The Reiserfs partition is divided into blocks power consu.m.ed for our experiments was only 14 watts
of fixed size. Reiserfs usestmlanced S+ tred33] to vv_|th I|ttle_ variations. This is because the workloads ex-
C . . . __hibited high locality, heavy CPU/memory use, and many
optimize lookups, reference locality, and space-efﬂmentjlo requests were satisfied from caches. Whenever the
packing. The S+ tree consists of internal nodes, for- N :

matted leaf nodes, and unformatted nodes. Each inte}/_\/orkloads did exercise the disk, its power consumption

nal node consists of key-pointer pairs to its children Vas still sma_ll relative to the total power. Therefore, for
The formatted nodes pack objects tightly, calltins the rest Of.thIS paper, we report only total system power
each item is referenced through a unique key (akin toconsumpnon (diskincluded).

an inode number). These items includiat itemg(file A node’s power consumption consists of its compo-
meta-data)directory items(directory entries)jndirect ~ nents’ power. Our server's measured idle-to-peak power
items(similar to inode block lists), andirect itemgtails IS 214-279W. The CPU tends to be a major contribu-
of files less than 4K). A formatted node accommodatedor, in our case from 86-165W (i.e., Intel's SpeedStep
items of different files and directories. Unformatted technology). However, the behavior of power consump-
nodes contain raw data and do not assist in tree lookugion within a computer is complex due to thermal ef-
The direct items and the pointers inside indirect itemsfects and feedback loops. For example, our CPU’s core
point to these unformatted nodes. The internal and forPower use can drop to a mere 27W if its temperature is
matted nodes are sorted according to their keys. As &ooled to50 °C, whereas it consumes 165W at a normal
file’s meta-data and data is searched through the confemperature of6 °C. Motherboards today include dy-
bined S+ tree using keys, Reiserfs scales well for a larg@amic system and CPU fans which turn on/off or change
and deep file system hierarchy. Reiserfs has a uniquieir speeds; while they reduce power elsewhere, the
feature we evaluated calledil packing intended to re-  fans consume some power themselves. For simplicity,
duce internal fragmentation and optimize the 1/0 perfor-Our paper reports only total system power consumption.
mance of small sized files (less than 4K). Tail-packing

support is enabled by default, and groups different files=S vs. other software power consumption. It is rea-

in the same node. These are referenced using dire@nable to question how much energy does a file sys-
pointers, called the tail of the file. Although the tail op- tem consume compared to other software components.
tion looks attractive in terms of space efficiency and per-According to Almeida et al., a Web server saturated by
formance, it incurs an extra cost during reads if the tail isclient requests spends 90% of the time in kernel space,
spread across different nodes. Similarly, additional apinvoking mostly file system related system calls [3]. In
pends to existing tail objects lead to unnecessary copgeneral, if a user-space program is not computationally
and movement of the tail data, hurting performance. Wentensive, it frequently invokes system calls and spends

evaluated all three journalling modes of Reiserfs. a lot of time in kernel space. Therefore, it makes sense
to focus the efforts on analyzing energy efficiency of file
4 Energy Breakdown systems. Moreover, our results in Section 5 support this

Active vs. passive energy. Even when a server does fact: changing only the file system type can increase
not perform any work, it consumes some energy. Wepower/performance numbers up to a factor of 9.



5 Evaluation

This section details our results and analysis. We abbrevi- sw
ated the terms Ext2, Ext3, Reiserfs, and XF&2ase3,

r, andx, respectively. File systems formatted with block
size of 1K and 2K are denotdd k1k andbl k2k, re-
spectively;i sz1k denotes 1K inode sizebg16k de-

notes 16K block group sizedt | g andwr bck denote “r o
data and writeback journal modes, respectivalyt og 220 - - - - - RE‘ZZ”S —

denotes Reiserfs's no-logging feature; allocation group ’ Load (1000 opsisec) )
count is abbreviated aagc followed by number of F|gluref1. Wegservser. Md(??fn povvler ((:jolnsurlnptlon by Ext2,|Ext3,
groups (8, 32, etc.), no-atime is denotechast m Reiserfs, and XFS at different load levels. Thaxis scale

Section 5.1 overviews our metrics and terms. We de_starts at 220 Watts. Ext2 does not scale above 10,000 ops/sec

S
3

280

260 -

Average Power (Watts)

tail the Web, File, Mail, and DB workload results in Sec- 1o i
tions 5.2-5.5. Section 5.6 provides recommendationsfo s u
selecting and designing efficient file systems. 60 21% 556 -
5.1 Overview :: \

In all our tests, we collected two raw metrics: perfor- | | _ N\

Ext2 Ext3 Reiserfs XFS

mance (from FileBench), and the average power of the_. -
( ) gep ;Flgure 2: Average CPU utilization for the Webserver worlkdoa

machine and disk (from watt-meters). FileBench report i )
file system performance under different workloads in EXt2 had a maximum of only 8,160 Web ops/sec with an

units ofoperations per secon@ps/sec). As each work- average power consumption of 239W, while XFS peaked
load targets a different application domain, this metricat 70,992 ops/sec, with only 29% more power consump-
is not comparable across workloads: A Web serverdion. Figure 2 shows the percentages of CPU utilization,
ops/sec are not the same as, say, the database servel/® Wait, and idle time for each file system at its maxi-
Their magnitude also varies: the Web server’s rates numMum load. Ext2 and Reiserfs spend more time waiting
bers are two orders of magnitude larger than other workfor IO than any other file system, thereby performing
loads. Therefore, we report Web server performance if€ss useful work, as per Figure 1. XFS consumes al-
1,000 ops/sec, and just ops/sec for the rest. most the same amount of energy as the other three file
Electrical power, measured in Watts, is defined as th&yStems at lower load levels, but it handles much higher
rate at which electrical energy is transferred by a circuit. /Veb server loads, winning over others in both power ef-
Instead of reporting the raw power numbers, we selectedfciency and performance. We observed similar trends
a derived metric calledperations per jouldops/joule), for otherlworkloads: only one file system outperformed
which better explains power efficiency. This is definedthe rest in terms of both power and performance, at all
as the amount of work a file system can accomplish in 10ad levels. Thus, in the rest of this paper we report only
Joule of energyl(Joule = lwatt x 1sec). The higher ~Peak performance figures.
the value, the more power-efficient the system is. Thi
metric is similar to SPEC'S%) metric, used by 55'2 Webserver Workload
SPECPowessj2008 [38]. Note that we report the Web As we see in Figures 3(a) and 3(b), XFS proved to be
server’s power efficiency in ops/joule, and use ops/kilo-the most power- and performance-efficient file system.
joule for the rest. XFS performed 9 times better than Ext2, as well as 2
A system’s active power consumption depends ortimes better than Reiserfs, in terms of both power and
how much it is being utilized by software, in our case performance. Ext3 lagged behind XFS by 22%. XFS
a file system. We measured that the higher the syswins over all the other file systems as it handles con-
tem/CPU utilization, the greater the power consumptioncurrent updates to a single file efficiently, without incur-
We therefore ran experiments to measure the power corring a lot of 1/0 wait (Figure 2), thanks to its journal
sumption of a workload at different load levels (i.e., op- design. XFS maintains an active item list, which it uses
s/sec), for all four file systems, with default format and to prevent meta-data buffers from being written multiple
mount options. Figure 1 shows the average power contimes if they belong to multiple transactions. XFS pins
sumed (in Watts) by each file system, increasing Wela meta-data buffer to prevent it from being written to the
server loads from 3,000 to 70,000 ops/sec. We foundlisk until the log is committed. As XFS batches multiple
that all file systems consumed almost the same amountpdates to a common inode together, it utilizes the CPU
of energy at a certain performance levels, but only a fewbetter. We observed a linear relationship between power-
could withstand more load than the others. For exampleefficiency and performance for the Web server workload,



Performance (1000 ops/sec)

Energy Efficiency (ops/joule)

(b) File system energy efficiency for Webserver workloadais/joule)
Figure 3: File system performance and energy efficiency utideWebserver workload

so we report below on the basis of performance alone. the metadata updates actually synced to the disk (af-
ter committing the data). Although journalling was de-
Ext2 performed the worst and exhibited inconsistentsigned primarily for reliability reasons, we conclude that
behavior. Its standard deviation was as high as 80%a careful journal design can help some concurrent-write
even after 30 runs. We plotted the performance val-workloads akin to LFS [36].
ues on a histogram and observed that Ext2 had a non-
Gaussian (long-tailed) distribution. Out of 30 runs, 21
runs (70%) consumed less than 25% of the CPU, whil

ni 0, 0, 0,
the remaining ones used up to 50%, 75%, and 100 xt3, but Reiserfs with thaot ai | mount option out-

of the CPU (three runs in each bucket). We Wrotepen‘ormed Ext3 by 15% and the default Reiserfs by 2.25

a micro-benchmark which ran for a fixed time period | . . :
and appended to 3 common files shared between 108“65' The_ reason 1s that_ by d_efault thai | optlon
iS enabled in Reiserfs, which tries to pack all files less

threads. We found that Ext3 performed 13% fewer :
appends than XFS, while Ext2 was 2.5 times SIOWerthan 4KB in one block. As the Web server has an aver-

than XES. We then ran a modified Web server work-29€ file size of just 32KB, it has many files smaller than
L . 4KB. We confirmed this by runningebugr ei serf s
load with only reads and no log appends. In this case,

behind by 11%. This is because XF$'sokup oper- P (P

. . : along with other files’ data). This resulted in more than
ation takes more time than other file systems for deeper , )
. . one data block access for each file read, thereby increas-
hierarchy (see Section 5.3). As XFS handles concur: g )
. . ing /O, as seen in Figure 2. We concluded that unlike

rent writes better than the others, it overcomes the per: . .
. Ext2 and Ext3, the default Reiserfs experienced a per-

formance degradation due to slow lookups and outper;

forms in the Web server workload. OSprof results [21] formance hit due to its small file read design, rather t_han
concurrent appends. This demonstrates that even simple
revealed that the average latencywwfi t e_super for

Ext2 was 6 times larger than Ext3. Analyzing the Web server workload can still exercise different parts of

file systems’ source code helped explain this inconsischIe systems’ code.

tency. First, as Ext2 does not have a journal, it com- An interesting observation was that tmeat i ne
mits superblock and inode changes to the on-disk imimount option improved the performance of Reiserfs by
age immediately, without batching changes. Seconda factor of 2.5 times. In other file systems, this op-
Ext2 takes the global kernel lock (aka BKL) while call- tion did not have such a significant impact. The reason
ing ext2write_super andext2.wite. node, is that ther ei ser f s_di rt y_i node function, which
which further reduce parallelism: all processes usingupdates the access time field, acquires the BKL and then
Ext2 which try to sync an inode or the superblock to searches for the stat item corresponding to the inode in
disk will contend with each other, increasing wait timesits S+ tree to update that i me. As the BKL is held
significantly. On the contrary, Ext3 batches all updateswhile updating each inode’s access time in a path, it
to the inodes in the journal and only when the JBD hurts parallelism and reduces performance significantly.
layer callsj our nal .commi t transacti on are all  Also, noat i ne boosts Reiserfs’s performance by this

Reiserfs exhibits poor performance for different rea-
sons than Ext2 and Ext3. As Figures 3(a) and 3(b) show,
eiserfs (default) performed worse than both XFS and
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Figure 4: Performance and energy efficiency of file systerdeiuthne file server workload
muchonlyin the read-intensive Web server workload. update the different group’s metadata as frequently as a

Reducing the block-size during format generally hurtante"ntenS'Ve workload would.

performance, exceptin XFS. XFS was unaffected thank .

to its delayed allocation policy that allocates a large con—%'3 File Server Workload

tiguous extent, irrespective of the block size; this sug-Figures 4(a) and 4(b) show that Reiserfs outperformed
gests that modern file systems should try to pre-allocatgxt2, Ext3, XFS by 37%, 43%, and 91%, respectively.

large contiguous extents in anticipation of files’ growth. Compared to the Web server workload, Reiserfs per-
Reiserfs observed a drastic degradation of 2-&ter  formed better than all others, even with thai | op-

decreasing the block size from 4KB (default) to 2KB andtion on. This is because the file server workload has
1KB, respectively. We found frordebugrei serfs  an average file size of 256KB (8 times larger than the
that this led to an increase in the number of internal andyeb server workload): it does not have many small files
formatted nodes used to manage the file system namegpread across different nodes, thereby showing no differ-
pace and objects. Also, the height of the S+ tree grevence between Reiserfssdi | ) andno- t ai | options.

from 4 to 5, in case of 1KB. As the internal and for-  Apalyzing using OSprof revealed that XFS consumed
matted nodes depend on the block size, a smaller bIocﬂ% and 12% more time ihookup andcr eat e, re-

size reduces the number of entries packed inside eactjectively, than Reiserfs. Ext2 and Ext3 spent 6% more
of these nodes, thereby increasing the number of nodegme in hothl ookup andcr eat e than Reiserfs. To ex-
and increasing /O times to fetch these nodes from theycise only the lookup path, we executed a simple micro-
disk during lookup. E>.<t2 and Ext3 saw a degrada_ltloln ofpenchmark that only performed open and close opera-
2x and 12%, respectively, because of the extra indireCtjong on 50,000 files by 100 threads, and we used the
tions needed to reference a single file. Note that Ext2's;3me fileset parameters as that of the file server work-
2_>< degradation was coupled with a high sta_ndard variajnad (see Table 1). We found that XFS performed 5%
tion of 20-49%, for the same reasons explained above.te\yer operations than Reiserfs, while Ext2 and Ext3 per-
Quadrupling the XFS inode size from 256B to 1KB formed close to Reiserfs. As Reiserfs packs data and
improved performance by only 8%. We found using meta-data all in one node and maintains a balanced tree,
xf s_db that a large inode allowed XFS to embed moreit has faster lookups thanks to improved spatial local-
extent information and directory entries inside the inodeity. Moreover, Reiserfs stores objects by sorted keys,
itself, speeding lookups. As expected, the data jourfurther speeding lookup times. Although XFS uses B+
nalling mode hurt performance for both Reiserfs andtrees to maintain its file system objects, its spatial local-
Ext3 by 32% and 27%, respectively. The writeback ity is worse than that of Reiserfs, as XFS has to perform
journalling mode of Ext3 and Reiserfs degraded perfor-more hops between tree nodes.
mance by % and 7%, respectively, compared to their Unlike the Web server results, Ext2 performed bet-
default ordered journalling mode. Increasing the blockter than Ext3, and did not show high standard devia-
group count of Ext3 and the allocation group count oftions. This was because in a file server workload, each
XFS had a negligible impact. The reason is that the Welthread works on an independent set of files, with little
server is a read-intensive workload, and does not need toontention to update a common inode.
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We discovered an interesting result when varyingcreased number of internal node lookups, which increase
XFS's allocation group (AG) count from 8 to 128, in disk I/O as discussed in Section 5.2.

powers of two (default is 16). XFS's performance in-  Theno- at i ne options did not affect performance or
creased from 4% to 34% (compared to AG of 8). But, power efficiency of any file system because this work-
XFS’s power efficiency increased linearly only until the |oad is not read-intensive and had a ratio of two writes
AG count hit 64, after which the ops/kilojoule count for each read. Changing the inode size did not have an
dropped by 14% (for AG count of 128). Therefore, XFS’ effect on Ext2, Ext3, or XFS. As expected, data jour-
AG count exhibited anon-linearrelationship between nalling reduced the performance of Ext3 and Reiserfs
power-efficiency and performance. As the number ofpy 10% and 43%, respectively. Writeback-mode jour-

AGs increases, XFS's parallelism improves too, boostmalling also showed a performance reduction by 8% and
ing performance even when dirtying each AG at a fasteigo, for Ext3 and Reiserfs, respectively.

rate. However, all AGs share a common journal: as the
number of AGs increases, updating the AG descriptorss 4 Mail Server
in the log becomes a bottleneck; we see diminishing re-
turns beyond AG count of 64. Another interesting obser-As seen in Figures 5(a) and 5(b), Reiserfs performed
vation is that AG count increases had a negligible effecthe best amongst all, followed by Ext3 which differed
of only 1% improvement for the Web server, but a signif- by 7%. Reiserfs beats Ext2 and XFS by 43% and 4
icant impact in file server workload. This is because therespectively. Although the mail server’s personality in
file server has a greater number of meta-data activitie§ileBench is similar to the file server’s, we observed dif-
and writes than the Web server (see Section 3), therebferences in their results, because the mail server work-
accessing/modifying the AG descriptors frequently. Weload callsf sync after each append, which is not in-
conclude that the AG count is sensitive to the work-voked in the file server workload. THesync operation
load, especially read-write and meta-data update ratiodiurts the non-journalling version of file systems: hurting
Lastly, the block group count increase in Ext2 and Ext3Ext2 by 30% and Reiserfs-nolog by 8% as compared to
had a small impact of less than 1%. Ext3 and default Reiserfs, respectively. We confirmed
this by running a micro-benchmark in FileBench which
Reducing the block size from 4KB to 2KB improved created the same directory structure as the mail server
the performance of XFS by 16%, while a further reduc-workload and performed the following sequence of op-
tion to 1KB improved the performance by 18%. Ext2, erations: create, append, fsync, open, append, and fsync.
Ext3, and Reiserfs saw a drop in performance, for theThis showed that Ext2 was 29% slower than Ext3. When
reasons explained in Section 5.2. Ext2 and Ext3 experiwe repeated this after removing all fsync calls, Ext2 and
enced a performance drop of 8% and 3%, respectivelyExt3 performed the same. Ext2’s poor performance with
when going from 4KB to 2KB; reducing the block size fsync calls is because iesxt 2_sync_fi | e call ulti-
from 2KB to 1KB degraded their performance further mately invokeext 2_wr i t e_i node, which exhibits a
by 34% and 27%, respectively. Reiserfs’'s performancdarger latency than ther i t e_i node function of other
declined by a 45% and 75% when we reduced the blockile systems. XFS’s poor performance was due to its
size to 2KB and 1KB, respectively. This is due to the in-slowerl ookup operations.
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Figure 6: Performance and energy efficiency of file systemh&OLTP workload

Figure 5(a) shows that Reiserfs witlo- t ai | beats system, as they batch inode updates.

all the variants of mount and format options, improving |4 contrast to other workloads, the performancelbf
over default Reiserfs by 29%. As the average file sizejjo systems increases by a factor of around 2 we

here was 16KB, tha@o-t ai | option boosted the per- gecrease the block size of the file system from the default
formance similar to the Web server workload. 4KB to 2KB. This is because the 2KB block size better
As in the Web server workload, when the block size matches the I/0 size of OLTP workload (see Table 1),
was reduced from 4KB to 1KB, the performance of Ext2so every OLTP write request fits perfectly into the file
and Ext3 dropped by 41% and 53%, respectively. Reissystem’s block size. But, a file-system block size of 4KB
erfs's performance dropped by 59% and 15% for 1KBtyrns a 2KB write into a read-modify-write sequence,
and 2KB, respectively. Although the performance of requiring an extra read per 1/0 request. This proves an
Reiserfs decreased upon reducing the block size, the pejmportant point that keeping the file system block size
centage degradation was less than seen in the Web argbse to the workload’s I/O size can impact the efficiency
file server. The flat hierarchy of the mail server attributedof the system significantly. OLTP’s performance also
to this reduction in degradation; as all files resided inincreased when using a 1KB block size, but was slightly
one large directory, the spatial locality of the meta datajower than that obtained by 2KB block size, due to an
of these files increases, helping performance a bit evefhcreased number of 1/0 requests.
with smaller block sizes. Similar to the file server work-
load, reduction in block size increased the overall per-
formance of XFS.

XFS’s allocation group (AG) count and the block

An interesting observation was that on decreasing the
number of blocks per group from 32KB (default) to
16KB, Ext2’s performance improved by 7%. Moreover,
A "“*®increasing the inode size up to 1KB improved perfor-
group count of Ext2 and Ext3 had minimal effect within y5ce by 150 as compared to the default configuration.
the confidence interval. Similarly, theo-ati me op-  gpjarging the inode size in Ext2 has an indirect effect on

tion and inode size did not impact the efficiency of \he piocks per group: the larger the inode size, the fewer
file server significantly. The data journalling mode de',the number of blocks per group. A 1KB inode size re-

creased Reiserfs’s pgrformance b_y 20%, l_:)ut had a minigjjted in 8KB blocks per group, thereby doubling the
mal effect on E)ft3' Finally, the erteobackjournal mode nymber of block groups and increasing the performance
decreased Ext3's performance by 6%. as compared to the2- bg16K case. Varying the AG

count had a negligible effect on XFS’s numbers. Unlike
5.5 Database Server Workload (OLTP) Ext2, the inode size increase did not affect any other file

Figures 6(a) and 6(b) show that all four file systemsSYStem.

perform equally well in terms of both performance and Interestingly, we observed that the performance of
power-efficiency with the default mount/format options, Reiserfs increased by 30% on switching from the de-
except for Ext2. It experiences a performance degradafault ordered mode to the data journalling mode. In data
tion of about 20% as compared to XFS. As explained injournalling mode as all the data is first written to the log,
Section 5.2, Ext2’s lack of a journal makes its randomrandom writes become logically sequential and achieve
write performance worse than any other journalled filebetter performance than the other journalling modes.



Option Webserver Fileserver Varmail Database

FS Type Name Perf. Pow. Perf. | Pow. | Perf. | Pow. Perf. Pow.
mount | noatime | -37%7 | -35% - - - - - -
format | blklk -64%7 | -65% | -34% | -35% | -41% | -41% | +98% | +100%

Ext2 blk2k -65% -65% | -8% 9% | -17% | -18% | +136% | +137%
isz1k -34%7t | -35% - - - - +15% | +16%
bglék | +60% 1 | +53% - - +6% | +5% +7% +7%
mount | noatime | +4% +5% - - - - - -
dtlg -27% -23% | -10% | -5% -11% | -13%

wrbck -63% -57% | -8% -9% -6% -5% -5% -5%
Ext3 format | blk1lk -34% -30% | -27% | -28% | -53% | -53% | +81% | +81%

blk2k -12% -11% - - -30% | -31% | +98% | +97%
isz1k - - - - +8% | +8% - -
bg16k - - - - -4% -5% -8% -9%
mount | noatime | +14%%6 | +11%% - - +5% +5% - -
notail +128% | +96% - - +2% | +28% - -
nolog - - - - -8% -8% - -
Reiserfs wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% | -43% | -42% | -20% | -21% | +30% | +2%

format blk1k -73% -70% | -74% | -74% | -59% | -58% | +80% | +80%
blk2k -51% -47% | -45% | -45% | -15% | -16% | +92% | +91%
mount | noatime - - - - - - - -
format blk1k - - +18% | +17% | +27% | +17% | +101% | +100%

blk2k - - +16% | +15% | +18% | +17% | +101% | +9%
isz1k +8% +6% - - - - - .
XFS agcent8 - - -4% -5% - - - i
agcnt32 - - - - - - - -
agcnt64 - - +23% | +25% - - - -
agentl28 - - +2% | +8% - - - -

Table 2: File systems’ performance and power, varying apticelative to the default ones for each file system. Impneves are
highlighted in bold. A denotes the results with coefficient of variation over 40%lash signifies statistically indistinguishable
results.

In contrast to the Web server workload, the power efficiency and performance numbers that can be
no- at i me option does not have any effect on the per-achieved while staying within a file system; each cell is
formance of Reiserfs, although the read-write ratio isa percentage of improvement (plus sign and bold font),
20:1. This is because the database workload consistsr degradation (minus sign) compared to tiefaultfor-
of only 10 large files and hence the meta-data of thesenat and mount options for that file system. Dashes de-
small number of files (i.e., stat items) accommodate innote results that were statistically indistinguishabdeir
a few formatted nodes as compared to the Web servedefault. We compare to the default case because file sys-
workload which consists of 20,000 files with their meta- tems are often configured with default options.
data scattered across multiple formatted nodes. Reiserfs’ Format and mount options represent different levels of

no-tail option had no effect on the OLTP workload optimization complexity. Remounting a file system with

due to the large size of its files. new options is usually seamless, while reformatting ex-
) isting file systems requires costly data migration. Thus,
5.6 Summary and Recommendations we group mount and format options together.

We now summarize the combined results of our study. From Table 2 we conclude that often there is a better
We then offer advice to server Operatorsy as well as deSEleCtion of parameters than the default ones. A careful
signers of future systems. choice of file system parameters cuts energy use in half
and more than doubles the performance (Reiserfs with
Staying within a file system type. Switchingtoadif- no-tail option). On the other hand, a careless se-
ferent file system type can be a difficult decision, es-lection of parameters may lead to serious degradations:
pecially in enterprise environments where policies mayup to 64% drop in both energy and performance (e.g.,
require using specific file systems or demand extenlegacy Ext2 file systems with 1K block size). Until Oc-
sive testing before changing one. Table 2 compares thiober 1999 mkfs.extaised 1KB block sizes by default.



File systems formatted prior to the time that Linux ven- Server| Recom. F§ Ops/Sec | Ops/Joule
dors picked up this change, still use small block sizes: Web x-iszlk |1.08-9.4 | 1.06—7.5¢

performance-power numbers of a Web-server running on File r-def 1.0-1.% | 1.0-2.0¢
top of such a file system are 65% lower than today’s de- Mail r-notail | 1.3-5.8x | 1.3-5.%
fault and over 4 times worse than best possible. DB x-blk2k 2-2.4x 2-2.4x

Given Table 2, we feel that even moderate improve-Table 3: Recommended file systems and their parameters for
ments are worth a costly file system reformatting, be-O4" workloads. We provide the range of performance and

cause the savings accumulate for long-running Servers.power-ef‘ficiency improvements achieved compared to the bes
and the worst default configured file systems.

Selecting the most suitable file system.When users e File size: If the workload generates or uses files
can change to any file system, or choose one initially, ~ With an average file size of a few 100KB, we rec-
we offer Table 3. For each workload we present the ommend to use fixed sized data blocks, addressed
most power-performance efficient file system and its pa- by a balanced tree (e.g., Reiserfs). Large sized
rameters. We also show the range of improvements in  files (GB, TB) would benefit from extent-based bal-
both ops/sec and ops/joule as compared to the best and anced trees with delayed allocation (e.g., XFS).

worst defaultfile systems. From the table we conclude ~ Packing small files together in one block (e.g.,
that it is often possible to improve the efficiency by at Reiserfs’s tail-packing) is not recommended, as it
least 8%. For the file server workload, where the de-  often degrades performance.

fault Reiserfs configuration performs the best, we ob- e Directory depth: Workloads using a deep direc-
serve a performance boost of up te 2s compared to tory structure should focus on faster lookups using
the worst default file system (XFS). As seen in Figure 5, intelligent data structures and mechanisms. One
for mail server workload Reiserfs witho-t ai | im- recommendation is to localize as much data to-
proves the efficiency by 30% over default Reiserfs (best ~ gether with inodes and directories, embedding data
default), and by 5 over default XFS (worst default). into large inodes (XFS). Another is to sort all in-

For the database workload, XFS with a block size of ~ odes/names and provide efficient balanced trees
2KB improved the efficiency of the system by at least ~ (€.g., XFS or Reiserfs). _
two-fold. Whereas in most cases, performance and en- ® Access pattern and parallelism: If the work-

ergy improved by nearly the same factor, in XFS they  load has a mix of read, write, and metadata oper-
did not: for the Webserver workload, XFS with 1K in- ations, it is recommended to use at least 64 allo-
ode sizes increased performance by a factor of 9.4 and ~ cation groups, each managing their own group and
energy improved by a factor of 7.5. free data allocation independently, to increase par-

allelism (e.g., XFS). For workloads having multi-
ple concurrent writes to the same file(s), we rec-
ommend to switch on journalling, so that updates
to the same file system objects can be batched to-
gether. We recommend turning @t i ne updates

for read-intensive operations, if the workload does
not care about access-times.

Some file system parameters listed in Table 2 can be
combined, possibly yielding cumulative improvements.
We analyzed several such combinations and concluded
that each case requires careful investigation. For ex-
ample, Reiserfs'siot ai | andnoat i e options, in-
dependently, improved the Webserver’s performance by
149% and 128%, respectively; but their combined effect
only improved performance by 155%. The reason forg Conclusions
this was that both parameters affected the same perfor-
mance component—wait time—either by reducing BKL Proper benchmarking and analysis are tedious, time-
contention slightly or by reducing 1/0 wait time. How- consuming tasks. Yet their results can be invaluable for
ever, the CPU's utilization remained high and dominatedyears to come. We conducted a comprehensive study
overall performance. On the other hand, XFBisk2k  Of file systems on modern systems, evaluated popular
andagcnt 64 format options, which improved perfor- Server workloads, and varied many parameters. We col-
mance by 18% and 23%, respectively—combined toJected and analyzed performance and power metrics.
gether to yield a cumulative improvement of 41%. The We discovered and explained significant variations in
reason here is that these were options which affected difooth performance and energy use. We found that there
ferent code paths without having other limiting factors. are no universally good configurations for all workloads,

and we explained complex behavior that go against com-
Selecting file system features for a workload. We of-  mon conventions. We concluded that default file sys-
fer recommendations to assist in selecting the best fileem types and options are often suboptimal: simple
system feature(s) for specific workloads. These guidechanges within a file system, like mount options, can im-
line can also help future file system designers. prove power/performance from 5% to 149%; and chang-



ing format options can boost the efficiency from 6% to [4] R. Appleton. A Non-Technical Look Inside the Ext2 File

136%. Switching to a different file system can result in
improvements ranging from 2 to 9 times.

We recommend that servers be tested and optimized
for expected workloads before used in production. En-
ergy technologies lag far behind computing speed im-
provements. Given the long-running nature of busy In-
ternet servers, software-based optimization techniques
can have significant, cumulative long-term benefits.

7 Future Work

We plan to expand our study to include less mature file
systems (e.g., Ext4, Reiser4, and BTRFS), as we be-
lieve they have greater optimization opportunities. We
are currently evaluating power-performance of network-
based and distributed file systems (e.g., NFS, CIFS, and
Lustre). Those represent additional complexity: proto-
col design, client vs. server implementations, and net-
work software and hardware efficiency. Early experi-

System.Linux Journa) August 1997.

[5] T. Bisson, S.A. Brandt, and D.D.E. Long. A Hybrid

6] R. Bryant, R. Forester, and J. Hawkes.

(7]
(8]

9]

ments comparing NFSv4 client/server OS implementa-[10]

tions revealed performance variations as high:as 3
Computer hardware changes constantly—e.g., adding
more cores, and supporting more energy-saving fea-
tures. As energy consumption outside of the data cen-
ter exceeds that inside [44], we are continually repeating
our studies on a range of computers spanning sever
years of age. We also plan to conduct a similar study
on faster solid-state disks, and machines with more ad-
vanced DVFS support. [
Our long-term goal is to develop custom file systems
that best match a given workload. This could be bene-
ficial because many application designers and adminis-

[11]

12]

trators know their data set and access patterns ahead ¢f4]

time, allowing storage stacks designs with better cache
behavior and minimal 1/O latencies.
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