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Abstract or resources may be added; hints may be given to the

In this position paper, we argue that an important piece of ~ database query optimizer to force it to choose specific
the system administration puzzle has largely been left un- query execution plans; database configuration parame-
touched by researchers. This piece involves mechanisms ter settings may be changed; and so on.
and policies to identify as well as collentissinginstru- 4. When a fix is found, possibly after much trial and error,
mentation data; the missing data is essential to generate th & careful validation is done to ensure that the fix will
knowledge required to address certain administrativestask ~ work on the production system. Validation may require
satisfactorily and efficiently. We introduce the paradigm  multiple runs to test correctness and stability.

of experl_ment-dnven managem N”.'Ch encaps_ulate_s such Note that the above process required the DBA to do a num-
mechanisms and policies for a given administrative task . . . .

. ) ! -~ ber ofexperimentsEach experiment involved setting up the
We outline the benefits that automated experiment-driven . . ; . : iy
management brings to several long-standing problems isystem ina desw_ed f:onflguratlon_, running a specmg work-
databases as well as other systems, and identify researc%ad’ and collecting instrumentation data for analysis: Ex
challenges as well as initial solutions’ periments were used (i) to better understand the problem,

9 ' (i) during the search process of finding the fix, and (iii) for

1 Introduction validating that an accurate and stable fix has been found.

The task of administering a large system continues to reWe call the overall process an instancegrperiment-driven
main notoriously hard. There have been a number of efManagement
forts in recent years to simplify system administratiog(e. Are experiments really needed in the above scenario?
[2, 9, 10]). These efforts include system-level mechanism$uoting researchers from Oracle [11]: “it is almost impos-
like virtualization, computational frameworks like map- sible to predict the impact of such changes on query perfor-
reduce, and tools that leverage statistical machinediegarn mance before actually trying them.” Here, “such changes”
techniques to analyze instrumentation data collected fromefer to changes to the database schema (e.g., adding or
systems. In spite of these efforts, current solutions fer addropping indexes), updating the statistics (about the)data
ministrative tasks like benchmarking, tuning, troublesho used by the query optimizer to pick plans, changes to
ing, and capacity-planning remain far from satisfactory.  database configuration parameters (e.g., buffer pool)sizes
Let us begin with an example scenario. Figure 1 showsipgrades to the database software or hardware, and others.

the typical installation of an enterprise database syshe t Techniques like performance modeling and machine

consists of the production database, one or more standiyarning [4] applied to system instrumentation data can re-

databases for high availability, a test database used byyce the need for experiments. However, experiment-driven

database administrators (DBAs) and developers, and pos§isanagementis and will remain part and parcel of an admin-
bly a staging database for staged updates as they are movgfaior's job in the foreseeable future. There are two pre-

from development to production. Suppose the DBA no-gominant ways in which instrumentation data is generated
tices a slowdown of the production database due to somgqy, systems today:

unknown cause. The DBA may collect some monitoring ) . .

data on the production database in an attempt to diagnos@ Preproduction testingtnstrumentation data can be col-

the problem. However, data collection can increase the load  '€Ctéd from runs of the system before it goes into pro-

on an already under-performing database, forcing the DBA  duction use, e.g., when load/stress tests are done.

to shift to the test database. The DBA's usual course of ac-® Production-time monitoringdnce the system is in pro-

tion would be: duction, a variety of products (e.g., HP OpenView, IBM

1. Create a replica of the production environment on the ~ 11oli) are available for monitoring performance.
test database. Instrumentation data collected by these methods may not be

2. Get more insight into system behavior by performingrepresentative of the full space of system behavior. We only
runs of the production workload on the test databaseget to observe the performance of query plans, query mixes,
and collecting instrumentation data. Multiple runs mayand database configurations that were actually used. System
be required because of system variability. performance is a complex function of a number of factors.

3. Form hypotheses regarding potential causes of the pefrhe collected data may quickly become unrepresentative of
formance problem. Do further runs under different sys-system behavior if workload or configuration changes (e.g.,
tem configurations to refine or confirm these hypothe-the mere addition of an index can change the patterns of /0O
ses. For example, new indexes, statistics about the datthat a database issues to the storage system).
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tem (DBMS) in an enterprise experiment-driven management

1.1 Contributions of this Position Paper termine the chances of a logical I/O hitting in the OS file
I(,?ache; so its recommended setting is the size of the OS file
ache.sharedbuffersis the size of PostgreSQL'’s primary

Figure 2: Workbench for experiments

e We observe that experiment-driven management is a

essential part of system administration. The process i i R )
labor-intensive, and hence, expensive in terms of tota uffer cache. Generating each point in Figure 4 can involve

cost of system ownership. This domain has largely beef? numb_er of experlments; so many hours to days of effort
overlooked by researchers. can go into generating such surfaces. In [7], we developed

« Solutions that partially or fully automate experiment- an automated _feedback-d_riven controller that designs and
driven management have the potential to solve Iong-C()ijCtS"’?S.erles of exp_erlmen_ts_to appr0X|mate aresponse
standing problems in system management. We provid§urface efficiently and with statistical rigor.
examples from our own work and the work of others.  Tuning configuration parameters. Database, application,

e \We envision experiments being supported as first-clasand storage servers ship with a large number of configu-
citizens in database and general systems. We also enviation parameters like buffer cache sizes, number of 1/0
sion an ecosystem of tools and a well-founded methoddaemons, and parameters input to the database query opti-
ology (ideally, a science) that guides how experimentamizer's cost model. Finding good settings for these param-
are designed and conducted. Towards this end, we idereters is a challenging task because of the complex ways in
tify research challenges and design principles that adwhich parameter settings can affect performance [9]. One
dress: how experiments are set up, where/when are exechnique used by administrators to tune configuration pa-
periments run, and which experiments are done. rameters is to conduct a series of experiments where the

e We give a case study where automated experimentvalue of one parameter is varied at a time. Such “one-
driven management is applied to tune the large numbeparameter-at-a-time” techniques can have undesirable con
of configuration parameters in a database system. sequences when significant cross-parameter interactiens e

2 Role of Experiments in System Management ist. We will revisit this problem in Section 4.

We begin with a series of examples showing the critical roleQ_uery interactions: A query @, that runs Concurrfantly
of experiments in many aspects of system administration. with another query(); in a database system can impact

Benchmarking: Researchers, developers, and administra—Q 2's performance negativel_y or positively. The resource de-
tors devote a lot of time and resources to running experiﬁ(angiawﬁland CES COUI: |nter;elr/eoa';)ph)dlm%alhresourcg S
ments as part of benchmarking. An important benchmark:'<€ ’ or L.z cache, an andwidth, or at in-
ing activity isresponse surface mapping (RS8)7] which ternal resources like latches, locks, and buffer caches. On
involves plotting system performance over a large space oﬁhe other _handQl may benefitQ, by _r_eadmg data use-
workloads and/or system configurations. RSM is a power-UI for Q2 into the buffer cache. Traditionally, ?”C_h Inter-
ful tool to evaluate design and cost tradeoffs, explore thefctions were not modeled due to the complexity involved.

interactions of workloads and system choices, and identif;’z)(per'r';nZml'dd”v‘:’n dmhodelllr;g—v;h dere selegted query T.'X?S
interesting points such as optima, crossover points, or th re scheduled, and the collected data used to train statisti

bounds of the effective operating range for design choices.mOdels_h_c.)ld.S promise 1], even to scheduling map-reduce
Figure 4 shows a response surface generated by runningae(Id scientific jobs [6].

TPC-H benchmark query in a PostgreSQL database for difTesting and troubleshooting Experiments arise naturally

ferent settings of theffectivecachesizeandsharedbuffers  in problem debugging and diagnosis. Automated help-

parameters. The value effectivecachesizeis used to de- desks ask questions (e.g., did you try rebooting?) to cus-



TPC-H Workload Q18 terleaving of transactions in the production workload.
However, such a workload may be invalid for experi-
ments in configuration parameter tuning because chang-
ing parameter settings may change the interleaving.

e Ensuring representative dataShould experiments be
run on a full copy of the production data, or would
(faster) experiments on a sample suffice (and if so, can
the sample be picked automatically)?

w00 3.2 Where and When to Run Experiments?
Before the database goes into production use, experiments
can be done on the production platform itself (Figure 1). If
100 the database is already in production use and serving real
shared_buffersvB)  USers and applications, then experiments could be done on
Figure 4: 2D projection of a response surface for TPC-HA" offIin_e_test platform. These solutions are reasonabte, bu.
Query 18: Database size = 4GB, Memory = 1GB not sufficient b(_acause workloads may change and necessi-
tate new experiments, or a test database platform may not
tomers calling about service problems. These questions akgxist. We will describe an initial solution that we have pro-
generated dynamically based on current information. Theotyped to address such concerns. This solution also serves
answers may lead to more questions until there is enougtb highlight the challenges that arise.
information to diagnose the root cause. A similar approach The guiding principle behind our solution is: exploit un-
has been advocated to diagnose system problems [4].  derutilized resources in the production environment for ex
Towards the elusive self-tuning database systenWhen  periments, but never harm the production workload. The
a performance problem arises in a self-tuning database sy#wo salient features of our solution are:
tem, there is a large arsenal of potentidesto choose e Workbench: Users designate which resources can be
amongst—reallocating resources like CPU and memory, used for running experiments. All resources in Figure 1
changing settings of configuration parameters like buffer are candidates; the production database is the default.
cache sizes, changing the physical design like indexes,e Policies: A policy is specified with each resource that
or running tasks like defragmentation and statistics gath- dictates when the resource can be used for experiments.
ering. It is nontrivial to pick the best fix, especially A default policy associated with each resource in Fig-
if the fix is some combination of the above fixes. To  ure 1 could be: “if the CPU, memory, and disk utiliza-
solve this problem, [10] argues that we need advanced tion of the resource for ithome usés below 10% for
mathematical or statistical models that can map the joint the past 10 minutes, then the resource can be used for
space of (workload parameterstate from applying fixés experiments.” Home use denotes the regular (i.e., non-
to database performance metrics. More importantly, we experimental) use of the resource.
need representative data to train and validate these modhe design of the workbench is based on splitting the func-
e|S, and to maintain the models in the face of WOI'k'Oad,tiona“ty of each resource into two: (home usewhere
resource, and configuration changes. Such data can onfjie resource is used directly or indirectly to support the
come from experiments! production workload, and (iijgarage use where the re-
3 Dissecting Experiment-driven Management source is used to run experiments. We will describe this de-
Having shown the critical role of experiments in system ad-sign for standby databases, and then generalize to other re-
ministration, we now attempt to break experiment-drivenspurces. All commercial databases support one or more hot
management down to its component tasks; which helps igtandby databases whose home use is to keep up to date with
identifying challenges and initial solutions. For easer@tp the (primary) production database by applying redo logs
sentation and concreteness, we will focus on experimentshipped from the primary. If the primary fails, a standby
in database systems. However, the ChaIIenges and ideas el qu|ck|y take over as the new primary_ Hence, Standby
more generally applicable. databases run the same hardware and software as the pro-
3.1 Setting Up an Experiment duction database. Standby databases usually have very low
Consider the scenario from Section 1 where a DBA needs tditilization since they only have to apply redo records.
conduct one or more experiments. Setting up these experi- Thus, the standby databases are a valuable and under-
ments is currently labor-intensive. Automating the tasks i utilized asset that can be used for on-demand experiments
volved will be very useful, but it poses research challengeswithout impacting user-facing queries. However, their
e Ensuring representative workloadstow do we find a home use should not be affected, i.e., the recovery time on
representative workload to use in an experiment? Fofailure should not have any noticeable increase. We achieve
example, experiments for troubleshooting a deadlockhis property using tweesource containerghe home con-
may need a workload that preserves the fine-grained intainer for home use, and the garage container for running
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experiments. Our current implementation of resource conlarge. Finding the best subset of experiments to do within a

tainers uses theonesfeature in Solaris [8] which allows limited cost or time budget is nontrivial. While some gen-

resources to be allocated dynamically to a zone, with isolaeral guiding principles exist, our experience suggests tha

tion between different zones. Alternately, resource donta good algorithms for experiment selection can differ on a

ers can be implemented using virtual machine technology.case-by-case basis. Section 4 goes into the details of-exper
The home container is always responsible for applyingment selection for our case study.

the redo log records. When the standby machine is nof Case Study: An Advisor for Tuning
running experiments, the home container runs on it using  patabase Configuration Parameters

all available resources; the garage lies idle. The garage ig v f h bl  tuning the |
booted—similar to a machine booting, but much faster— ur case study focuses on the probiem ot tuning the large

only when the policy kicks in and allows experiments to benumber of configuration parameters like puﬁer pool sizes,
scheduled on the standby machine. During an experimen't“meer of I/O daemons, and parameters input to the query

both the home and the garage containers will be aC,[ivec,)'ptimizer’s cost model in database systems. Many database

with a partitioning of resources as determined by the exYS€rs face issues with the default settings, and resosite tr

periment scheduler. Figure 2 provides an illustration.hBot 2nd-€rrortuning or rules-of-thumb specified by database ex
the home and the garage containers run a full and exactl erts [9]'_ Unfortunately, the behavior of mode.rn database
the same copy of the database software. However, on boofY SIEMS IS 00 complex to be captured by static rules. The
ing, the garage is given a snapshot of the current data in th@!10Wing observations can be made from Figure 4: _
database. The garage’s snapshot is logically separate fron? ThiS surface is complex and contains nonmonotonic
the home container's snapshot, but it is physically the same &nd unexpected behavior (performance drops sharply as
except for copy-on-write semantics. Our currentimplemen-  Sharedbuffers goes above 15% of available memory).
tation of snapshots and copy-on-write semantics leverages® Rules-of-thumb settings fosharedbuffers and effec-
the Zettabyte File Systef8], and is very efficient. tive_cachesizeare res_pec'uvely 25% a_nd 50% of avail-
When experiments are completed or if the primary fails ~ 201€ memory. Following these rules gives around 100%

or there is a policy violation, the garage is halted immedi- worse performance compared toa weII-tun_ed setting.
ately. All resources are then released to the home container® The perfqrmance impact  of changlngeffe_c-
continues to function as a pure standby or takes over as the tlve_caghg5|z§ depe_nds on whasharedbuffers is
primary as needed. Booting the garage (including snapshots setto; indicating an interaction between the two.
and resource allocation) takes less than a minute; haltinfpiven such complex behavior, experiments (which led to
takes even less time. The whole process is so efficient thatigure 4) are a must for proper database tuning. Knowing
recovery time is not increased by more than a few secondghe true response surface gives a lot of useful information:
While this description focused on the standby resource, th€);: Which parameters impact performance the most?
home/garage design applies to all other resources used lfy,: Which parameters display strong interactions that
the workbench (including the production database). make “tune-one-parameter-at-a-time” efforts futile?
Further details and an experimental evaluation are givei)s: What is a high-performance setting of the parameters?
in [3]. Our prototype exposes a number of challenges: Q4: What arerobustregions in the response surface where
e What mechanisms should systems provide to simplify ~ Performance is both satisfactory and stable?

the task of running live experiments on production sys-But, how can a tuning advisor generate such surfaces ef-
tems without affecting the user-facing workload? ficiently? Naively conducting experiments for all possible

e How can we avoid or filter out interference in measure-combinations of the parameters will not scale. For example,
ments between the home and garage containers?  conducting all experiments for a 5-parameter space with 6

e How should policies be specified, e.g., at the resourcejistinct settings per parameter and average run-time of 10
level or through end-to-end service level agreements? minutes per experiment takes 60 days!

* Will the home/garage abstraction extend to experiments The tuning advisor should aim to produce reasonably-
in large-scale systems, e.g., multi-tier services, systemaccurate results fo€;-Q. while running as few experi-
distributed geographically, and network configuration? ments as possible. We outline a technique, cafldelptive

e Can cloud computing—which provides cheap and elassampling that can achieve this goal. Adaptive Sampling,
tic resources—be leveraged to run live experiments? jjjystrated in Figure 3, consists of two phasdmotstrap-

3.3 Which Experiments to Run? pingand§equentia! sampling?epause of space constraint§,
Given the infrastructure for conducting experiments befor the detailed technical description and empirical evatrati
or during production use, let us now consider the questioWith up to 30 configuration parameters) of Adaptive Sam-
of which experiments to run. Sometimes the answer is easy?"g are provided in [3].

e.g., when we want to find the impact of a specific changéootstrapping phase: This phase gets Adaptive Sampling
like the addition of an index. However, the space of po-started by running an initial set of experiments. A simple
tential experiments for various management tasks is oftetechnique is to pick the initial experiments randomly from



most important parameters. Note that with only 10 experi-
ments, Figure 5 is able to capture the non-monotonic impact
of sharedbuffersandeffectivecachesizeon performance;
which is consistent with what we observe in Figure 4. The
sequential sampling phase of Adaptive Sampling focused
on the two important parameters identified, and conducted
10 more experiments. The third experiment done in this
phase found a setting whose performance was within 95%
of the best performance in Figure 4. This sample result
shows how a principled approach like Adaptive Sampling
can save considerable time and effort in parameter tuning.

Normalized parameter values 5 Concluding Remarks

Figure 5: Sensitivity analysis plot for Figure 4 The availability of a powerful workbench for automated,
the space of possible experiments. More efficient variantenline experiments enables us to rethink the implemen-
include, e.g.Latin Hypercube Samplingp]. tation of several system administration tasks. Emerging

Sequential sampling phase: The sequential sampling mechanisms like virtualization and cloud computing pro-

phase runs in a loop analyzing the data collected from ex¥ide the foundations for such a workbench. In general,

periments done so far (and other available data), and plarUr Adaptive Sampling algorithm—starting with a small
the experiments to do next. Ideally, the next experimenPOotstrap set of experiments, and then doing experiments
conducted should be the one that brings in the instrumentd2@Sed on estimated benefits (and costs)—applies to many

tion data that improves the accuracy of answer§teQ. tasks. However, we expect the details to differ, sometimes

the most. Therefore, we need techniques to estimate the p§arkedly, posing challenging research problems. In clos-
tential improvement in accuracy that results from conductNd» We note that experiments will not fully replace current
ing a candidate experiment. These techniques vary depengicdel-based management practices; rather, there is inter-
ing on which ofQ,-Q, we are interested in. esting synergy between them that needs to be explored.

Since space constraints preclude us from giving details® Acknowledgments
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changing a parameter can cause significant changes in P& eferences

formance. However, to addreéls, we need experiments

that quickly hit high-performance regions. The promising [ M- Ahmad, A. Aboulnaga, S. Babu, and K. Munagala. Mod-
experiments fo, are from two types of regions: (i) re- eling and exploiting query interactions in database system
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gions around high-performing settings known so fax-(
ploitation), and (ii) regions with high uncertaintyexplo-
ration). For (ii), we need to capture the uncertainty (or con-
fidence intervals) around predicted performance values in
different regions. Various criteria—e.g., based on tinwestc

of experiments, or expected improvement—can be used to

decide when to stop sequential sampling. The sequential4]
sampling phase can also plan batches of experiments that

are done in parallel (e.g., in a cloud computing platform).

We have done an extensive empirical evaluation of Adap-
tive Sampling using PostgreSQL and the TPC-H, TPC-W,
and RUBIS benchmarks. We give a glimpse of the effec-
tiveness of Adaptive Sampling by presenting its results on
tuning PostgreSQL for TPC-H Query 18. (Results for more
complex workloads are in [3].) The full response surface for
this query (Figure 4) was generated using 99 experiments.

In the bootstrapping phase of Adaptive Sampling, we ran
10 experiments and estimated the individual impaein¢

sitivity) of each parameter on performance (by averaginq1

out the effects of other parameters). Figure 5 shows the
sensitivity analysis result for five (among 30) important
parameters in PostgreSQsharedbuffers(with an impact
score of 44.8) anéffectivecachesizeare identified as the
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