Augmented Smartphone Applications Through Clone Cloud Execution

Byung-Gon Chun, Petros Maniatis
Intel Research Berkeley

Abstract Phone CPU | RAM | Battery (talk
. .) (MHz) | (MB) | time in hrs)
Smartphones enable a new, rich user experience in per=5-=-=—== 112 SR

yasiv_e computing, but the_ir hardware is still very lim- —zoqoidATC 611 528 192 16
ited in terms of computation, memory, and energy re- Blackberry Bold | 624 128 |45

serves, thus limiting potential applications. In this pape - _ _
we propose a novel architecture that addresses these chalple 1:Specifications of a few high-end smartphones. Their
lenges via seamlessly—but partially—off-loading eXeca_etwork connectivities include Wi-Fi, UMTS, WCDMA, HS-
tion from the smartphone to a computational infrastruQ-PA‘ GSM/GPRS/EDGE, and Bluetooth 2.0.

ture hosting a cloud of smartphoolenes We outline new Computer | cPU | RAM
augmentecdexecution opportunities for smartphones en- MacBook Pro Laptop| 2.5GHz 2-core| 4GB
abled by ourCloneCloudarchitecture. Dell Precision T7400| 3.3GHz 4-core| 8GB
1 Introduction Table 2:Specification of a commodity laptop and a desktop.

Smartphones with Internet access, GPS, sensors, and I/gerjr connectivities include 1Gbps Eth?me.t and Wi-Fi, and they
. L ! ! . ' . are frequently powered from the electric grid.
ious applications are recently seeing explosive adoption.
The Apple iPhone [2], Blackberry smartphones [3], armbntents of a process, including memory-mapped files.
the Google Android phone [1] are a few prominent eX3n a smartphone, even if the user were patient enough
amples. In a slightly more advanced capability bracket wait until such a CPU- and I/O-intensive scan were
also lie mobile Internet devices (MIDs) such as the Nokaver, she might still hit memory limits or run out of battery
N810 [7] and Moblin-based devices [6] that provide power. It only gets worse if one considers tools like taint-
richer untethered Internet experience. checking [23] for data leak prevention, floating-point and
With popularity, such devices also see new applicatiomgctor operations for mathematical or signal-processing
by a broader set of developers, beyond the mobile sg@plications such as face detection in media, etc.
ples of personal information management and music play4n this paper we (re)discover an opportunity that might
back. Now mobile users play games; capture, edit, anmeercome these concerns. On one hand, laptop, desktop
tate and upload video; handle their finances; manage ttegid server resources are abundant, ubiquitous, and contin-
personal health and “wellness” (e.g., iPhone Heart Monieusly reachable, as ensured by cloud computing, multi-
tor [16] and Diamedic [15]). However, with greater applieore desktop processors and plentiful wireless connec-
cation power comes greater responsibility for the mobiligity such as 3G, UltrawWideBand, Wi-Fi, and WiMax
execution platform: it is now important to track memoryechnologies. The disparity in capability between such
leaks and runaway processes sucking up power, to avoitinputers and the untethered smartphone is high and
or detect malicious intrusions and private data disclasupersistent. On the other hand, technologies for repli-
and to manage applications with expensive tastes for higlating/migrating execution among connected computing
volume data or advanced computational capabilities sustbstrates, including live virtual machine migration and
as floating-point or vector operations. incremental checkpointing, have matured and are used in
Solutions for all these advanced capabilities have beaeduction systems [9, 10].
known and are in (fairly) common practice in traditional We capitalize on this opportunity here by proposing
desktop and server platforms; this is, after all, why smati-simple idealet the smartphone host its expensive, ex-
phone users expect to apply those solutions to their molwtic applications However, do so on an execution engine
devices. Alas, such solutions tend to be expensive whtataugmentshe smartphone’s capabilities by seamlessly
cast to mobile architectures. The hardware capabilitiesgif-loading some tasks to a nearby computer, where they
those devices are similar to those of the desktop PCs of #te executed in a cloned whole-system image of the de-
mid-1990’s, many generations of hardware and softwariee, reintegrating the results in the smartphone’s execu-
behind (see Table 1 and contrast to Table 2). tion upon completion. This augmented execution over-
For example, anti-virus software operates by perforrmemes smartphone hardware limitations and it is pro-
ing frequent complete scans of all files in a file systemided (semi)-automatically to applications whose devel-
and by imposing on-access scans on the virtual memopers need few or no modifications to their applications.

Primary Background Mainline Hardware Multiplicity

L
/

4
IIIE

Figure 1:The five categories of augmented execution.

Some augmentation can operate in the backgroupdovides the service (e.g., the translation of speech to
for asynchronous operations such as periodic file scatext), or as a thin-client environment.

For synchronous operations intrinsic to the applicaticghckgmund augmentation: Unlike primary functional-
(e.g., a train of floating-point instructions in the applicaty outsourcing, this category deals with functionalitath
tion code), augmentation can be performed by blockigges not need to interact with users in a short time scale.
progress on the smartphone until the result arrives frasgch is functionality that typically happens in the back-
the clone in the cloud For concurrent operations to th%round, such as scanning the file system for viruses [5],
application that operate “around” it (e.g., taint-checgin indexing files for faster search [4], analyzing photos for
augmentation can also be concurrent in the clone cloude@inmon faces [8], crawling news web pages, etc. In this
even speculative with the ability to undo operations on tRgse, entire processes can be marked (by the user or by the
smartphone according to the result from the clone. programmer) or automatically inferred as “background”
While the ability to off-load expensive computationgrocesses, and migrated to the infrastructure wholesale.
from weak, mobile devices to powered, powerful devicgsyrthermore, off-loaded functionality can take on the role
has been recognized before, the novelty of our approggty “virtual client” Even when the smartphone is turned
lies in using loosely synchronized virtualized or emulatesif, the virtual client can continue to run background

replicas of the mobile device on the infrastructure to maiggsks. Later when the smartphone returns online, it can
tain two illusions: first, that the mobile user has a mU(gi/nchronize its state with the infrastructure.

more powerful, feature-rich device th_an she does_ in reﬁ?"aj nline augmentation: This category sits between pri-
ity, and second that the programmer is programming S%'ﬁry functionality outsourcing and background augmen-

a power_fgl, fe:lslture-rllch (_jewce, without ha_vlng to ,mamfétion. Here the user may opt to run a particular applica-
ally partition his application [28, 29], explicitly provisn tion in awrappedfashion, altering the method of its ex-

pr?X'esh[Zt?c]’”O rjust dumbtl_dovvtﬂ the f;lppllc_atlor}. ecution but not its semantics. Examples are private-data
N what Toflows, We outline the categories ot augmeis . jetection (e.g., to taint-check an application oriappl

tation we consider, derive from them a straw-man arclalagon set), fault-tolerance (e.g., to employ multi-vatia

tecture for our envisioned system, and outline the reseaggh, . 1ion analysis to protect the application from trans-
challenges ahead. parent bugs), or debugging (e.g., keep track dynamically
2 Augmented Execution of allocated memory in the heap to catch memory leaks).
nlike background augmentation, mainline augmentation

. : U
The scope of augmented execution from the infrastructure . . S
P 9 IS interspersed in the execution of the application. Many

is fairly broad. In this section, we attempt to categorize th ssibilities exist: for example. when a decision point is
types of augmentation we envision (Figure 1). We discugd ' pie, P

how to achieve such augmentation in the next sectionsreaChed in the taint-check example, the application on
Primary functionality outsourcing: Computation the smartphone may block, perhaps causing the clone to

h licati h h) .qugwind back to a known checkpoint, and to re-execute for-
nungry applications Such as Speech processing, VIGE&q \yith taint-tracking, before deciding.

indexing, and super-resolution are automatically sptit, s o) o)

that the user-interface and other low-octane process|igf dware augmentation: This category is interesting

is retained at the smartphone, while the high-pow@recause it compensates for fundamental weaknesses of
expensive computation is off-loaded to the infrastructufid® Smartphone platform, such as memory caps or other
synchronously. This is similar to designing the applic§onstraints, and hardware peculiarities.

tion as a client-server service, where the infrastructureFOr demonstration, we wrote a file system scanning ap-
plication in the DalvikVM, the execution environment of

1 " " H
W_e use the term "cloud” in a broader sense to include persamal the orlglnal Google Android phone (HTC Gl). We ran it
tops sitting on a nearby lap, desktops at work or at home, anerse . . .
located in accessible data centers. Smartphones may haveifiergnt to scan 100,000 directories and files. On the HTC G1 the

network latencies and bandwidth to each type of computer. process took 3953 seconds. This was much higher than

we expected. Through a debugger, we discovered that theppgne
program invokes garbage collection very frequently dup ocass
to memory pressure. Just using faster hardware—we rgn

Phone Cloud

Process Process || Clone
< » % M

I
I
; _ _ I « >
on a QEMU-emulated single-core virtual machine on
Dell Desktop with a 2.83GHz CPU and 4GB RAM— |—@g I+> oS oS
I

significant savings can be observed even while thrashing: HW HW Virtual HW
our scenario only took 336 seconds (11.8x). If we Were(a) Sinale- VMM
to modify the heap and stack allocation of the virtual ma- g HW

machine . .
chine to remove most garbage collection activity, it couldtomputation | (b) Distributed computation

improve that significantly. A similarly powerful augmengigyre 2: our system model. Our system transforms a
tation might execute a clone on an x86 port of the Androighgle-machine execution (smartphone computation) into a dis-
platform, removing the costs of emulating the ARM praributed execution (smartphone and cloud computation) (semi)-
cessor in the G1 Android smartphone. automatically.

Augmentation through multiplicity: The last category cloud (laptop, desktop, or server nodes); 2) The state
we consider is unique in that it uses multiple Copies of tm the primary (phone) and the clone is periodica”y or

system image executed in different ways. This can heJa-demand synchronized; 3) Application augmentations
running data parallel applications (e.g., doing indexmg f(whole applications or augmented pieces of applications)
disjoint sets of images). This can also help the applicatigfe executed in the clone, automatically or upon request;

to “see the future,” by exhaustively exploring all possiblgnd 4) Results from clone execution are re-integrated back
next steps within some small horizon—as would be doffo the smartphone state.

for model CheCking—Ol’ to evaluate in maximum detail Figure 3 shows a high-|eve| view of our System ar-

all possible choices for a decision before making that dehitecture. This is one possible design, and we are ex-
cision. Consider, for example, an energy-conserving pi§loring the design space of different system architectures
cess scheduler that, in the absence of future knowledgeq. doing this task mostly in DalvikVMs in the case
can only guarantee decisions close but not at the ojf-the Android platform). We achieve this by combin-
mum. Instead, the whole system image could be replicaifg whole-system replication through incremental check-
multiple times in the infrastructure, choosing all possibpointing, (semi)-automatic partitioning and invocatidn o
interleavings of processes during execution, and evalugtgmented execution, and coordination of computation
ing energy expenditure via some consumption model f9&tween the primary (phone) and the clone. The system
the device, ultimately making the scheduling decision th%mponents are running inside the operating system (OS).
results in the minimum expenditure. In this category gfhe Replicatoris in charge of synchronizing the changes
augmentation, infrastructure cycles are lavished on essgnphone software and state to the clone. Tuntroller
tially a Monte-Carlo simulation of all possible outcomegnning in the smartphone invokes an augmented execu-
of the scheduler’s choices to make the optimal decisiamn and merges its results back to the smartphone. It inter-
We end up wasting much energy (at the infrastructure)4gts with the Replicator to synchronize states while coor-
save a little bit of energy on the mobile device. Howevefinating the augmentation. THeigmenterunning in the
given the opportunity cost of being left with a dead bagione manages the local execution, and returns a result to
tery during a critical time, this rather extravagant use ge primary.
the infrastructure may have significant benefits. Once a computation block for remote execution is spec-
3 Architecture ified,.the Iollowing stgps are perfor_med for the primary
functionality outsourcing augmentation category. We omit
Conceptually, our system provides a way to boost a smakie steps for other augmentations due to space constraints.
phone application by utilizing heterogeneous computifigrst, the smartphone application process enters a sleep
platforms through cloning and computation transformgtate. The process transfers its state to the clone VM. The
tion. For doing so, our system (semi)-automatically trangM allocates a new process state and overlays what it re-
forms a single-machine execution (e.g., smartphone cageived from the phone with hardware description transla-
putation) into a distributed execution (e.g., smartphotien. The clone executes from the beginning of the com-
plus cloud computation) in which the resource-intensiygitation block until it reaches the end of the computation
part of the execution is run in powerful clones. An addblock. The clone transfers its process state back to the
tional benefit of cloning is that if the smartphone is logthone. The phone receives the process state and reinte-
or destroyed, the clone can be used as a backup. Figutgates it, and wakes up the sleeping process to continue its
illustrates the high-level system model of our approachexecution. This description omits much detail, and other
Augmented execution is performed in four steps: Augmentation categories can be even less straightforward.
Initially, a clone of the smartphone is created within thé/e outline the open research challenges involved in this

Phone Cloud clone. To save bandwidth, it perforrireremental check-

Application Application C/l%e pointing i.e., sends deltas of two checkpoints, ana-
Controller Augmenter level synghro_ngtmrBy defaul_t, it periodically performs
- — - 0s synchronization in a coarse time scale (e.g., once ever
Replicator Replicator y . -9 y
Virtaal BW few hours). For asynchronous operations like background
HW augmentation, the basic synchronization may be suffi-
VM \) ! yne) may be
HW cient. For mainline augmentation and primary function-

ality outsourcing, we perform more fine-grained synchro-
nization of in-memory and persistent states. The Replica-
architecture next. tor achieves this goal in coordination with the Controller.
4 R hA q A main research question is to decide when and how
esearch Agenda a mobile device performs synchronizatiopolicies of

In this section, we discuss major research questions syechronization) considering the trade-offs between la-
need to address, and the directions we are currently takiegcy/accuracy and resource usage. In addition to peri-
to build our system. odic synchronization, the Replicator may exploit oppor-
How is computation transformation done for aug- tunities for optimization by performing opportunistic syn
mented execution? We expect that for some applicationghronization. For example, if the smartphone discovers a
augmentation is automated, while for others it involvédgh-speed Wi-Fi connection, it can do more aggressive
a simple manual process, e.g., annotating a self-contai#gchronization to avoid using 3G cellular connections.
resource-intensive block of execution such as complicat®§o, if it is charging at night, it can synchronize without
image processing code, or profiling and run-time parfifaining the battery.
tioning of applications to use augmented execution. Adiow do we coor dinate execution between the primary
example, we can run static or dynamic analysis in tlaed the clone? Depending on operation types, we use dif-
clone VM(s) to extract computationally expensive blocksrent coordination strategies. For background augmen-
of computation and annotate the blocks for off-loadingation, the execution is off-loaded to the clone without
We plan to explore differentoliciesthat decide when to tight time constraints. The clone runs the computation
perform this computation transformation considering tieith some snapshot. When the clone finishes its compu-
computation and network latency and resource usage statlon, the Augmenter sends the result back to the Con-
as power. Note that augmentation herecascadedwe troller. Synchronous operations are more difficult to sup-
augment the application with a profiler and partitioner, gmrt. When an operation is in the critical path of execu-
as to better augment it in subsequent executions. Aution, the Controller invokes the operation at the clone, and
mated partitioning is an important research question. pauses the primary’s execution until it gets the result back

For background or mainline augmentation, our syom the Augmenter. Once the Controller receives the re-
tem can do simple automatic partitioning. For backgrousdlt, it restarts the primary’s execution.
augmentation, an application is initially configured to use For mainline augmentation, we use more complicated
the augmentation. When an operation (e.g., virus scaordination to hide the latency. The primary performs
ning) is performed in the clone, the application simplgpeculative executiomwhich has been used in local and
conveys the results to the phone user. For mainline adgstributed file systems and virtual machine replication
mentation, the application developers can specify whdes high availability [14,24,25] while invoking augmented
augmentation may be applicable if available. For examxecution. The primary buffers any externally visible out-
ple, for taint checking, when an input is received from thgut while the augmented execution is running. Once it re-
network or an output is sent to the network, the Controlleeives acommit notificatiorfrom the clone, it releases the
can invoke mainline augmentation to verify that the opébuffered outputs.
ation does not violate the application’s security policy. How does har dware augmentation work? We provide

For applications that require the primary functionalitjwo kinds of hardware augmentation. First, we modify the
outsourcing or mainline augmentation, we can profile rumirtual hardware forcapability inflation We increase the
time performance and feasibility of operations, and of€EPU clock rate of the virtual hardware, the number of vir-
load computation based on the profiling information. tfial CPU cores (if there are multiple cores available), and
some operations take too long or are not possible to riine@ memory size of VMs. This requires a mechanism that
because available memory is not large enough, the opeegonciles the difference between the smartphone hard-
tions are tagged to invoke augmentation. ware and the virtual hardware. Second, we expose any
How do we do synchronization of states? The Replica- Special capabilities of the hardware platform (e.g., a<ryp
tor faces the challenges of optimizing wireless bandwidi@graphic accelerator) to VMs through virtual hardware.
and battery power while replicating fresh images to thWhat if we cannot trust clone VM environments? In

Figure 3:Clone execution architecture for smartphones.

the basic setup, we assume that the environment in whighiual machine images in a distributed storage system.
we run clone VMs is trusted. In the future, one can ima@oign [22] automatically partitions a distributed apptica
ine that public infrastructure machines such as pubtion composed of Microsoft COM components.

kiosks [21] and digital signs are widely available. We can To our knowledge, our approach is the first to replicate
off-load computation of smartphone applications to sutihe whole smartphone image and to run the application
public infrastructure machines, but they cannot be trustedde with few or no modifications in powerful VM repli-
Our basic system needs to be extended to check thatdhe to transform a single-machine computation to a dis-
execution done in the remote machine is trusted. One tlibuted computation (semi)-automatically.

rection is to utilize trusted hardware that certifies that th We believe that the CloneCloud architecture enables
computation done in the infrastructure is correct. At a higtew, exciting modes of augmented execution for applica-
level, the trusted hardware receives inputs and simple ptions in diverse environments, and offers intriguing op-
grams written in a little, domain-specific language ambrtunities for research and for practical deployments
sends out outputs and attestation, which is a generalitieat marry the convenience of hand-held devices with the
form of trusted primitives studied in [12, 13]. The smarpower of cloud computing.

phone can do a simple verification of the proof to acceptknowledgments: We are indebted to Anthony Joseph,
the result from the clone. Refactoring computation arou®lanluca lannaccone, Sylvia Ratnasamy, and the work-
this trusted hardware is an interesting research questioshop reviewers for their comments on our work.
Aresmartphonesall thereis? Although the disparity be-
tween the capabilities of smartphones and computers at _ _ _
home or in an infrastructure particularly favors the kind!! Andioiddevphone icode. googl e. conf andr o d/ dev- devi ces.

of augmented execution we envision, one can see S&i- Apple iPhonewwy. appl e. cont i phone.

eral paths to applying this architecture more broadly. F(ﬁ} g'gg‘g‘f;eégsf(’g%ggsl‘(’t"i?aggggf:bff);,y cont eng/ .

instance, one could imagine using this approach in thg Mcafee.ww:. ncaf ee. com

context of data center architectures, in which some pré NoaI P IIMLIR Bre: e cont i ndex. ht nf #1=
cessors are low-power Intel Atom, while others are high- products, ng1o.

performance Intel Nehalem, or in the context of heterogd] [ieeaPl S5 9900 & SO - duct s/ vi fesx!

neous multi-core architectures, in which some cores hawg Xen.wsw. xen. org. A .

floating-point (FP) instructions, for instance, while athe ™ & B & 0, b o e s Eurenean worknaoos.

do not. Inthe latter scenario, a clone executing only the BR B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested:Agp

; i~na_ Only Memory: Making Adversaries Stick to their Word. SDSP 2007.
code may be a gOOd way to avoid more Complex app“(ﬁs] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Tiered Falgt-To

tion partitionings, and the fast bus speeds as well as copy- ance for Long-Term Integrity. IFAST, 2009. _ _
on-write might make our approach particularly desirablé? 2pfé‘£§:0? al. Semys: High avallability via asynchronous virtual maef
A similarly fortuitous application would be the outsourcis] Diamedic. Diabetes Glucose Monitoring Logboakw. mar t oon. cond
iI:]g of sensitive tasks to a ”earbY core with trusted exe?ﬂﬁ gl ?:;:g.l C/i‘Phone Heart Monitor Tracks Your Heartbeat Unless You
tion features on-package, keeping all other computation Are Dead. gi znodo. conf 5056167/ i phone- hear t - moni t or -

: tracks- your- heart - beat - unl ess- you- ar e- dead, 2008.
on other S|mpler, perhaps less contested cores. [17] J.Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned remote execution
) for pervasive computing. IrRlotOS 2001.
5 Rel ated Wor k and COI’]C| usion [18] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile appli-

cations. INSOSR 1999.

Remote execution of resource-intensive applications f&t ch;rFJi;‘t?bsSt-eSigﬂﬁg“goaﬁg’:e&SgNT;"FaAg;go'\(")éSatYanafaya”a"- Datagstagin
resource-poor hardware is a well-known approach (i) A.Fox, S. D. Gribble, E. A. Brewer, and E. Amir. Adapting to netwarid

erences

. L . . S. Garriss et al. Trustworthy and personalized computing on public kiosk
carefully designs and partitions applications between [0- i Mobisys2008.

cal and remote execution. and runs a simple visual é:@l G. C. Hunt and M. L. Scott. The coign automatic distributed partitig
’ ’ system. InNOSDI, 1999.

dio output routine at the mobile device and computatiofs; 3. Newsome and D. Song. Dynamic taint analysis for automatic detectio

intensive jObS at a remote server [11 17.18. 20. 26 29] analysis, and signature generation of exploits on commodity software. In
. ! ! ! ! ! " NDSS 2005.

Rudenko et al. [26] and Flinn and Satyanarayanan [48]] E. B. Nightingale, P. Chen, and J. Flinn. Speculative execution disa

explored saving power via remote execution. Cyber foraL tributed file system. IBOSR 2005.

. _] E. B. Nightingale, K. Veeraraghavan, P. Chen, and J. Flinn. Rethirgytihe
ing [11] uses surrogates (untrusted and unmanaged public in ospi 2006.

i icti i] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Savingigert
maChmeS) OpportunIStlcally to improve the performan&é computer battery power through remote process execUt@CR 1998.

of mobile devices. For example, both data staging [18}; m. Satyanarayanan et al. Pervasive personal computing in an internet sus-
and Slingshot [28] use surrogates. In particular, SIingst pend/resume systerEEE Internet Computing2007.

R ?ﬁ] Y.-Y. Su and J. Flinn. Slingshot: Deploying stateful services in wssl
creates a secondary replica of a home server at nearby notspots. InviobiSys 2005.

surrogates ISR [27] provides an ability to suspend &9] C. Young etal. Protium, an infrastructure for partitioned applications. In
L . ~ HotOS 2001.
one machine and resume on another machine by storing

