
Security Benchmarking using Partial Verification

Thomas E. Hart, Marsha Chechik

Department of Computer Science

University of Toronto

David Lie

Department of Electrical and Computer Engineering

University of Toronto

Abstract

Implementation-level vulnerabilities are a persistent

threat to the security of computing systems. We pro-

pose using the results of partially-successful verification

attempts to place a numerical upper bound on the inse-

curity of systems, in order to motivate improvement.

1 Introduction

Despite recent attention to secure computing, programs

continue to be plagued with vulnerabilities. While some

of these vulnerabilities are due to deep logical errors,

most are due to implementation bugs such as buffer over-

flows and other input validation errors. Improving soft-

ware security requires eliminating these bugs, but doing

so requires investing in programmer time to audit and fix

a program, or sacrificing performance by automatically

adding runtime safety checks; hence, severe vulnerabil-

ities persist [23]. We find this unacceptable, and agree

with Bill Joy’s view of software vulnerabilities:

Speaking with one voice, we should insist that

software is not complete unless it is secure.

The alternative is unacceptable — we can’t

tolerate identity theft, financial loss, organiza-

tional downtime, and national security threats

from untested and therefore inadequately se-

cure software. We deserve, and can demand,

better. [16]

To demand secure software, we must be able to quan-

tify software (in)security. While vendors have the means

and motivation to measure programmer time and appli-

cation performance, we lack good methods of measuring

insecurity. The state of the art seems to be the “con-

struction site” method of measuring the time since the

last reported vulnerability in a program, or the number

of reported vulnerabilities in a given time period. This

method assumes that software is safe until proven oth-

erwise, despite repeated experience showing that this as-

sumption is unreasonable. Vendors thus have little incen-

tive to actively improve their software until a third party

demonstrates the presence of a vulnerability, through ei-

ther responsible disclosure or malicious attacks.

We propose a “guilty until proven innocent” approach

to quantifying insecurity using the partial results of

verification attempts. We limit our scope to property

checking, which has experienced much industrial suc-

cess [1, 10, 27]. Automated tools instrument the checked

program with assertions which halt execution when a

property, such as memory safety [21] or correct use of

security APIs [4], is about to be violated. Analysis tools

then check the safety of these assertions individually

(ie. whether they can fail). Since software verification

is undecidable in general, a tool will typically be able

to prove some subset of the assertions safe. We refer to

this partial success as partial verification. We claim that

it is feasible to gradually rewrite programs so that more

assertions can be proven safe, meaning that there are

fewer places in which the property may be violated, and

thus fewer potential vulnerabilities. We give metrics to

measure this progress.

Using verification to measure potential insecurity has

several advantages. The metrics’ conservative nature

gives vendors an incentive to pro-actively fix parts of a

program which may be vulnerable, in order to increase

their score. Furthermore, it is possible for a vendor to get

a perfect score by proving the program obeys the checked

properties. A perfect score is an attractive goal, as it

means that a program is free of an entire class of vulner-

abilities, thus provably cutting off an avenue for attack.

Unfortunately, measuring properties of code intro-

duces the possibility of software vendors gaming the

metric to make their code appear more secure. We dis-

cuss how a naı̈ve metric could be gamed by a code path

redirection attack, and present candidate metrics which

are resistant to gaming.

Figure 1: Security benchmarking framework.

Our benchmarking process measures provable assur-

ance rather than estimating risk, and has the limitations

associated with any such approach. If a program is writ-

ten in such a way that proving safety is difficult, it could

get a lower score than a competitor’s product, even if

the competitor’s product contains more vulnerabilities.

Furthermore, we do not address ease of exploitation, nor

do we address the potential consequences of an exploit.

Despite these limits, our scheme allows a customer to

see whether successive revisions of a program are being

hardened, thus increasing security assurance over time.

The next section of this paper discusses our bench-

marking framework. In Section 3, we argue that prop-

erty checking should be considered feasible, given mod-

est coding guidelines. Section 4 proposes metrics which

are resistant to gaming by malicious vendors. We con-

clude with a discussion in Section 5.

2 Benchmarking Framework

In this section, we discuss (1) the principals in our

scheme, (2) the scope of the properties being checked,

and (3) the techniques for checking these properties.

Principals. Figure 1 shows the principals in our

benchmarking scheme — vendors, consumers, and the

certification authority — and their interactions. The ven-

dors’ goal is to convince their customers that their code

is of high quality. Since the customers do not trust the

vendors, an independent certification authority attempts

to verify the software, and produces a rating which ven-

dors can use when marketing their software. Both the

vendors and the certification authority have access to a

common set of verification tools, so that the vendors are

able to perform internal audits, and harden their code be-

fore submitting it to the certification authority.

Note that the certification authority must be able to

compile the vendors’ source code, in order to ensure that

the binary shipped to the customers corresponds to the

version of the software which was verified.

Properties. The properties which can be verified are

safety properties which can be enforced by security au-

tomata, a class of Büchi automata which enforce safety

properties by terminating a program’s execution when a

property is violated [24]. Example properties in this class

include memory safety and proper API usage, such as

correct use of setuid [4] and input sanitization func-

tions. For the purposes of static verification, the au-

tomata are typically implemented using program instru-

mentation, in which assertions are automatically added

to the program to terminate execution when a property is

violated. Several systems, such as CCured [21], automat-

ically instrument for memory safety using “fat” point-

ers and bounds checking assertions; similarly, numer-

ous automata-based systems provide instrumentation for

checking API usage properties [2, 3, 13]. Figure 2 shows

an example program with instrumentation to check for

double-free errors, using notation similar to [3].

The assertions which encode a property can be

checked individually; hence, verification can be partially

successful if some assertions are proven safe and oth-

ers are not. We refer to an assertion which has not been

proven safe by any tool as an unverified assertion (UVA).

Progress towards provably safe code comes from remov-

ing UVAs from a program. As the number of UVAs de-

creases, we can increase our confidence that the software

obeys the checked property.

Several security properties are well-studied in the for-

mal verification community, and should be included in

the benchmarking process. The high frequency and

severity of buffer overflows make array bounds check-

ing important, and many tools, notably those based on

abstract interpretation, target this property [10, 26, 27].

API usage properties, such as use-after-free and double-

free errors, and correct use of setuid [4], are typically

amenable to verification by software model checking [1].

The absence of SQL injection vulnerabilities can be ver-

ified using string analysis [28], or by ensuring that SQL

statements are only made using a standardized API for

parameterized queries, and that tainted strings only enter

these queries as parameters [5, pp. 160–166]. Chess and

West discuss several security properties in detail [5].

We expect the set of properties for which automated

verification is feasible to grow. Currently, the standard

solution for checking for cross-site scripting and com-

mand injection vulnerabilities is taint checking [5]. This

approach checks that tainted data undergoes sanitization

checks, but not that these checks are correct. A vendor

could thus add useless sanitization checks to their code

to make it do well in the benchmarking process, without

actually increasing security. Recent work [29] applying

string analysis [6] to these problems gives us hope that

the situation will improve.

Tools. The instrumentation and verification tools are

trusted by all principals. The set of verification tools

can include tools using different paradigms, such as ab-

stract interpretation [8], model checking [7], type sys-

2

1

2

3 char ∗p , ∗q ;
4 p = ma l loc (1 0) ;

5

6 i f (p == NULL) e x i t (0) ;

7 q = p ;

8

9 f r e e (p) ;

10

11 f r e e (q) ;

1 s t r u c t s h a d ow c h a r p t r { char ∗ o r i g ; i n t s t a t e ; } ;
2 /∗ . . . ∗ /
3 s t r u c t s h a d ow c h a r p t r ∗p , ∗q ;
4 p = ma l loc (1 0) ;

5 i f (p != NULL) p−>s t a t e = ALLOCATED;

6 i f (p == NULL) e x i t (0) ;

7 q = p ;

8 a s s e r t (p−>s t a t e == ALLOCATED) ;

9 f r e e (p) ; p−>s t a t e = UNALLOCATED;

10 a s s e r t (q−>s t a t e == ALLOCATED) ;

11 f r e e (q) ; q−>s t a t e = UNALLOCATED;

(a) Original Program (b) Instrumented Version

Figure 2: Example instrumentation to check character pointers for double-free errors.

tems, string analysis [6], and deductive verification us-

ing Hoare logic [14]. The only requirement on the tools

is that they are sound — ie. that they never proclaim

unsafe assertions safe.

We assume that the tool set includes an automated

proof checker, so that vendors can supply manually-

generated proofs if no automated tool is able to verify

an assertion.

3 Feasibility of Property Verification

The feasibility of our benchmarking scheme depends on

a vendor’s ability to eliminate UVAs. Since Rice’s The-

orem [22] reduces checking of non-trivial properties to

the halting problem, one might think that the situation is

hopeless. This level of cynicism is not justified, however,

since the theorem only guarantees that given a verifica-

tion algorithm, there will be programs which it cannot

verify. It does not guarantee that there will be a need

to write these difficult-to-verify programs. Programmers

are already encouraged to write highly structured and un-

derstandable programs [9], and when both the programs

and the verification tools are of high quality, verification

can be very successful. For example, Ball et al. [1] re-

port checking 26 device drivers for conformance with 64

API usage rules, and were able to verify safety for 93%

of 〈program, property〉 pairs, and Venet et al. [27] report
verifying the safety of 80% of array bounds checks in a

piece of NASA flight control software.

We claim that vendors have significant control over the

ease of verifying their code. The key is to make cor-

rectness proofs obvious to automatic tools, and there are

many ways to do this.

Redundant checks. For the properties within the

scope of our benchmarking scheme, there is a trivial way

to get rid of UVAs— one can use the instrumenter to see

where to add runtime checks to the program, and leave

these checks in the shipped product. This guarantees se-

curity with a minimal investment in programmer time,

but sacrifices application performance. For some prop-

erties and programs, this solution may be practical —

for example, CCured reports low overhead for I/O-bound

applications [21] — but in other cases this overhead may

be unacceptable. In addition, runtime checks which halt

a program leave systems vulnerable to denial-of-service

attacks. In general, humans are able to add needed run-

time checks with less performance overhead and more

graceful recovery than automated tools.

Coding practices. Verification is easiest when a proof

of correctness depends only on simple computations

which are predictable by a tool. For example, many tools

which check for memory safety contain optimizations for

analyzing C strings [10, 26], including optimized stubs

for standard library functions. Tools can then track string

length and allocated array sizes, and verify the absence

of buffer overflows using systems of linear inequalities.

Similarly, verifying that API usage rules are obeyed often

involves only reasoning about flags representing type-

state [25] information, which are easily modeled using

boolean programs [1].

Verification is harder when proving safety requires

proving the correctness of more complex or unusual

computations. Dor et al. [10] give a good example of

a function in which the absence of buffer overflows is

difficult to verify. The function processes an input string,

and may exceed the string’s bounds if it does not contain

an equal number of ’(’ and ’)’ characters. Even though

this requirement is satisfied by the callers, verifying the

program is difficult, because a tool must (1) represent

the property that an array contains an equal number of

’(’ and ’)’ characters, (2) verify that a function computes

this fact correctly, and (3) use this fact to prove safety.

This proof is much more difficult than solving a sys-

tem of linear inequalities. An alternative implementation

which does not depend on a complex property of array

contents would be much easier to verify.

Annotations. Adding annotations to the source code

can significantly ease the job of a verification tool, as

they can guide a tool towards the correct proof. Anno-

tations which tell a tool how to prove a property holds,

rather than to assume that some property holds, do not

compromise soundness. These annotations reduce the

extent to which tools must conjecture proofs, bringing

their job closer to the easier task of proof-checking. A

typical use of annotations is to annotate functions with

3

conditions under which they are safe, prove that these

conditions are satisfied by all callers, and analyze the

function under these assumptions. The annotation ap-

proach has worked well for Microsoft, which has gotten

rid of many buffer overflows using SAL annotations [12].

Manual proofs. In some cases, one may need to write

part of a program in a way that is not amenable auto-

mated verification. A typical example would be writing a

computationally-intensive task using hand-optimized in-

line assembly. In such cases, it may make sense for the

programmer to supply a proof manually; for example,

using techniques from proof-carrying code [20].

4 Metrics

For any benchmarking scheme to be useful, the results

must be expressed as a meaningful number which is dif-

ficult to game. The standard measure of quality in soft-

ware engineering is defect density — the number of de-

fects divided by the size of a program [11]. A straight-

forward adaptation of this metric for our scheme would

be the number of UVAs divided by the lines of code in a

project. However, this metric is unsuitable when vendors

are untrusted, as a malicious vendor could improve their

score simply by adding more lines to a program.

Another straightforward adaptation would be to count

the absolute number of UVAs in a program, but even

this is easy to game, by performing a code path redi-

rection attack which changes the control flow of a pro-

gram so that multiple assertions are collapsed into one.

Figure 3 shows an example. Instrumenting array writes

with bounds checks would result in two assertions in the

program in Figure 3(a) (lines 8 and 9); however, a mali-

cious vendor could transform the program into the one

in Figure 3(b), which adds a layer of indirection and

would contain only a single assertion (line 2). Chess and

West [5, pp. 63–64] discuss how levels of indirection

can stymie attempts to count possible vulnerabilities in a

program, even if the vendor is not acting maliciously.

An ideal metric would (1) be resistant to gaming, (2)

consistently reward vendors for fixing UVAs, and (3) al-

low comparability between products. While code obfus-

cation makes it difficult to devise a metric which is per-

fect in all three respects, we believe a practical metric

that does well in all three is possible. We give four pro-

posals, leaving refinements as future work.

The legal option. One simple option is to ban gaming,

charge the certification authority with inspecting pro-

grams for attempts to game the system, and simply re-

port the number of UVAs in a program. This solution

would be problematic, as it would require significant hu-

man judgment. Furthermore, it would not address the

effects of benign indirection.

Scaling by paths. To perform a code path redirection

attack, a malicious vendor must increase the number of

paths through the program’s control flow graph (CFG)

which end at a given UVA. We can thus defend against

redirection attacks by weighting each UVA based on the

number of paths leading to it.

We can formalize this using the program’s interpro-

cedural CFG, which includes edges from each function

call to the head of the called function, and from each re-

turn statement to all corresponding return points, treat-

ing function pointers conservatively. Let the UVAs in a

program P be U = {u1, u2, . . . , uN}, and let lu be the

line of a UVA u. For any line l, let P(l) be the number of

paths to l in P ’s CFG, conflating paths that differ only in

the number of loop iterations. We can then weight each

UVA u as: ∑

u∈U

P(lu) (1)

For a large program, calculating P(lu) is likely to be

infeasible; however, an upper bound onP(lu) is tractably
computable. Let R(l) be the CFG nodes from which line

l can be reached. We can then approximate P(lu) as:

max in-degree∏

j=0

j|{x∈R(lu) such that in-degree(x)=j}| (2)

This metric limits a malicious vendor’s options for

code path redirection attacks to those which can be hid-

den in loops — for example, by putting the arrays and

indices in Figure 3(a) in a pair of arrays and looping over

them. Although not perfect, this limits the redirection

attacks a malicious vendor may easily perform.

The advantages of this metric are that it compensates

for benign indirection, and that removing a UVA will al-

ways improve a program’s score. A disadvantage is that

the number of paths to a UVAwill increase exponentially

with the size of a program, making the scores of differ-

ent programs vastly incomparable. The primary use of

this metric would therefore be to ensure that successive

revisions of a program are being hardened over time.

Blocks reaching UVAs. A somewhat simpler scheme

is to count the number of basic blocks in the CFG from

which any UVA can be reached. This metric grows lin-

early in the size of the program, rather than exponen-

tially, so the values are more comparable across different

programs. Since a redirection attack will only change

which UVAs a basic block reaches, this metric is also re-

sistant to redirection attacks. Vendors can only game the

metric to the extent that they can remove or merge ba-

sic blocks, which is limited by the need to have decision

points in programs.

The downside of this metric is that there is no guaran-

tee that removing a UVAwill improve a program’s score,

since many UVAs may be reachable from a given block.

4

1

2

3

4 vo id foo (i n t i1 , i n t i 2) {
5 char A[1 0 0] , B [5 0] ;

6 A[i 1] = ’H’ ; /∗ a s s e r t (i 1 < 100) ; ∗ /
7 B[i 2] = ’ i ’ ; /∗ a s s e r t (i 2 < 5 0) ; ∗ / }

1 vo id wr i t e c h a r (char ∗p , char c) {
2 ∗p = c ; /∗ a s s e r t (o f f s e t (p) < end (p)) ∗ / }
3

4 vo id foo (i n t i1 , i n t i 2) {
5 char A[1 0 0] , B [5 0] ;

6 w r i t e c h a r (A + i1 , ’H’) ;

7 w r i t e c h a r (B + i2 , ’ i ’) ; }

(a) (b)

Figure 3: A code path redirection attack in a contrived program. (a) Original program. (b) Malicious vendor has made

all writes to character arrays happen on the same line.

This metric thus may make it too difficult for a vendor

to improve a program’s score, making them less likely to

try to improve a program.

Dynamic analysis. A fundamentally different ap-

proach is to rely on the facts that (1) the benchmarking

framework uses runtime instrumentation to specify prop-

erties, and (2) vendors want their programs to perform

well. Let P be the original program, and let P ′ be the

instrumented program, with all safe assertions removed.

The metric is:

performance of P ′ (in seconds)

performance of P (in seconds)
(3)

where the performance is measured on some industry-

standard benchmark, such as WebStone. Removing as-

sertions will bring this ratio closer to 1, and the goal is

to get this ratio as close to 1 as possible. Code path redi-

rection attacks will not, in general, improve this ratio,

and vendors have a disincentive to improve their score

by sabotaging the performance of P . Furthermore, as

the ratio approaches 1, the customers have an incentive

to ask the vendor to ship P ′, rather than P .

A disadvantage of this metric is that it requires that

standard benchmarks exist for the application class. The

other disadvantage is that P ′ will, in general, contain up-

dates to metadata needed for the assertions (see lines 5,

9, and 11 of Figure 2(b)), and removing UVAs will not

remove these metadata updates, unless all UVAs are re-

moved, making the metadata unnecessary. There is thus

a limiting factor making it hard for the ratio in Eq. 3 to

approach 1 until all UVAs are removed.

5 Discussion

We discuss potential objections to our scheme, and pol-

icy issues associated with it.

5.1 Objections
Vendors will not want to have their code bench-

marked. Vendors often consider defect data propri-

etary [17], and thus may find a benchmark based on po-

tential defects unattractive. Uncooperative vendors can

be pressured by consumers to submit their products for

benchmarking. The academic and open source commu-

nities can also exert pressure on vendors by attempting

to harden and benchmark open source equivalents.

Vendors will not want to share their code with the

certification authority. We view disclosure of code

to the certification authority as being similar to current

practices of disclosing code to business partners, govern-

ments, and academics; for example, Microsoft’s Shared

Source initiative [19]. Such licensing and non-disclosure

agreements can prevent employees of the certification

authority from disclosing proprietary information.

UVAs are not necessarily vulnerable, so the bench-

mark is unfair. While it is true that the presence of

UVAs does not imply the presence of vulnerabilities, we

do not believe it is reasonable to give vendors the benefit

of the doubt. We furthermore argue that if correctness ar-

guments are made obvious to verification tools, they will

also be obvious to programmers, making new program-

mers less likely to introduce bugs into existing code.

Verification will never be practical. Verification

is already deployed in commercial tools, such as Mi-

crosoft’s SDV [18], the PolySpace C Verifier [26], and

NEC’s F-Soft [15]. Given the advances in program ver-

ification in recent years, it is also reasonable to expect

continuous improvement. However, a two-way effort

is needed: programmers must learn how to write code

which is easily verifiable.

The scheme encourages programmers to fix non-

existent bugs rather than doing useful work. When

any benchmarking process is put in place, there is a

risk that people will optimize for the benchmark. As

with performance benchmarking, we believe that secu-

rity benchmarking is worthwhile despite this risk. The

alternative of simply trusting vendors, and thus counting

on having insecure software, is much less attractive.

5.2 Policy Issues

There are policy issues about what properties should be

checked, what tools to include in the standard tool set,

and what assumptions, if any, the tools may make. For

example, many tools assume that integers behave as the-

oretical integers rather than 32-bit integers, and such un-

sound assumptions can make the verification task much

easier. The principals must agree on whether such as-

sumption should be allowed.

Unsound assumptions may introduce opportunities for

vendors to game the system by making assertions appear

5

to lie within dead code; for example, if a tool assumes

that integers are unbounded, a malicious vendor could

enclose an assertion in an if (MAX INT + 1 <= 0)

{...} statement. Tools will typically say that assertions

in dead code are safe, since they cannot fail (or execute).

To guard against this form of cheating, the benchmarking

scheme could mandate that no assertion may have a de-

pendence on an infeasible branch. A related problem is

that since most analysis tools assume memory safety, de-

liberate memory safety violations could be used to hide

UVAs; legal disincentives, with enforcement aided by

testing for deliberate violations, are a possible defence.

Agreeing on what properties to verify may be difficult

when different vendors’ products use different program-

ming languages and libraries, as properties are closely

tied to them. In this case, the self-interests of vendors

may be at odds. As with reaching agreement on perfor-

mance benchmarks, we expect bloodshed in these cases,

leading to eventual compromise.

6 Conclusions and Future Work

We have laid out a benchmarking scheme for pressur-

ing software vendors to use verification technology to

provably secure their code over time. We believe that

this scheme, if adopted, would lead to substantially more

secure software. Problems for future work are provid-

ing metrics which achieve the best balance of resistance

to gaming, consistency in rewarding vendors for fixing

UVAs, and comparability between products, and in de-

termining the best set of properties to verify.

Acknowledgments

We thank our colleagues at Carleton University, RMC,

the University of Toronto, and CMU; in particular Kelvin

Ku, Lionel Litty, Greg Wilson, Arie Gurfinkel, Paul Van

Oorschot, Anil Somayaji and Scott Knight. Thomas E.

Hart is supported by a MITACS project grant.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. Mc-

Garvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner. “Thor-

ough Static Analysis of Device Drivers”. In Proc. EuroSys’06,

pages 73–85, 2006.

[2] T. Ball and S. Rajamani. SLIC: A specification language for in-

terface checking (of C). Technical Report MSR-TR-2001-21, Mi-

crosoft Research, 2002.

[3] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R. Ma-

jumdar. The BLAST query language for software verification. In

Proc. SAS’04, LNCS 3148, pages 2–18, 2004.

[4] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In Proc.

USENIX Security’02, pages 171–190, 2002.

[5] B. Chess and J. West. Secure Programming with Static Analy-

sis. Addison-Wesley Software Security Series. Addison-Wesley,

2007.

[6] A. S. Christensen and A. Møller and M. I. Schwartzbach. Pre-

cise analysis of string expressions. In Proc. SAS’03, pages 1–18,

2003.

[7] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT

Press, 1999.

[8] P. Cousot and R. Cousot. “Abstract Interpretation: A Unified

Lattice Model For Static Analysis of Programs by Construction

or Approximation of Fixpoints”. In Proc. POPL’77, pages 238–

252, 1977.

[9] E. W. Dijkstra. Letters to the editor: go to statement considered

harmful. Commun. ACM, 11(3):147–148, 1968.

[10] N. Dor, M. Rodeh, and S. Sagiv. CSSV: towards a realistic

tool for statically detecting all buffer overflows in C. In Proc.

PLDI’03, pages 155–167, 2003.

[11] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous

& Practical Approach. International Thompson Computer Press,

1997.

[12] B. Hackett, M. Das, D. Wang, and Z. Yang. “Modular Checking

for Buffer Overflows in the Large”. In Proc. ICSE’06, pages 232–

241, 2006.

[13] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and

language for building system-specific, static analyses. In Proc.

PLDI’02, pages 69–82, 2002.

[14] C. Hoare. “An Axiomatic Basis for Computer Programming”.

Communications of the ACM, 12(10):576–580, October 1969.

[15] F. Ivančić, Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter, and

P. Ashar. F-Soft: Software verification platform. In Proc.

CAV’05, pages 301–306, 2005.

[16] B. Joy. Software isn’t complete unless it’s secure. Business-

Week, September 2006. http://www.businessweek.

com/technology/content/sep2006/tc20060926%

5f175%459.htm?chan=top+news%5ftop+news+

index.

[17] L. M. Laird and M. C. Brennan. Software Measurement and Esti-

mation: A Practical Approach. Quantitative Software Engineer-

ing Series. John Wiley & Sons, Inc., 2006.

[18] Microsoft Research. Static driver verifier, 2004. http://www.

microsoft.com/whdc/devtools/tools/SDV.mspx.

[19] Microsoft Shared Source Initiative Home Page. http:

//www.microsoft.com/resources/sharedsource/

default.mspx.

[20] G. C. Necula. Proof-carrying code. In Proc. POPL’97, pages

106–119, 1997.

[21] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.

“CCured: Type-Safe Retrofitting of Legacy Software”. ACM

TOPLAS, 27(3):477–526, 2005.

[22] H. G. Rice. Classes of recursively enumerable sets and their de-

cision problems. Trans. Amer. Math. Soc., 74(2):358–366, 1953.

[23] SANS Institute. SANS Top-20 2007 Security Risks (2007 Annual

Update), 2007. http://www.sans.org/top20/2007/.

[24] F. B. Schneider. Enforceable security policies. ACM Trans. Inf.

Syst. Secur., 3(1):30–50, 2000.

[25] R. E. Strom and S. Yemini. Typestate: A Programming Lan-

guage Concept for Enhancing Software Reliability. IEEE Trans.

Software Eng., 12(1):157–171, 1986.

[26] The MathWorks. Polyspace products for embedded software

verification. http://www.mathworks.com/products/

polyspace/.

[27] A. Venet and G. Brat. Precise and efficient static array bound

checking for large embedded C programs. In Proc. PLDI’04,

pages 231–242, 2004.

[28] G. Wassermann and Z. Su. Sound and precise analysis of web

applications for injection vulnerabilities. In Proc. PLDI’07, pages

32–41, 2007.

[29] G. Wassermann and Z. Su. Static Detection of Cross-Site Script-

ing Vulnerabilities. In Proc. ICSE’08, pages 171-180, 2008.

6

