
Concord: A Secure Mobile Data
Authorization Framework for

Regulatory Compliance
Gautam Singaraju and Brent Hoon Kang – University of North Carolina at Charlotte

ABSTRACT

With the increasing adoption of mobile computing devices that carry confidential data,
organizations need to secure data in an ever-changing environment. Critical organizational data
should be protected from a) a disgruntled user’s access and b) a theft or loss of the mobile device.
When such compromises do occur, future data access should be immediately revoked and the
knowledge of the data that might have been exposed be identified. Such assessment enables an
organization to demonstrate its adherence to mandated regulatory compliance.

We propose Concord: a framework that provides an organizational service that allows an
organization to monitor data that has been accessed on its users’ mobile devices. Concord
distributes trust among multiple entities so as to enable data access following their successful
interaction. Firstly, to enable data access, users of the mobile device require the organization’s
involvement to access the data on the mobile devices. Likewise, in the event of loss or theft of a
mobile device, organizations can immediately discontinue further requests for data accesses to the
previously-unread data on the mobile device. Secondly, a valid user’s consent is required to access
the data. Thus, should an intruder somehow receive organizational permission, the data on the
mobile device is still inaccessible. Thirdly, upon identification of a compromise, Concord provides
the organization with the detailed information about the data that has been exposed enabling them
to initiate steps for regulatory compliance.

Introduction

Today, organizations are faced with numerous
cyber threats from internal as well as external sources.
Hackers operating from external institutions constant-
ly lurk in search of an IT vulnerability that would
allow them to compromise non-public data. Mean-
while, insiders or disgruntled employees have access
to confidential information [8]. Notably, the recent
increase in the use of mobile devices [11] has in-
creased organizations’ risk of losing sensitive data as
mobile devices are prone to theft or loss.

Incidents of data leak, theft, or misuse are not
rare; regulation compliances [7, 13] have been imposed
to guide an institution’s data management and security
policies. Regulatory compliances are designed to pro-
tect the privacy of non-public information. The compli-
ance standards require institutions to monitor each
user ’s data accesses. For example, data breach notifica-
tion bill states that in case of data loss, institutions
should inform the affected customers.

Protecting data is challenging, especially when
the data is on mobile devices. We stipulate that a sys-
tem that protects data should:

a) Safeguard the confidentiality of the data;
b) Enforce immediate access revocation; and;
c) Record the history of data accesses.

To address these requirements, we propose Con-
cord, a data monitoring framework that assists in

complying with regulatory standards. Concord em-
ploys a ‘‘syndicated approach’’ where user’s access to
institution’s data is dependent upon collective interac-
tion of the entities that govern the data. The entities
can only be partially trusted; while the complete trust
can be placed only after their interaction.

Towards supporting such an interaction, Concord
uses a 2-out-of-2 threshold cryptographic technique,
which requires at least two entities to concur for data
access. This paper uses the cryptographic technique
called mediated RSA (mRSA) [6, 14]. Concord frame-
work can be extended to use any 2-out-of-2 threshold
cryptographic technique.

Using the Concord framework, a user of the
mobile device needs to obtain the organization’s con-
sent to access data that resides on the mobile device.
Consequently, upon detection of a compromise, the
organization immediately discontinues further data
access requests. An intruder would need to obtain both
the organization’s and the user’s permission to access
data. As Concord framework maintains the list of files
accessed by users, it provides the organization with
the knowledge of the exposed data.

Concord separates the data access history manage-
ment from availability of data. As data availability can
be improved by increasing the number of file servers,
data access history should be maintained by another
entity. Moreover the organization could securely main-
tain data access histories by securing a single entity.

22nd Large Installation System Administration Conference (LISA ’08) 91

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

The rest of the paper is organized as follows: the
next section discusses the threat model addressed by
Concord framework. Then related work in the area is
overviewed after which the Concord framework and
its design is shown. The next section describes the
implementation issues of the Concord framework fol-
lowed by an evaluation of the performance of the Con-
cord framework and a conclusion.

Threat Model

This section discusses the threat model faced by
institutions. Organizations usually maintain network
file servers whilst, users carry a subset of the data on
their laptops. Due to the scattering of data across dif-
ferent storage devices, the organization faces potential
risks due to mismanaged data servers or mobile
devices. Consequently, the organizations would like to
maintain a history of accesses of critical data for the
fear of improper use or compromise of the data which
further helps towards complying with regulatory stan-
dards. Based on the risks faced, we classify the threats
into three categories:

1. Insecure Data Servers
2. Loss of Mobile Device with/without Disk En-

cryption
3. Disgruntled Users

Insecure Data Servers
An institution’s data server is susceptible to com-

promise due to mismanagement, improper configura-
tion or worse, a hacker. If the data is not encrypted, a
hacker can access and modify critical data. Data
servers, hence, cannot be trusted to store unencrypted
data as they can be prone to compromise. As institu-
tions usually maintain highly available data servers
with backups, we assume service disruption is not an
issue, while storing encrypted data is of utmost impor-
tance.
Loss of Mobile Device and Disk Encryption Keys

Mobile devices, such as laptops, carry a part of
the organization’s data. Loss of the mobile device
could imply a data loss. For example, mandatory regu-
lation compliance standard such as the Feinstein Bill
dictates that upon loss of critical customer data, orga-
nizations must communicate about the loss to the
affected customers. In addition to loss, the data on the
mobile devices is susceptible to risks arising from
unauthorized access either due to spy-ware, malware
or from unauthorized users.

An organization would benefit from the knowl-
edge of subset of data loss enabling them to alert a
subset of users rather than all. Upon identification of
an unauthorized access, the organization should be
precisely aware of the data that could have been
exposed to potential risks. To secure against threats,
organizations encrypt data on the hard disk and secure
the data key. If a hardware-based data key is compro-
mised, the data on the mobile devices is prone to
unauthorized access.

Disgruntled Users
About 60% of the reported attacks have been

either from current or former employees [8]. Yet,
organizations enable personal laptops with critical data
which could be compromised. Upon detection of such
users, data access from the mobile device should be
immediately revoked to disable further accesses to the
data stored on the laptop. Further the access history
should be known to the organization.

Related Work

Based on the threat model discussed in Section 2,
we discuss other currently available systems. We cate-
gorize the related work into three sections:

• Data protection for Mobile Devices,
• Data Protection Frameworks, and
• the cryptographic techniques available for such

a framework.

Data Protection for Mobile Devices
Toward securing a mobile device when the user

is not in the vicinity, Transient Authentication [3, 4]
introduces a mechanism whereby the data and the
memory of the mobile device is encrypted. Only users
who carry a hardware token can access the mobile
device. Transient Authentication aims to defend a sys-
tem against unauthorized physical access. However,
Transient Authentication does not consider the secu-
rity threats arising from within the organization.

Another technique to secure the data is to en-
crypt it using a hardware-based encryption. For exam-
ple, Seagate’s hardware-based key is a technique that
encrypts the disk. Though an encrypt-on-disk mecha-
nism protects data on the mobile device when it is
stolen, it cannot protect against loss of the key or a
disgruntled user. In case both the key and the disk are
lost, the organization would not be aware of the com-
promised data on the disk. Therefore, hardware key
based solution does not consider compliance with reg-
ulatory standards.

IBM tackles these security issues with their lap-
tops using smart cards and biometric authentication
[11]. IBM has developed a Trusted Platform Module
that stores user passwords on a chip. Should a mobile
device be stolen, Absolute Software Corporation’s
Computrace transfers data to a remote location and
erases the hard disk. These mechanisms do not safe-
guard the data against malicious users.

Data Protection Frameworks
Plutus [9] provides strong security in an unse-

cured server (file server) setting. Plutus’s design con-
sideration introduces the concept of the data owner
(reader and writer) who maintains the keys for the
data. In this mechanism, the data creator is a trusted
entity. Plutus uses a lazy revocation mechanism to
revoke a users’ data access, i.e., write access is
revoked when there is an attempt to write. Plutus
assumes that the data creators own the data. Plutus

92 22nd Large Installation System Administration Conference (LISA ’08)

Singaraju and Kang Concord: A Secure Mobile Data Authorization Framework . . .

assumes the mobile device is secure and does not pro-
tect against theft of data.

Network file servers, such as Encrypted NFS
[12] use OpenSSH for secure communication. Net-
work file servers provide centralized storage architec-
ture that allows a single point of revocation for future
data accesses. Network file servers require users to
connect to the server to access the data.

Threshold Cryptographic Algorithm

Threshold cryptographic algorithms have been
used to provide efficient revocation [6, 10]. mRSA [6,
14] is a 2-out-of-2 threshold cryptographic algorithm
that provides a single public key and two private keys.
The mRSA threshold cryptographic algorithm allows
a trust model with three entities: a) the client; b) the
mediator; and c) the server. The server maintains the
public key whereas the two private keys are distrib-
uted among the client and the mediator. This necessi-
tates that both the client and the mediator to partake in
a trusted relationship to decrypt the data.

We use the mRSA cryptographic mechanism in
Concord’s design to assist in its efforts to monitor the
data access of the users. Additionally, the mRSA tech-
nique provides a mechanism for fast revocation of a
mobile device.

We propose the Concord framework which places
partial trust on all the entities (data server and mobile
device). Concord provides a mechanism to monitor
user activity by employing the mRSA cryptographic
technique. The collective interaction of the entities
ensures data protection without the need for any addi-
tional hardware. As the key distribution is managed by
a single trusted infrastructure-level service, Concord
enables the administrator to set security levels in
accordance with the critical value of the data. We dis-
cuss the different security levels later.

Concord Framework

The Concord framework addresses the threat
model discussed earlier by distributing the trust among
multiple entities. Concord framework mandates that
only encrypted data be available to any entity and
access to data can only be permitted after a successful
interaction among them. Concord employs both en-
crypt-on-disk and encrypt-on-wire mechanisms.

As Concord assumes that a laptop transmits the
data over the Internet, we place a constraint on the lap-
top should be connected to the Internet to be able to
access the data. We transfer the metadata rather than
transmitting huge files. We assume that if decrypted
data is locally-copied, data is lost.

As organizations might have multiple file ser-
vices, Concord minimizes the data access control
management by segregating the data management and
access control to a single entity rather than on multiple
file servers.

Concord assumes that the data creator need not
be the data owner. The data access policies, therefore,
need to be provided by the organization. The infra-
structure-level monitors and revokes data accesses on
a user ’s mobile device. As discussed earlier, along
with the need to encrypt data for storage and transfer,
the interaction with an intermediate entity mandates
the use of a cryptographic mechanism. The crypto-
graphic algorithm should:

1. Immediately revoke the client.
2. Mandate collaboration among entities for data

access. (This ensures that compromise of any
single entity does not compromise the data – by
distributing trust among multiple entities.)

A 2-out-of-2 cryptographic mechanism supports
such a requirement. The cryptographic mechanism
requires two entities to collaborate to decrypt the con-
tents. This provides an infrastructure-level service
capable of maintaining access patterns of the users.
We use the mediated RSA cryptographic algorithm [6,
14] a 2-out-of-2 cryptographic technique. In the fol-
lowing section, we discuss the mRSA protocol.

mRSA Protocol

The Mediated RSA (mRSA) cryptographic pro-
tocol consists of a public key associated with two pri-
vate keys. The private keys are distributed to one of
the two entities: the Security Mediator (SEM) and the
client. Any content that is encrypted by the server
(holder of the public key) can be decrypted by com-
bining decryptions by both the mediator and the client.
Any single entity is unable to decrypt the content inde-
pendently.

Figure 1: mRSA protocol with interaction between
the mediator and the client to decrypt data (SEM
– Security Mediator).

Figure 1 demonstrates the mRSA protocol. The
encrypted contents are stored both at the client and the
SEM. When the client requires access to the unen-
crypted contents, the client requests the SEM to decrypt
the contents with its private key and starts decrypting
the content with its own private key and is referred to
as SEM-decrypted or Client-decrypted data. A single
decrypt operation by Security Mediator does not pro-
vide plain text. The SEM-decrypted content is still

22nd Large Installation System Administration Conference (LISA ’08) 93

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

encrypted with RSA strength encryption. The media-
tor transmits the SEM-decrypted data to the client.
The client combines the SEM-decrypted data with the
Client-decrypted data to access the plain text. If the
client is revoked, the mediator does not compute or
transmit SEM-decrypted contents. Without the media-
tor ’s participation, the client cannot compute the plain
text.

Employing the mRSA algorithm directly to mo-
bile networks to allow them to share a huge size of
data creates performance issues. For instance, if the
encrypted data is about 1 GB, employing mRSA
requires sizable bandwidth to transfer the data be-
tween the mediator and the client. To overcome this
limitation, Concord framework uses the mRSA proto-
col to transfer secret key algorithm for cryptographi-
cally securing the data.

Concord Components
In this section, we describe the various compo-

nents of the Concord Framework. Concord assumes
that the infrastructure secures and maintains infra-
structure-based entities.

Figure 2 shows the different components of Con-
cord. The trusted entities are:

1. Trusted Key Server
2. Connected Enforcer

And un-trusted entities include:
3. Disconnected Enforcer
4. Data Server and
5. Mobile Device

Figure 2: Concord Components – Data Server, Discon-
nected Enforcer (D-Enforcer) and Mobile Device
are un-trusted where as the Key Server and the
Connected Enforcer (C-Enforcer) are completely
trusted. The collective interaction among one of
the enforcers and the Mobile Device can decrypt
the data.

Trusted Key Server
The Trusted Key Server generates cryptographic

keys for other components and for the data. To pro-
vide higher security, Concord partitions the data into
blocks referred to as Data Units. Each Data Unit is
encrypted with a secret key algorithm using Data Unit

Keys. A Data Unit can be the entire disk volume, a
directory or individual files. A flexible Data Unit
allows multiple security levels depending upon data
sensitivity. The advantage of the design allows a com-
promise be confined to a single unit. The Trusted Key
Server stores the Data Unit Keys for other entities.

In addition to Data Unit Keys, the Trusted Key
Server creates mRSA keys. When a new mobile
device joins the organization, the mobile device cre-
ates an mRSA keyset. The Trusted Key Server stores
the public key and passes the other keys to the
enforcer and the client. The Trusted Key Server cre-
ates a secondary multiple mRSA key pair if a Discon-
nected Enforcer is involved.
Connected Enforcer

The Connected Enforcer (C-Enforcer) is a trusted
infrastructure entity where the Data Unit access policies
are enforced. The C-Enforcer is available over either
wired or wireless networks. As shown in Figure 2, the
mobile device can access the plain-text only after inter-
acting with a C-Enforcer. If the mobile device is re-
voked, C-Enforcer does not provide the SEM-decrypted
Data Unit Keys, disabling the mobile device’s ability to
view plain text.

C-enforcer has an additional benefit: it can main-
tain the list of Data Units accessed by a mobile device.
Due to this benefit, the organization determines a
user ’s data access patterns as and when they request
Data Unit Keys. This determines the subset of data
that has been accessed by the users of mobile devices.
In the event of a security breach, user access history is
critical for an organization to comply with regulatory
standards. We assume that the C-Enforcer stores the
logs in a tamper-proof storage.

C-Enforcer and Trusted Key Server can both be a
part of the same entity or can be separated. We design
the two as different entities to demonstrate the differ-
ent functionality.
Disconnected Enforcer

To support mobility, Concord supports a Discon-
nected Enforcer (D-Enforcer) that functions as an
enforcer in the absence of the C-Enforcer. The D-
Enforcer, however, is an un-trusted entity that caches
only a part of the Data Unit Keys to enables local
reads and writes. The data on the D-enforcer is not
monitored as rigorously as C-enforcer as: a) it does
not maintain data request logs; and b) any key re-
vealed to it is considered to have been viewed by the
users.

Storing the SEM-decrypted content along with
encrypted data may lead to data and key compromise.
Thus, D-enforcer (e.g., a PDA) provides a second
layer of security when data is stored on a mobile sys-
tem. We assume that a mobile device is a laptop and
the D-Enforcer usually is a PDA. By mandating the
use of a D-Enforcer, the risk of data loss is distributed
among multiple entities as the loss of both is less
likely.

94 22nd Large Installation System Administration Conference (LISA ’08)

Singaraju and Kang Concord: A Secure Mobile Data Authorization Framework . . .

Data Server
The Data Server stores the encrypted data and

can function with any file system. Concord assumes
that the Data server is not a trusted entity and that it
can be replicated to provide high availability. By sepa-
rating data access from data governance, organizations
can provide highly replicated service while minimiz-
ing the overhead of access control. Storing encrypted
Data Units on an infrastructure’s data servers provides
a two-fold advantage:

• the Data Server compromise does not imply
data compromise; and

• the data is available to the users upon the loss
of the Mobile Device.

Mobile Device
A mobile device, such as a laptop, maintains the

data in an encrypted format to secure data from physi-
cal loss. The encrypted Data Unit Keys are stored on
the Mobile device as well as on an Enforcer. The Data
Unit Keys can be transmitted securely using the mRSA
protocol. The Data Unit Keys should be securely han-
dled on the Mobile Device and deleted when the need
for unencrypted data no longer exists.

Concord Protocol
Concord provides a mechanism to download and

store encrypted data on the Mobile Device. In a con-
nected mode, the Mobile Device interacts with the C-
Enforcer; in the absence of the C-Enforcer, the D-
Enforcer doubles up as an enforcer. Both the Enforcers
have different mRSA key pairs as the C-enforcer’ keys
are organizational as compared to the D-Enforcer.

As explained in the above sections, each Data
Unit is encrypted with a Data Unit Key generated
using a symmetric key algorithm. The use of the sym-
metric key algorithm avoids transferring huge data
using the mRSA algorithm. This subsection discusses
the design of Concord, that is, mRSA key setup,
reader and writer architecture using the C-Enforcer
and the D-Enforcer.

Key Setup
In the Concord framework, key setup is required

in two cases: first, when a new Mobile Device joins
the Concord framework; second, when new Data Unit
Keys are transferred to the Mobile Device. As men-
tioned in previous sections, the Concord framework
uses mRSA, 2-out-of-2 threshold cryptography.

mRSA Key Setup
Figure 3 shows the process of setting up the

mRSA keys for a Mobile Device. When a new Mobile
Device joins the Concord Framework, the Mobile
Device requests the Trusted Key Server for mRSA
keys to be generated. The Trusted Key Server per-
forms a validation check to ensure that the client has
not been previously revoked by checking a revocation
list. If the Mobile Device has been revoked, the mRSA
keys are not generated. On the other hand, if the
Mobile Device has not been revoked, mRSA keys are

generated for the client. If the C-Enforcer is involved,
the mRSA keys are transmitted to the Mobile Device
and the C-Enforcer. If the D-Enforcer is required in
addition to the C-Enforcer for a Mobile Device, the
mRSA keys are communicated securely to the C-
Enforcer, the D-Enforcer and the Mobile Device. The
creation of an mRSA key can occur only after an
mRSA key is obtained for the C-Enforcer.

Figure 3: mRSA Key Setup for a new Mobile Device.
When a Mobile Device requests for mRSA Key,
the Trusted Key Server checks the revocation list.
If the client is revoked, it does not receive the
mRSA keys else the mRSA keys are transmitted
to other entities.

Figure 4: Obtaining Data Unit Keys. The Mobile
Device requests the encrypted Data Unit Keys for
the reader architecture. In the writer architecture,
the Trusted Key Server provides the Mobile De-
vice with a new Data Unit Key.

Data Unit Keys
Figure 4 demonstrates the mechanism for a

Mobile Device to obtain a new Data Unit Key. When a
Mobile Device requests the Trusted Key Server for a
new Data Unit Key, the Trusted Key Server performs
validation checks and generates the keys. The Data
Unit Key is stored on the Trusted Key Server and the
encrypted Data Unit Key is transmitted to the C-
Enforcer and Mobile Device. In addition, the Trusted
Key Server creates a token which is transmitted to the
Mobile Device and the Data Server. When the Mobile

22nd Large Installation System Administration Conference (LISA ’08) 95

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

device wishes to put the encrypted Data Unit on the
Data Server, the Data Server verifies the token and
stores it.
Download Encrypted Data Units

Concord can be configured for use with any
underlying file system. As discussed in the above sec-
tions, the Data Server stores encrypted Data Units. We
assume that the underlying file system provides basic
access control allowing only authorized users to down-
load the encrypted data. Once the user is authenticated,
the encrypted data can be downloaded to a Mobile
Device and stored for future access.
Read and Write Enforcement Protocol Using the C-

Enforcer
When a user creates data, Concord provides a

secure mechanism to upload the Data Unit to the Data
Server. Assuming that the mRSA keys have been
assigned, upon the request for a Data Unit Key, the
Trusted Key Server communicates the encrypted Data
Unit key to the C-Enforcer and the Mobile Device.

Figure 5 and Figure 6 shows the process of
decrypting the Data Unit key through the interaction
between the Mobile Device and the C-Enforcer. When
the Mobile Device requests the decryption of the Data
Unit key, the C-Enforcer checks the revocation list.
Upon successful validation, the C-Enforcer decrypts
the Data Unit Key using the mRSA private key it holds.
The SEM-decrypted Data Unit Key is then transmitted
to Mobile Device. The Mobile Device simultaneously
decrypts the encrypted Data Unit key using its own pri-
vate key. Finally, the Mobile Device combines the
SEM-decrypted and Client-decrypted Data Unit Keys
to retrieve the Data Unit Key. In the reader architecture
(Figure 5), the client is able to read the content in the
encrypted Data Unit using the Data Unit key obtained.

In the writer architecture shown in Figure 6, the
Mobile Device requests for a Data Unit Key to encrypt
the data. Once the data is encrypted, the user places
the data onto the data server. If the Mobile Device
requests to store the data as a part of a new Data Unit,
it requests from the Trusted Key Server a single Data
Unit Key that can be used to encrypt the clear data. A
new Data Unit Key is created based on the protocol
described earlier. When storing the Data Unit, the Data
Server checks the randomly generated token. Token
verification is used to indicate that a new Data Unit
has been created and disallows creation of Data Units
with the same name and location. Concord allows data
writes only when the Mobile Device is in a connected
mode. We explain the disconnected mode in the next
section. In comparison, if the data needs to be added
to an existing Data Unit, the Mobile Device retrieves
the Data Unit Key, encrypts the Data Unit with the
Data Unit Key, and stores it on the Data Server.
Reader Architecture for D-Enforcer

In a disconnected mode, the C-Enforcer dele-
gates data enforcement to the D-Enforcer. In compari-
son to the C-Enforcer, the D-Enforcer maintains a

subset of Data Unit Keys. We believe that the subset
of keys available to the D-Enforcer can be determined
by an organizational policy regarding the number of
Data Units to be shared based on the data sensitivity.
Such a policy does not necessarily safe-guard against
a hacker for which the keys are available on the D-
Enforcer, it only identifies this data. We discuss key
policy in the next section.

Figure 5: Decrypting the Data Key to accessing a
Data Unit Key for reader architecture.

Figure 6: Decrypting the Data Key to encrypt data for
writer architecture.

Figure 7 shows the Mobile Device requesting a
subset of Data Unit Keys from the Trusted Key Server.
The Trusted Key Server performs the validation checks
and transfers the complete set of Data Unit Keys to the
Mobile Device and the C-Enforcer. In contrast to the
C-Enforcer, the D-Enforcer and the Mobile Device
receive a subset of the Data Unit Keys. The Mobile
Device maintains two sets of encrypted Data Unit
Keys: one encrypted with the mRSA key of the C-
Enforcer and the other with that of the D-Enforcer.

Upon request from the Mobile Device for a Data
Unit key, the D-Enforcer decrypts the key and trans-
mits the SEM-decrypted key to the Mobile Device.
The Mobile Device uses the SEM-decrypted key to
compute the complete Data Unit Key. For regulatory
compliance, all the data whose Data Units keys were
given to D-Enforcer are assumed as accessed.

96 22nd Large Installation System Administration Conference (LISA ’08)

Singaraju and Kang Concord: A Secure Mobile Data Authorization Framework . . .

Figure 7: The Trusted Key Server distributes the Data
Unit Keys to the Enforcers. The C-Enforcer main-
tains the complete set of Data Unit Keys whereas
the D-Enforcer maintains smaller subset of Data
Unit Keys.

Table 1: How Concord is able to secure the data for different compromises.

Security in Concord
In this section, we discuss the security provided

by Concord. We primarily discuss: (a) revocation of a
Mobile Device; (b) granularity of the Data Unit and
(c) D-Enforcer Data Unit Key subset policy. Table 1
discusses how Concord secures data in case of differ-
ent compromises. We assume that the data on the
mobile device is decrypted in a secure location. Con-
cord cannot secure data that has been decrypted and
copied onto devices that it cannot monitor. Upon loss
of the Mobile Device a part of the keys along with the
data would be available to the attackers. However, the
data is encrypted and the keys are still encrypted. To
decrypt the key, the second private key from an
Enforcement Point is required. If the attacker has the
D-Enforcer, a part of the keys could be decrypted and
the other part of data is provably secure. The other
option would be attack the C-Enforcer, which would
be monitored. Therefore, without an Enforcer, the data
is secure.

Revocation in Concord
Concord supports: a) revocation of read access to

previously unread Data Units and b) revocation of the
write access to all Data Units. If a Mobile Device
needs to be revoked following a compromise, admin-
istrators can perform the revocation at the Trusted Key
Server. The Trusted Key Server securely transfers the
revocation list to the C-Enforcer immediately upon
revocation. Further data access to the unread data on

the affected Mobile Device is not possible as the C-
Enforcer will not provide the Data Unit Keys to the
Mobile Device.

In the disconnected mode, the D-Enforcer stores
a subset of the Data Unit Keys. A key distribution pol-
icy, enforced at the Trusted Key Server, determines the
number of keys that can be stored at the D-Enforcer
for Mobile Devices. The D-Enforcer stores a smaller
subset of keys that can be used to decrypt the Data
Units even after revocation of the Mobile Device.
However, as the users cannot access the other Data
Unit Keys, the compromise is contained. Future ver-
sions of the Data Units are encrypted with new Data
Unit Keys, to protect them from future read access.

When D-Enforcer needs new keys, the old set of
keys that was cached should be cleared and a new set
can be provided. In such a case, the old set of Data
Units is assumed to have been exposed to the user.
Granularity of the Data Unit

Partitioning the Data into multiple Data Units
determines the desired security level when employing
the Concord framework. When a potential compro-
mise occurs or the data needs to re-encrypted follow-
ing a user revocation, data partitioning allows re-
encryption of a smaller subset of the data, instead of
encrypting, say, the entire volume. The granularity of
the Data Units can be configured by the organization
and will dictate the level of security. The three avail-
able granularities for Data Units are:

• File-granular;
• Directory-granular; and
• Volume-granular.

File-granular configuration creates a Data Unit
key for each file. This is the highest level of security
that requires a large number of keys. For example, our
experiment shows that for 77,900 files, about 3 MB is
required to store the keys. We believe that this is
acceptable as both the C-Enforcer and the Trusted Key
Server are dedicated systems used to store keys for
multiple Mobile Devices.

Directory-granular configuration provides secu-
rity by encrypting the files in a particular folder; how-
ever, the sub-folders are encrypted using another Data
Unit key. This granularity provides lesser security
compared to the File-granular configuration, as multi-
ple files share the same key. For the above example,
we note that there were about 7,251 folders taking up
about 0.3 MB.

22nd Large Installation System Administration Conference (LISA ’08) 97

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

The volume granularity configuration involves
use of a single key for the entire volume, providing the
least security available with Concord. Such a system is
similar to encrypt-the-disk system.

Each level of security comes with the cost of
encryption and decryption. For example, if an organi-
zation wants to maintain a high level of security, it
would imply that the organization needs to employ
File-granularity, which would result in high costs in
terms of storage and encryption and decryption opera-
tions. On the contrary, if the organization would like
to maintain minimal security, the volume-granular can
be used, which requires a minimal amount of time to
decrypt the data. We suspect that a reasonable balance
between security and cost would be to employ direc-
tory-granularity for the data-units.

D-Enforcer Data Unit Key Subset Policy
As discussed in previous sections, the number of

encrypted Data Unit Keys cached by the D-Enforcer is
determined by organizational policy. Upon successful
transmission of these keys to the D-Enforcer, the
Trusted Key Server transmits the list of keys revealed
to the C-Enforcer for regulatory compliance. For all
the Data Units for which the encrypted Data Unit
Keys are revealed to D-Enforcer, the user is assumed
to have accessed the data for regulatory compliance.
Therefore, a policy to restrict the amount of files that
users can access in a disconnected mode is required to
provide highly secure systems. For example, if a dis-
gruntled user is known to have checked out a huge
number of Data Unit Keys over time, it would imply
that a huge amount of data might have been compro-
mised. We suggest that such a policy should be de-
signed on a need-to-know basis.

Concord Implementation

In this section we discuss the implementation
details of each of the components of the Concord
framework.

Trusted Key Server Implementation
The Trusted Key Server requires administration

to set the levels of security. For instance, apart from
revocation, Trusted Key Server allows Data Unit key
generation and distribution. All key-requests mandate
Trusted Key Server to push keys to C-Enforcer or D-
Enforcer. The revocation list at the Trusted Key Server
should be kept updated and updated at C-Enforcer to
discontinue further key requests.

The Trusted Key Server serves the following
requests:

• The mRSA key setup, including checking the
revocation list and generation of unique mRSA
key pairs for both the Enforcers and the Mobile
Device.

• Generation of the Data Unit Keys using the
Advanced Encryption Standard (AES) stan-
dard.

The Trusted Key Server stores the mRSA keys
for each Mobile Device. The Trusted Key Server
maintains the list of revoked Mobile Devices. Further,
the Trusted Key Server maintains the list of the Data
Units and their corresponding Data Unit Key for each
Mobile Device.

C-Enforcer Implementation
The C-Enforcer’s communication with the Mo-

bile Device is the primary mode of request for a Data
Unit key that requires mRSA decryption. The C-
Enforcer has been implemented in Java. The commu-
nication of the C-Enforcer with various components
has been developed using the Java’s socket library.
The current Concord prototype allows only a single
Data Unit Key to be decrypted per request.

The encrypted Data Unit Keys are stored on the
Trusted Key Server as a single data structure (a Java
HashMap). The data structure keeps a mapping be-
tween the hash of the Data Unit’s storage path and the
associated Data Unit Keys. We implemented this fea-
ture in Concord using SHA1 that generates a 20 byte
output.

D-Enforcer Implementation
We implemented the D-Enforcer using Java ME

running on a PDA. The Java ME Virtual Machine
(JVM) was CrEme 4.0 [5] compliant with J2ME Con-
nected Device Configuration (CDC) 1.0 specification
based on JDK 1.3.1. The D-Enforcer stores encrypted
Data Unit Keys in a Java HashMap. Storing hash of
the data as an identifier to associate the encrypted file
keys reduces the in-memory data structure size on D-
Enforcer.

For the implementation, D-Enforcer has two ser-
vices on the active port in a) receiving and b) sending
mode. The communication between the Trusted Key
Server and the D-Enforcer is in the receiving mode;
allowing the data to be pushed from the Key Server to
the D-Enforcer as and when required. The communi-
cation between the D-Enforcer and the Mobile Device
is in the sending mode; allowing the D-Enforcer to
push the data to the Mobile Device. Such a mecha-
nism has been designed to reduce the amount of ser-
vices run on the D-Enforcer to reduce the cost of oper-
ations on the D-Enforcer.

Data Server Implementation
The Data Server prototype has been imple-

mented using Java. The functionality can be easily
provided using any file system such as NFS or AFS.
The Data Server interacts with the Mobile Device over
two channels: the Control Channel and the Data Chan-
nel. The Control Channel serves the specific goal of
controlling the data that needs to be transferred where
as the Data Channel is used to transfer itself. The Con-
trol Channel sets up the server socket for the Data
Channels to open multiple sockets for streaming. The
socket implementation supports a large number of
files that are streamed in parallel. The streaming

98 22nd Large Installation System Administration Conference (LISA ’08)

Singaraju and Kang Concord: A Secure Mobile Data Authorization Framework . . .

mechanism employs a thread pool to stream one file
per thread.

Mobile Device Implementation
The Mobile Device is a temporary store for

encrypted Data Units. We implement the Mobile
Device interface using Java. We designed a command
line interface which allows the users to register, login,
conduct mRSA key setup, request encrypted data,
decrypt content and lastly, logout.

Experiments and Results

This section discusses Concord’s performance.
The performance analysis involves (a) Performance
comparison of the C-Enforcer versus that of the D-
Enforcer; (b) Data Unit Key Generation time; (c) Data
Unit Key Distribution time for both the C-Enforcer
and the D-Enforcer.

Experiment Setup
All of the experiments have been performed

using the following devices and networks with speci-
fied configurations. The Trusted Key Server was run-
ning on Intel Pentium 4 CPU 3.00 GHz with 2 GB
RAM running Microsoft Windows XP Professional
version 2002 with service pack 2, whereas the C-
Enforcer and Data Server were running on different
machines with a similar configuration. The Mobile
Device used for performance analysis was a Intel Pen-
tium M 1700 MHz 1 GB RAM whereas the D-
Enforcer was a Intel ARM HP iPAQ PocketPC h4300
PDA with 64 MB RAM running Windows CE.net Ver-
sion 4.1. The Local Area Network bandwidth was 100
Mbps with a delay of about 0.1-0.2 milliseconds and
Bluetooth link was 700 Kbps with a delay of about
60-70 milliseconds. The Java Virtual Machine (JVM)
on the PDA is CrEme 4.0 [5] compliant with J2ME
Connected Device Configuration (CDC) 1.0 specifica-
tion and based on JDK 1.3.1. The CDC is the J2ME
configuration that supports full Java implementation
on PDA HP iPAQ PocketPC.

Performance Comparison Between C-Enforcer and
D-Enforcer
As indicated above, the D-Enforcer communicates

with the Mobile Device over a low-bandwidth Blue-
tooth communication link. On the other hand, a C-
Enforcer is implemented over a high bandwidth con-
nection and has additional computational resources.

Figure 8 shows the total decryption time for a
single Data Unit Key. The total time includes the time
taken to partially decrypt the Data Unit Key on the C-
Enforcer and on the D-Enforcer; finally, the partially-
decrypted data from the Enforcer point and the Mobile
Device is used to completely decrypt the Data Unit
Key. The performance of D-Enforcer is improved by
reusing the socket that is used through the socket pool-
ing. The D-Enforcer shows significant performance
improvement when the socket is reused. The average
one-time socket connection setup time was found to

be 4.39 seconds. Since the D-Enforcer is dedicated to
serving a single Mobile Device, the communication
socket can always remain open. That is, no socket
connection timeout is set.

Figure 8: Performance analysis of D-Enforcer and C-
Enforcer involves the measurement of the time
taken to decrypt a Data Unit Key (48 bytes)
against the nth decryption request. The average
one-time socket connection setup time for Blue-
tooth was found to be 4.39 Seconds.

Concord Setup Performance

Concord setup requires time to distribute Data
Unit Keys (AES keys) to the Mobile Device and the
C-Enforcer as well as the D-Enforcer. This section
shows (a) Trusted Key Server performance and (b) the
performance of file key distribution to the Enforcers.

Trusted Key Server Performance
The time taken to generate Data Unit Keys is

proportional to the number of keys that are being gen-
erated; however, as the number of keys increases, the
time taken to generate the keys is relatively constant.
Our experiments show that the time required for gen-
eration of a key decreases exponentially as the number
of keys generated increases. When one key was gener-
ated, 0.46 Sec per key was required whereas 1.06 Sec
per key was required when 1,000 keys were generated.
We provide an optimization for Trusted Key Server
performance by creating multiple keys. These keys are
provided to the users upon request.

Performance of Data Unit Key Distribution to
Enforcers
In Concord, Data Unit Keys are transmitted from

the Trusted Key Server to the Enforcers and to the
Mobile Device. The amount of time taken to send the
Data Unit Keys from the Trusted Key Server to the
Enforcers is shown in Figure 9. For the D-Enforcer,
using Bluetooth, our experiments show that about 4.39
seconds are required to create a socket. The time taken
to transmit about 1000 keys is about 6.5 seconds.

22nd Large Installation System Administration Conference (LISA ’08) 99

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

Figure 9: AES Key distribution time from Trusted
Key Server to D-Enforcer and C-Enforcer.

The experiment reiterates the fact that the time
taken to communicate the Data Unit Key is dependent
on the bandwidth of the communication medium. The
Bluetooth link is a very low bandwidth in comparison
to that of LAN.

Conclusion

Concord framework allows organizations to mon-
itor the data accessed on a mobile device as an infra-
structure-level service by distributing the trust among
multiple entities. With an ability to provide irrefutable
data access history, Concord data access framework
supports regulatory compliance standards. The knowl-
edge of the data accessed by the users on their Mobile
Device enables the organization to demonstrate their
adherence to mandated regulatory compliance such as
HIPPA and the Feinstein Bill.

Concord provides a novel secure data access and
monitoring framework with data being stored on the
employee’s mobile devices. Concord requires an en-
forcement server, either the connected C-Enforcer or
the disconnected D-Enforcer, to be involved in de-
crypting the data on user’s mobile device. With the
help of the enforcement server, Concord enables the
organization to effectively monitor data access and
revoke unwanted clients. Concord identifies critical
organizational data that has been accessed by a dis-
gruntled user’s access and theft or loss of the mobile
device by handling data securely during storage and
wire while in a cryptographic format. Concord em-
ploys a 2-out-ot-2 cryptographic technique, called
mRSA, which encrypts data while in storage or when
being transferred on wire.

Future Work

The Concord implementation discussed in this
paper has been implemented as a prototype. During
this prototype implementation, our measurements dem-
onstrated that the high cost involved in encryption and
decryption using mRSA. We are working on another
threshold cryptographic solution that would be able to
reduce the number of operations to increase the effi-
ciency. We plan to perform an extensive I/O evaluation
to evaluate the costs involved.

Acknowledgments

This research is partly supported by TIAA CREF
Biggs Faculty Fellowship. We also would like to thank
Pratik Thanki for his help in setting up the experiment.

Author Biographies

Gautam Singaraju is a doctoral candidate at Uni-
versity of North Carolina at Charlotte. As part of the
research efforts, he focuses on secure IT infrastructure
design; specifically on system administration issues.
Some of his work is in: 1) securing email infrastruc-
ture, 2) infrastructure design for regulatory compli-
ance – premise-aware data protection services, 3)
intrusion detection systems, and 4) Virtualization-
based secure infrastructure. Gautam can be reached at
gsingara@uncc.edu .

Brent Hoon Kang is currently an assistant profes-
sor at the College of Computing and Informatics at
UNC Charlotte. He leads the Infrastructure Systems
Research Lab at UNCC which explores the secure archi-
tecting of large-scale infrastructure systems. Through
the lab, he has worked on (1) securing email infrastruc-
ture, (2) research on malware and botnet enumeration
and (3) topics such as premise-aware data protection in-
frastructure, and IT infrastructure design for regulation
compliance. Recently he has been working with a group
of IA students in researching malware and bot infection
behavior as part of the Global Honeynet Research
Alliance. As part of his efforts on Information Assur-
ance (IA) education program, he has been developing
the hands-on cyber exercise components that foster stu-
dents’ creativeness and problem solving skills for IT
systems design and defense. He received his Ph.D. from
the University of California at Berkeley. Hoon can be
reached at bbkang@uncc.edu .

Bibliography

[1] Bluetooth Wireless, ‘‘Bluetooth Wireless Tech-
nology,’’ Bluetooth SIG – The official website for
the Bluetooth short range wireless connectivity
standard.

[2] Bluetooth Protocol and Bluetooth PAN (Personal
Area Network), Bluetooth Special Interest Group
(SIG).

[3] Corner, M. D. and B. D. Noble, ‘‘Zero-Interaction
Authentication,’’ Proceedings of MOBICOM, At-
lanta, GA, September, 2002.

[4] Corner, M. D. and B. D. Noble, ‘‘Protecting
Applications with Transient Authentication,’’ Pro-
ceedings First International Conference on Mo-
bile Systems, Applications and Services, 2003.

[5] CrE-ME 4.0 (J2ME-CDC) Beta, Java Virtual Ma-
chines for Java Based Embedded Devices, J2ME
CDC 1.0 Specification.

[6] Ding, X. and G. Tsudik, ‘‘Simple Identity-Based
Cryptography with Mediated RSA,’’ Proceedings
of CT-RSA ’03, LNCS 2612, pp. 193-210, Springer,
2003.

100 22nd Large Installation System Administration Conference (LISA ’08)

Singaraju and Kang Concord: A Secure Mobile Data Authorization Framework . . .

[7] Feinstein, Bill, ‘‘E-Loan and ING Direct Endorse
Feinstein Identity Theft Legislation, First Two
Major Companies to Endorse Feinstein Bill,’’
June, 2005.

[8] Kabay, M. E., ‘‘Insider Attacks Are a Thorny
Problem, Insider Computer Crime is Difficult to
Defend Against,’’ Network World, August, 2003.

[9] Kallahalla, M., E. Riedel, R. Swaminathan, Q.
Wang, and K. Fu, ‘‘Plutus – Scalable Secure File
Sharing on Untrusted Storage,’’ Proceedings Sec-
ond USENIX Conference on File and Storage
Technologies (FAST), USENIX, March, 2003.

[10] Libert, B. and J. Quisquater, ‘‘Efficient Revoca-
tion and Threshold Pairing Based Cryptosys-
tems,’’ Proceedings 22nd Annual Symposium on
Principles of Distributed Computing PODC ’03,
July, 2003.

[11] Mitchell, R. L., ‘‘Decline of the Desktop,’’ Com-
puter World New Story, Computer World, Sep-
tember 26, 2005.

[12] Strandboge, J., ‘‘Encrypted NFS with OpenSSH
and Linux,’’ SysAdmin Journal for UNIX and
Linux System Administrators, March, 2002.

[13] Standards for Privacy of Individually Identifiable
Health Information, Security Standards for the
Protection of Electronic Protected Health Infor-
mation, April, 2003.

[14] Vanrenen, G. and S. W. Smith, ‘‘Distributing
Security-Mediated PKI – Public Key Infrastruc-
ture,’’ EuroPKI 2004, Springer-Verlag, LNCS
3093, pp. 218-231, June, 2004.

[15] Rivest, R., A. Shamir, and L. Adleman, ‘‘A
Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,’’ Communications of
the ACM, Vol. 21, Num. 2, pp. 120-126, Febru-
ary, 1978.

Appendix

Snapshot I: The TKS interface for administrators allows the revocation of malicious client.

Snapshot II: The Command that starts the TKS server.

Snapshot III: Command that starts the CEP server.

22nd Large Installation System Administration Conference (LISA ’08) 101

Concord: A Secure Mobile Data Authorization Framework . . . Singaraju and Kang

Snapshot IV: Command that starts the DEP server on a mobile device using CrEme jvm. The command is:
CrEme.exe -Of -wd \pda -classpath ‘\pda\concord.jar’ edu.uncc.corcord.pda.DEP.

Snapshot V: The dialog box message that gets displayed when the DEP server is running on a mobile device.

102 22nd Large Installation System Administration Conference (LISA ’08)

