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Abstract

San Fermı́n is a system for aggregating large amounts of
data from the nodes of large-scale distributed systems.
Each San Fermı́n node individually computes the aggre-
gated result by swapping data with other nodes to dy-
namically create its own binomial tree. Nodes that fall
behind abort their trees, thereby reducing overhead. Hav-
ing each node create its own binomial tree makes San
Fermı́n highly resilient to failures and ensures that the
internal nodes of the tree have high capacity, thereby re-
ducing completion time.

Compared to existing solutions, San Fermı́n handles
large aggregations better, has higher completeness when
nodes fail, computes the result faster, and has better scal-
ability. We analyze the completion time, completeness,
and overhead of San Fermı́n versus existing solutions
using analytical models, simulation, and experimenta-
tion with a prototype built on peer-to-peer system de-
ployed on PlanetLab. Our evaluation shows that San
Fermı́n is scalable both in the number of nodes and in
the aggregated data size. San Fermı́n aggregates large
amounts of data significantly faster than existing solu-
tions: compared to SDIMS, an existing aggregation sys-
tem, San Fermı́n computes a 1MB result from 100 Plan-
etLab nodes in 61–76% of the time and from 2-6 times
as many nodes. Even if 10% of the nodes fail during ag-
gregation, San Fermı́n still includes the data from 97%
of the nodes in the result and does so faster than the un-
derlying peer-to-peer system recovers from failures.

1 Introduction
San Fermı́n aggregates large amounts of data from dis-
tributed nodes quickly and accurately. As distributed
systems become more prevalent this is an increasingly
important operation: for example, CERT logs about 1/4
TB of data daily on approximately 100 nodes distributed
throughout the Internet [9]. Analysts use these logs to
detect anomalous behavior that signals worms and other
attacks, and must do so quickly to minimize damage. An
example query might request the number of flows to and
from each TCP/UDP port (to detect an anomalous dis-
tribution of traffic indicating an attack). In this example
there are many flow counters per node and the requester
is interested in the sum of each counter across all nodes.
It is important that the data be aggregated quickly, as time
is of the essence when responding to attacks, and accu-
rately, as the aggregated result should include data from
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as many nodes as possible and the data from each node
exactly once. The more accurate the result, the more use-
ful it is.

In San Fermı́n the properties of current networks are
leveraged to build an efficient content aggregation net-
work for large data sizes. Since core bandwidth is typi-
cally not the bottleneck [12], San Fermı́n allows disjoint
pairs of nodes to communicate simultaneously, as they
will likely not compete for bandwidth. A San Fermı́n
node also sends and receives data simultaneously, mak-
ing efficient use of full-duplex links. The result is that
San Fermı́n aggregates large data sets significantly faster
than existing solutions, on average returning a 1 MB
aggregation from 100 PlanetLab nodes in 61–76% the
time and from approximately 2-6 times as many nodes
as SDIMS, an existing aggregation system. San Fermı́n
is highly failure resistant and with 10% node failures dur-
ing aggregation still includes the data from over 97% of
the nodes in the result — and in most cases does so faster
than the underlying peer-to-peer system recovers from
failures.

San Fermı́n uses a binomial swap forest to perform the
aggregation, which is well-suited to tolerate failures and
take advantage of the characteristics of the Internet. In a
binomial swap forest each node creates its own binomial
tree by repeatedly swapping aggregate data with other
nodes. This makes San Fermı́n highly resilient to failures
because a particular node’s data is aggregated by an ex-
ponentially increasing number of nodes as the aggrega-
tion progresses. Similarly, the number of nodes included
in a particular node’s aggregate data also increases expo-
nentially as the aggregation progresses. Each node cre-
ates its own binomial swap tree; as long as at least one
node remains alive San Fermı́n will produce a (possibly
incomplete) aggregation result.

Having each node create its own binomial swap tree
is highly fault-tolerant and fast, but it can lead to exces-
sive overhead. San Fermı́n reduces overhead by prun-
ing small trees that fall behind larger trees during the
aggregation, as the small trees are unlikely to compute
the result first and therefore increase overhead without
improving speed or accuracy. When a tree falls behind
San Fermı́n prunes it — the name San Fermı́n is derived
from this behavior, after the festival with the running of
the bulls in Pampalona.

1.1 Applications

In addition to CERT, San Fermı́n also benefits other
applications that aggregate large amounts of data from
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many nodes:
Software Debugging Recent work on software debug-

ging [19] leverages execution counts for individual in-
structions. This work shows that the total of all the in-
struction execution counts across multiple nodes helps
the developer quickly identify bugs.

System Monitoring Administrators of distributed
systems must process the logs of thousands of nodes
around the world to troubleshoot difficulties, track intru-
sions, or monitor performance.

Distributed Databases A common query in relational
databases is GROUP BY [25]. This query combines ta-
ble rows containing the same attribute value using an ag-
gregate operator (such as SUM). The query result con-
tains one table row per unique attribute value. In dis-
tributed databases different nodes may store rows with
the same attribute value. The values at these rows must
be combined and returned to the requester.

These applications are similar because they aggregate
large amounts of data from many nodes. For example,
for the CERT example, finding the distribution of ports
on UDP and TCP flows seen in the last hour takes 512
KB (assuming 4 byte counters). In the software debug-
ging application, tracking a small application like bc re-
quires 40KB of counters. Larger applications may re-
quire more than 1MB of counters. The target environ-
ments may contain hundreds or thousands of nodes, forc-
ing the aggregation to tolerate failures.

The aggregation function has similar characteristics
for these applications as well. The aggregation functions
are commutative and associative but may be sensitive to
duplication. Typically, the aggregate data from multiple
nodes is approximately the same size as any individual
node’s data.

The aggregation functions may also be sensitive to
partial data in the result. If, for example, the data from
a node is split and aggregated separately using different
trees, the root may receive only some of the node’s data.
For applications that want distributions of data (such as
the target applications) it may be important to either have
all of a node’s data or none of it.

In some cases it may be possible to compress aggre-
gate data before transmission to reduce space. Such tech-
niques are complimentary to this work. Some environ-
ments may require administrative isolation. This work
assumes that the aggregation occurs in a single adminis-
trative domain with cooperative nodes.

2 Binomial Swap Forest
A binomial swap forest is a novel technique for aggre-
gating data in which each node individually computes
the aggregate result by repeatedly swapping (exchang-
ing) aggregate data with other nodes. Two nodes swap
data by sending each other the data they have aggregated

B

A

Figure 1: A 16-node binomial tree created by making tree B a
child of tree A. The children of the root are themselves bino-
mial trees of size 1, 2, 4, and 8.
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Figure 2: The binomial swap forest created by aggregating data
from nodes A, B, C, and D. Each tree represents the sequence
of swaps its root node performed while aggregating the data.

so far, allowing each to compute the aggregation of both
nodes’ data. The swaps are organized so that a node
only swaps with one other node at a time, and each swap
roughly doubles the number of nodes whose data is in-
cluded in a node’s aggregate data, so that the nodes will
compute the aggregate result in roughly log(N) swaps.
If the nodes of the aggregation are represented as nodes
in a graph, and swaps as edges in the graph, the sequence
of swaps performed by a particular node form a bino-
mial tree with that node at the root. As a reminder, in a
binomial tree with 2n nodes the children of the root are
themselves binomial trees with 2n−1, 2n−2..., 21, and 20

nodes (Figure 1). As the figure illustrates, a binomial tree
with 2n nodes can be made from two binomial trees with
2n−1 nodes by making one tree a child of the other tree’s
root . The collection of binomial swap trees constructed
by the nodes during a single aggregation is a binomial
swap forest.

For example, consider data aggregation from four
nodes: A, B, C, and D (Figure 2). Each node initially
finds a partner with whom to swap data. Suppose A
swaps with B and C swaps with D, so that afterwards A
and B have the aggregate data AB, while C and D have
the aggregate data CD. To complete the aggregation each
node must swap data with a node from the other pair. If
A swaps with C and B swaps with D, then every node
will have the aggregate data ABCD .

The swaps must be carefully organized so that the se-
ries of swaps by a node produces the correct aggregated
result. Consider aggregating data from N = 2n nodes
each with a unique ID in the range [0..N − 1] (we will
later relax these constraints). Since each swap doubles
the amount of aggregate data a node has, just prior to
the last swap a node must have the data from half of the
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Nodes L̂2 L̂1 L̂0

000 Swap 001 Swap 010 Swap 101
001 Swap 000 Abort
010 N/A Swap 000 Swap 110
101 N/A Swap 110 Swap 000
110 Swap 111 Swap 101 Swap 010
111 Swap 110 Abort

Figure 3: One way 6 nodes can construct binomial swap forest.
Each node swaps data with a node in each L̂k starting with L̂m

and ending with L̂0.
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Figure 4: The binomial swap forest resulting from the construc-
tion in Figure 3. Nodes 001 and 111 aborted.

nodes in the system, and must swap with a node that has
the data from the other half of the nodes. This can be
achieved by swapping based on node IDs; specifically,
if the node ID for a node x starts with a 0 then node x

should aggregate data from all nodes that start with a 0
prior to the last swap, then swap with a node y whose
node ID starts with 1 that has aggregated data from all
nodes that start with a 1. Note that it doesn’t matter which
node y node x swaps with as long as its node ID starts
with a 1 and it has successfully aggregated data from its
half of the node ID space. Also note that node x should
swap with exactly one node from the other half of the ad-
dress space, otherwise the result may contain duplicate
data. Recursing on this idea, assuming that node x starts
with 00 then in the penultimate swap it must swap with a
node whose node ID starts with 01 thus aggregating data
from all nodes that start with 0. Similarly, in the very first
swap node x swaps with the node whose node ID differs
in only the least-significant bit. This is the general idea
behind using a binomial swap forest to aggregate data —
each node starts by swapping data with the node whose
node ID differs in only the least-significant bit and works
its way through the node ID space until it swaps with a
node whose node ID differs in the most-significant bit.

Before describing this process in more detail it is use-
ful to define the longest common prefix, L̂ of two nodes,
which is the number of high-order bits the two node IDs
have in common. We will use the notation L̂(x, y) = k

to mean that the L̂ of nodes x and y is k bits long. With
respect to a particular node x, we use the notation L̂x

k to
indicate the set of nodes whose longest common prefix
with node x is k bits long. We shorten this to L̂k when
it is clear which node x is being referred to.

Using this notation, to aggregate data using a binomial

swap tree in a system with N = 2n nodes a node x must
first swap data with a node in L̂x

n−1 (there is only 1 node
in this set), then swap data with a node in L̂x

n−2, etc.,
until eventually swapping data with a node in L̂x

0 (there
are 2n−1 nodes in this set). Again, node x swaps with
only one node in L̂k to prevent duplication in the result.
Each set L̂x

k has 2n−k−1 nodes, and node x will perform
n swaps. Duplication cannot happen because when node
x swaps data with node y from set L̂x

k, node x receives
the data from nodes whose longest common prefix with
node x is exactly k bits long. To see why this is true,
consider that y has data from all nodes whose longest
common prefix with y is at least k + 1 bits. This means
that the first k bits of these nodes are the same as y and
since x differs with y in the kth bit, x must differ with
these nodes in the kth bit.

The discussion so far assumes that the number of
nodes in the system is a power of 2, that node IDs are
in the range [0..N − 1], that each node knows how to
contact every other node in the system directly, and that
nodes do not fail. It also ignores the overhead of hav-
ing each node construct its own binomial swap tree when
only a single tree is necessary to compute the aggregated
result. We can relax the first of these restrictions to allow
the number of nodes to not be a power of 2, but it intro-
duces several complications. First, the resulting binomial
trees will not be complete, although they will produce the
correct aggregate result. Consider data aggregation in a
system with only nodes A, B, and C. Suppose A initially
swaps with B. C must wait for A and B to finish swap-
ping before it can swap with one of them. Suppose C
subsequently swaps with A, so that both A and C have
the aggregate data ABC, while node B only has AB. A
and C successfully computed the result although the bi-
nomial trees they constructed are not complete. B was
unable to construct a tree containing all the nodes.

Second, some nodes may not be able to find partners
with whom to swap, as is the case with node B in the
previous example. More generally, consider a collection
of nodes whose longest common prefix L̂ is k bits long.
To aggregate the data for that prefix the subset of nodes
whose L̂k+1 ends with a 0 must swap data with the sub-
set whose L̂k+1 ends with a 1. If these subsets are not
of equal size, then some nodes will be unable to find a
partner. Only if N is a power of 2 can the two subsets
have equal numbers of nodes, otherwise some nodes will
be unable to find a partner and must abort their aggrega-
tions.

Third, if the number of nodes is not a power of 2 then
some node IDs will not be assigned to nodes. This can
result in no nodes having a particular prefix, so that when
other nodes try to swap with nodes having that prefix
they cannot find a partner with whom to swap. Instead of
aborting those nodes should instead simply skip the pre-
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fix as it is empty. This is most likely to occur when the
nodes initially start the aggregation process, as for any
node x L̂x

n corresponds to exactly one node ID, which
may not be assigned to a node. Therefore, instead of
starting the aggregation with L̂x

n node x should instead
initially swap with a node in L̂x

m where m is the longest
prefix length for which L̂x

m is not empty.
As an example of aggregating data when N is not a

power of 2, suppose that there are 6 nodes: 000, 001,
010, 101, 110, and 111 (Figures 3 and 4). Each node x

swaps data with a node in each L̂x
k starting with L̂x

m and
ending with L̂x

0 . There are many valid binomial swap
forests that could be constructed by these nodes aggre-
gating data; in this example 000 first swaps with 001 and
110 swaps with 111. L̂2 is empty for 010 and 101, so
they swap with nodes in L̂1: 000 swaps with 010 and 101
swaps with 111. 001 and 110 cannot find a node in L̂1

with whom to swap (since 010 swapped with 000 and
101 swapped with with 111) and they stop aggregating
data. In the final step the remaining nodes swap with a
node in L̂0: 000 swaps with 101 and 010 swaps with 111.

The swap operations in a binomial swap forest are only
partially ordered – the only constraints are that nodes
must swap with a node in each L̂k in order starting
with L̂m and ending with L̂0. It is possible that in Fig-
ure 3 that nodes 000 and 010 will finish swapping before
111 and 110 finish swapping. This means that the only
synchronization between nodes is when they swap data
(there is no global synchronization between nodes).

San Fermı́n makes use of an underlying peer-to-peer
communication system to handle both gaps in the node
ID space and nodes that are not able to communicate di-
rectly. It uses time-outs to deal with node failures, and
employs a pruning algorithm to reduce overhead by elim-
inating unprofitable trees. Section 4 these aspects of San
Fermı́n in more detail.

3 Analytic Comparison

Several techniques have been proposed for content ag-
gregation. The most straightforward is to have a single
node retrieve all data and then aggregate. Some tech-
niques like SDIMS [31] build a tree with high-degree
nodes that are likely to have simultaneous connections.
To provide resilience against failures, data is retransmit-
ted when nodes fail. Seaweed [22] also has high-degree
nodes with a similar structure to SDIMS, but uses a su-
pernode approach in which the data on internal nodes are
replicated to tolerate failures.

3.1 Analytic Models

Analytic models of these techniques enable comparison
of their general characteristics. The models assume that
any node that fails during the aggregation does not re-
cover, and any node that comes online during the aggre-

Description Value Source
N Number of nodes 300,000 CorpNet [22]
b Bandwidth 1.105Mbps PlanetLab
l Latency 190ms AllSitesPing [2]
s Data size 1MB CERT [9]
c Per node failure prob. 5.5 ∗ 10

−6 / sec. Farsite [22]
r Supernode replicas 4 Seaweed [22]
d Node degree 16 Seaweed [22]

Table 1: Model parameters.

gation does not join it. The probability of a given node
failing in the next second is c. Node failures are assumed
to be independent. A node that fails while sending data
causes the partial data to be discarded. Inter-node laten-
cies and bandwidths are a uniform l and b, respectively.
The bandwidth b is per-node, which is consistent with
the bandwidth bottleneck existing at the edges of the net-
work and not in the middle. Each node contributes data
of size s and the aggregation function produces aggregate
data of size s. Per-packet, peer-to-peer, and connection
establishment costs are ignored for all techniques.

Other parameters such as the amount of data aggre-
gated, speed and capacity of the links, etc. are de-
rived from real-world measurements (Table 1). The
bandwidth measurements were gathered by transferring
a 1MB file to all PlanetLab nodes from several well-
connected nodes. The average bandwidth was within
100 Kbps for all runs, independent of the choice of
source node. This means that well-connected nodes have
roughly the same bandwidth to other nodes regardless of
network location. The average of all runs is used in Ta-
ble 1.

For each technique its completion time, completeness
(number of nodes whose data is included in the aggregate
result), and overhead are analyzed. Rather than isolating
all of the parameters for each technique, the data size and
number of nodes are varied to show their effect.

3.2 Binomial Swap Forest (San Fermı́n)

The analysis of San Fermı́n assumes a complete bino-
mial swap forest. Since it takes s

b
+ l time to do a swap,

the completion time is log2(N) ∗ ( s
b

+ l). Figures 5a
and 6a show that using a binomial swap forest is effec-
tive at rapidly aggregating data. For example, using a
binomial swap forest takes less than 1/3 the time of other
techniques when more than 128 KB of data per node is
aggregated.

After a node swaps with n other nodes in a binomial
swap forest its data will appear in 2n binomial trees, so
that 2n nodes must fail for the original node’s data to be
lost. The probability of single node failing by time t is
1−(1−c)t, and the probability of g nodes failing by time
t is (1− (1− c)t)g . This leads to a completeness of N −
∑log2(N)

i=1
N
2 ∗(1−(1−c)i∗( s

b
+l))2

i−1

. As Figures 5b and
6b show, a binomial swap forest has high completeness
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in the face of failures. For example, when aggregating
more than 64KB of data, a binomial swap forest loses
data from an order of magnitude fewer nodes than the
other techniques.

Building a binomial swap forest involves each node
swapping data with log2(N) other nodes. Assuming
that failures do not impact overhead, the overhead is
N ∗ log2(N). As Figures 5c and 6c show, the over-
head of a binomial swap forest is very high (Section 4
explains how San Fermı́n reduces this overhead by prun-
ing trees). Using a binomial swap forest to aggregate
1MB of data requires about 20 times more overhead than
balanced trees and about 5 times more than supernodes.

Intuitively, a binomial swap forest works well for two
reasons. First, bandwidth dominates when aggregating
large amounts of data. Other techniques build trees with
higher fan-in so that nodes contend for bandwidth, while
a binomial swap forest has no contention since swaps
are done with only one node at a time. Second, data is
replicated widely so that failures are less likely to reduce
completeness. Nodes swap repeatedly, so that an expo-
nential number of nodes need to fail for the data to be
lost.

3.3 Centralized (Direct Retrieval)

In the centralized model, a central node contacts every
node, retrieves their data directly, and computes the ag-
gregated result. The central node can eliminate almost
all latency costs by pipelining the retrievals, resulting in
a completion time of l + s∗N

b
. This is much higher than

the other techniques shown in Figure 5a because the time
is linear in the number of nodes and the other techniques
are logarithmic. As a result, to aggregate 1MB of data us-
ing the centralized technique takes 26 days as compared
to about 2 minutes with a binomial swap forest.

The completeness is the number of nodes that did not
fail prior to the central node retrieving their data. The
probability that a node is alive after t seconds is (1− c)t,
so the expected completeness is

∑N

i=1(1 − c)
i∗s
b

+l. As
can be seen in Figures 5b and 6b the centralized model
has very poor results, despite assuming that the central
node does not fail. The poor results are because many
nodes fail before they are contacted by the central node.

The overhead is the number of nodes that were alive
when contacted multiplied by the data size:

∑N

i=1(1 −

c)
i∗s
b

+l ∗ N . A comparison is shown in Figures 5c and
6c. These results seem fantastic for large data sizes and
numbers of nodes when compared to other algorithms,
however what is really happening is that many nodes fail
before their data is retrieved, reducing overhead but also
reducing completeness.

3.4 Balanced Trees (SDIMS)

Aggregation is often performed using trees whose inter-
nal nodes have similar degree d and whose leaf nodes
have similar depth. An internal node waits for data from
all of its children before computing the aggregated data
and sending the aggregate result to its parent. In prac-
tice, one of the child nodes is also the parent node so
only d − 1 children send data to the parent. The model
assumes that trees are balanced and complete with de-
gree d. If the effects of failures on completion time are
ignored, the completion time is logd(N) ∗ ( (d−1)∗s

b
+ l).

As Figure 5a shows, this algorithm is quite fast when the
data size is small and hence latency dominates. However,
the performance quickly degrades when the data size in-
creases. Aggregating 1MB of data using a balanced tree
is about 4 times slower than using a binomial swap for-
est.

A node that fails before sending to its parent will be
missing from the result. It is also possible that both the
child and parent fail after the child has sent the data, also
causing the child to be missing. The completeness model
captures these node failures. However, the model does
not consider a cascade effect. This occurs when a par-
ent has failed and another node is recovering the data
from the children when a child fails. The node that re-
covers and takes the role of the child would need to re-
cover data from the child’s children. This is failure han-
dling of a child within failure handling of the parent (a
cascade effect) and is not captured in the model. In the
balanced tree model, there are N

(d−1)∗di nodes at level

i. Since there is a
∑d−1

j=1(1 − (1 − c)j∗ s
b
+l) probabil-

ity of an internal node failure with
∑i∗(d−1)

k=1 (1 − (1 −

c)i∗( (d−1)∗s

b
+l)+(k+j)∗ s

b
+l) probability of a correspond-

ing child failure, the balanced tree’s completeness is:
N −

∑logd(N)−1
i=0

N
(d−1)∗di ∗

∑d−1
j=1(1 − (1 − c)j∗ s

b
+l) ∗

(1+
∑i∗(d−1)

k=1 (1− (1− c)i∗(
(d−1)∗s

b
+l)+(k+j)∗ s

b
+l)). As

Figure 5b shows, the completeness is high when the ag-
gregate data size is small. However, as the aggregate data
size increases the completeness quickly falls off. When
the number of nodes is varied instead (as in Figure 6b),
the completeness is essentially the same as having ro-
bust internal tree nodes that are provisioned against fail-
ure. For example, with 1 million nodes it is expected that
only 1% of the nodes that are excluded from the result are
due to internal node failures. However, the high-degree
nodes take a significant amount of time to receive the
initial data from each node. The time the lowest level of
internal nodes take to receive the initial data from their
leaf node presents a significant time window for node
failures. As a result using a binomial swap forest gives
an order of magnitude improvement in completeness.

In the special case d = 2, the balanced tree technique
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Figure 6: Scalability in the number of nodes

actually builds a binomial tree because internal nodes are
counted as children at the lower levels. However, this
is a single, static tree instead of a binomial swap for-
est. This binomial tree still has roughly four times worse
completeness than using a binomial swap forest. If the
degree of the balanced tree were larger (such as 16 as
is used in practice), the balanced tree would have even
worse completeness.

In the balanced tree model, data is only sent multiple
times when failures occur. There is a base cost of N

with
∑logd(N)−1

i=0
N

(d−1)∗di nodes per level and a proba-

bility of failure of 1 − (1 − c)
(d−1)∗s

b
+l with a retrans-

mission cost of approximately ((i) ∗ (d − 1) − 1). The
retransmission cost involves all d − 1 of the nodes at the
prior i non-leaf levels retransmitting their aggregate data
to their new parent (except the failed node). The over-
head is therefore: s∗(N+

∑logd(N)−1
i=0

N
(d−1)∗di ∗1−(1−

c)
(d−1)∗s

b
+l ∗ (i∗ (d−1)−1))) which is very respectable

considering aggregate data is returned from most nodes.
As Figures 5c and 6c show, the overhead is the lowest of
the techniques with acceptable completeness. For exam-
ple, when aggregating 1MB of data the overhead of bal-
anced is about 4 times better than supernode and about
20 times better than using a binomial swap forest.

3.5 Supernode (Seaweed)

In this technique the nodes form a tree whose internal
nodes replicate data before sending it up toward the root
of the tree. Typically the tree is balanced and has uni-
form degree d. To prevent the loss of data when an inter-
nal node fails, there are r replicas of each internal node.
When a node receives data from a child it replicates the
data before replying to the child. Ideally an internal node
can replicate data from a child concurrently with receiv-
ing data from another child. A node typically batches
data before sending it to its parent to prevent sending
small amounts of data through the tree.

The model allows internal nodes to replicate data
while receiving new data, and assumes internal nodes
send data to their parents as soon as they have received all
data from their children. This means the model hides all
but the initial delay in receiving the first bit of data ( s

b
+l)

in the replication time ( r∗d∗s
b

+2 ∗ l) and leads to a com-
pletion time of logd(N) ∗ ( s+r∗d∗s

b
+ 3 ∗ l). However,

the replication delay is significant as Figures 5a and 6a
illustrate. Aggregating 1MB of data from 16 nodes using
supernodes takes more than 8 minutes – about 16 times
longer than it takes a binomial swap forest.

To simplify analysis the model assumes that there is
enough replication to avoid losing all replicas of a su-
pernode simultaneously. As a result, the only failures

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association152



that affect completeness are leaf nodes that fail before
sending data to their parents. This leads to a complete-
ness of

∑d

i=1
N
d
∗ (1 − c)i∗( s

b
)+l. As Figures 5b and 6b

show, this delay is enough to reduce the completeness
below that of the binomial swap forest (by more than
an order of magnitude when aggregating 1MB). This is
because in a binomial swap forest the data is replicated
to exponentially many nodes, while the supernode tech-
nique has an initial significant window of vulnerability
while the leaf nodes send their data to their parents.

The overhead is broken down into the cost of
replicating data for internal nodes s ∗

(N−1)∗r

d−1 , the
cost of the leaf to internal node communication s ∗

(
∑d

i=1
r∗N∗(1−c)i∗( s

b
+l)

d
), and the re-replication cost s ∗

(
∑blogd(N)c−1

j=1
N
dj ∗ (1− (1− c)j∗( r∗d∗s+s

b
+3∗l). As Fig-

ures 5c and 6c show, the overhead of the supernode tech-
nique is better than the binomial swap forest technique
by about a factor of 4 but worse than the other techniques
due to the supernode replication.

4 San Fermı́n Details

This section describes the details of San Fermı́n, includ-
ing an overview of the Pastry peer-to-peer (p2p) message
delivery subsystem used by the San Fermı́n prototype, a
description of how San Fermı́n nodes find other nodes
with whom to swap, how failures are handled, how time-
outs are chosen, and how trees are pruned to minimize
overhead.

4.1 Pastry

Pastry [26] is a peer-to-peer system similar to Chord [28]
and Tapestry [35]. Each node has a unique 160-bit
nodeId that is used to identify nodes and route messages.
Given a message and a destination nodeId, Pastry routes
the message to the node whose nodeId is numerically
closest to the destination.

Each Pastry node has two routing structures: a routing
table and a leaf set. The leaf set for a node is a fixed num-
ber of nodes that have the numerically closest nodeIds to
that node. This assists nodes in the last step of routing
messages and in rebuilding routing tables when nodes
fail.

The routing table consists of node characteristics (such
as IP address, latency information, and Pastry ID) orga-
nized in rows by the length of the common prefix. When
routing a message each node forwards it to the node in
the routing table with the longest prefix in common with
the destination nodeId.

Pastry uses nodes with nearby network proximity
when constructing routing tables. As a result, the av-
erage latency of Pastry messages is less than twice the IP
delay [5]. For a complete description of Pastry see the
paper by Rowstron and Druschel [26].

4.2 Overview

San Fermı́n is part of a larger system for data aggrega-
tion. Aggregation queries are disseminated to nodes us-
ing SCRIBE [6] as the dissemination mechanism. These
queries may either contain new code or references to ex-
isting code that performs two functions: extraction and
aggregation. The extraction function extracts the desired
data from an individual node and makes it available for
aggregation. For example, if the query is over flow data,
the extraction function would open the flow data logs and
extract the fields of interest.

The aggregation function aggregates data from mul-
tiple nodes. This may be a simple operation like sum-
ming data items in different locations or something more
complex like performing object recognition by combin-
ing data from multiple cameras.

When a node receives an aggregation request, the node
disseminates the request and then runs the extraction
function to obtain the data that should be aggregated.
The San Fermı́n algorithm is used to decide how the
nodes should collaborate to aggregate data. San Fermı́n
uses the aggregation function provided in the aggregation
request to aggregate data from multiple sources. Once a
node has the result of the request it sends the data back to
the requester. The requester then sends a stop message to
all nodes (using SCRIBE) and they stop processing the
request.

4.3 San Fermı́n

There are several problems that must be solved for San
Fermı́n to work correctly and efficiently. First, a node
must find other nodes with whom to swap aggregate data
without complete information about the other nodes in
the system. Second, a node must detect and handle the
failures of other nodes. Third, a node must detect when
the tree it is constructing is unlikely to be the first tree
constructed and abort to reduce overhead. Each of these
problems is addressed in the following subsections.

4.3.1 Finding Partners

To find nodes with whom to partner, each node first finds
the longest L̂ its Pastry nodeId has among all nodes. This
is achieved by examining the nodeIds of the nodes in its
leaf set. The node first swaps with a node that has the
longest L̂, then the second-longest L̂, and so on, until the
node swaps with a node that differs in the first bit. At this
point the node has built a binomial tree with aggregate
data from all nodes and has computed the result.

San Fermı́n builds the binomial swap forest using a
per-node prefix table that is constructed from node in-
formation in Pastry’s routing table and leaf set. The ith
row in the prefix table contains the nodes in L̂i from the
routing table and leaf set. Each node initially swaps with
a node in the highest non-empty row in its prefix table,
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then swaps with nodes in successive rows until culminat-
ing with row 0. In this way San Fermı́n approximates
binomial trees. The nodeIds are randomly distributed, so
L̂p should contain about twice as many nodes as L̂p+1.
Since nodes swap aggregate data starting at their longest
L̂, with each swap the number of nodes included in the
aggregate data doubles. Swapping therefore doubles the
number of nodes in the tree with each swap and thus ap-
proximates a binomial tree.

Swapping is a powerful mechanism for aggregating
data, but there are several issues that must be addressed.
Pastry only provides each node with the nodeIds for a
few nodes with each L̂, so how do nodes find partners
with whom to swap? Also, how does a node know that
another node is ready to swap with it? San Fermı́n solves
these problems using invitations, which are messages de-
livered via Pastry that indicate that the sender is inter-
ested in swapping data with the recipient. A node only
tries to swap with another node if it has previously re-
ceived an invitation from that node.

In addition to sending invitations to the nodes known
by Pastry, invitations are also sent to random nodeIds
with the correct L̂. Pastry routes these invitations to the
node with the nearest nodeId. This is important because
Pastry will generally only know a subset of the nodes
with a given L̂. To provide high completeness, a node
in San Fermı́n must find a live node with whom to swap
with each L̂.

An empty row in the prefix table is handled differently
depending on whether or not the associated L̂k falls
within the node’s leaf set. If L̂k is within the leaf set
then L̂k must be empty because the Pastry leaf sets are
accurate. The node skips the empty row. Otherwise, if
L̂k is not within the leaf set, the node sends invitations
to random nodeIds in L̂k. If no nodes exist within the L̂k

the invitations will eventually time-out and the node will
skip L̂k. This rarely happens, as the expected number of
nodes in L̂x increases exponentially as x decreases. As
an alternative to letting the invitations time-out, the the
nodes that receive the randomly-sent messages could re-
spond that L̂k is empty. An empty L̂k outside of the leaf
set was never observed during testing so this modifica-
tion is not necessary.

4.3.2 Handling Failures

Pastry provides a failure notification mechanism that al-
lows nodes to detect other node failures, but it has two
problems that make it unsuitable for use in San Fermı́n.
First, the polling rate for Pastry is 30 seconds, which can
cause the failure of a single node to dominate the aggre-
gation time. Second, some nodes that fail at the applica-
tion level are still alive from Pastry’s perspective. A node
may perform Pastry functions correctly, but have some
other problem that prevents it from aggregating data.

For these reasons San Fermı́n uses invitations to han-
dle node failures, rather than relying exclusively on Pas-
try’s failure notification mechanism. A node responds
to an invitation to swap on a shorter L̂ than its current
L̂ with a “maybe later” reply. This tells the sender that
there is a live node with this L̂ that may later swap with
it. If a “maybe later” message is not received, the node
sends invitations to random nodeIds with that L̂ to try
and locate a live node. If this fails, the node will eventu-
ally conclude the L̂ has no live nodes and move on to the
next shorter L̂.

Since timeouts are used to bypass non-responsive
nodes, selecting the proper timeout period for San
Fermı́n is important. Nodes may be overwhelmed if
the timeout is too short and invitations are sent too fre-
quently. Also short timeouts may cause nodes to be
skipped during momentary network outages. If the time-
out is too long then San Fermı́n will recover from failures
slowly, increasing completion time.

Rather than having a fixed timeout length for all val-
ues of L̂, San Fermı́n scales the timeout based on the
estimated number of nodes with the value of L̂. L̂ values
with more nodes have longer timeouts because it is less
likely that all the nodes will fail. Conversely, L̂ values
with few nodes have shorter timeouts because it is more
likely that all nodes will fail. In this case the node should
quickly move on to the next L̂ if it cannot contact a live
node in the current L̂. A San Fermı́n node estimates the
number of nodes in L̂ by estimating the density of nodes
in the entire Pastry ring, which in turn is estimated from
the density of nodes in its leaf set.

San Fermı́n sets timeouts to be a small constant t mul-
tiplied by the estimated number of nodes at L̂ for the
given value. This means that no matter how many nodes
are waiting on a group of nodes, the nodes in this group
will receive fewer than 2 ∗ t invitations per second, on
average. This timeout rate also keeps the overhead from
invitations low.

4.3.3 Pruning Trees

Each San Fermı́n node builds its own tree to improve per-
formance and tolerate failures, but only one tree will win
the race to compute the final result. If San Fermı́n knew
the winner in advance it could build only the winning
tree and avoid the overhead of building the losing trees.
Instead, San Fermı́n builds all trees and prunes those un-
likely to win. San Fermı́n prunes a tree whenever its root
node cannot find another node with whom to swap but
there exists a live node with that L̂ value. This is accom-
plished by the use of “no” responses to invitations.

A node sends a “no” response to an invitation when its
current L̂ is shorter than the L̂ contained in the invitation.
This means the node receiving the invitation has already
aggregated the data in the L̂ and has no need to swap
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with the node that sent the invitation. Whenever a node
receives a “no” response it does not send future invita-
tions to the node that sent the response. Unlike a “maybe
later” response, “no” responses do not reset the timeout.
If a node that has received a “no” response and it can-
not find a partner for this value of L̂ before the timeout
expires, the node simply aborts its aggregation.

Note that a node will only receive a “no” response
when two other nodes have its data in their aggregate
data. This is because the node that sends a “no” response
must have already aggregated data for that L̂ (and there-
fore must already have the inviting node’s data). Since
the node that sent the “no” response has aggregated data
for the L̂ via a swap then another node must also have
the inviting node’s data.

4.3.4 San Fermı́n Pseudocode

This section presents pseudocode for the San Fermı́n al-
gorithm, omitting details of error and timeout handling.

When a node receives a message:
If message is an invitation:
If current ˆL shorter than ˆL in invitation

reply with no
else reply with maybe_later and

remember node that sent invitation
If message is a no, remember that one was received
If message is a maybe_later then reset time-out
If message is a stop then stop aggregation

# Called to begin aggregation
Function aggregate_data(data, requester):

Initialize the prefix_table from Pastry tables
for ˆL in prefix_table from long to short:
Call aggregate_ˆL to swap data with a node
If swap successful

compute aggregation of existing and received data
Send aggregate data (the result) to the requester

# A helper function to do aggregation for a value of ˆL
Function aggregate_ˆL(data, known_nodes):

Try to swap data with nodes with this ˆL from whom
an invitation was received

If successful then return the aggregate data
Send invitations to nodes in prefix table with this ˆL
While waiting for a time-out:
If a node connects, swap with it and return the data
Try to swap with nodes from whom we got invitations
If success then return the aggregate data

# Time-out
if we got a no message, then stop (do not return)
otherwise return no aggregate data

5 Evaluation
This section answers several questions about San
Fermı́n:

• How does San Fermı́n compare to other existing so-
lutions?

• How well does San Fermı́n scale with the number
of nodes and the data size?

• How well does San Fermı́n tolerate failures?

• What is the overhead of San Fermı́n?

• How effective is San Fermı́n at utilizing high-
capacity nodes?

5.1 Comparison

We developed a Java-based San Fermı́n prototype that
runs on the Java FreePastry implementation on Planet-
Lab [23]. The SDIMS prototype (which also runs on
FreePastry) was compared against San Fermı́n in several
experiments using randomly-selected live nodes with
transitive connectivity and clock skew of less than 1 sec-
ond. All experiments for a particular number of nodes
used the same set of nodes.

The comparison with SDIMS demonstrates that ex-
isting techniques are inadequate for aggregating large
amounts of data. SDIMS was designed for streaming
small amounts of data whereas San Fermı́n is designed
for one-shot queries of large amounts of data. Ideally,
large SDIMS data would be treated as separate attributes
and aggregated up separate trees. However, since this
may include only part of a node’s data, this may skew
the distribution of results returned. Therefore all data is
aggregated as a single attribute.

One complication with comparing the two is zombie
nodes in Pastry. San Fermı́n uses timeouts to identify
quickly nodes that are unresponsive. SDIMS however,
relies on the underlying p2p network to identify unre-
sponsive nodes, leaving it vulnerable to zombie nodes.
After consulting with the SDIMS authors, we learned
that they avoid this issue on PlanetLab by building more
than one tree (typically four) and using the aggregate data
from the first tree to respond. In the experiments we mea-
sured SDIMS using both one tree (SDIMS-1) and four
trees (SDIMS-4).

The experiments compare the time, overhead and
completeness of SDIMS and San Fermı́n. A small
amount of accounting information was included in the
aggregate data for determining which nodes’ data were
included in the result. Unless specified otherwise, each
experiment used 100 nodes and aggregated 1MB from
each node, each data point is the average of 10 runs, and
the error bars represent 1 standard deviation. All tests
were limited to 5 minutes. In SDIMS the aggregate data
trickles up to the root over time, so the SDIMS result was
considered complete when either the aggregate data from
all nodes reached the root or the aggregate data from at
least half the nodes reached the root and no new data
were received in 20 seconds.

Different aggregation functions such as summing
counters, comparison for equals, maximum, and string
parsing were experimented with. The choice of aggre-
gation function did not have any noticeable effect on the
experiments.
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(c) Per-node Completion Time vs. Data Size

Figure 7: Comparison of San Fermı́n and SDIMS on PlanetLab. SDIMS-1 is SDIMS using a single tree; SDIMS-4 is SDIMS using
four trees.

5.1.1 Completeness

The first set of PlanetLab experiments measures com-
pleteness as the aggregated data size increases (Fig-
ure 7a). The number of nodes not included in the aggre-
gate data is small for each algorithm until the data size
exceeds 256KB. At that point SDIMS performs poorly
because high-degree internal nodes are overwhelmed
(shown in more detail in Section 5.4). San Fermı́n con-
tinues to include the aggregate data from most nodes.

The next set of experiments measures how the num-
ber of nodes affects completeness (Figure 7b). When
there are few nodes SDIMS-4 and San Fermı́n algorithms
do quite well. Once there are more than 30 nodes the
SDIMS trees perform poorly due to high-degree internal
nodes being overwhelmed with traffic.

5.1.2 Completion Time

Figure 7c shows per-node completion time, which is the
completion time of the entire aggregation divided by
the number of nodes whose data is included in the re-
sult. This metric allows for meaningful comparisons be-
tween San Fermı́n and SDIMS because they may pro-
duce results with different completeness. Data sizes
larger than 256KB significantly increases the per-node
completion time of SDIMS, while San Fermı́n increases
only slightly. Although not shown, for a given data size
the number of nodes has little effect on the per-node com-
pletion time.

Figure 8 illustrates the performance of individual ag-
gregations in terms of both completion time and com-
pleteness. Points near the origin have low completion
time and high completeness, and are thus better than
points farther away. San Fermı́n’s points are clustered
near the origin, indicating that it consistently provides
high completeness and low completion time even in a
dynamic environment like PlanetLab. SDIMS’s perfor-
mance is highly variable — SDIMS-1 occasionally has
very high completeness and low completion time, but
more often performs poorly with more than half the ag-
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Figure 8: Completeness and Completion time of San Fermı́n
and SDIMS on PlanetLab. Each point represents a single run.
Points near the origin are better because they have lower com-
pletion time and higher completeness.

gregations missing at least 35 nodes from the result.
SDIMS-4 performs even worse with all but 10 aggrega-
tions missing at least 80 nodes.

5.2 Scalability

We used a simulator to measure the scalability of San
Fermı́n beyond that possible on PlanetLab. The sim-
ulator is event-driven and based on measurements of
real network topologies. Several simplifications were
made to improve scalability and reduce the running time:
global knowledge is used to construct the Pastry rout-
ing tables; the connection teardown states of TCP are not
modeled (as San Fermı́n does not wait for TCP to com-
plete the connection closure); and lossy network links are
not modeled.

The simulations used network topologies from the
University of Arizona’s Department of Computer Sci-
ence (CS) and PlanetLab. The CS topology consists of
a central switch connected to 142 systems with 1 Gbps
links, 205 systems with 100 Mbps links, and 6 legacy
systems with 10 Mbps links. Simulations using fewer
nodes were constructed by randomly choosing nodes
from the entire set.

The PlanetLab topology was derived from data pro-
vided by the S3 project [32]. The data provides pairwise
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Figure 9: Completion Time vs. Nodes, CS Topology.
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Figure 10: Completion Time vs. Data Size, CS Topology. Each
experiment used all 353 nodes.

latency and bandwidth measurements for all nodes on
PlanetLab. Intra-site topologies were assumed to consist
of a single switch connected to all nodes. The latency
of an intra-site link was set to 1/2 of the minimum la-
tency seen by the node on that link, and the bandwidth
to the maximum bandwidth seen by the node. Inter-site
latencies were set to the minimum latency between the
two sites as reported by S3 minus the intra-site latencies
of the nodes. The inter-site bandwidths were set to the
maximum bandwidths between the two sites.

In both topologies the Pastry nodeIds were randomly
assigned, and a different random seed was used for each
simulation. As in the PlanetLab experiments, unless
specified otherwise, each experiment used 100 nodes and
aggregated 1MB of data from each node, each data point
is the average of 10 runs, and the error bars represent 1
standard deviation.

The first experiment varied the number of nodes in
the system to demonstrate the scalability of San Fermı́n;
the results of the CS topology are shown in Figure 9.
The completion time increases slightly as the number
of nodes increases; when the number of nodes increases
from 32 nodes to 1024 nodes the completion time only
increases by about a factor of four. A 1024 node aggrega-
tion of 1MB completed in under 500ms. The PlanetLab
topology (not shown) has similar behavior — the com-
pletion time also increases by approximately a factor of
four as the number of nodes increases from 32 to 1024.

Figure 10 shows the result of varying the data size
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Figure 12: Completeness vs. Failures.

while using all 353 nodes in the CS topology. The com-
pletion time is dominated by the p2p and message header
overheads for data sizes under 128KB. When aggregat-
ing more than 128KB the completion time increases sig-
nificantly. The PlanetLab topology (not shown) has a
similar pattern in which all of the data sizes under 128KB
take about 4 seconds and thereafter the mean time in-
creases linearly with the data size.

In all experiments the result included data from all
nodes, therefore completeness results are not presented.

5.3 Failure Handling

The next set of simulations measured the effective-
ness of San Fermı́n at tolerating node failures. Failure
traces were synthetically generated by randomly select-
ing nodes to fail during the aggregation. The times of
the failures were chosen randomly from the start time of
the aggregation to the original completion time. The p2p
time to notice failures is varied to demonstrate the effect
on San Fermı́n.

The timeout mechanism in San Fermı́n allows it to de-
tect failures before the underlying p2p does. As a re-
sult, the average completion time is less than the Pastry
recovery time (Figure 11). On the PlanetLab topology,
when the Pastry recovery time is less than 5 seconds,
the cost of failures is negligible because other nodes use
the time to aggregate the remaining data (leaving only
failed subtrees to complete). When the recovery time is
more than 5 seconds then some nodes end up timing-out
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Figure 13: San Fermı́n Overhead. Overhead is segregated into p2p and TCP traffic for (a) and (b).

a failed subtree before continuing. The CS department
topology (not depicted) typically completes in less than
500ms so all non-zero Pastry recovery times increase the
completion time. However, the average completion time
is less than the Pastry recovery time for all recovery times
greater than 1 second.

Figure 12 shows how failures affect completeness.
Since failures occurred over the original aggregation
time, altering the Pastry convergence time has little ef-
fect on the completeness (and so the average of all runs
is shown). The number of failures has different effects
on the PlanetLab and CS topologies. There is greater
variability of link bandwidths in the PlanetLab topol-
ogy, which causes swaps to happen more slowly in some
subtrees. Failures in those trees are more likely to de-
crease completeness than in the CS topology, which has
more uniform link bandwidths and the data swaps hap-
pen more quickly. In both topologies the completeness
is better than the number of nodes that failed — in most
cases a node fails after enough swaps have occurred to
ensure its data is included in the result.

5.4 Overhead

In this section two aspects of overhead are examined:
the cost of invitations and the overhead characteristics
as measured on PlanetLab. The two characteristics of in-
terest are the total traffic during aggregation and the peak
traffic observed by a node.

5.4.1 Overhead Composition

We ran simulations with varying numbers of nodes on
the CS and PlanetLab network topologies to evaluate the
composition of network traffic from San Fermı́n (Fig-
ure 13a). The traffic is segregated by type (p2p or TCP).
The p2p traffic is essentially the traffic from invitations
and responses while the TCP traffic is from nodes swap-
ping aggregate data. The traffic per node does not sub-
stantially increase as the number of nodes increases,
meaning that the total traffic is roughly linear in the num-
ber of nodes.

San Fermı́n on the PlanetLab topology has higher p2p

and lower TCP traffic than on the CS topology. This
is because PlanetLab’s latency is higher and more vari-
able, causing the overall aggregation process to take
much longer (which naturally increases the number of
p2p messages sent). The PlanetLab bandwidth is also
highly variable (especially intra-site links versus inter-
site links). This causes high variability in partnering
time, so that slow partnerings that might otherwise oc-
cur do not because faster nodes have already computed
the result.

As Figure 13a demonstrates, the p2p traffic is insignif-
icant when 1MB of data is aggregated. Figure 13b shows
how the composition of p2p and TCP traffic varies as the
data size is varied. This is important for two reasons.
First, it shows that the p2p traffic does not contribute sig-
nificantly to the total overhead. Second, it shows how
the total overhead varies with the data size. Doubling the
data size caused the total overhead to roughly double.

Another notable result is that that the standard devia-
tions were quite small, less than 4% in all cases. This
makes it difficult to discern the error bars in the figures.

5.4.2 Total Traffic

The total network traffic of San Fermı́n was also mea-
sured experimentally on PlanetLab (Figure 13c). The re-
sults from SDIMS are presented for comparison. For less
than 256KB, SDIMS-1 incurs the least overhead, fol-
lowed by San Fermı́n and then SDIMS-4. After 256KB
the overhead for SDIMS actually decreases because the
completeness decreases. Nodes are overwhelmed by
traffic and fail. A single internal node failure causes the
loss of all data for it and its children until either the in-
ternal node recovers or the underlying p2p network con-
verges.

5.4.3 Peak Node Traffic

The peak traffic experienced by a node is important be-
cause it can overload a node (Figure 14). To evaluate
peak node traffic, an experiment was run on PlanetLab
with 30 nodes aggregating 1 MB of data (30 nodes being

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association158



0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250

Tr
af
fic

(M
bp
s)

Time (seconds)

Maximum SDIMS-1

Maximum SDIMS-4

Maximum San Fermin

San Fermin max
SDIMS-1 max
SDIMS-4 max

Figure 14: Peak Node Traffic. Each data point represents the
peak traffic experienced by a node during that second of the
aggregation.

the most nodes for which SDIMS had high complete-
ness).

SDIMS internal nodes may receive data from many
of their children simultaneously; the large initial peak of
SDIMS traffic causes internal nodes that are not well-
provisioned to either become zombies or fail. On the
other hand, San Fermı́n nodes only receive data from one
partner at a time, reducing the maximum peak traffic. As
a result, San Fermı́n has a maximum peak node traffic
that is less than 2/3 that of SDIMS.

5.5 Capacity

An important aspect of San Fermı́n is that each node cre-
ates its own binomial aggregation tree. By racing to com-
pute the aggregate data, high-capacity nodes naturally
fill the internal nodes of the binomial trees, while low-
capacity nodes fill the leaves and ultimately prune their
own aggregation trees.

The final experiment measures how effective San
Fermı́n is at pruning low-capacity nodes. 1MB of data
was aggregated from 100 PlanetLab nodes 10 times. The
state of each node was recorded when the aggregation
completed. Table 2 shows the results, including the num-
ber of swaps remaining for each node to complete its ag-
gregation and the average peak bandwidth of nodes with
the same number of swaps remaining. Nodes with the
higher capacity had fewer swaps remaining, whereas the
nodes with lower capacity pruned their trees. The nodes
in the middle tended to prune their trees but some were
still working; the average peak bandwidth of these nodes
was 2.1Mbps, whereas the average peak bandwidth of
the nodes still working was 3.2Mbps. This means that
nodes that are pruned have about 1/3 less observed ca-
pacity than those nodes that are still aggregating data.
This illustrates that San Fermı́n is effective at having
high-capacity nodes perform the aggregation and having
low-capacity nodes prune their trees.

6 Related Work
Using trees to aggregate data from distributed nodes
is not a new idea. The seminal work of Chang on

Remaining Pruned Nodes Working Nodes
Swaps Number Mbps Number Mbps

0 0 0.0 38 4.3
1 0 0.0 105 3.9
2 0 0.0 116 3.6
3 9 2.5 56 2.3
4 82 2.0 32 2.2
5 143 2.0 19 1.2
6 107 2.4 9 1.1
7 62 2.0 1 0.8
8 14 1.7 0 0.0
9 16 2.4 0 0.0

10 3 1.6 0 0.0
11 0 0 0 0.0
12 2 1.9 0 0.0

Table 2: Effectiveness of San Fermı́n at using high-capacity
nodes. The number column is the number of nodes with the
given number of swap remaining when the aggregation com-
pleted; the Mbps column is the average peak bandwidth of
those nodes.

Echo-Probe [7] formulated polling distant nodes and
collecting data as a graph theory problem. More re-
cently, Willow [30], SOMO [34], DASIS [1], Cone [3],
SDIMS [31], Ganglia [21], and PRISM [15], have used
trees to aggregate attributes Willow, SOMO, and Ganglia
use one tree for all attributes, whereas SDIMS, Cone, and
PRISM use one tree per attribute.

Seaweed [22] performs one-shot queries of small
amounts of data and like San Fermı́n is focused on com-
pleteness. However, Seaweed trades completion time
for completeness in that queries are expected to live for
many hours or even days as nodes come online and re-
turn aggregate data. Seaweed uses a supernode-based
solution that further delays the timeliness of the initial
aggregate data. Instead San Fermı́n focuses on a differ-
ent part of the design space, robustly returning aggregate
data from existing nodes in a timely manner.

CONCAST [4] implements many-to-one channels as
a network service. It uses routers to aggregate data over
a single tree. As the size of the aggregate data grows
the memory and processing requirements on routers be-
comes prohibitive.

Gossip and epidemic protocols have also been used for
aggregation [18, 13, 17, 16], including Astrolabe [29].
Unstructured protocols that rely on random exchanges
face a trade-off between precision and scalability. Struc-
tured protocols, such as Astrolabe, impose a structure on
the data exchanges that prevents duplication. This is at
the cost of creating and maintaining a structure, and con-
fining the data exchanges to adhere to the structure.

Data aggregation is also an issue in sensor net-
works. Unlike San Fermı́n, the major concerns in sen-
sor networks are power consumption and network traf-
fic. Examples of data aggregation in sensor networks are
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TAG [20], Hourglass [27], and Cougar [33].
Distributed query processing involves answering

queries across a set of distributed nodes. The most rele-
vant to our work are systems such as PIER [14], which
stores tuples in a DHT as part of processing a query. Dis-
tributed query processing also encompasses performing
queries on continuous streams of data, as is done in Au-
rora [8], Medusa [8], and HiFi [11].

There are several systems that have focused on aggre-
gating data from large data sets from a programming lan-
guage perspective [10, 24]. However neither system fo-
cuses on sending large amounts data over the network.

7 Conclusions

This paper presents San Fermı́n, a technique for ag-
gregating large amounts of data that when aggregating
1MB of data provides 2-6 times better completeness than
SDIMS, at 61-76% of the completion time, and with bet-
ter scalability characteristics. San Fermı́n has a peak
node traffic more than 1/3 lower than that of SDIMS,
which accounts for much of the higher completeness.
Our analysis shows that when 10% of the nodes fail dur-
ing aggregation San Fermı́n still computes the aggre-
gated result from 97% of the nodes. San Fermı́n also
scales well with the number of nodes or the data size –
completion time increases by less than a factor of 4 if
the number of nodes increases from 32 to 1024, and by
about a factor of 2 as the data size increases from 256KB
to 1MB.
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