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ABSTRACT

We present the design and evaluation of Passport, a sys-

tem that allows source addresses to be validated within

the network. Passport uses efficient, symmetric-key cryp-

tography to place tokens on packets that allow each au-

tonomous system (AS) along the network path to inde-

pendently verify that a source address is valid. It lever-

ages the routing system to efficiently distribute the sym-

metric keys used for verification, and is incrementally de-

ployable without upgrading hosts. We have implemented

Passport with Click and XORP and evaluated the design

via micro-benchmarking, experiments on the Deterlab,

security analysis, and adoptability modeling. We find that

Passport is plausible for gigabit links, and can mitigate

reflector attacks even without separate denial-of-service

defenses. Our adoptability modeling shows that Pass-

port provides stronger security and deployment incentives

than alternatives such as ingress filtering. This is because

the ISPs that adopt it protect their own addresses from be-

ing spoofed at each other’s networks even when the over-

all deployment is small.

1. INTRODUCTION

Source authentication in this paper refers to the verifi-

cation of the source address of a host or network location

that originates a packet. The current Internet design trusts

each host to place its own IP source address on the pack-

ets that it originates, and has at best weak mechanisms to

verify that a source address is correct once a packet has

entered the network. Because of this, compromised hosts

can place incorrect source addresses on packets to imper-

sonate other hosts or obscure the origins of their packets,

a practice known as source address spoofing.

Source address spoofing undermines the security and

reliability of the Internet in a variety of ways. It enables

reflector attacks, in which attackers send initial requests

that spoof the address of a victim and trick hosts that reply

to send unwanted traffic to the victim. Spoofing obscures

the true source of the attack and amplifies it when reply

packets are larger than initial requests. Reflector attacks

in the early 2006 used DNS servers as unwitting partici-

pants to flood the victims with up to 5 Gbps traffic [39].

Spoofing also complicates measures to stop packet floods

within the network. Packets’ source addresses do not

clearly identify the hosts that send them because of spoof-

ing. Consequently, the network cannot automatically fil-

ter packet floods based on source addresses, as attackers

may deliberately spoof legitimate hosts’ addresses, and

filtering would block the legitimate hosts’ traffic as well.

Similarly, fair queuing based on source addresses cannot

effectively limit bandwidth consumed by packet floods.

This situation creates a vicious cycle in deploying au-

tomated DoS defense mechanisms [17]: the possibility

of spoofing leads to the absence of automated defense

mechanisms; the absence of such mechanisms obviates

the need to attack with spoofed packets, which leads back

to the lack of deployment of anti-spoofing mechanisms

that makes spoofing possible.

For these reasons, the Internet would benefit from stronger

source authentication that makes source addresses trust-

worthy. Previous work that tackles this problem high-

lights two extremes in how it can be accomplished. One

extreme is ingress filtering [16] in which each AS vol-

untarily filters spoofed traffic it would originate near the

sources, where the legitimate source address ranges are

known. This approach is light-weight, but offers lim-

ited security benefit and has incentive issues. Specifi-

cally, if one network fails to filter spoofed packets, com-

promised hosts in its network can spoof the addresses of

other networks. Up-to-date measurements show that ap-

proximately 20% of the prefixes, IP addresses, and ASes

on the Internet still allow source address spoofing [7] de-

spite the fact that ingress filtering has been standardized

as an Internet Best Current Practice for over seven years.

Even when ingress filtering is deployed by all ASes, at-

tackers may still inject spoofed packets if they could com-

promise routers [42, 50]. This means that ingress filtering

provides no guarantee to an AS that it will not have its ad-

dresses spoofed at other parts of the network or will not

become the victim of reflector attacks, even if the major-

ity of ASes have deployed ingress filtering.

The other extreme is to use strong cryptography-based

authentication to verify the source addresses. One exam-

ple is the approach proposed in [33]. A packet carries

a digital signature signed with a source’s private key; a

router verifies the signature before forwarding the packet.

This approach has the adoptability benefit of allowing

each AS to independently authenticate the source of a

packet without relying on the deployment status or trust-

worthiness of other parts of the network. As long as an

AS has deployed signatures, no attackers can spoof its

source address at other ASes where authentication is de-
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ployed. However, it requires a per-source public key in-

frastructure (PKI), and routers need to verify digital sig-

natures at line speed. Both of these requirements are steep

and effectively prevent the use of digital signatures at a

low level in the protocol stack.

The focus of our work is to understand whether it is

possible to achieve the best of both these extremes. Ide-

ally, we would like a source authentication scheme that

is as lightweight and incrementally deployable as ingress

filtering, yet as robust and beneficial in terms of incen-

tives as digital signatures. To this end, we present the

design and evaluation of Passport, a novel network-layer

source authentication system. Passport treats an AS as a

trust and fate-sharing unit, and authenticates the source

of a packet to the granularity of the origin AS. It uses ef-

ficient symmetric-key cryptography and checks packets

only at administrative boundaries. It leverages the routing

system to simply and efficiently manage keys by piggy-

backing a Diffie-Hellman key exchange on routing adver-

tisements. Together, these properties provide much of the

benefits of digital signatures without the corresponding

PKI and computational problems.

We implement a prototype of Passport and evaluate its

costs and benefits via experiments, security analysis, and

adoptability modeling. Our results show that a commod-

ity software PC router can generate or verify packets at

up to 2Gbps with an average packet size. We also run

experiments on the Deterlab [11] testbed to show how

Passport can weaken reflector attacks. We use the adopt-

ability modeling framework presented in [10] to compare

the security benefit of Passport with partial deployment

with that of other approaches. Our analysis shows that

Passport provides stronger security benefit with partial

deployment, and hence it is more adoptable than non-

cryptography-based approaches such as ingress filtering [16]

and route-based filtering [26, 31].

The rest of the paper describes the design, implemen-

tation, and evaluation of Passport in greater detail.

2. PROBLEM

2.1 Source Authentication Goals

Our goal is to use source authentication to prevent spoof-

ing under the threat model given in the next subsection.

A perfect scheme would check every packet that arrives

at each router and verify that the packet carries the source

address of the host that injects it into the network; packets

with spoofed addresses would be identified precisely and

discarded. However, this perfect scheme is unattainable,

and we relax the goals of source authentication to permit

more realistic designs.

First, we relax the granularity of source authentication.

Our design treats an AS as a trust and fate-sharing unit.

That is, it only prevents hosts in one AS from spoofing

the addresses of other ASes. As each AS is separately

administered, we consider it to be an internal issue for

an AS to prevent a malicious host in its network from

spoofing the addresses of other hosts in its network. Each

AS can use whatever method it prefers to do so. Note that

this has the further benefit of allowing source addresses

to be authenticated only at the boundaries between ASes,

rather than at every router.

Second, we do not verify the freshness of each packet.

That is, we do not distinguish between an authentic packet

and a replay (a subsequent copy) of the same packet that

is injected along the same network path as the authen-

tic packet. This has the downside that packets may be

duplicated at any point along the network path and still

be considered authentic. While it would be desirable to

weed out duplicates, this requires more processing than

what we think belongs in the lowest layer of source au-

thentication, e.g., per-source sequence numbers with state

kept in the network. Moreover, it is not clear that dupli-

cate packets are as problematic as spoofed packets. Small

numbers of duplicates can be detected at end-systems by

provisions above the network layer. Large numbers of

duplicates could be filtered out in the network in cases

where the benefits outweigh the costs. Or even if they are

not, large numbers of duplicate packets would likely help

in pinpointing the location of duplication.

2.2 Threat Model

The key threat we are concerned with is that attack-

ers can send packets with source addresses that belong to

other hosts or routers, yet have those packets pass source

authentication checks in the network. We assume that in a

realistic Internet environment, both hosts and routers can

be compromised, although routers are compromised less

often than hosts. This leads us to consider three types of

attackers, each with different capabilities.

• Compromised Host: This attacker can inject pack-

ets into the network with arbitrary source addresses,

but cannot eavesdrop the traffic sent by legitimate

sources. It is referred to as a Host attacker.

• Compromised Monitor and Host: This attacker

can eavesdrop traffic (sent by legitimate sources)

at its network location and replay that traffic from

other, compromised host locations in the network.

It is referred to as a Monitor attacker.

• Compromised Router and Host: This attacker can

eavesdrop traffic (sent by legitimate sources) at its

location, and alter or replay that traffic at its location

as well as replay it from other, compromised host

locations in the network. It is referred to as a Router

attacker.

Note that a Router attacker is a strong adversary that

can cause greater harm than source authentication fail-

ures. We consider such attackers to better understand the
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Figure 1: A border router of a source AS (R2) stamps source

authentication information into the Passport header of an outbound

packet. A border router of an intermediate or destination AS (R3,

R5, or R7) verifies this information.

properties of our design. We also study the weaker Mon-

itor attackers to tease apart the properties of Passport.

3. DESIGN

This section describes the baseline design of Passport.

For clarity, we ignore the deployment issues in this sec-

tion and discuss them in later sections.

3.1 Overview

Figure 1 shows how Passport works at a high level.

When a packet leaves its source AS, the border router

stamps one Message Authentication Code (MAC) for each

AS on the path into its Passport header. Each MAC is

computed using a secret key shared between the source

AS and the AS on the path.

When the packet enters an AS on the path, the border

router verifies the corresponding MAC value using the se-

cret key shared with the source AS. A correct MAC can

only be produced by the source AS that also knows the

key. If the MAC verifies, it is sufficient to show that the

packet comes from the source AS indicated by its source

address. Otherwise, it is an indication that the source ad-

dress is spoofed, or there is a temporary routing inconsis-

tency. A packet with an invalid MAC is demoted at an in-

termediate AS and is discarded at a destination AS (§ 3.4).

Routers forward demoted traffic in a separate queue with

limited bandwidth (§ 4.3).

Next, we describe how two ASes obtain a shared secret

key, and how MACs are computed and verified.

3.2 Obtaining Shared Secret Keys

Passport uses the inter-domain routing system for key

distribution. It piggybacks a Diffie-Hellman key exchange

[12] on BGP routing advertisements. Each ASi generates

a Diffie-Hellman public/private value pair (bi, ri), and in-

cludes the public value bi in its routing advertisement.

This routing advertisement will reach all other ASes so

that they can set up a forwarding entry to reach ASi.

Similarly, ASi will receive routing advertisements from

all other ASes. Using the public values included in the

routing advertisements, ASi is able to obtain a shared se-

cret key with every other ASj using a standard Diffie-

Hellman construct: K(i, j) = bri

j mod p = b
rj

i mod p,

in which p is a system-wide parameter. If an AS origi-

nates multiple address prefixes, it only needs to choose

one representative prefix to piggyback the key exchange

information.

ASi may receive a routing advertisement originated by

ASj from multiple neighbors. ASi accepts ASj’s pub-

lic value in the routing advertisement from its next-hop

neighbor to reach ASj . This binds the security of the

Diffie-Hellman key exchange to routing security, because

the public value of ASj accepted by ASi is forwarded

from the reverse forwarding path from ASi to ASj . If

the routing system successfully prevents ASi from for-

warding packets via an attacker by rejecting a routing ad-

vertisement forwarded from the attacker, then the public

value of ASj accepted by ASi is not forwarded from an

attacker. ASi is able to compute a correct key shared with

ASj , and verify packets from ASj using that key. There-

fore, as long as routing is secure, Passport is secure.

Passport gains additional benefits from distributing the

shared secret keys within the routing system. First, it

can bootstrap the key distribution. Key distribution is a

seemingly chicken-and-egg problem: keys are needed for

packet forwarding, but ASes need to send packets to ne-

gotiate keys. As routing packets are exchanged before

forwarding state is set up, routing has its own authentica-

tion mechanisms to accept routing messages without re-

quiring Passport headers, i.e. routers only accept routing

messages from known peers. Second, it gains efficiency.

Each AS only needs to send one routing advertisement to

establish a shared secret key with every other AS. Lastly,

its key distribution channel can be made highly resilient

to DoS flooding attacks, because the key distribution in-

formation enjoys the same forwarding priority as routing

messages. If routers forward routing messages with high-

est priority, Passport’s key distribution information is also

forwarded with highest priority.

3.3 Stamping

Passport uses efficient symmetric key MACs as the inter-

AS authentication information. A border router of an AS

stamps a MAC for each AS on the path to the destination

when it receives an outbound packet from an internal in-

terface. Each MAC is computed using the key it shares

with the AS on the path. The MAC computed for the

destination AS covers the source address, the destination

address, the IP identifier (IP ID), the packet length field of

the IP header, and the first 8 bytes of packet payload. For

instance, in Figure 1, when a packet from host A to host

B leaves AS1, the border router R2 of AS1 computes

MAC4 for the destination AS4 as MACK(AS1,AS4) (src,

dst, len, IPID, payload[0, 7]). The MAC computed for

an intermediate AS also includes the previous AS num-

ber. For instance, R2 computes MAC3 as MACK(AS1,AS3)
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(src, dst, len, IPID, payload[0, 7], AS2). A router can

obtain the AS path information from BGP.

A MAC computation covers the source address field

to prevent spoofing. It covers the other fields to detect

packets that are sniffed on one path but injected at other

network locations. We discuss more on how Passport pre-

vents this type of sniffing and replaying attack in § 7.

Figure 2 shows a Passport header format used in our

implementation. A destination MAC is 64-bit long. Each

intermediate MAC is 32-bit long if there are more than

one intermediate hop to save header space; otherwise it is

64-bit long.

A border router only stamps a Passport header for a

packet with a valid source address that is within its own

address space, and discards the packet otherwise. This

step is similar to egress filtering [16], but it is only an op-

timization. Passport prevents address spoofing even with-

out it. This is because if a router stamps MACs for a

source address outside its address space, the MACs will

not verify at downstream ASes (as we will see next), wast-

ing an AS’s processing power.

3.4 Verification

When an AS receives a packet from an external inter-

face, it verifies the Passport header using the key it shares

with the source AS. The verifying AS uses the source ad-

dress of the packet to look up the source AS, obtains the

shared key, and recomputes the MAC using the shared

key and the same packet fields as used by the source AS.

An AS can obtain the mapping between a source address

and the corresponding source AS from BGP using the

AS PATH path attribute.

If the source address is not spoofed, a router is able to

locate the correct key. The re-computed MAC will match

the one in the Passport header. This verifies the source

AS of the packet. A router erases the MAC value in a

packet after verification to prevent offline cryptanalysis.

If the MAC does not verify, a destination AS discards

the packet, because the source address must be spoofed.

An intermediate AS demotes the packet, because a MAC

mismatch may be caused by either address spoofing or

temporary routing inconsistency.

If a packet is demoted, a demotion bit in its Passport

header is set, and its IP header is also marked with demo-

tion information to convey the demotion status to legacy

ASes (§ 4.3). Intermediate ASes forward demoted traffic

in a separate queue with limited bandwidth without fur-

ther verification. A destination AS still verifies a demoted

packet, and discards the packet if the MAC is incorrect.

If the MAC is valid, the packet is forwarded to its des-

tination host with the demotion mark. End systems may

use these marks to mitigate reflector attacks (§ 7.2). We

discuss the trade-off between demote and discard in § 9.1.

An intermediate AS discards packets received from an

external interface that spoof its own addresses. This step

Flags IPProto

Nonce

NHops HopIdx

DstMAC (64bit)

01531

MAC (32bit)

Intermediate

MACs

MAC (32bit)

Figure 2: Passport header format.

Flag New DH Value

8bit 1024bit 1024bit

Old DH ValueBGP Attr. Hdr

32bit

Figure 3: Diffie-Hellman key exchange information is encapsu-

lated in a BGP AS path attribute.

precedes Passport header verification, as it does not re-

quire verifying a Passport header.

A router in an AS may receive a packet with a Passport

header from an internal interface. If the internal interface

is a host-to-router interface, e.g, the interface between

host A and a router R1 in Figure 1, the router discards

the packet, as a host can not generate a valid Passport

header. If it is a router-to-router interface, it may assume

that the packet has been verified by a border router in its

AS and forward the packet without further verification.

3.5 Re-Keying

An AS may establish new shared keys with other ASes

when its old keys have been used for a while, e.g. on the

order of a few days or a few weeks, to improve security.

To exchange new keys, ASi sends a routing update with

a new Diffie-Hellman public value, and other ASes com-

pute new keys shared with the AS using this value.

During the re-keying process, different ASes may use

different keys to generate the MACs for ASi, as the rout-

ing advertisement of ASi will arrive at different ASes

asynchronously. To identify different keys, an AS uses an

alternating parity bit to mark consecutive Diffie-Hellman

public values. When ASj generates a MAC for ASi, it

uses the highest-bit in the MAC field to indicate the par-

ity of ASi’s public value, and one bit in the Flags field of

a Passport header to indicate the parity of its own public

value. These two bits uniquely identify a shared key even

when both ASes re-key simultaneously.

Figure 3 shows the key exchange information piggy-

backed in a BGP advertisement. Each advertisement car-

ries both the new and old Diffie-Hellman public values in

case a remote router crashes when an AS re-keys. The

parity of the new value is indicated in the flag field.

3.6 Key Management and Storage

Diffie-Hellman public values or the shared secret keys

are stored with routing information. If a router reboots
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and loses those values, it may obtain them from other

routers in the same AS, similar to a BGP table transfer

after a router reboots.

An AS may configure one router or a route reflector [5]

as its key generator. This router is in charge of generating

Diffie-Hellman value pairs and initiating re-keying. Other

routers learn the Diffie-Hellman private value from the

key generator via iBGP.

4. DEPLOYMENT

This section describes how to deploy Passport in the

presence of various legacy elements in the Internet. We

discuss the high-level issues here. More details such as

MTU discovery are discussed in § 9.

4.1 Inter-Operate with Legacy ASes

ASes that adopt Passport may use the optional and tran-

sitive path attributes of BGP to distribute their Diffie-

Hellman public values as shown in Figure 3. Legacy

ASes do not process the optional and transitive path at-

tributes, but will include them in the routing advertise-

ments they propagate to their neighbors [36]. Therefore,

two upgraded ASes can perform a Diffie-Hellman key ex-

change when there are legacy ASes between them.

Passport header is inserted as a shim layer between IP

and an upper layer protocol. A source AS stamps MAC

values for the upgraded ASes on the path, and legacy

ASes do not process the Passport header.

4.2 Bump in the Wire

Passport can be deployed as bump in the wire without

upgrading hosts. When both a source AS and a destina-

tion AS have upgraded, the border router at the source

AS inserts a Passport header to a packet, and the border

router at a destination AS strips off the header.

If a destination AS has not deployed Passport , an up-

graded source AS can still use Passport headers so that

other upgraded ASes on the path can verify its packets. In

this case, the last upgraded AS on the path strips off the

Passport header. However, if there is a temporary routing

inconsistency, a Passport header may not be stripped off

when the packet reaches its destination. A legacy host in

the destination AS may receive a packet with an unknown

Passport header and discard it.

To solve this problem, Passport uses IP encapsulation.

A source AS encapsulates the original IP packet using an

outer IP header. The outer IP header uses the same source

address as the inner header, and uses the last upgraded AS

on the path as the destination address. This address could

be a special well-known anycast address of the last up-

graded AS. The source AS inserts a Passport header be-

tween this outer IP header and the inner IP header. In this

encapsulation mode, a MAC in a Passport header covers

the source address, both destination addresses in the inner

and outer header, the original 8-byte payload, and the IP

ID and length fields of the outer header.

When the destination AS in the outer IP header decap-

sulates a packet, it checks whether the incoming AS is a

neighbor to which it announces the destination prefix in

the inner header. If not, it discards the packet to prevent a

source AS from violating its transit policy.

Modern routers already support encapsulation at line

speed because of other needs such as VPNs and IPv4-

IPv6 transition. After hosts are upgraded, they can pro-

cess packets with Passport headers, reducing the need for

encapsulation.

4.3 Handling Legacy Traffic

In upgraded ASes, legacy and demoted traffic are both

unverified traffic, and are treated with the same priority.

An upgraded AS may use strict priority queuing to favor

verified traffic over unverified traffic, and incent legacy

ASes to upgrade. Alternatively, it may use two weighted

queues to handle verified and unverified traffic, allocat-

ing limited bandwidth to unverified traffic. It may set the

queue weights according to the ratio of traffic from up-

graded ASes and legacy ones to avoid penalizing legacy

traffic when there is no spoofing attack.

An upgraded AS will discard or demote legacy traffic if

it detects or suspects that the traffic spoofs other upgraded

ASes’ addresses as follows:

1. If a legacy packet’s source AS and destination AS

have both deployed Passport, discards the packet, as

it must be spoofed.

2. If a legacy packet’s source AS has deployed Pass-

port but the destination AS has not, demotes the

packet. This is because a source AS will insert a

Passport header for a legacy destination if there is

any upgraded AS on the path. A legacy packet from

an upgraded AS is likely to be spoofed, except dur-

ing temporary routing inconsistency.

A legacy AS may receive two types of legacy traffic:

regular and demoted by other upgraded ASes. The AS

should treat demoted traffic with lower priority, because

it is likely to be spoofed.

Upgraded ASes convey demotion information to legacy

ASes via the IP header, such as using the Differentiated

Services Code Point (DSCP) [29]. A legacy AS needs to

make a configuration change to honor demotion in order

to take advantage of Passport. We believe this configu-

ration change can be made at most legacy ASes, because

DiffServ is already well supported by commercial routers

today, and this change does not require software or hard-

ware upgrade. Besides, if a legacy AS encounters con-

gestion in its network, it has to discard some packets. It’s

advantageous for the AS to honor a demotion mark and

discard packets that are likely to be spoofed in favor of

regular packets.
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Figure 4: How Passport is implemented using Click and XORP.

The shaded boxes are the main modules we modify.

5. IMPLEMENTATION

This section describes a prototype implementation of

Passport. We implement most of the features of Pass-

port using Click [22] and XORP [18]. Figure 4 shows

the structure of the implementation. The shaded boxes

are modules we modify. We modify XORP to piggyback

the Diffie-Hellman key exchange protocol in BGP, and

modify components in Click to support Passport header

stamping and verification. We also modify XORP to com-

municate with Click using the /click file system.

We add an optional and transitive AS path attribute

DH KEY to XORP’s BGP modules. This attribute encap-

sulates Diffie-Hellman public values as described in Fig-

ure 3. It is inserted into the BGP prefix advertisements in

the module RibIpcHandler and extracted from the pre-

fix advertisements in the module RibInTable. RibInTable

is also modified such that whenever new Diffie-Hellman

public values are received, the corresponding shared se-

cret key is generated and sent to Click using the set key

interface in Figure 4. We also modify RibIpcHandler to

update Click’s routing table with Passport related infor-

mation using the add route and remove route inter-

faces in Figure 4. Passport related information includes

AS paths and prefix to origin AS mapping. In our cur-

rent implementation, a new Diffie-Hellman public-private

value pair is generated at XORP’s startup time. This part

needs to be extended to support periodic re-keying, and

private key distribution using iBGP.

We modify the IPRouteTable element in Click such

that it receives shared secret keys from XORP and calls

generate ppt() or verify ppt() in its push()method

to stamp or verify Passport headers. We use Click’s pri-

ority scheduler to handle normal and demoted traffic as

shown in Figure 4. We use priority queuing instead of

weighted fair queuing to emphasize the benefit of deploy-

ing Passport . The ARP queue ensures that link-local ARP

packets have highest forwarding priority.

Our implementation uses UMAC because of its supe-
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Figure 5: The throughput of Passport header stamping and ver-

ification for various AS hops with minimum sized packets (40 byte

TCP/IP headers plus a Passport header). The Click null forward-

ing throughput for packets with the same size are also shown for

comparison.

rior speed. UMAC takes a nonce as input. We stamp

a random number into the 32-bit nonce field of a Pass-

port header and use it together with the 16-bit IP ID to

generate a 48-bit nonce for UMAC computation. In the

worst case when IP ID field never changes, the nonce

space is 232, and a nonce may be reused before an AS re-

keys. For this reason, we did not use UMAC in [23] be-

cause it is vulnerable to a single nonce reuse. Instead, we

use the construction in [8] combined with UHASH [23]

and AES. This construct is provably robust to occasional

nonce reuse. (Due to the lack of space, we cannot in-

clude the proof, but we have confirmed our proof with

the UMAC inventor.)

6. PERFORMANCE EVALUATION

6.1 Passport Header Processing Overhead

We use three PCs in our laboratory to measure the com-

putational overhead of Passport header stamping and ver-

ification. One PC is used as a router, connecting a packet

generator PC and a sink PC. The router has an AMD

Opteron 285 Dual Core 2.6GHz CPU, 2GB memory, and

an Intel PRO/1000 GT Quad Port Server Adapter. The

packet generator and sink are equipped with Pentium-D

3.4GHz CPU, 2GB memory and Intel PRO/1000 PT Server

Adapter. We measure both the throughput and CPU cy-

cles of Passport stamping and verification.

To measure the throughput of Passport header stamp-
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Operation
Time

2-hop 4-hop 8-hop

Per Packet
Passport Stamping 655 ns 1493 ns 3190 ns

Passport Verification 578 ns 618 ns 631 ns

Re-key

DH value pair
5.64 ms

( 1024-bit )

Symmetric key
5.64 ms

( 128-bit )

Figure 6: Micro-benchmark of various Passport operations.

Time is converted from CPU cycles.

Security Sig. Size Signing Verification

RSA-512 60-bit 64 bytes 512 us 40 us

RSA-1024 72-bit 128 bytes 2214 us 102 us

DSA-512 65-bit 40 bytes 368 us 443 us

ECDSA-160 78-bit 40 bytes 300 us 1400 us

Figure 7: Equivalent MAC security level, signature size and com-

putational costs of well-known public key schemes.

ing, we let the packet generator send minimum sized pack-

ets (40 bytes TCP/IP headers) at various input rates. Our

experiments assume legacy hosts, and the router PC in-

serts Passport headers into the packets. The sink mea-

sures the output rate. We vary the number of AS hops for

each experiment, because a router needs to stamp a MAC

for each AS on the path. Note that N AS hops implies

N − 1 MAC computations. Ten million packets are sent

for each experiment.

Similarly, to measure the throughput of Passport header

verification, we let the packet generator send minimum

sized packets with preset Passport headers at various rates

with various AS hops, use the router PC to verify Passport

headers, and measure the output rates at the sink.

Figure 5 shows the Passport header stamping and ver-

ification throughput, together with Click null forwarding

throughput for packets of the same size. The Passport

header verification throughput matches well with Click’s

null forwarding throughput, as it only involves one MAC

computation. The verification throughput varies from 636

kpps to 549 kpps for Passport headers of two to eight AS

hops. The slight decrease is primarily due to the increase

of packet length, not by the MAC computation.

The Passport header stamping throughput decreases as

the AS path length increases. For Passport headers with

two to eight AS hops, the throughput varies from 628

kpps to 243 kpps. If we assume that the average packet

size is 400 bytes [1], the PC router can stamp Passport

headers for average sized packets with two to eight AS

hops at 2 Gbps to 0.9 Gbps. As the mode and mean of the

AS path length are between 3 and 4 [13], we expect that

the stamping throughput for real Internet traffic exceeds

0.9 Gbps. We also note that an AS only needs to stamp

Passport headers for traffic originated within its network,

and not for transit traffic. 1∼2 Gbps stamping throughput

might be sufficient for most ASes.

We measure the CPU cycles for Passport header stamp-

ing and verification using the get cycles() Linux kernel

function. Figure 6 shows the result, with CPU cycles

converted to time. The per-hop increment of a Passport

header stamping time is about 420 ns.

Passport-enabled routers also exchange Diffie-Hellman

keys on the routing plane. The cryptographic operations

include generating Diffie-Hellman public-private value pairs

and computing shared secret keys from Diffie-Hellman

values. Both Diffie-Hellman value pairs and shared secret

keys are generated using exponentiation. We tested the

overhead to generate a Diffie-Hellman value pair and to

compute a shared secret key on the router PC. As shown

in Figure 6, each public key operation takes 5.64 ms.

The public key operations are expensive, but are un-

likely to become a performance bottleneck, because an

AS only performs public key operations when it re-keys.

Re-keying should happen infrequently such as no more

than once per week. When an AS itself re-keys, it needs

to generate a shared secret key with all other ASes. There

are less than 30K ASes seen in BGP routing tables ac-

cording to data from RouteViews [37]. It takes less than

three minutes to generate all shared keys on the router PC.

If another AS re-keys, an AS only needs to generate one

shared secret key when it receives a new Diffie-Hellman

public value from that AS. If we assume all ASes re-key

randomly during a period of seven days, then on average,

an AS may receive less than three new Diffie-Hellman

public values per minute, and spend 17 ms to compute

the shared secret keys.

6.2 Memory Overhead

Passport maintains per-AS key information. A router

keeps a shared secret key per AS for Passport header stamp-

ing and verification. A MAC computation typically re-

quires the initialization of a key context. It is desirable

that a router initializes and stores the key context for fast

processing. The size of a key context depends on the spe-

cific MAC. Our implementation uses a UMAC key con-

text that consumes 388 bytes. It requires less than 12MB

memory to store the shared keys and their key contexts.

When an AS re-keys, another AS may need two dif-

ferent keys for Passport stamping and verification: one

generated with the old Diffie-Hellman public value, and

the other with the new value. This requires additional

memory. As shown above, the average re-keying rate of

all ASes is less than 3 per minute. If we assume it takes

at most an hour for BGP to converge, then the number of

simultaneously re-keying ASes is around 180, adding an

additional 70KB memory overhead.

6.3 Header Overhead

As shown in Figure 2 and described in § 3.3, a Pass-

port header has a 16-byte fixed header overhead, and four

bytes per additional AS hop if the path length exceeds 4

hops, or an additional 8-byte overhead if the path length

is 3 or 4. If we assume an average AS path length is four,

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 371



D
11

D0 D1

1Gbps

10Mbps

U
1

13D D9

..
.

U
3

A

V

D
14

U
4

16D

..
.

U
6

D
17

U
7

19D

..
.

U
9

D2

D3

D4

Figure 8: Topology of Deterlab experiments.

the average header overhead is 8 + 8 + 8 = 24 bytes.

Passport’s header and processing overhead is inherent

to cryptography-based security mechanisms. For com-

parison, we list the header and processing overhead of

well-known public key signatures that provide a similar

level of security as one 64-bit MAC in Figure 7. The tests

are done using the openssl speed test on the router PC,

and the security levels are estimated according to [25].

6.4 Deterlab Experiments

We run experiments on a Deterlab [11] testbed to test

the correctness of our implementation. We emulate a sce-

nario in which malicious Host attackers in legacy ASes

spoof the source address of a victim in an upgraded AS

to launch reflector attacks.

The experiment topology is shown in Figure 8. Each

circle represents one AS. Only the shaded ASes deploy

Passport. We configure each AS to have only one router

Di. The bottleneck link is between D0 and D1. The

victim host V is connected to D1, the attacker host A

is connected to D9, and D11 to D19 each has one host

connected to it. We wish to use a topology with more

hosts, but we were limited by the number of PCs we could

hold on the Deterlab.

In our experiments, hosts U1 to U9 each run a reflector

application that replies to incoming UDP packets with an

amplification ratio of 40. The attacker spoofs the victim’s

address and sends UDP packets to all reflectors U1 ∼
U9 uniformly. Each UDP packet sent by the attacker has

32 bytes payload. These parameters are set to emulate a

DNS reflector attack [39].

After the attack is started, hosts U1 to U9 also each send

100 files to the victim using TCP. These TCP transfers

are used to measure how the reflector attack affects the

network performance seen by an end system. The size of

each file is 20KB, and a file transfer aborts if it cannot

finish in 10 seconds. We vary the attacker’s sending rate

from 1% to 20% of the bottleneck link bandwidth and

measure the file transfer time.

The results are shown in Figure 9. Hosts U2 to U9 are

in non-upgraded ASes. Their file transfer traffic is legacy

traffic and competes for bandwidth with the legacy re-

flector traffic at D0. When the reflector traffic congests
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Figure 9: The average file transfer times and fractions of comple-

tion for hosts U1 to U9 when the attacker A spoofs V ’s address to

launch a reflector attack. U1 is in an upgraded AS D11, while U2

to U9 are in non-upgraded ASes D12 to D19.

the bottleneck link, their file transfer traffic suffers from

congestion. The file transfer traffic from U1 carries Pass-

port headers and only competes for bandwidth with veri-

fied Passport traffic at D0. Therefore, U1 is not affected

by the reflector traffic and can finish all the file transfers

quickly. Note that the reflector application on U1 will not

receive attack traffic and therefore will not send out re-

flector traffic to compete with U1’s file transfer traffic at

the bottleneck link, because when attack packets to U1

reach D0, D0 will discard them as they do not include

Passport headers but both their source and destination ad-

dresses belong to upgraded ASes (See § 4.3).

7. SECURITY

7.1 Spoofing Prevention

Host Attacker: To spoof source addresses, a Host at-

tacker may try to break the MAC that is the heart of Pass-

port. But our design uses a standard MAC scheme with

128-bit keys, which is computationally infeasible to break.

The attacker might instead try to guess a valid Passport

header by sending packets. Since a Passport header has at

least a 63-bit destination MAC value (modulo the parity

bit of a Diffie-Hellman public value), an attacker would

expect to send at least 262 packets to guess one correct,

but the time it takes to send those packets exceeds the

period for which the Passport header will be valid. The

long-term key distributed via BGP will have advanced in

the interim. This attack would also signal a clear anomaly
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via a large number of invalid Passport headers.

An attacker may try to guess an intermediate 31-bit

MAC value by sending TTL expired packets, and use the

echoed IP header and Passport header to observe whether

a guess is demoted. But this again is infeasible as ICMP

messages are always rate limited.

Monitor Attacker: An eavesdropper may observe valid

Passport headers but cannot freely transfer them to an-

other path because a Passport header is bound to one AS

path, i.e., its MACs will be found invalid if sent via an-

other AS path. Thus, packets transferred to other paths

will be demoted on their paths to destinations, and can not

compete for bandwidth with packets with valid MACs.

Router Attacker: Packets duplicated by routers on the

forwarding path of a source may reach a destination with-

out being demoted. However, in this case, routing is com-

promised, and Passport’s security is bound to routing se-

curity. An AS spoofed by a router on its forwarding path

should choose a different path.

If an attacker compromises an AS, it may use the AS’s

keys at other, unprotected locations in the network to forge

a Passport header that spoofs the AS’s addresses. But this

only implicates the compromised AS, not other parts of

the network. Similarly, a compromised router can spoof

packets from other addresses in its AS, but this again im-

plicates the AS and may adversely affect its traffic.

Importantly, even if an AS is compromised, it cannot

forge a Passport header from another AS. This is because

it does not have the secret keys of the other AS. Even

colluding ASes can only forge a valid Passport header

that shows a packet comes from themselves. They cannot

forge a Passport header as if the packet were from an AS

outside the colluding set.

We also note that although two ASes share a secret

key, they can not use this key to spoof each other’s ad-

dresses at other ASes, because other ASes use separate

keys shared with these two ASes respectively to validate

their addresses.

The security of Passport is bound to routing security.

We rely on routing to distribute the correct public Diffie-

Hellman public values across ASes. By the Diffie-Hellman

construction, we do not rely on routers to keep the pub-

lic values secret from attackers, since it is computation-

ally infeasible to find the long-term pair-wise keys given

only the public values. However, if an attacker can suc-

cessfully hijack a prefix announcement and replace the

Diffie-Hellman public value, it can both receive packets

for the specific prefix, and send packets as if they were

originated from that prefix.

7.2 Reflector Mitigation

A Monitor Attacker may attempt to launch reflector at-

tacks by sniffing packets sent by a victim, and injecting

duplicate copies of them from other network locations.

Those replayed packets will be demoted because Pass-

port is bound to an AS path. An upgraded host that un-

derstands the demotion mark in an IP header should echo

back the demotion mark in its reply packets to avoid be-

coming a reflector.

Unfortunately, if a host is not upgraded to echo back a

demotion mark, it may respond to replayed packets with-

out demoting the reply packets, thereby becoming a re-

flector. Passport alleviates this problem by including the

destination address, IP ID, IP length field of an IP header,

and 8 bytes of payload in the MAC computation. The 8-

byte payload covers the TCP sequence number and UDP

checksum. A replayed packet must have the same source

address, destination address, IP ID, IP length, and TCP

sequence number or UDP checksum as the sniffed packet.

These fields can help end systems detect and discard re-

played packets. For instance, an upper-layer application

or a transport protocol such as TCP may detect a duplicate

packet, or a sequence number or checksum mismatch,

thereby discarding the packet.

We believe that in practice, these mechanisms can ef-

fectively mitigate reflector attacks launched using replayed

packets even if a host is not upgraded to echo back a de-

motion mark. However, if this type of attack becomes a

serious concern, Passport can be extended to detect and

discard packets with duplicate Passport headers in the

network at a higher cost, using a combination of sequence

numbers and bloom filters as described in an early version

of this work [27].

In the case of a Router Attacker, packets can be dupli-

cated without being demoted. As described above, an AS

should avoid forwarding packets via a Router Attacker.

7.3 Security with Partial Deployment

In the incremental deployment phase, Passport prevents

the addresses of upgraded ASes from being spoofed at

other upgraded destination ASes by Host attackers. If a

destination AS is not upgraded, then as long as there is an

upgraded AS on the path, packets that spoof the upgraded

ASes’ addresses will be demoted.

Similarly, a packet replayed on one path but sniffed on

another path by a Monitor or Router attacker will be de-

moted as long as the replayed path differs from the sniffed

path by one link whose end node is an upgraded AS.

8. MODELING ADOPTABILITY

This section uses modeling and simulation to study the

adoptability and the incremental deployment benefit of

Passport. We are interested in this study because ingress

filtering, despite being lightweight, offers little incentive

for adoption. An AS that deploys it can still have its ad-

dresses spoofed at other parts of the network.

To examine whether Passport provides greater secu-

rity benefit to motivate adoption, we use the framework

presented in [10] to compare the adoptability of Passport

with that of ingress filtering and SAVE [26], a protocol
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to establish route-based filters [31]. We compare with

SAVE because to the best of our knowledge, route-based

filtering is the most effective non-cryptographic method

that mitigates spoofing with partial deployment [3, 31],

and SAVE is the only proposal that implements accurate

route-based filters.

8.1 The Model

Our adoptability model simulates the adoption deci-

sion of each AS via iterations. At each iteration, an AS

S that has not deployed a spoof prevention mechanism

compares its security benefit before and after adoption. If

the benefit exceeds its cost threshold, S adopts the mech-

anism. The iterations stop when no more ASes adopt

the mechanism. The critical threshold—the largest cost

threshold that leads to full deployment—measures the se-

curity benefit a spoof prevention mechanism provides to

an adopter. The higher the metric, the greater the benefit,

as an AS is willing to pay a higher cost to adopt it.

For an AS S that considers to adopt a spoof prevention

mechanism, we define the security benefit as the average

probability that an attacker cannot spoof S’s addresses in

the network. To calculate this probability, an AS S it-

erates through every other AS D, and examines whether

a malicious attacker at an AS M can spoof its addresses

at D. A security indicator E(M, D) ∈ {0, 1} is set to

1 if M can not spoof S, and 0 otherwise. The probabil-

ity that an attacker cannot spoof S at D is computed as∑
M E(M, D)P (M), in which P (M) is the probability

that M is malicious. The security benefit of S, denoted

by F is the weighted average of
∑

M E(M, D)P (M)
among all Ds. That is,

F =

∑
D ωD

∑
M E(M, D)P (M)
∑

D ωD

(1)

The weight ωD models that an AS S sends different

amount of traffic to different AS Ds. Intuitively, the more

traffic S sends to D, the more important that S’s ad-

dresses are not spoofed at D. The weight P (M) models

different security levels of different ASes.

An AS S computes the security benefit F ′ after its

adoption, and its current security benefit F without its

adoption, and uses the difference ∆F = F ′−F as its in-

centive for adoption. At each iteration, S compares ∆F

with a cost metric c. If ∆F > c, it adopts the spoof pre-

vention mechanism.

In our model, we use a uniform cost metric c for all

ASes to normalize the security benefit F . Larger ASes

may have higher deployment costs, but they also have

larger address spaces. F can be considered as benefit per

address, as it does not include the size of S.

8.2 Mechanisms

We briefly introduce ingress filtering and SAVE, and

describe how to compute the security benefit F for them

M’ S I D

M Z

Figure 10: A sample topology.

and for Passport.

Ingress filtering: An AS S that deploys ingress filter-

ing can filter spoofed traffic originated from hosts in its

network or from its customer ASes as well as incoming

traffic that spoofs its own addresses [16]. Before an AS

S deploys ingress filtering, any malicious node can spoof

its address space at an AS D. After S adopts ingress fil-

tering, an attacker can still spoof S at D, unless the at-

tacker’s traffic to D is forwarded via S, or D = S. For

instance, in Figure 10, if M ′ is the malicious node, after

S deploys ingress filtering, M ′ cannot spoof S at D.

SAVE: SAVE [26] is a proposal that automatically in-

stalls route-based filters. A router maintains an incoming

table that maps a source address prefix to an incoming in-

terface at the router. A source AS that deploys SAVE pe-

riodically sends a source address update for every desti-

nation prefix in its routing table. A router uses the incom-

ing interface of an update message to update its incoming

table. When a router receives a packet, it discards the

packet if its incoming interface does not match the one

associated with its source address in the incoming table.

Before an AS S deploys SAVE, any malicious node

can spoof S at an AS D. After an AS S deploys SAVE,

a malicious node can not spoof S at D, if there is at least

one upgraded AS on the path from the AS S to D, and the

incoming interface of S at the upgraded AS is different

from that of the malicious node. In Figure 10, if M is

an attacker and Z has deployed SAVE, then M cannot

spoof S at D, because S’s incoming interface to reach Z

is I → Z , while M ’s incoming interface at Z is M → Z .

Passport: If an AS S does not deploy Passport, any

malicious node can spoof S’s addresses at an AS D. If

an AS S deploys Passport, its security benefit depends on

the attacker model. If a malicious node is a Host attacker,

the malicious node cannot spoof S at D if there is at least

one upgraded AS on the path from the malicious node to

D. This is because the malicious node cannot spoof a

valid Passport header.

If the malicious node is a Monitor attacker, it can sniff

S’s traffic sent via itself, and collude with other compro-

mised Host attackers to replay sniffed traffic. The re-

played traffic by a compromised Host attacker will be de-

moted if the path from the Host attacker to D and the path

from S to D differ by at least one link whose end node

is an upgraded AS. For instance, in Figure 10, if M is a

colluding compromised Host attacker, as long as the path

from M to I (including I) has one AS that deploys Pass-

port, M can not spoof S at D without being demoted,
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regardless of the Monitor attacker’s location. This is be-

cause an intermediate MAC in a Passport header covers

the previous incoming AS number.

The security benefit under Router attacker threat is sim-

ilar to that under Monitor attacker, except that a Router

attacker can replay sniffed packets at its own location.

Both ingress filtering and SAVE have the same security

benefit under a Monitor threat and a Host threat, because

they do not insert secrets in packet headers. Under the

Router attacker threat, a Router attacker on an AS S’s

forwarding path can always spoof S’s addresses, before

or after S adopts ingress filtering or SAVE.

We note that in computing the security benefit for Pass-

port, as long as M ’s spoofed traffic is demoted at D, S

considers its traffic not spoofable by M at D, as M ’s

spoofed traffic is distinguishable from its authentic traffic.

8.3 Adoptability

We run simulations to compare the critical thresholds

of various mechanisms. Our simulations use a generated

topology of 1000 ASes, as the computational overhead

is over O(n3), and we cannot finish one run on larger

topologies in less than a day. For the purpose of cross val-

idation, we use the same topology as the one used in [10].

The topology is generated using Inet [44] and BGP rout-

ing tables. We also generate smaller topologies using the

same method, and run simulations on smaller topologies

to confirm that the trends are consistent.

Our simulations vary the distributions of ωD and P (M),
using similar models as in [10]. Due to space limitation,

we only present results assuming a uniform distribution

of ωD and P (M). Results using other distributions vary

in the absolute values, but the trends are similar. We use

10 random initial adopters (1% of all ASes) for each run.

For the Host attacker, we simulate two different at-

tacker populations. One assumes that a Host attacker can

only be in an AS that does not deploy a spoof prevention

mechanism, and the other assumes that it can be in any

AS. We only show results for the first case, as the results

are similar, and in the second case, Passport has stronger

security benefit.

We simulate all three threat models: Host, Monitor,

and Router. For Monitor and Router attackers, we as-

sume that at most 3% of transit ASes can be compro-

mised, and randomly pick 3% of them to be the Monitor

or Router attackers. We average the security benefit over

100 runs. We assume that Host or Monitor attackers’ col-

luding hosts can be any Host attacker.

Figure 11 shows the results. We omit the results for

Router attackers for all mechanisms for clarity. Those re-

sults are very similar to the results for Monitor attackers,

because in the Monitor attacker case, we already consider

that a colluding Host may be on the path from S to D.

As can be seen, ingress filtering has the lowest adoptabil-

ity critical threshold. This is expected, because ingress
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Figure 11: The steep cliff of each curve shows the critical thresh-

old of a spoof prevention mechanism. Ingress filtering (Ingress)

has the lowest adoptability. Passport (PPT) is more adoptable than

SAVE under both Host and Monitor threats. Its adoptability is still

close to SAVE even if we assume an omnipresent Monitor attacker.

filtering provides little immediate benefit to an adopter.

Attackers can spoof an adopter’s addresses at other ASes,

before and after an AS’s adoption.

Both Passport and SAVE are much more adoptable than

ingress filtering. Passport has a higher adoptability thresh-

old than SAVE. The adoptability threshold of Passport

is only slightly affected by the presence of Monitor at-

tackers, because 3% of Monitor attackers can only sniff

a fraction of all paths. We also tested an unrealistic om-

nipresent Monitor model (Omni-Monitor in the figure),

in which a Monitor attacker can sniff all S-D pairs. In

this extreme case, the adoptability threshold of Passport

is still very close to that of SAVE. This is because the

algorithm of detecting replayed traffic under Passport is

very similar to that of SAVE as described above.

8.4 Strong Security Benefit

Passport provides a strong security assurance that as

long as an AS deploys it, other attackers cannot spoof its

addresses at other ASes that also deploy it. It does not

depend on transitive trusts between ASes to provide this

assurance. However, the adoptability model does not cap-

ture this feature, because it computes the average proba-

bility of not being spoofed.

We define a strong security metric that measures the

fraction of ASes at which no attackers can spoof an AS

S’s addresses. Referring to Equation 1, when comput-

ing a strong security metric, we only include an AS D

in the sum
∑

D ωD

∑
M E(M, D)P (M), if and only if∑

M E(M, D)P (M) = 1.

Figure 12 shows the strong security metric of various

mechanisms under various threats. The metric is aver-

aged over all ASes in the network. With Passport, the

fraction of ASes at which no attackers can spoof a source

AS’s addresses scales linearly with the number of up-

graded ASes. When there are Monitor or Router attack-

ers, they may replay the Passport headers of the sources

for which they provide transit service, but do not affect

the security assurances of other upgraded ASes. With

Router attackers, the security metric can not reach 100%
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Figure 12: The fraction of ASes at which no attackers can spoof

a source AS’s addresses with various fractions of deployment.
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Figure 13: The security benefit F averaged over all ASes in the

network with various fractions of deployment.

because on-path replayed packets can not be detected.

SAVE can not achieve this level of security assurance

before it reaches a full deployment. This is because its

security assurance depends on transit trust: if there is any

non-upgraded AS on the path from a source to a destina-

tion, compromised hosts in that AS or connecting to that

AS from a non-upgraded path can spoof the source AS’s

addresses.

Ingress filtering’s security assurance is close to zero

before it reaches full deployment, because any attacker

can spoof the address space of an AS S, unless the at-

tacker’s provider deploys ingress filtering, or S provides

transit service for the attacker. Our topology does not

have customer-provider ingress filtering information. When

computing the security benefit, we assume a leaf node’s

next hop AS filters spoofed traffic from the leaf node.

For comparison, Figure 13 shows the security metric F

averaged over all ASes in the network using Eq 1. Again,

for clarity we omit the results under Router attackers for

Passport as they are similar to the ones under Monitor at-

tackers. As can be seen, SAVE has a much higher security

metric than the results in Figure 12. This suggests that the

main security benefit of SAVE comes from incrementally

reducing the probability of spoofing, while a large por-

tion of Passport’s security benefit is to prevent spoofing

with certainty. The curves are not smooth because of the

randomness in initial deployment.

Interestingly, Figure 13 shows that ingress filtering also

has security benefit with partial deployment. However,

this benefit does not motivate adoption, because it is al-

most the same for an AS before or after its adoption.

9. DISCUSSION

9.1 Demotion vs Discard

Passport demotes rather than discards packets with in-

valid MACs at intermediate ASes. Another design choice

is to discard those packets. Discard has the advantage

that packets will not further consume the network’s re-

sources, and legacy ASes do not need to make configura-

tion changes. The drawback is to introduce unnecessary

packet loss during routing convergence.

We choose demote over discard because a small loss

rate may adversely affect TCP’s performance, and presently

BGP converges slowly. This design choice may not be

optimal if these conditions change.

9.2 Per-Prefix Key versus Per-AS key

Our design uses per-AS key rather than per-prefix key

for scalability. The memory overhead of per-prefix key

is the number of prefixes one AS announces multiplying

the total number of prefixes announced in BGP, a num-

ber much larger than that of per-AS key. The time it

takes to recompute all shared keys after an AS re-keys is

also longer. Per-AS key complicates issues such as multi-

origin prefixes (as we’ll describe shortly). If in the future,

a router’s CPU or fast memory is not a limited resource,

the design can be changed to use per-prefix key.

9.3 Additional Deployment Issues

MTU Discovery: When Passport is deployed in the

bump in the wire mode, a legacy host may not subtract the

Passport header in its MTU discovery process. One solu-

tion is for a border router to intercept the ICMP “Frag-

mentation Needed” message, and subtract the Passport

header, a practice used in the deployment of IPv4 to IPv6 [30].

Packet Fragmentation: Packets fragmented in the mid-

dle of the network will not have a valid Passport header.

Passport demotes all fragments, including at the destina-

tion AS. We are not concerned much with this issue, be-

cause fragmentation by the network is discouraged, and

has been disabled by IPv6.

Prefix aggregation: If an AS’s prefix is aggregated by

its provider AS, then its AS path attributes, including its

Diffie-Hellman value will be lost. In this case, an AS

should rely on its provider to stamp and verify its traffic.

A customer AS that desires to stamp and verify Passport

headers on its own should request its providers not to ag-

gregate its prefix. As an AS only needs one prefix to dis-

tribute the key exchange information, even if that prefix is

not aggregated, it will not significantly increase the BGP

table size, as there are much more prefixes than ASes in

the Internet (>244K versus <27K).

Multi-origin prefixes: BGP advertisements may have

multi-origin AS conflicts (MOAS), a practice not recom-
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mended by IETF [19]. MOAS interferes with the key

lookup process, as a router needs to use the correct key

from the origin AS to verify a Passport header. MOAS

can be a signal of prefix hijacking. In this case, Passport

relies on the routing system to resolve MOAS conflicts.

MOAS can be caused by sibling ASes announcing each

other’s prefixes [28]. In this case, they should share Diffie-

Hellman values so that a verifier can use the key shared

with either AS to verify their addresses.

MOAS can also be caused by multi-homed ASes con-

necting to its providers without BGP [51]. In this case, a

simple solution is for the site to run BGP, in order to be

compatible with Passport and IETF’s recommendation.

Our observation from a BGP table obtained from the

Oregon RouteViews server on Aug 1st, 2007 shows that

1385 out of 244095 (0.57%) prefixes have more than one

origin. Therefore, we expect that MOAS prefixes are un-

common, and are unlikely to be a deployment hurdle.

Anycast addresses have legitimate multi-origins. Pass-

port treats packets with anycast source addresses as legacy

traffic. A source should not send traffic with anycast

source address. An anycast address can be used as a des-

tination address, because when computing a MAC for a

destination AS, a source AS uses the key shared with the

anycast address’ destination AS, as described in § 3.2.

Path Discrepancy: Mao et al. [28] observe that paths

inferred by traceroute may be different from BGP paths

when routing is stable. They postulate several causes.

Other than prefix aggregation and MOAS, most of them

are due to traceroute not accurately reflecting forward-

ing paths or AS boundaries. One rare cause is an iBGP

misconfiguration of a transit AS. Passport can become a

diagnosis tool to such routing anomalies. If a router dis-

covers that all traffic it forwards cannot be verified, it is a

strong indication of misconfiguration.

Inter-domain multicast. Passport only provides source

authentication for unicast traffic, because the origin of a

duplicated multicast packet does not match its source ad-

dress. Routers should use separate authentication mecha-

nisms such as [34] to authenticate multicast traffic.

Enable Passport on High Speed Routers. The per-

formance of our prototype implementation is insufficient

for high speed routers. However, with optimized hard-

ware implementation, throughput of tens of gigabits per

second may be achieved. The bottleneck of Passport header

processing is the AES-based MAC computation. There

are already commercially available hardware AES imple-

mentation that can encrypt at the speed of 40Gbps [20].

In addition, the design of high speed routers may be re-

vised to take into account the Passport header.

10. RELATED WORK

Router Filters: This approach maintains filter tables at

routers to discard spoofed packets, and does not modify

packet headers. Ingress filtering [16], route-based filter-

ing [26, 31], reverse path filtering [3], IDPF [14], and

hop-count filtering [21] all fall into this category. As

shown in § 8, ingress filtering provides little incentive

for adoption. Route-based filtering involves non-trivial

control overhead to update filter tables, and the control

messages themselves need to be signed [26]. Reverse

path filtering does not completely prevent address spoof-

ing with asymmetric routing. IDPF binds a source ad-

dress prefix to all incoming interfaces from which the

prefix advertisement is received. It allows spoofing if an

attacker’s packets come from one of those interfaces, and

does not work with asymmetric routing if an AS does not

announce its prefixes to all providers. Hop-count filter-

ing uses TTL heuristics to identify packets with spoofed

source addresses, but attackers can still forge packets with

spoofed addresses if they are no further from a destination

than the sources they spoof.

Path Marking: This approach uses router-inserted path

identifiers to approximate source locators [2, 45, 48, 49].

Unlike Passport, downstream routers cannot validate the

authenticity of path identifiers stamped by upstream routers.

Traceback: Various traceback proposals aim to dis-

cover the sources of attack packets from router marks [38,

41, 47], or router state [40], or control messages [6]. Trace-

back may discover packet sources after packets are re-

ceived, but does not detect spoofed packets at forwarding

time like Passport.

Challenge-Response: IP or overlay routers can use

connection cookies [9, 24] to validate the source address

of a connection before forwarding a connection setup packet

to end systems. However, this mechanism does not pre-

vent spoofed packets from congesting a link before they

reach the cookie generator.

Other cryptographic approaches. These approaches

inserts secrets into packets to authenticate the source ad-

dress. Spoofing Prevent Method (SPM) [4] uses a 32-

bit secret key shared between a source and a destination

AS to authenticate the source address of a packet, and is

vulnerable to eavesdropper attacks. Passport differs from

SPM in that it includes a key distribution protocol (while

SPM does not), and uses keyed-MACs rather than plain-

text keys so they cannot be transferred to other paths, and

provides the defense-in-depth needed for DoS prevention

by enabling ASes in the network to verify Passport head-

ers. We have also implemented and evaluated Passport.

Perlman’s work on sabotage-proof routing uses public-

key digital signatures [33] to authenticate packet sources.

Our design is geared to use more efficient symmetric key

MACs and hence differs in many respects.

Visa [15], SIFF [46], TVA [49], the ticket system [32],

Fastpass [43], and Platypus [35] use secrets in packet

headers as capabilities to authorize packets to reach a des-

tination. Passport uses secrets to authenticate the source

addresses. Capability based systems can use Passport to

verify the source addresses of the capability requests.
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An early design of Passport was presented in [27]. This

work improves [27] and makes it more practical by con-

sidering deployment issues and reducing unnecessary fea-

tures for simplicity. It also provides an implementation,

evaluation, and modeling study of Passport.

11. CONCLUSION

We present and evaluate Passport, a system that al-

lows source addresses to be validated within the network.

Passport uses efficient symmetric-key cryptography to place

tokens on packets that allow each AS on the path to verify

that a source address is valid. ASes obtain the symmetric

keys via a Diffie-Hellman key exchange piggybacked in

routing messages. Passport is incrementally deployable

without upgrading hosts. We have implemented Pass-

port, evaluated it, and run experiments on the Deterlab to

demonstrate its usefulness in mitigating reflector attacks.

We have also analyzed its security assurances and mod-

eled its adoptability. Our performance evaluation shows

that a software PC-based router can stamp or verify Pass-

port headers at up to 2Gbps assuming an average packet

size of 400 bytes [1]. Our adoptability modeling shows

that Passport provides strong security benefits to drive its

adoption, and is more adoptable than ingress filtering [16]

and route-based filtering [26, 31]. Together, these results

suggest that cryptography-based source address authenti-

cation is feasible and advantageous.
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