
BFT Protocols Under Fire

Atul Singh†‡ Tathagata Das? Petros Maniatisφ Peter Druschel† Timothy Roscoeχ

†MPI-SWS, ‡Rice University, ?IIT Kharagpur, φIntel Research Berkeley, χETH Zürich

Abstract

Much recent work on Byzantine state machine replica-
tion focuses on protocols with improved performance
under benign conditions (LANs, homogeneous repli-
cas, limited crash faults), with relatively little evalua-
tion under typical, practical conditions (WAN delays,
packet loss, transient disconnection, shared resources).
This makes it difficult for system designers to choose
the appropriate protocol for a real target deployment.
Moreover, most protocol implementations differ in their
choice of runtime environment, crypto library, and trans-
port, hindering direct protocol comparisons even under
similar conditions.

We present a simulation environment for such proto-
cols that combines a declarative networking system with
a robust network simulator. Protocols can be rapidly
implemented from pseudocode in the high-level declar-
ative language of the former, while network conditions
and (measured) costs of communication packages and
crypto primitives can be plugged into the latter. We show
that the resulting simulator faithfully predicts the perfor-
mance of native protocol implementations, both as pub-
lished and as measured in our local network.

We use the simulator to compare representative pro-
tocols under identical conditions and rapidly explore
the effects of changes in the costs of crypto operations,
workloads, network conditions and faults. For example,
we show that Zyzzyva outperforms protocols like PBFT
and Q/U under most but not all conditions, indicating that
one-size-fits-all protocols may be hard if not impossible
to design in practice.

1 Introduction

Byzantine Fault-Tolerant (BFT) protocols for replicated
systems have received considerable attention in the sys-
tems research community [3, 7, 9], for applications in-
cluding replicated file systems [6], backup [4], and block

stores [10]. Such systems are progressively becoming
more mature, as evidenced by recent designs sufficiently
fine-tuned and optimized to approach the performance of
centralized [14] or crash-fault only [10] systems in some
settings.

Much of the attraction of such systems stems from
the combination of a simple programming interface with
provable correctness properties under a strong adversar-
ial model. All a programmer need do is write her server
application as a sequential, misbehavior-oblivious state
machine; available BFT protocols can replicate such ap-
plication state machines across a population of replica
servers, guaranteeing safety and liveness even in the face
of a bounded number of arbitrarily faulty (Byzantine)
replicas among them. The safety property (linearizabil-
ity) ensures that requests are executed sequentially un-
der a single schedule consistent with the order seen by
clients. The liveness property ensures that all requests
from correct clients are eventually executed.

Though these protocols carefully address such correct-
ness properties, their authors spend less time and effort
evaluating BFT protocols under severe—yet benign—
failures. In fact, they often optimize under the as-
sumption that such failures do not occur. For example,
Zyzzyva [14] obtains a great performance boost under
the assumption that all replica servers have good, pre-
dictable latency1 to their clients, whereas Q/U [3] signif-
icantly improves its performance over its precursors as-
suming no service object is being updated by more than
one client at a time.

Unfortunately, even in the absence of malice, devia-
tions from expected behavior can wreak havoc with com-
plex protocols. As an example from the non-Byzantine
world, Junqueira et al. [11] have shown that though the
“fast” version of Paxos consensus2 operates in fewer
rounds than the “classic” version of Paxos (presum-
ably resulting in lower request latency), it is neverthe-
less more vulnerable to variability in replica connectivity.
Because fast Paxos requires more replicas (two-thirds of

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 189

the population) to participate in a round, it is as slow
as the slowest of the fastest two-thirds of the popula-
tion; in contrast, classic Paxos is only as slow as the
median of the replicas. As a result, under particularly
skewed replica connectivity distributions, the two rounds
of fast Paxos can be slower than the three rounds of clas-
sic Paxos. This is the flavor of understanding we seek in
this paper for BFT protocols. We wish to shed light on
the behavior of BFT replication protocols under adverse,
yet benign, conditions that do not affect correctness, but
may affect tangible performance metrics such as latency,
throughput, and configuration stability.

As we approach this objective, we rely on simula-
tion. We present BFTSim, a simulation framework that
couples a high-level protocol specification language and
execution system based on P2 [18] with a computation-
aware network simulator built atop ns-2 [1] (Section 3).
P2’s declarative networking language (OverLog) allows
us to capture the salient points of each protocol with-
out drowning in the details of particular thread pack-
ages, cryptographic primitive implementations, and mes-
saging modules. ns-2’s network simulation enables us
to explore a range of network conditions that typical
testbeds cannot easily address. Using this platform, we
implemented from scratch three protocols: the original
PBFT [6], Q/U [3], and Zyzzyva [14]. We validate our
simulated protocols against published results under cor-
responding network conditions. Though welcome, this is
surprising, given that all three systems depend on differ-
ent types of runtime libraries and thread packages, and
leads us to suspect that a protocol’s performance char-
acteristics are primarily inherent in its high-level design,
not the particulars of its implementation.

Armed with our simulator, we make an “apples to ap-
ples” comparison of several BFT protocols under iden-
tical conditions. Then, we expose the protocols to be-
nign conditions that push them outside their comfort
zone (and outside the parameter space typically exer-
cised in the literature), but well within the realm of
possibility in real-world deployment scenarios. Specif-
ically, we explore latency and bandwidth heterogeneity
between clients and replicas, and among replicas them-
selves, packet loss, and timeout misconfiguration (Sec-
tion 4). Our primary goal is to test conventional (or pub-
lished) wisdom with regards to which protocol or pro-
tocol type is better than which; it is rare that “one size
fits all” in any engineering discipline, so understanding
the envelope of network conditions under which a clear
winner emerges can be invaluable.

While we have only begun to explore the poten-
tial of our methodology, our study has already led to
some interesting discoveries. Among those, perhaps the
broadest statement we can make is that though agree-
ment protocols offer hands down the best throughput,

quorum-based protocols tend to offer lower latency in
wide-area settings. Zyzzyva, the current state-of-the-art
agreement-based protocol provides almost universally
the best throughput in our experiments, except in a few
cases. First, Zyzzyva is dependent on timeout settings at
its clients that are closely tied to client-replica latencies;
when those latencies are not uniform, Zyzzyva tends to
fall back to behavior similar to a two-phase quorum pro-
tocol like HQ [9], as long as there is no write contention.
Second, with large request sizes, Zyzzyva’s throughput
drops and falls slightly below Q/U’s and PBFT’s with
batching, since its primary is required to send full re-
quests to all the backup replicas. Lastly, under high loss
rates, Zyzzyva tends to compensate quickly and expen-
sively, causing its response time to exceed that of the
more mellow Q/U.

Section 2 provides some background on BFT repli-
cated state machines. In Section 3, we explain our exper-
imental methodology, describe our simulation environ-
ment, and validate it by comparing its predictions with
published performance results on several existing BFT
protocols we have implemented in BFTSim. Section 4
presents results of a comparative evaluation of BFT pro-
tocols under a wide range of conditions. We discuss re-
lated works in Section 5 and close with future work and
conclusions in Section 6.

2 Background

In this section, we discuss the work on which this pa-
per is based: BFT replicated state machines. Specifi-
cally, we outline the basic machinery of the protocols
we study in the rest of this paper: PBFT by Castro and
Liskov [6], Q/U by Abd-El Malek et al. [3], and Zyzzyva
and Zyzzyva5 by Kotla et al. [14].

At a high level, all such protocols share the basic ob-
jective of assigning each client request a unique order
in the global service history, and executing it in that
order. Agreement-based protocols such as PBFT first
have the replicas communicate with each other to agree
on the sequence number of a new request and, when
agreed, execute that request after they have executed
all preceding requests in that order. PBFT has a three-
phase agreement protocol among replicas before it ex-
ecutes a request. Quorum protocols, like Q/U, instead
restrict their communication to be only between clients
and replicas—as opposed to among replicas; each replica
assigns a sequence number to a request and executes it
as long as the submitting client appears to have a cur-
rent picture of the whole replica population, otherwise
uses conflict resolution to bring enough replicas up to
speed. Q/U has a one-phase protocol in the fault-free
case, but when faults occur or clients contend to write the
same object the protocol has more phases. Zyzzyva is a

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association190

������
�����	
��
�����	
�

�����	
��
�����	
��

�
������

������� ����
����
�� ����
�� 	����� �����

������ �!
"�
��#
��

������� ��$���
�������

���	�
�����

�$��%&'

������� �����

�(���� �!
)"�
��#
�� �*���� �!
)"����#
��

�	���� �!
"����#
��

������� ��$���
�������

���	�
�����

����%&'�+��#������	
�(
�����

������� ����� ����� �����

������� ��$���
�������

���	�
����� 	����� ��	
��

	�����

������� ��$���
�������

���	�
����� 	����� ��	
��

	�����
������

�����	
��
�����	
�

�����	
��
�����	
��
�����	
�,
�����	
�)

Figure 1: A high-level view of PBFT, Q/U, and Zyzzyva.

hybrid agreement/quorum protocol that shares some of
PBFT’s characteristics (a distinguished primary replica
and an explicit “view change” to recover from a faulty
primary); however, whereas PBFT performs extra work
during agreement to ensure it can deal with primary fail-
ures, Zyzzyva offloads that extra work to the actual re-
covery from a primary failure, resulting in a leaner pro-
tocol when the fault-free case is the common one. Fur-
thermore, Zyzzyva includes a fast path for unanimous
agreement on a request’s sequence number.

In more detail, PBFT requires 3f + 1 replicas to toler-
ate f faulty replicas. A client broadcasts its request to all
replicas. The primary among them assigns the request a
sequence number, and broadcasts that assignment to the
replica population in a PREPREPARE message. A backup
that receives such an assignment acknowledges it and
synchronizes with all other replicas on this assignment
by broadcasting a PREPARE message to the population.
As soon as a replica has received a quorum of 2f + 1
PREPARE messages, it promises to commit the request at
that sequence number by broadcasting a COMMIT mes-
sage. When a replica has seen a quorum of 2f + 1 such
promises for the same request and sequence number, it
finally accepts that assignment and executes the request
in its local state after it has executed all other requests
with lower sequence number, sending a REPLY message
to the client with the result. A client accepts the result
if f + 1 replicas send matching REPLY messages, and
otherwise retransmits the request. See Figure 1(a) for an
illustration.

In contrast, Query/Update (Q/U) is a single-phase
quorum-based protocol that tolerates up to f faulty repli-

cas in a population of 5f + 1. Clients cache replica his-
tories (the request sequence known by a replica), which
they include in requests to replicas, and which they up-
date using replies from replicas. These histories allow
a replica that receives a client request to optimistically
execute it immediately, as long as its request history is
reflected in the client’s view. When a client receives
replies, as long as a quorum of 4f + 1 have optimisti-
cally executed its request, it completes. Normally a client
only contacts its “preferred quorum” of replicas instead
of the whole population; if some of the quorum replicas
are slow to respond, a client might engage more replicas
via a “probe” hoping to complete the quorum. If between
2f +1 and 4f replies accept the request but others refuse
due to a stale replica history, the client infers there exists
a concurrent request from another client. Q/U provides a
conflict resolution mechanism in which clients back off
and later resubmit requests, after repairing the replicas to
make them consistent. Figure 1(d) shows the best case
for a client’s request, whereas Figure 1(e) illustrates the
probing mechanism.

Zyzzyva uses a primary to order requests, like PBFT,
and also requires 3f + 1 replicas to tolerate f faults.
Clients in Zyzzyva send the request only to the primary.
Once the primary has ordered a request, it submits it in
an ORDERREQ message to the replicas, which respond to
the client immediately as in Q/U. In failure-free and syn-
chronous executions in which all 3f + 1 replicas return
the same response to the client, Zyzzyva is efficient since
requests complete in 3 message delays and, unlike Q/U,
write contention by multiple clients is mitigated by the
primary’s ordering of requests (Figure 1(b)). When some

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 191

replicas are slower or faulty and the client receives be-
tween 2f+1 and 3f matching responses, it must marshal
those responses and resend them to the replicas, to con-
vince them that a quorum of 2f + 1 has chosen the same
ordering for the request. If it receives 2f + 1 matching
responses to this second phase, it completes the request
in 5 message delays (Figure 1(c)).

To trade off fewer message delays for more replicas in
high-jitter conditions, or when some replicas are faulty
or slow, the authors propose Zyzzyva5, which requires
5f + 1 replicas and only 4f + 1 optimistic executions
from replicas to progress in 3 message delays—up to f
replicas can be slow or faulty and the single-phase pro-
tocol will still complete (Figure 1(f)). With fewer than
4f + 1 replies, Zyzzyva5 also reverts to two-phase oper-
ation (Figure 1(g)). Finally, Zyzzyva’s view change pro-
tocol is more heavy-weight and complex than in PBFT,
and the authors present results where one replica is faulty
(mute) and observe that Zyzyvva is slower than PBFT
in this situation; however a recent optimization [15] im-
proves Zyzzyva’s performance under faults. In this opti-
mization, clients explicitly permit replicas to send a re-
sponse only after having committed it (as opposed to
tentatively). For such client requests, replicas agree on
orderings similarly to the second phase of PBFT, and
clients need not initiate a second protocol phase.

Each of these protocols achieves high performance by
focussing on a specific expected common scenario (fail-
ures, latency skew, contention level, etc.). As a conse-
quence, each is ingeniously optimized in a different way.
This makes it hard for a developer with a requirement for
BFT to choose a high-performance protocol for her spe-
cific application. Worse, evaluations of individual pro-
tocols in the literature tend to use different scenario pa-
rameters. Our aim in this paper is to enable, and perform,
“apples to apples” comparison of such protocols as a first
step in establishing their performance envelopes.

3 Methodology

We now describe in detail our approach to comparing
BFT protocols experimentally. We have built BFTSim,
which combines a declarative front end to specify BFT
protocols with a back-end simulator based on the widely
used ns-2 simulator [1]. This allows us to rapidly imple-
ment protocols based on pseudocode descriptions, eval-
uate their performance under a variety of conditions, and
isolate the effects of implementation artifacts on the core
performance of each protocol.

Using simulation in this manner raises legitimate con-
cerns about fidelity: on what basis can we claim that re-
sults from BFTSim are indicative of real-world perfor-
mance? We describe our validation of BFTSim in sec-
tion 3.3 below, where we reproduce published results

from real implementations.
A further concern is the effort of re-implementing a

published protocol inside BFTSim, including character-
izing the costs of CPU-bound operations such as crypto-
graphic primitives. We report on our experience doing
this in section 3.4.

However, a first question is: why use simulation at all?
In other words, why not simply run existing implemen-
tations of protocols in a real networking environment, or
one emulated by a system like ModelNet [23]?

3.1 Why Simulation?
Subject to fidelity concerns which we address in sec-
tion 3.3 below, there are compelling advantages to simu-
lation for comparing protocols and exploring their per-
formance envelopes: the parameter space for network
conditions can be systematically and relatively easily ex-
plored under controlled conditions.

There are highly pragmatic reasons to adopt simula-
tion. Many implementations of BFT protocols from re-
search groups are not available at publication time, due
to inevitable time pressure. Comparing the performance
of protocols based on their published descriptions with-
out requiring re-implementation in C, C++, or Java is a
useful capability.

Even implementations that are available vary widely
in choice of programming language, runtime, OS, cryp-
tographic library, messaging, thread model, etc., making
it hard to identify precisely the factors responsible for
performance or, in some cases, to even run under emula-
tion environments such as Emulab due to incompatibil-
ities. For example, Q/U uses SunRPC over TCP as the
communication framework while PBFT uses a custom
reliability layer over UDP; Q/U is written in C++ while
PBFT is written in C; Q/U uses HMAC for authenticators
while Zyzzyva and PBFT use UMAC. Our results below
show that performance is generally either network-bound
or dominated by the CPU costs of crypto operations. We
can build faithful models of the performance of such im-
plementations based on the costs of a small number of
operations, and hence directly compare algorithms in a
common framework.

Furthermore, simulation makes it straightforward to
vary parameters that are non-network related, and so can-
not be captured with real hardware in a framework such
as ModelNet. For example, since CPU time spent in
cryptographic operations is at present often the domi-
nating factor in the performance of these protocols, we
can explore the future effect of faster (or parallel) cryp-
tographic operations without requiring access to faster
hardware.

Compared to a formal analytical evaluation, simula-
tion can go where closed-form equations are difficult to
derive. Existing literature presents analyses such as fault-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association192

��������� ���
	
���
�������
�
	
�����������
�

�
��
�
�

��
�
��
�
���
�

�
��
�
�

��
���
��
�

�
��
��
�
�

�
��
�
���
�

��
��
�

��
��
�

��
��
�

�����
�
��

���������

�����������

��
�
�
�
�����
�
��

���
!"����

�
�!

�
#

�
�
#

Figure 2: The BFTSim software architecture.

scalability by counting messages exchanged and cryp-
tographic operations performed [9, 14], but it is hard to
analyze the dynamic behavior of these protocols, espe-
cially for costs intended to be amortized over different
sequences of requests. For example, the interaction of
client retransmissions, pipeline depth in protocols with a
bounded number of requests in flight, and request batch-
ing can have a complex effect on response times. Sys-
tematic evaluation using faithful simulation can answer
these questions with greater ease.

A final motivation for simulation is pedagogical. It
is widely believed that BFT protocols are complex to
design, implement, and evaluate [8], and that it is hard
to understand what aspect of a given protocol gives rise
to its performance characteristics. A simple and suc-
cinct re-implementation in a declarative language which
shows (under simulation) the same performance charac-
teristics as a published C++ implementation is a power-
ful tool for understanding such issues. We believe thatBFTSim may lead the many BFT protocols available to
greater accessibility.

3.2 The Design of BFTSimBFTSim consists of several components (Figure 2). First,
protocols are implemented in, and executed by, the front
end of the P2 declarative networking engine [18]. P2 al-
lows concise specification and rapid prototyping of BFT
protocols, in a manner closely following pseudocode de-
scriptions in publications: we specify the core features
of these protocols in a small number of declarative rules.

A rule is of the form “result :- preconditions.” and
is interpreted as “the result is produced when all precon-

ditions are met.” For example, consider the following
simplified rule for PBFT:initPrePrepare(@A, T, OP, CID) :-request(@A, T, OP, CID),cachedReply(@A, CID, T1, REPLY), T > T1,isPrimary(@A, A, V).
It means that when a request tuple arrives at node A
from the client with identifier CID, and if the times-
tamp T is more recent than the last reply sent to the
same client (condition T>T1), then the primary (condi-
tion isPrimary) produces a initPrePrepare tuple to
start the protocol for this request. The location specifier@A is used to specify on which node this particular rule is
executed.

P2 compiles such descriptions to a software dataflow
graph, which in the case of BFTSim includes elements to
capture the timing characteristics of CPU-intensive func-
tions without necessarily performing them. Our hypoth-
esis (subsequently borne out by validation) was that we
can accurately simulate existing BFT protocols by incor-
porating the cost of a small number of key primitives. We
started with two: cryptographic operations and network
operations (we assume for now that disk access costs are
negligible, though modeling disk activity explicitly may
be useful in some settings). To feed our simulator with
the cost of these primitives, we micro-benchmarked the
PBFT and Q/U codebases to find the cost of these primi-
tives with varying payload sizes. Our simulator uses this
information to appropriately delay message handling, but
we can also vary the parameters to explore the impact of
future hardware performance.

In BFTSim, a separate P2 dataflow graph is generated
per simulated node, but all dataflow graphs are hosted
within a single instance of the P2 engine. P2’s scheduler
interacts with the ns-2 engine via ns-2’s event schedul-
ing and callback interfaces to simulate the transmission
of messages and to inject events such as node failures.
Those interfaces in turn connect with a single ns-2 in-
stance, initialized with the network model under sim-
ulation. Message traffic to and from a P2-simulated
node is handled by a dedicated UDP agent within ns-23.
Note that both P2 and ns-2 are discrete-event-based sys-
tems. We use ns-2’s time base to drive the system.
P2’s events, such as callbacks and event registrations, are
wrapped in ns-2 events and scheduled via ns-2’s sched-
uler. BFTSim is currently single-threaded and single-
host.

3.3 Validation
In this section we compare the published performance of
several BFT protocols with the results generated by our
implementation of these protocols in BFTSim under com-
parable (but simulated) conditions. These results there-
fore yield no new insight into BFT protocols, rather they

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 193

serve to show that BFTSim succeeds in capturing the im-
portant performance characteristics of the protocols.

We present a small selection of our validation com-
parisons for three protocols: PBFT [7], Q/U [3], and
Zyzzyva/Zyzzyva5 [14]. PBFT was chosen because it is
widely regarded as the “baseline” for practical BFT im-
plementations. Q/U provides variety: it is representative
of a class of quorum-based protocols. Finally, the recent
Zyzzyva is considered state-of-the-art, and exhibits many
high-level optimizations.

For all these protocols, we compare BFTSim’s imple-
mentation results to either published results or the proto-
col authors’ implementations executing in our local clus-
ter. Table 1 lists our validation references. Our validation
concentrates on latency-throughput curves for all proto-
cols in typical “ideal” network conditions, as well as un-
der node crashes.

3.3.1 Experimental Setup

We simulated a star network topology, where both client
and replica nodes are connected to each other via a hub
node. Each link is a duplex link and we set a one-way
delay of 0.04ms and bandwidth of 1000Mbps on each
link. This gives an RTT of 0.16ms between any pair of
nodes, matching our local cluster setup. These values are
also similar to those reported by the authors [13] to ob-
tain the Zyzzyva/Zyzzyva5 and PBFT results that we use
for validation. Both PBFT and Zyzzyva exploit hardware
multicast to optimize the one-to-all communication pat-
tern among replicas. BFTSim accounts for multicast by
charging for a single message digest, message send, and
authenticator calculation for multicast messages, but cur-
rently simulates multiple unicast messages at the ns-2
level.

Since the literature only provides peak throughput re-
sults for Q/U, we obtained the authors’ implementation
and ran it in our local cluster; each machine has a dual-
core 2.8 GHz AMD processor with 4GB of memory, run-
ning a 2.6.20 Linux kernel.

3.3.2 Cost of Key Operations

We measured the costs of three primitive operations com-
mon to all protocols: calculating the message digest,
generating a MAC and authenticator, and sending a mes-
sage with varying payload sizes. We instrumented the
PBFT and Q/U codebases to measure these costs.

To measure the host processing delays required to
transmit and receive messages of a given size, we per-
formed a simple ping-pong test between two machines
connected by gigabit ethernet. We measured the total
time taken to send and receive a response of equal size.
We then simulated the same experiment in ns-2 (withoutBFTSim) to determine the round-trip network delays. For
each message size, we then subtracted the simulated net-

0
0.5

1
1.5

2
2.5

3
3.5

4

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

PBFT
Batch 1

PBFT
Batch 10

0

0.5

1

1.5

2

Q/U
BFTSim

Published
Original Implementation

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Zyzzyva
Batch 1

Zyzzyva
Batch 10

0

0.5

1

1.5

2

0 10 20 30 40 50

Throughput (Kops/s)

Zyzzyva5
Batch 1

0 10 20 30 40 50 60 70 80 90

Throughput (Kops/s)

Zyzzyva5
Batch 10

Figure 3: Baseline validation. Note that, to enhance
readability, ranges differ for the y axis across protocols
(i.e., rows) and for the x axis between batch sizes (i.e.,
columns).

work delays from the corresponding measured round-trip
times to determine the host processing delays. We used
linear interpolation to obtain piece-wise linear formulae
for estimating the send and receive costs as a function of
the message size, with a confidence of 99%.

All protocols use MD5 for calculating message di-
gests4. Based on our benchmarking results, we obtained
the following linear interpolation to estimate the cost of
an MD5 digest over d bytes: digest(d) = (0.0097d +
0.74)µsecs, with a confidence of 99.9%. We measured
the cost of authenticators by varying the number of MAC
operations and used this information directly. Note that
Q/U uses HMAC while PBFT and Zyzzyva use UMAC
for calculating MACs; our validating simulations are
parametrized accordingly.

3.3.3 Baseline Validation

Figure 3 presents latency-throughput curves for BFTSim
implementations of PBFT, Q/U, Zyzzyva, and Zyzzyva5,
compared to our reference sources. We present results
with batch sizes of 1 and 10. We executed each protocol
under increasing load by varying the number of clients
between 1 and 100. Each client maintains one outstand-
ing request at any time. Each point in the graphs repre-
sents an experiment with a given number of clients. The

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association194

Table 1: Reference sources for our validation and BFTSim implementation coverage for each protocol.
Protocol Validated Against Protocol features not present in BFTSim implementations

PBFT [14] State transfer, preferred quorums.
Zyzzyva/Zyzzyva5 [14] State transfer, preferred quorums, separate agreement & execution.

Q/U Implementation, [3] In-line repair, multi-object updates.

knee in each curve marks the point of saturation; typi-
cally, the peak throughput is reached just beyond and the
lowest response time just below the knee.

First, we note that the trends in the latency-throughput
curves obtained with BFTSim closely match the refer-
ence for all the protocols we studied. The differences in
the absolute values are within at most 10%. Because no
latency-throughput curves for Q/U were published, we
measured the original implementation in our local clus-
ter5. The published peak throughput value is also shown.

The results show that our implementations in BFTSim
correctly capture the common case behavior of the proto-
cols, and that BFTSim can accurately capture the impact
of the key operations on the peak performance of all pro-
tocols we implemented and evaluated.

3.3.4 Validating the Silent Replica Case

In this experiment, we make one of the replicas mute for
the duration of the experiment. This experiment exer-
cises important code paths for all protocols. In PBFT,
performance may improve in this situation since repli-
cas avoid both receiving and verifying messages from the
silent replica. In contrast, Zyzzyva’s performance is ex-
pected to drop in the presence of a faulty replica since
it requires clients to perform the costly second phase
of the protocol. In Q/U, performance also drops in the
presence of a faulty replica because all requests must be
processed by the remaining live quorum of 5 replicas,
which increases the load on each of these replicas. In
the absence of a faulty replica, each replica handles only
(4f + 1)/(5f + 1)-th of the requests, due to Q/U’s pre-
ferred quorum optimization.

We present BFTSim’s results along with the published
results in Figure 4. Because no published results are
available for Q/U with a faulty replica, we measured the
original implementation in our cluster in the presence of
a silent replica for comparison. We observe that BFTSim
is able to closely match the published performance of
Zyzzyva, Zyzzyva5, PBFT, and Q/U in this configura-
tion.

3.3.5 Validating Fault Scalability

In this experiment, we scale the fault tolerance of PBFT,
Zyzzyva, and Q/U and compare the performance pre-
dicted by BFTSim with the published results in the
Zyzzyva and Q/U papers. At higher values of f , all three
protocols need to do more MAC calculations per proto-
col operation since there are more replicas. PBFT ad-

0

20

40

60

80

Pe
ak

 T
hr

ou
gh

pu
t (

K
op

s/
s)

PBFT
Batch 1

PBFT
Batch 10

0

20

40

60

80

Q/U

BFTSim
Published

Original Implementation

0

20

40

60

80

Zyzzyva
Batch 1

Zyzzyva
Batch 10

0

20

40

60

80

0 20 40 60 80 100

Clients

Zyzzyva5
Batch 1

0 20 40 60 80 100

Clients

Zyzzyva5
Batch 10

Figure 4: Validation results in the presence of a faulty
replica.

ditionally generates more bandwidth overhead at higher
values of f since each replica receives 3f PREPARE and
COMMIT messages. We present results in Figure 5 for val-
ues of f between 1 and 3 (we do not validate Zyzzyva5
since our reference source offered no measurements for
fault scalability). Again, we observe that BFTSim is able
to match published results for all protocols for this ex-
periment.

3.4 Implementation Experience

One concern with our approach is the effort required to
implement protocols within the framework. Here, we re-
port on our experience implementing the protocols pre-
sented.

Our PBFT implementation consists of a total of 148
lines of OverLog (P2’s specification language), of which
14 are responsible for checkpoint and garbage collection,
38 implement view changes, 9 implement the mechanism
to fetch requests, and the remaining 87 provide the main
part of the protocol. Our implementation of Zyzzyva is

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 195

0
20
40
60
80

T
hr

ou
gh

pu
t (

K
op

s/
s)

PBFT
Batch 1

PBFT
Batch 10

0
20
40
60
80

Q/U

BFTSim
Published

0

20

40

60

80

1 2 3

Number of faults tolerated (f)

Zyzzyva
Batch 1

1 2 3
Number of faults tolerated (f)

Zyzzyva
Batch 10

Figure 5: Validation at higher values of f .

slightly more complex: 164 rules, with 13 for check-
point and garbage collection, 33 for view changes, 24
for handling the second phase, and the remaining 94 for
the main part of the protocol. For Q/U, we wrote a total
of 88 rules. The key steps in Q/U are represented by the
classification (5 rules) and setup (6 rules) phases.

These protocols have served as vehicles for validating
the design and fidelity of BFTSim. As a result, their im-
plementation in BFTSim inevitably co-evolved with the
simulator itself. However, the basic components (the P2
front end and ns-2 back end) are largely unmodified and
thus retain their generality, which of course extends far
beyond BFT protocols. We have only modified ns-2 to
enable jumbo-frame handling, and we modified and ex-
tended P2 in four ways:
• We retargeted P2’s dataflow network stack to usens-2 agents as opposed to P2’s own congestion-

controlled UDP elements.
• We added support for compound (nested) tuples.

P2’s original design stayed close to the relational
data model, in which tuples are flat. Since support
for complex objects in P2’s data model was evolv-
ing separately as we were performing this work,
we chose to use a simpler but coarser and less effi-
cient approach to structuring data (via explicit nest-
ing of serialized tuples within tuples) for building
request batches and the complex view-change mes-
sages. Since P2 operates in the virtual time ofBFTSim, this inefficiency does not affect our results,
only the elapsed time required for our simulations.

• The version of P2 on which we based BFTSim (ver-
sion 0.8) did not yet support atomic execution of
individual rules. Since BFTSim simulates single-
threaded, run-to-completion message handlers, we
modified the P2 scheduler to complete all processing
on outgoing tuples and send them to the ns-2 agent

before any pending incoming tuples were handled.
• We implemented complex imperative computations

not involving messaging (such as the view-change
logic in PBFT and Zyzzyva) as external plugins
(“stages”) in P2.

P2’s language (OverLog) currently lacks higher-order
constructs. This makes it cumbersome, for example, to
make the choice of cryptographic primitive transparent in
protocol specifications, leading to extra OverLog rules to
explicitly specify digests and MACs as per the configu-
ration of the particular protocol. As above, this ineffi-
ciency does not affect the (simulated) size or timing of
messages transmitted, it merely means simulations take
longer to complete.

Based on our experience, we feel a more specialized
language might reduce protocol implementation effort,
but at these code sizes the benefit is marginal. A more
immediate win might be to abstract common operations
from existing protocols to allow them to be reused, as
well as decoupling the authentication and integrity proto-
col specifications from their actual implementation (i.e.,
the specific cryptographic tools used to effect authentica-
tion, etc.). These are a topic of our on-going research.

4 Experimental ResultsBFTSim can be used to conduct a wide variety of exper-
iments. One can compare the performance of different
protocols under identical conditions. It is possible to ex-
plore the behavior of protocols under a wide range of net-
work conditions (network topology, bandwidth, latency,
jitter, packet loss) and under different workloads (distri-
bution of request sizes, overheads, request burstiness).
Furthermore, BFTSim allows us to easily answer “what-
if” questions such as the impact of a protocol feature or a
crypto primitive on the performance of a protocol under
a given set of conditions.

Due to time and space constraints, we have taken only
a first step in exploring the power of BFTSim, by evaluat-
ing BFT protocols under a wider range of conditions than
previously considered. Specifically, we evaluate the ef-
fects of batching, workload variation (request size), net-
work conditions (link latency, bandwidth, loss, access
link variation), and client timer misconfiguration. We
also perform an experiment to explore the potential of
a possible protocol optimization in Q/U.

When reporting results, we either show throughput as
a function of the number of clients used, or report results
with sufficiently many clients to ensure that each proto-
col reaches its peak throughput. When reporting latency,
we use a number of clients that ensures that no protocol
is saturated, i.e., requests are not queued.

We use a star network topology to connect clients and
replicas. Each node, either a replica or a client, is con-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association196

0
0.5

1
1.5

2
2.5

3
3.5

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Batch 1

PBFT
Q/U

Zyzzyva
Zyzzyva5

Batch 10

0
0.5

1
1.5

2
2.5

3
3.5

0 20 40 60 80

Throughput (Kops/s)

Batch 50

0 20 40 60 80

Throughput (Kops/s)

Batch 100

Figure 6: Baseline latency-throughput curves for all pro-
tocols, with batch sizes increasing from 1 to 100. Note
that Q/U has no batching but appears in all plots for com-
parison.

nected to a hub of ample capacity using a bidirectional
link with configurable latency, bandwidth and loss rate.

4.1 The Effects of Batching

We start with a baseline protocol comparison under typi-
cal LAN network conditions (average round-trip time of
0.16 ms, 1 Gbps bandwidth, no packet losses). The re-
quests are no-ops (2-byte payload and no execution over-
head). Request batching is used in the agreement-based
protocols that support it (all but Q/U). We use the same
digest and authentication mechanisms for all protocols
(those of the PBFT codebase: MD5 and UMAC).

Figure 6 shows latency-throughput curves for the pro-
tocols with increasing batch sizes. As before, each point
represents a single experiment with a given number of
clients. In agreement-based protocols, the primary de-
lays requests until either a batching timer expires (set
to 0.5 ms) or sufficiently many requests (the batch size)
have arrived; then, it bundles all new requests into a
batch and initiates the protocol. Batching amortizes the
messaging overheads and CPU costs of a protocol round
over the requests in a batch. In particular, fewer replica-
replica messages are sent and fewer digests and authen-
ticators are computed. All three batching-enabled proto-
cols benefit from the technique. Because PBFT has the
highest overhead, it enjoys the largest relative improve-
ment from batching: its peak throughput increases by a
factor of four.

The Zyzzyva variants are more efficient under the
given network conditions, requiring fewer messages and
crypto operations than PBFT. As a result, though still
fastest in absolute terms, they derive a smaller relative
benefit from batching. Furthermore, as batch size in-
creases, the differences between protocols shrink signif-
icantly; the Zyzzyva variants become indistinguishable

 0

 1

 2

 3

 4

 5

0 10 20 30 40 50 60 70 80 90

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Throughput (Kops/s)

Zyzzyva5 B=1
Zyzzyva5 B=100

Q/U (HMAC)
Q/U (UMAC)

Q/U (Tuned Messaging)

Figure 7: Hypothetical optimized Q/U. Our hypothetical
Q/U competes with Zyzzyva5 without batching, but is
still inferior to batched Zyzzyva5. We also show Q/U
using HMAC, as in its original implementation validated
in Figure 3.

with only moderate batching, whereas PBFT achieves
throughput within 10% of Zyzzyva at a batch size of 100.

4.1.1 Why is Q/U Worse?

Figure 6 shows that Q/U has significantly lower peak
throughput than Zyzzyva5, even with no batching and
despite the absence of write contention in our workload.
This is somewhat surprising, because in the absence
of contention, Q/U only requires a single phase of di-
rect client-replica communication to complete, whereas
Zyzzyva5 must relay all requests from clients to replicas
via the primary.

We hypothesized that one reason for Q/U’s lower
throughput is the size of the messages it requires. Q/U
replicas include their recent object history in each re-
sponse6, and clients send with their requests a vector
of such replica histories. This is an important safety
requirement in Q/U; it enables non-faulty replicas to
execute an operation in a consistent order without any
replica-to-replica coordination. In contrast, Zyzzyva
replicas include only digests of their history with re-
sponse messages, and clients send no history with their
requests, because the primary orders requests.

We performed an experiment to see how a hypotheti-
cal version of Q/U would perform that is optimized for
message size. Our hypothetical Q/U variant is assumed
to send Zyzzyva-style history digests as a vector in Q/U
requests, and sends a single history digest in replica re-
sponses. The intuition is that, without faults or write
contention, history digests are sufficient to convince a
replica to execute an operation at a given point in the
history, and replicas need exchange full histories only
when they detect an inconsistency. We charge Q/U with
Zyzzyva’s ORDERREQ-sized messages with respect to di-
gest computation and message transmission, but leave
MAC costs unchanged. This experiment is an example of
how BFTSim can be used to quickly ask “what-if” ques-
tions to explore the potential of possible protocol opti-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 197

mizations.
Figure 7 shows the result. As expected, our hypothet-

ical Q/U is competitive with Zyzzyva5 at a batch size
of 1. However, our variant of Q/U is still no match for
Zyzzyva5 at a large batch size in terms of peak through-
put (though it has slightly lower latency). This seems
counter-intuitive at first glance, since Q/U has no “ex-
traneous” traffic to amortize, only client requests and
replica responses. However, Q/U’s lack of a primary
that orders and relays requests to backups incurs extra
computation on the critical path: a Q/U replica com-
putes 4f MACs to send a response to a client and verifies
4f MACs when receiving a request from it, whereas the
Zyzzyva5 primary computes and verifies one MAC for
each request in a batch of b requests, plus a single au-
thenticator for each ORDERREQ message containing 4f
MACs for a total of 2+8f /b MACs per request in a batch.
As b increases, Zyzzyva5 tends toward slightly more than
1 MAC generation and 1 MAC verification per client re-
quest compared to 8f MAC operations in Q/U.

4.1.2 Summary

Batching helps agreement-based protocols to achieve
better performance by amortizing their protocol costs
over a batch of requests. As we increase the batch size,
the importance of protocol efficiency diminishes; as a re-
sult, the throughput of PBFT approaches that of Zyzzyva.
The results of our experiments also predict that Q/U
could benefit significantly from optimizations to reduce
its message sizes.

4.2 Varying the Workload

We now turn to study the performance of BFT proto-
cols under varying request sizes. The network conditions
remain as above. Figure 8 shows latency-throughput
graphs for all protocols when the size of the request
(and response) ranges from 2 bytes (as in the exper-
iments above) up to 8 kbytes. Request sizes in this
range do occur in practice. Whereas many SQL work-
loads are reported to have request sizes of around 128
bytes, applications like block storage use larger requests
(for example, Hendricks et al. [10] discuss requests con-
taining erasure-coded disk block fragments with sizes
of about 6 Kb). We obtained these graphs by choos-
ing a number of clients such that the latency-throughput
curve was beyond its characteristic “knee,” i.e., the sys-
tem was saturated (in this set of experiments, between 1
and 80 clients were required). It is striking how increas-
ing payloads diminish the differences among the proto-
cols. Whereas at 2-byte payloads, non-batched PBFT
has a little more than a third the throughput of Zyzzyva
and Q/U about half, at 8 kbyte payloads all protocols
are very close. With batching, PBFT starts out closer
to Zyzzyva but, again, the difference vanishes at higher

1

10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

2 bytes
Batch 1

PBFT
Q/U

Zyzzyva
Zyzzyva5

1

10

12
8

by
te

s

1

10

25
6

by
te

s

1

10

51
2

by
te

s

1

10

10
24

 b
yt

es

1

10

20
48

 b
yt

es

1

10

40
96

 b
yt

es

1

10

0.1 1 10 100

Throughput (Kops/s)

81
92

 b
yt

es

2 bytes
Batch 10

12
8

by
te

s
25

6
by

te
s

51
2

by
te

s
10

24
 b

yt
es

20
48

 b
yt

es
40

96
 b

yt
es

0.1 1 10 100

Throughput (Kops/s)

81
92

 b
yt

es

Figure 8: Latency-throughput plots for increasing re-
quest payload sizes, without batching (left) and with
batch size 10 (right). Note that both axes are in log-
arithmic scale, to show better the relative performance
differences of the protocols at different scales.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association198

 10
 20
 30
 40
 50
 60
 70
 80
 90

T
hr

ou
gh

pu
t (

K
op

s/
s) Batch 1 PBFT

Q/U
Zyzzyva

Zyzzyva5

 10
 20
 30
 40
 50
 60
 70
 80
 90

1 10 100 1000 10000

T
hr

ou
gh

pu
t (

K
op

s/
s)

Payload size (Bytes)

Batch 10

Figure 9: Peak throughput vs. request size. Top: no
batching, bottom: batch size of 10. Q/U has no batch-
ing but appears in both plots for comparison. Note that
the x axis is logarithmic.

payload sizes as throughputs degrade dramatically. The
reason is that with increasing request size, the per-byte
processing costs and network transmission delays start
to dominate per-request costs, which increasingly masks
the differences among the protocols.

Though helpful in identifying the latency-throughput
trade-offs, the plots in Figure 8 make it difficult to see
the trends in peak throughput or latency below saturation.
We show in Figure 9 the peak throughput as a function of
the request size, and in Figure 10 the mean response time
below protocol saturation. Peak throughput trends are
clearer here; they are consistent with the large increase in
transmission and digest computation costs resulting from
larger request sizes.

Interestingly, Q/U appears more robust to increasing
payload sizes than the other protocols, and exhibits the
least steep decline in throughput. At high payload sizes,
Q/U matches the throughput of Zyzzyva and Zyzzyva5,
even when these protocols use batching. The reason is
that Q/U’s messages, which have a larger base size due
to the history they contain, are increasingly dominated
by the payload as the request size increases. Moreover, at
large request sizes, the throughput is increasingly limited
by per-byte processing costs like MAC computations and
network bandwidth, making batching irrelevant.

Figure 10 shows the average response time for increas-
ing request sizes below system saturation. PBFT with
batching and Q/U provide the lowest response times. As
payload sizes increase, response times with Zyzzyva and
Zyzzyva5 suffer, because Zyzzyva and Zyzzyva5 send a
full copy of all requests in a batched ORDERREQ mes-
sage from the primary to the backups. In contrast, PBFT

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

A
vg

 r
es

po
ns

e
tim

e
(m

s) Batch 1PBFT
Q/U

Zyzzyva
Zyzzyva5

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

1 10 100 1000 10000

A
vg

 r
es

po
ns

e
tim

e
(m

s)

Payload size (Bytes)

Batch 10

Figure 10: Minimum of per-experiment average request
response time vs. request size. Top: no batching, bot-
tom: batch size of 10. The system is not saturated (i.e.,
these are not the corresponding response times for Fig-
ure 9). Q/U has no batching but appears in both plots for
comparison. Note that the x axis is logarithmic.

only sends message digests in its batched PREPREPARE

message, leaving it to the client to transmit the request
itself to the backups. The cost of transmitting and au-
thenticating the request content is typically spread over
all clients in PBFT, instead of concentrated at the pri-
mary in Zyzzyva7.

There is no inherent reason why Zyzzyva might not
benefit from an optimization similar to that of PBFT
under the given network conditions; however, this op-
timization would increase the bandwidth consumption
of the protocol (since all clients will have to send re-
quests to all replicas, as with PBFT) and possibly reduce
its ability to deal gracefully with clients who only par-
tially transmit requests to replicas. The best approach
may depend on the type of network anticipated. For in-
stance, in networks where multicast is available (e.g., en-
terprise settings where local multicast deployment tends
to be more common), the network component of the
overhead caused by large payloads—but not the compu-
tation component—may be low.

4.3 Heterogeneous Network Conditions
Next, we place one replica behind a slow link, in order to
introduce an imbalance among the replicas. PBFT, Q/U
and Zyzzyva5 do not require all replicas to be in sync to
deliver peak performance, therefore we expect their per-
formance to be unaffected by heterogeneity. In contrast,
we expected Zyzzyva’s performance to degrade, because
the protocol requires a timely response from all replicas
to be able to complete a request in a single phase.

Figure 11 shows results for throughput and aver-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 199

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

T
hr

ou
gh

pu
t (

K
op

s/
s)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1Gbps
0.04ms

100Mbps
1ms

10Mbps
10ms

1Mbps
100ms

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s) PBFT
Q/U

Zyzzyva
Zyzzyva5

Figure 11: Impact of a replica behind a low bandwidth
and high delay link. We vary the characteristics of the
slow link, as shown on the x-axis. We set batchsize to
10.

age response time. All but the constrained link in
this experiment have 1Gbps bandwidth and 0.04ms la-
tency, whereas the constrained link has the characteris-
tics shown on the x axis. The leftmost configuration is
homogenous and included for comparison.

The throughput and response time of Zyzzyva is
strongly affected by the presence of a replica with a con-
strained network link. Zyzzyva must adapt its timers8

and eventually switch to two-phase operation as the re-
sponse time of a slow replica worsens. The throughput
of Zyzzyva drops as soon as the imbalance is introduced,
because clients start the second phase of the protocol to
complete their requests, instead of waiting for the slow-
est replica to complete the first phase. Consequently, the
average response time for Zyzzyva also increases when
there is an imbalance. While similar to the mute replica
results in Section 3.3.4, our results show that Zyzzyva’s
throughput is sensitive even to small differences in net-
work latency between a client and the replicas.

Q/U’s throughput decreases slightly once there is a
slower replica. The reason is that when clients initially
include the slow replica in their preferred quorum, they
may time out and subsequently choose a quorum that ex-
cludes the slow replica. As a result, the remaining repli-
cas experience more load and throughput decreases.

The throughput of PBFT improves slightly with in-
creased heterogeneity, because replicas receive fewer
messages from the slow replica, which saves them mes-
sage receive and MAC verification costs. Note that dur-
ing sustained operation at peak throughput, the messages
from the slow replica are queued at the routers adjacent

to the slow link and eventually dropped. Of course, this
loss of one replica’s messages does not affect the pro-
tocol’s operation and it actually increases protocol effi-
ciency slightly.

4.4 Wide-area Network Conditions

Next, we explore the performance of BFT protocols un-
der wide-area network (WAN) conditions, such as in-
creased delay, lower bandwidth and packet loss. Such
conditions are likely to arise in deployments where
clients connect to the replicas remotely or when the repli-
cas are geographically distributed.

Before presenting the results, we briefly review how
the different protocols deal with packet loss.

4.4.1 Background

PBFT In PBFT, if no response to a request arrives, the
client eventually times out and retransmits the request to
the replicas. A backup replica, upon receiving such a
retransmission, forwards it to the primary, assuming it
must have missed it. If the primary has already sent a
PREPREPARE for that retransmitted message, it does not
do anything. However, this could trigger view changes
if the original message was lost. To address this prob-
lem, PBFT replicas periodically (every 150 ms) multicast
small status messages that summarize its state. When an-
other replica notices that the reporting replica is missing
messages that were sent in the past, it re-sends these mes-
sages [5].

Zyzzyva/Zyzzyva5 In Zyzzyva, if a backup replica re-
ceives an ORDERREQ message for seq i from the primary
while it expects k < i (suggesting a hole in the history),
it sends a FILLHOLE message to the primary. The primary
retransmits the missing messages. Loss of one such OR-
DERREQ message may cause a backup replica to send a
FILLHOLE message to the primary for every future OR-
DERREQ until the hole is patched. This may cause the
primary to experience additional load [14].

Q/U In Q/U, replicas inspect the histories contained in
request messages to see if they have missed a prior re-
quest. If so, they request information from other replicas
about the latest state of the corresponding objects. Oth-
erwise, the protocol relies on request retransmission by
clients to recover from packet losses.

4.4.2 Results

For the experiment, we configured replicas and clients
with different link delay, bandwidth, and uniform ran-
dom packet loss. Recall that clients and replicas are con-
nected to a common hub via bi-directional links in a star
topology. We simulate three wide area configurations as
described in Table 2. 50 clients send requests containing
2-byte no-op requests.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association200

Table 2: Wide-area experiment configurations, as shown
in Figure 12.

Configuration Client links (c) Replica links (r)

Left 30ms, 10Mbps 1ms, 1Gbps
Middle 30ms, 10Mbps 5ms, 100Mbps
Right 30ms, 10Mbps 10ms, 100Mbps

0
50

100
150
200
250
300
350

R
es

po
ns

e
tim

e
(m

s)

No loss
Batch 1

PBFT
Q/U

Zyzzyva
Zyzzyva5

No loss
Batch 10

0
50

100
150
200
250
300
350

Loss 1%
Batch 1

Loss 1%
Batch 10

0
50

100
150
200
250
300
350

Loss 2%
Batch 1

Loss 2%
Batch 10

0
50

100
150
200
250
300
350

c=30ms
r= 1ms

c=30ms
r=5ms

c=30ms
r=10ms

Loss 5%
Batch 1

c=30ms
r=1ms

c=30ms
r=5ms

c=30ms
r=10ms

Loss 5%
Batch 10

Figure 12: Three configurations on the x axis, average
response latency in ms on the y axis. The error bars indi-
cate one standard deviation around the average.

The client retransmission timeout was set based on the
expected response time of each protocol. Because the
request messages are very small and incur no execution
overhead, we approximated the expected response time
by adding the link delays on the protocol execution path.
Let c be the client link latency and r the replica link la-
tency (both one-way). In the absence of losses and faulty
replicas, we expect PBFT to complete a request in time
(2c + 8r), Q/U in (2c + 2r), and Zyzzyva/Zyzzyva5 in
(2c+4r). Q/U offers the lowest expected delay followed
by Zyzzyva and Zyzzyva5 and then PBFT. We set the
client retransmission timeout to this estimate for each
protocol, plus 10ms. Figure 12 shows the average re-
sponse time for all four protocols with and without batch-
ing, varying link latencies and loss rate; packet loss is
uniform random and affects all links equally.

We make three observations. First, even though Q/U

completes requests in a single phase with the contention-
free workload used in this experiment, its response times
are not better than those of the hybrid protocols when the
replica-to-replica latencies are low (i.e., r=1 ms). Once
again, the reason is the larger request messages required
by Q/U. The extra latencies for transmitting and comput-
ing digests for the larger Q/U messages compensate for
the extra latencies required for inter-replica communica-
tion in the agreement protocols. However, with increas-
ing replica-to-replica latencies, the inter-replica commu-
nication significantly adds to the latency of the agree-
ment protocols. Q/U’s latencies, on the other hand, in-
crease to a lesser extent because it relies on inter-replica
communication only to fetch the current object state after
a replica misses a request.

Second, Zyzzyva5 has slightly lower response times
than Zyzzyva under message loss. The reason is that
Zyzzyva5 requires only 4f +1 responses from its 5f +1
replicas, while Zyzzyva requires responses from all of its
3f + 1 replicas to complete a request in a single phase.

Third, batching tends to improve the average latency
under losses. Because batching reduces the number of
messages per request, it reduces the probability that a
given request is affected by a loss, thus reducing the av-
erage latency.

4.5 Clients with Misconfigured Timers

The goal of the next experiment is to understand how
sensitive existing protocols are to faulty clients. Under
contention, it is well known that the performance of quo-
rum protocols like Q/U suffers. In fact, Q/U may lose
liveness in the presence of faulty clients that do not back
off sufficiently during the conflict resolution phase. The
performance of agreement-based protocols like PBFT
and Zyzzyva, is believed to be robust to faulty client be-
havior. The goal of our experiment is to test the validity
of this hypothesis. Note that all BFT protocols preserve
the safety property regardless of the behavior of clients.

We misconfigured some of the clients’ retransmission
timers to expire prematurely. The experiments used a
LAN configuration, with round-trip delay of 0.16ms on
all links (0.04ms one-way for each node-to-hub link).
With 100 clients, the average response times are 3ms for
Q/U, 1.5ms for PBFT with a batch size of 10, and 1.15ms
for Zyzzyva and Zyzzyva5 with a batch size of 10.

We chose four settings of misconfigured timers—
0.5ms, 1ms, 1.5ms, and 2ms. This choice of timers al-
lows us to observe how the protocols behave under ag-
gressive retransmissions by a fraction of the clients (be-
tween 0 to 25 out of a total of 100 clients.) A client with
a misconfigured timer retransmits the request every time
the timer expires without backing off, until a matching
response arrives. Figure 13 shows the throughput of the
protocols as a function of the number and settings of mis-

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 201

configured clients, with and without batching. Miscon-
figured timers affect the throughput of the protocols due
to the extra computations of digests, MACs and transmis-
sion costs incurred whenever a protocol message must be
retransmitted9.

Our results show that all protocols are sensitive to pre-
mature retransmissions of request messages. This is ex-
pected, because premature retransmissions add to the to-
tal overhead per completed request.

PBFT and Zyzzyva replicas assume a packet loss
when they receive a retransmission: PBFT backups for-
ward the message to the primary when they receive a
request for the second time, while Zyzzyva/Zyzzyva5
backups forward the request to the primary immediately
because a client is expected to send a request to back-
ups only upon a timeout. A Zyzzyva primary, upon re-
ceiving such a forwarded request message from a backup
replica, responds with the ORDERREQ message. A PBFT
primary responds with a PREPREPARE to the backup only
if it has never seen the request, otherwise it ignores the
retransmission. By retransmitting a request to all back-
ups, a misconfigured client causes the primary of both
PBFT and Zyzzyva/Zyzzyva5 to receive additional mes-
sages from the backups.

A Q/U replica, upon receiving a retransmission, re-
sponds with the cached response if the request has ex-
ecuted, or else processes the request again. No addi-
tional replica-to-replica communication is necessary un-
der a contention-free workload.

The relative impact of clients with misconfigured
timers is more pronounced with batching. With batch-
ing, each individual retransmitted request can cause the
retransmission of protocol messages for the entire batch
that contained the original request. As a result, the aggre-
gation of protocol messages that occurs in normal proto-
col operation does not occur for retransmitted requests.

5 Related Work

While there has been considerable work on simulators
for networks and P2P systems, we are aware of relatively
little work that attempts to model both CPU performance
and network characteristics, though we note that a simi-
lar technique was used by Castro [5] to build an analyti-
cal model of the PBFT protocol.

Systems like WiDS [17], Macedon [21], and its suc-
cessor MACE [12] allow distributed systems to be writ-
ten in a state-machine language, which can then be used
to generate both a native code implementation and drive
a simulator, which also executes “real” code.BFTSim takes a different approach, simulating both
the message exchange and the CPU-intensive operations.
This allows easy exploration of the effect of CPU perfor-
mance for crypto operations, and P2’s declarative spec-

0

20

40

60

80

T
hr

ou
gh

pu
t (

K
op

s/
s)

PBFT
Batch 1

PBFT
Batch 10

0

20

40

60

80

Q/U
2ms

1.5ms
1ms

0.5ms

0

20

40

60

80

Zyzzyva
Batch 1

Zyzzyva
Batch 10

0

20

40

60

80

0 5 10 15 20 25

Affected Clients

Zyzzyva5
Batch 1

0 5 10 15 20 25

Affected Clients

Zyzzyva5
Batch 10

Figure 13: Clients with misconfigured retransmission
timers. We vary the number of such clients on the x-axis
(100 clients total).

ifications are an order of magnitude more concise than
MACE (which itself is considerably more concise than
a manual implementation in Java or C++). The disad-
vantage with BFTSim is that BFT protocols thus speci-
fied cannot be executed “for real” in a production system
without extensions to P2, and would likely result in a less
efficient implementation due to P2 currently generating
software dataflow rather than native code.

We chose our BFT protocols (PBFT, Q/U, and
Zyzzyva) to provide good coverage for BFTSim in order
to evaluate its effectiveness as well as provide interesting
comparisons. However, recent research has produced a
slew of new protocols, which we intend to examine.

To take one example, Cowling et al.’s HQ proto-
col [9] ingeniously combines quorum and consensus ap-
proaches. HQ is a two-round quorum protocol in the
absence of write conflicts and requires 3f + 1 replicas.
Replicas optimistically choose an ordering of requests (a
grant) and notify the client, which collects a quorum of
2f +1 such grants and in a second round returns the col-
lected grants (a writeback). Replicas detect contention
by observing the set of grants in the writeback, and resort
to Byzantine consensus for resolution rather than expo-
nentially backing off as in a pure quorum system. As
a result, HQ improves upon PBFT in low-concurrency
settings, while resolving concurrency conflicts at a lower

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association202

expected latency than Q/U. Published results for HQ so
far are only for fault-free settings with low-latency, high-
bandwidth links.

Part of our agenda in this paper is to argue for the com-
parison of distributed algorithms on a level playing field
in a variety of realistic, but different, scenarios. Only
then can developers select appropriate algorithms for the
particular tradeoffs at hand. Such a shift in thinking
has been recently recognized in processor architecture,
where it is termed “scenario-oriented design” [20].

6 Future Work and Conclusions

In this paper we recognize that, though bold, new moves
have been made towards designing and implementing ef-
ficient, safe, and live Byzantine-fault tolerant replicated
state machines, little has been done to look under the
covers of those protocols and to evaluate them under re-
alistic imperfect operating conditions. We argue that a
simulation framework in which fundamentally different
protocols can be distilled, implemented, and subjected
to scrutiny over a variety of workloads, network condi-
tions, and transient benign faults, can lead to the deeper
understanding of those protocols, and to their broad de-
ployment in mission-critical applications.

Our first contribution has been BFTSim, a simula-
tion environment that couples a declarative network-
ing platform for expressing complex protocols at a high
level (based on P2), and a detailed network simulator
(based on ns-2) that has been shown to capture most
of the intricacies of complex network conditions. UsingBFTSim, we have validated and reproduced published re-
sults about existing protocols, as well as the behavior of
their actual implementations on real environments. We
feel confident that this will encourage the systems com-
munity to look closely at published protocols and under-
stand (and reproduce!) their inherent performance char-
acteristics, with or without the authors’ implementation,
without unreasonable effort.

Second, we have taken some first steps towards
this goal with three protocols, PBFT, Q/U, and
Zyzzyva/Zyzzyva5. We have identified some interesting
patterns in how these protocols operate:
• One-size-fits-all protocols may be tough if not im-

possible to build; different performance trade-offs
lead to different design choices within given network
conditions. For instance, PBFT offers more pre-
dictable performance and scales better with payload
size compared to Zyzzyva; in contrast, Zyzzyva of-
fers greater absolute throughput and is significantly
more robust in wider-area, lossy networks.

• In the contention-free workloads we study, Q/U can
demonstrate its strengths in particular as payload
sizes grow and replica-replica latencies increase,

compared to all competing protocols. This opens up
an intriguing question: what if Q/U were less vulner-
able to write contention? An overly simple assess-
ment might argue that Zyzzyva is roughly equiva-
lent to Q/U with an explicit preserializer of requests,
which ensures that no write contention occurs in the
absence of Byzantine faults [22]. It may be produc-
tive to assess to what extent this similarity is only
superficial and, if not, what benefits one might gain
from building a protocol from scratch, versus en-
gineering a safe composition of existing protocols.
Alternatively, a new protocol that shares Q/U’s opti-
mistic one-phase execution with HQ’s efficient con-
tention resolution may become appealing, especially
for large-request workloads.

• Timeouts should be set very carefully. This should
come as no surprise. However, some protocols are
more vulnerable to timeout misconfigurations than
others. With Zyzzyva, the ability to complete a re-
quest with a single phase offers spectacular oppor-
tunities for high throughput, but misconfiguration
of the timeout, or the inevitable jitter in wide-area
deployments, can rob the protocol of its benefits.
In contrast, Q/U tolerates wider timer misconfigu-
rations, but has less to lose in absolute terms.

Although we are confident that our approach is
promising, the results described in this paper only scratch
the surface of the problem. We have not yet assessed
the particular benefits of reliable transports, especially
in the presence of link losses; we have only studied
a simplified notion of multicast and have yet to study
data-link broadcast mechanisms used by some protocols;
we have only explored relatively simplistic, geograph-
ically constrained topologies instead of more complex,
wide-area topologies involving faraway transcontinental
or transoceanic links; and we have limited ourselves to
the relatively closed world of Byzantine-fault tolerant
replicated state machines. Removing these limitations
from BFTSim is the subject of our on-going research.

Moving forward, we are expanding the scope of
our study under broader workload conditions (varying
request execution costs, cryptographic costs, hetero-
geneous computational capacities), network conditions
(skewed link distributions, jitter, asymmetric connectiv-
ity), and faults (flaky clients, denial of service attacks,
timing attacks). We particularly hope to extract the
salient features of different protocols (such as PBFT’s
and Zyzzyva’s ways of dealing with client requests, or
Zyzzyva’s and Q/U’s similarities modulo request pre-
serialization), as well as expand to incorporate storage
costs, and bandwidth measurements. Finally, we hope to
stimulate further research and educational use by makingBFTSim publicly available, along with our implementa-
tions of BFT protocols.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and ImplementationUSENIX Association 203

Acknowledgments

We are particularly indebted to Michael Abd-El-Malek,
Miguel Castro, Allen Clement, and Ramakrishna Kotla
for their help in sorting through protocol and implemen-
tation details needed by our work. We are grateful to
Byung-Gon Chun and Rodrigo Rodrigues for their com-
ments on earlier drafts of this paper. Finally, we heartily
thank our shepherd, Miguel Castro, and the anonymous
reviewers for their deep and constructive feedback.

References

[1] The NS-2 Project. http://nsnam.isi.edu/nsnam/index.php/Main_Page, Oct. 2007.
[2] M. Abd-El-Malek. Personal communication, 2007.
[3] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. Reiter, and

J. J. Wylie. Fault-scalable Byzantine fault-tolerant services. In
Proceedings of ACM Symposium on Operating System Principles
(SOSP), 2005.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin, and
C. Porth. BAR Fault Tolerance for Cooperative Services. In
Proceedings of ACM Symposium on Operating System Principles
(SOSP), 2005.

[5] M. Castro. Practical Byzantine Fault Tolerance. PhD thesis, MIT
Laboratory for Computer Science, Jan. 2001. Technical Report
MIT/LCS/TR-817.

[6] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance.
In Proceedings of USENIX Operating System Design and Imple-
mentation (OSDI), 1999.

[7] M. Castro and B. Liskov. Practical Byzantine Fault Tolerance and
Proactive Recovery. ACM Transactions on Computer Systems,
20(4), 2002.

[8] B.-G. Chun, S. Ratnasamy, and E. Kohler. A Complexity Met-
ric for Networked System Designs. In Proceedings of USENIX
Networked Systems Design and Implementation (NSDI), 2008.

[9] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ Replication: A Hybrid Quorum Protocol for Byzantine Fault
Tolerance. In Proceedings of USENIX Operating System Design
and Implementation (OSDI), 2006.

[10] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-Overhead
Byzantine Fault-Tolerant Storage. In Proceedings of ACM Sym-
posium on Operating System Principles (SOSP), 2007.

[11] F. Junqueira, Y. Mao, and K. Marzullo. Classic Paxos vs. Fast
Paxos: Caveat Emptor. In Proceedings of USENIX Hot Topics in
System Dependability (HotDep), 2007.

[12] C. Killian, J. W. Anderson, R. Braud, R. Jhala, and A. Vahdat.
Mace: Language Support for Building Distributed Systems. In
Proceedings of ACM Programming Languages Design and Im-
plementation (PLDI), 2007.

[13] R. Kotla. Personal communication, 2007.
[14] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.

Zyzzyva: Speculative Byzantine Fault Tolerance. In Proceed-
ings of ACM Symposium on Operating System Principles (SOSP),
2007.

[15] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine Fault Tolerance. University of
Texas at Austin, Technical Report: UTCS-TR-07-40, 2007.

[16] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[17] S. Lin, A. Pan, Z. Zhang, R. Guo, and Z. Guo. WiDS: an Inte-
grated Toolkit for Distributed System Development. In Proceed-
ings of USENIX Hot Topics in Operating Systems (HotOS), 2005.

[18] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis, T. Roscoe,
and I. Stoica. Implementing Declarative Overlays. In Proceed-

ings of ACM Symposium on Operating System Principles (SOSP),
2005.

[19] B. M. Oki and B. H. Liskov. Viewstamped Replication: a General
Primary Copy. In Proceedings of ACM Symposium on Principles
of Distributed Computing (PODC), 1988.

[20] S. M. Pieper, J. M. Paul, and M. J. Schulte. A New Era of Perfor-
mance Evaluation. IEEE Computer, 40(9), 2007.

[21] A. Rodriguez, C. Killian, S. Bhat, D. Kostic, and A. Vahdat.
MACEDON: Methodology for Automatically Creating, Evalu-
ating, and Designing Overlay Networks. In Proceedings of
USENIX Networked Systems Design and Implementation (NSDI),
2004.

[22] A. Singh, P. Maniatis, P. Druschel, and T. Roscoe. Conflict-free
Quorum based BFT Protocols. Technical Report 2007-2, Max
Planck Institute for Software Systems, 2007.

[23] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, , and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. In Proceedings of USENIX Operating
System Design and Implementation (OSDI), 2002.

[24] X. Wang and H. Yu. How to Break MD5 and Other Hash Func-
tions. In Advances in Cryptology—EUROCRYPT 05, 2005.

Notes
1We use the terms “latency” and “response time” interchangeably

when referring to protocol performance.
2The Paxos protocol [16]—also concurrently discovered as View-

stamped Replication [19]—forms the basis of most fault-tolerant con-
sensus mechanisms, in crash-fault or Byzantine-fault settings.

3Support for jumbo UDP frames was incomplete in the released ver-
sion of ns-2. We had to enable jumbo-frame handling and IP fragmen-
tation for the large-sized UDP messages of our protocols. However, we
have induced no extra delays due to IP fragmentation or reordering.
Furthermore, BFTSim does not currently simulate network congestion.

4There is a minor error in the Zyzzyva publication, implying that
Zyzzyva uses AdHash for message digests and MD5 for MACs. We
have since confirmed that, as with the PBFT codebase on which
Zyzzyva is built, MD5 is used for digests (with AdHash-MD5 only
for incremental state digests) and UMAC for MACs. Note that MD5,
either in one-shot mode or incremental AdHash form, is no longer con-
sidered collision-resistant [24]; we use it here for validation purposes
only.

5We were at first unable to reproduce reasonable performance re-
sults with the Q/U implementation, a similar experience to other re-
search groups [2]. We fixed a bug with DNS resolution in the Q/U
codebase (acknowledged and incorporated in release 1.2 of Q/U) that
removed the problem.

6History is an ordered set of candidates, where each candidate
is a pair of logical timestamps. A logical timestamp is represented
as 〈TIME, BARRIERFLAG, CLIENTID, OPERATION, OHS〉,
where OHS is the object history set.

7Note that PBFT offers a runtime parameter for including entire
requests within batches; the default configuration of the codebase turns
this option off.

8Note that we implement an adaptive timer mechanism for
clients [13] used in, but not described in, the Zyzzyva publication.
Once a client receives 2f + 1 matching responses it starts an adap-
tive timer, initialized to a low value, and starts the second phase if this
timer expires before receiving the full 3f + 1 responses. If a client
receives 3f + 1 responses before completing the second phase, it in-
creases the adaptive timer to avoid starting the second phase too early
next time. If the second phase completes sooner, the timer is reset to
the initial low value.

9The original PBFT implementation appears to implement an op-
timization that caches the digests of transmitted messages; therefore,
digests do not have to be recomputed when retransmitting a message.
We have not yet implemented this optimization in our version of PBFT.

NSDI ’08: 5th USENIX Symposium on Networked Systems Design and Implementation USENIX Association204

