
USENIX Association	 NSDI ’09: 6th USENIX Symposium on Networked Systems Design and Implementation	 91

Enabling MAC Protocol Implementations on
Software-Defined Radios

George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, Peter Steenkiste
Carnegie Mellon University

Abstract

Over the past few years a range of new Media Access
Control (MAC) protocols have been proposed for wire-
less networks. This research has been driven by the
observation that a single one-size-fits-all MAC protocol
cannot meet the needs of diverse wireless deployments
and applications. Unfortunately, most MAC functional-
ity has traditionally been implemented on the wireless
card for performance reasons, thus, limiting the opportu-
nities for MAC customization. Software-defined radios
(SDRs) promise unprecedented flexibility, but their ar-
chitecture has proven to be a challenge for MAC proto-
cols.

In this paper, we identify a minimum set of core MAC
functions that must be implemented close to the radio
in a high-latency SDR architecture to enable high per-
formance and efficient MAC implementations. These
functions include: precise scheduling in time, carrier
sense, backoff, dependent packets, packet recognition,
fine-grained radio control, and access to physical layer
information. While we focus on an architecture where
the bus latency exceeds common MAC interaction times
(tens to hundreds of microseconds), other SDR architec-
tures with lower latencies can also benefit from imple-
menting a subset of these functions closer to the radio.
We also define an API applicable to all SDR architectures
that allows the host to control these functions, providing
the necessary flexibility to implement a diverse range of
MAC protocols. We show the effectiveness of our split-
functionality approach through an implementation on the
GNU Radio and USRP platforms. Our evaluation based
on microbenchmarks and end-to-end network measure-
ments, shows that our design can simultaneously achieve
high flexibility and high performance.

1 Introduction

Over the past few years, a range of new Media Access
Control (MAC) protocols have been proposed for use in
wireless networks. Much of this increased activity has
been driven by the observation that a single one-size-

fits-all MAC protocol cannot meet the needs of diverse
wireless deployments and applications and, thus, MAC
protocols need to be specialized (e.g. for use on long-
distance links, mesh networks). Unfortunately, the devel-
opment and deployment of new MAC designs has been
slow due to the limited programmability of traditional
wireless network interface hardware. The reason is that
key MAC functions are implemented on the network in-
terface card (NIC) for performance reasons, which often
uses proprietary software and custom hardware, making
the MAC hard, if even possible, to modify.

Software-defined radios (SDRs) have been proposed
as an attractive alternative. SDRs provide simple hard-
ware that translates signals between the RF and the digi-
tal domains. SDRs implement most of the network inter-
face functionality (e.g., the physical layer and link layer)
in software and, as a result, they make it feasible for
developers to modify this functionality. SDR architec-
tures [19, 6, 17, 20, 9] typically distribute processing of
the digitized signals across several processing units – in-
cluding FPGAs and CPUs located on the SDR device,
and the CPU of the host. The platforms differ in the pre-
cise nature of the processing units that are provided, how
those units are connected, and how computation is dis-
tributed across them.

Unfortunately, the high degree of flexibility offered
by SDRs does not automatically lead to flexibility in the
MAC implementation. The reason is that, in the SDR ar-
chitecture we are addressing, the use of multiple hetero-
geneous processing units with interconnecting buses, in-
troduces large delays and jitter into the processing path of
packets. Processing, queuing, and bus transfer delays can
easily add up to hundreds of microseconds [14]. Unfor-
tunately, the delay limits how quickly the MAC can re-
spond to incoming packets or changes in channel condi-
tions, and the jitter prevents precise control over the tim-
ing of packet transmissions. These restrictions severely
reduce the performance of many MAC protocols.

This paper presents a set of techniques that makes it
possible to implement diverse, high performance MAC
protocols that are easy to modify and customize from the
host. The key idea is a novel way of splitting core MAC
functionality between the host processing unit and pro-
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Figure 1: Generic SDR Architecture

cessing units on the hardware (e.g., FPGA). The paper
makes the following contributions:

• We identify a set of core MAC functions that must
be implemented close to the radio for performance
and efficiency reasons.

• We define a split-functionality architecture that al-
lows the functions to be implemented near the ra-
dio hardware, while maintaining control on the host
CPU through an API.

• We present an implementation of our architecture
using the GNU Radio [6] and USRP [17] SDR plat-
form. We also use our implementation to charac-
terize the performance-flexibility tradeoffs for key
MAC features. For example, our results show
three orders of magnitude greater precision for the
scheduling of packets and carrier sense, along with
a high level of accuracy in fast packet detection.

• Finally, we use our implementation for an end-to-
end evaluation of the split-functionality architec-
ture. We show how the system can support diverse
high-performance MAC implementations by imple-
menting 802.11-like and Bluetooth-like protocols
for experimentation over the air.

The rest of the paper is organized as follows. We dis-
cuss current radio architecture and its impact on MAC
protocol development in Section 2. In Sections 3 and
4, we explore the core MAC requirements and introduce
our split-functionality architecture. Section 5 provides
details for each component implementation with evalu-
ation results. Finally, we present end-to-end evaluation
results, related work, and a summary of our results in
Sections 6 through 8.

2 MAC Implementation Choices
A number of different software-defined radio architec-
tures have been developed. One common architecture
is shown in Figure 1. The frontend is responsible for
converting the signal between the RF domain and an
intermediate frequency, and the A/D and D/A compo-
nents convert the signal between the analog and the dig-
ital domain. Physical and higher layer processing of the

digitized signal are executed on one or more processing
units. Typically, there is at least an FPGA or DSP close
to the frontend. The frontend, D/A, A/D, and FPGA are
usually placed on a network card that is connected to the
host CPU by a standard bus (e.g., USB).

The distribution of functionality across the processing
units significantly impacts the radio’s performance, flex-
ibility, and ease of reprogramming. To achieve a high
level of flexibility and reprogramming, the majority of
processing (i.e., modulation) can be placed on the host
CPU where the functionality is easy to modify. We refer
to this architecture as host-PHY. This architecture is ex-
emplified by GNU Radio [6] and the USRP [17], which
place the majority of functionality in userspace, shown
in Figure 1. For greater performance, processing can be
implemented in the radio hardware on the FPGA or DSP.
We refer to this architecture as NIC-PHY. The WARP
platform [20] implements this architecture, placing the
PHY and MAC layers on the radio hardware for perfor-
mance reasons. It is fairly straightforward however, to
parameterize PHY layers (e.g. to control the frequency
band and coding an modulation options). Thus, it is pos-
sible control many aspects of the PHY layer from the
host, no matter where it is implemented.

Unfortunately, MAC protocols are less structured and
SDRs have fallen short in providing high-performance
flexible MAC implementation. The MAC is either im-
plemented near the radio hardware for performance, or
near the host for flexibility. We propose a novel split of
MAC functionality across the processing units in a host-
PHY architecture such that we can achieve a high level
of performance, while maintaining flexibility at both the
MAC and PHY layers. This is especially significant in
a host-PHY architecture, which has been considered in-
capable of supporting even core MAC protocol functions
(e.g., carrier sense) due to the large processing delays in-
herent to the architecture [14, 18]. In addition, our design
can enable many cross-layer optimizations, such as those
proposed between the MAC and PHY layers [5, 8, 7].
Such optimizations have used the host-PHY architecture
for easy PHY modifications, but given the lack of MAC
support, they typically ”fake” the MAC layer (e.g., by
combining the SDR with a commodity 802.11 NIC to do
the MAC processing [5]) or omit it all together [7, 8].
Although our work focuses on a host-PHY architecture,
several of the components we will present can be applied
to a NIC-PHY architecture.

In the next section, we explore delay and jitter mea-
surements in the host-PHY architecture, which are the
major limiting factor on performance of MAC imple-
mentations. The measurements are important in under-
standing the proper split of MAC functionality across the
heterogeneous processing units of an SDR.
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Avg SDev Min Max
User–>Kernel (µs) 24 10 22 213
Kernel–>User (µs) 27 89 13 7000
4096 Kernel<–>FPGA (µs) 291 62 204 360
512 Kernel<–>FPGA (µs) 148 35 90 193
GNU Radio<–>FPGA (µs) 612 789 289 9000

Table 1: Kernel level delay measurements.

2.1 Delay Measurements

Schmid et al [14] present delay measurement for SDRs
and their impact on MAC functionality in a host-PHY
architecture. However, they focus on user-level mea-
surements, largely ignoring precise measurement of de-
lays between the kernel and userspace, and kernel and
the radio hardware. Such measurements are important,
since they can provide insight into whether implementing
MAC functions in the kernel is sufficient to overcome the
performance problems associated with user level imple-
mentations. To obtain precise user and kernel-level mea-
surements, we modified the Linux kernel’s USB Request
Block (URB) and USB Device Filesystem URB (US-
BDEVFS URB) to include nanosecond precision times-
tamps taken at various times in the transmission and re-
ceive process. All user level timestamps are taken in user
space right before or after a URB is submitted (write) or
returned (read). At the kernel level, the measurement is
taken at the last point in the kernel’s USB driver before
the DMA write request is generated, or after a DMA read
request interrupts the driver. This is as close to the bus
transfer timing as possible.

We measured the round trip time between GNU Ra-
dio (in user space) and the FPGA using a ping command
on a control channel that we implement (Section 4.2).
Using the measurements described above, we are also
able to identify the sources of the delay by calculating
the user to kernel space delay, kernel to user space de-
lay, and round trip time between the kernel and FPGA
based on ping. We ran the user process at the highest pri-
ority to minimize scheduling delay. We used the default
4096 byte USB transfer block size for all experiments,
and then perform an additional kernel to FPGA RTT ex-
periment using a 512 byte transfer block size, the mini-
mum possible, in an attempt to minimize queuing delay.

The results presented in Table 1 are averaged over
1000 experiments. Focusing on the average times, we
see the cost of a GNU Radio ping is dominated by the
kernel-FPGA roundtrip time (291 out of 612 µs). The
user-kernel and kernel-user times are relatively modest
(24 and 27 µs). The remaining time (270 µs) is spent in
the GNU Radio chain. The high latency of the kernel-
FPGA roundtrip time is somewhat surprising, given that
the effective measured rate of the USB with the USRP is
32MB/s. The difference between the latencies for 4KB

and 512B shed some light on this. The difference in la-
tency is only a factor of two, suggesting that the set up
cost for transfers contributes significantly to the delay.
The kernel-FPGA time also includes the time it takes for
the data to pass through the USRP USB FX2 controller
buffers, and to be copied into the FPGA for parsing. The
time taken for the data to pass through the USRP USB
FX2 controller buffers and copied into the FPGA for
parsing also contributes to the kernel-FPGA RTT.

The standard deviations and the min/max values paint
a different picture. The user-to-kernel and kernel-FPGA
times fall in a fairly narrow range, so they only contribute
a limited amount of jitter. The kernel-to-user times how-
ever have a very high standard deviation, which results
in a high standard deviation for the GNU Radio ping de-
lays. This is clearly the result of process scheduling.

2.2 MAC Design Space

As discussed briefly in Section 2, the processing units
in the above SDR architecture have very different prop-
erties. Focusing on Figure 1, the host CPU is easy to
program and is readily accessible to users and develop-
ers. However, the path between the host CPU and the
radio front end has both high delay and jitter, as shown
by the measurements presented in Section 2.1. The round
trip times between the device driver on the host and the
FPGA is about 300 µs for 4KB of data, with relatively
modest jitter. The roundtrip from GNU Radio is about
double, but with significantly more jitter. As a result, a
host-based MAC protocol (be it in user space or in the
kernel) will not be able to precisely control packet tim-
ing, or implement small, precise inter-frame spacings,
which will hurt the performance of many MAC proto-
cols. We conclude that, time critical radio or MAC func-
tions should not be placed on the host CPU.

Processing close to the radio performed by a FPGA
or CPU on the NIC has the opposite properties. It has a
low latency path to the frontend (see USRP latencies in
Figure 1), making it attractive for delay sensitive func-
tions. Unfortunately, code running on the radio hardware
is much harder to change because it is often hardware-
specific and requires a more complex development envi-
ronment. Moreover, history shows that vendors do not
provide open access to their NICs, even if they are pro-
grammable. Access to the processors on the NIC is re-
stricted to its manufacturer and possibly large customers
who can, under license, customize the NIC code. This
is of course not a problem for research groups using
research platforms, which is why many researchers are
moving to software radios, but it is an important consid-
eration for widespread deployment. We conclude that in
order to be widely applicable, the control of flexible MAC
implementations should reside on the host.
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Interesting enough, the SDR NIC architecture in Fig-
ure 1 is not unlike the architecture of traditional NICs
(e.g., 802.11 cards). Today’s commodity NICs use ana-
log hardware to perform physical layer processing, but
they typically also have a CPU, FPGA, or custom proces-
sor. These commodity devices exhibit the same tradeoffs
we identified above for software radios: the delay be-
tween the processing on the host and the (analog) fron-
tend is substantially higher and less predictable than be-
tween the NIC processor and the front end.

Experience with commercial 802.11 cards supports
the conclusions we highlighted above. First, time sen-
sitive MAC functions such as sending ACKs are always
performed on the NIC, and only functions that are not de-
lay sensitive such as access point association are handled
by the host processor. Moreover, although most of the
MAC functionality on the NIC is implemented in soft-
ware, it can only be modified by a small number of ven-
dors (i.e. in practice the NIC is a black box). Researchers
have had some success in using commodity cards for
MAC research by moving specific MAC functions to the
host [13, 16, 10, 15], but the results are often unsatis-
factory. The host can only take control over certain func-
tions (e.g. interframe spacings must be longer than 60
microseconds), precision is limited (e.g. cannot elimi-
nate all effects of jitter), and the host implementation is
inefficient (as a result of polling) and is susceptible to
host loads.

The different properties of the host and NIC process-
ing units means that the placement of MAC functional-
ity will fundamentally affect four key MAC performance
metrics, including network performance, flexibility in
MAC implementation and runtime control, and ease of
development. Unfortunately, as discussed above, these
performance goals are in conflict with each other and
achieving the highest level for each is not possible. In
this paper, we present a split-functionality architecture
that implements key MAC functions on the radio hard-
ware, but provides full control to the host. This allows
us to simultaneously score very high on all four metrics,
and it also allows developers and users to make tradeoffs
across the metrics. While developers will always have to
make tradeoffs, the negatives associated with specific de-
sign choices are significantly reduced in our design. Note
that this does not imply that our design can support any
arbitrary or even all existing MAC designs. However, we
believe that it is capable of supporting most of the critical
features of modern MAC designs.

The focus of the paper is on SDR platforms be-
cause they provide maximal flexibility in key research
areas such as cross-layer MAC and PHY optimization
(e.g., [5, 7, 8]). Our evaluation is based on a platform that
uses the host-PHY architecture, but is not critical. Even
in NIC-PHY architectures that have good support for the

MAC on the NIC (e.g., in the form of a general-purpose
CPU), it is important to maintain control over the MAC
and PHY on the host to ensure easy customization. As
a result, the techniques we propose can be useful across
the entire spectrum of NIC designs.

3 Core MAC Functions

An ideal wireless protocol platform should support the
implementation of well-known MAC protocols as well as
novel MAC research designs. A study of current wireless
protocols, including WiFi (both Distributed and Point
Coordination Function), Zigbee, Bluetooth, and various
research protocols shows that they are based on a com-
mon, core set of techniques such as contention-based ac-
cess (CSMA), TDMA, CDMA, and polling. In this sec-
tion, we identify key core functions that a platform must
implement efficiently in order to support a wide range of
MAC protocols.

Precise Scheduling in Time: TDMA-based protocols
require precise scheduling to ensure that transmissions
occur during time slots. Imprecise timing can be tol-
erated by using long guard periods; however, this de-
grades performance. Surprisingly, modern contention-
based protocols also require precise scheduling to imple-
ment inter-frame spacing (i.e. DIFS, SIFS, PIFS), con-
tention windows, back-off periods, etc.

Carrier Sense: Contention-based protocols often use
carrier sense to detect other transmissions. Carrier
sense may use simple power detection (e.g., using sig-
nal strength) or may use actual bit decoding. Network
interfaces need to transmit shortly after the channel is
detected to be idle. Additional delay increases both the
frequency of collision and also the minimum packet size
required by the network.

Backoff: When a transmission fails in a contention-
based protocol, a backoff mechanism is used to resched-
ule the transmission under the assumption that the
loss was caused by a collision. Backoff is related to
precise scheduling, but focuses more closely on fast-
rescheduling of a transmission without the full packet
transmission process (e.g., modulation).

Fast Packet Recognition: Many MAC performance
optimizations could use the ability to quickly detect an
incoming packet and identify that it is relevant to the lo-
cal node in a timely and accurate manner. For example,
detecting and identifying an incoming packet before the
demodulation procedure can reduce resource use on the
processing units and on the bus.

Dependent Packets: Dependent packets are explicit
responses to received packets. A typical example is con-
trol packets that are associated with data packets, for
example for error control (e.g., ACKs) or for improved
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channel access (e.g., RTS/CTS). Network interfaces need
to generate these packets quickly and transmit them with
precise time scheduling relative to the previous packet.

Fine-grained Radio Control: Frequency-hopping
spread spectrum protocols such as Bluetooth and the re-
cently proposed MAXchop algorithm [11] require fine-
grained radio control to rapidly change channels accord-
ing to a pseudo-random sequence. Similarly, recent de-
signs [1] for minimizing interference require the ability
to control transmission power on a per-packet basis.

Access to physical layer information: Many MAC
protocol optimizations could benefit from access to
radio-level packet information. Examples include using
a received signal strength indicator (RSSI) to improve
access point handoff decisions and using information on
the confidence of each decoded bit to implement partial
packet recovery [7].

3.1 Implications
While it is difficult to argue that this (or any) list of core
functions is the correct one and is complete, we believe
that it is sufficient to implement a broad range of inter-
esting MAC protocols. To provide some degree of confi-
dence in this statement, we describe our implementation
of an 802.11-like CSMA protocol and a Bluetooth-like
TDMA protocol using our framework in Section 6. As
such, this is a reasonable first “toolbox” that MAC pro-
tocol developers can extend over time.

4 Split Functionality Architecture

As discussed in Section 2, implementing flexible high-
performance MAC protocols is challenging because the
high delays and jitter between the host CPU and frontend
affects the performance of the core MAC functions de-
scribed in the previous section. For example, most proto-
cols need either precise scheduling in time or dependent
packets. However, the delays inherent in a host MAC im-
plementation in the given SDR architecture would make
these functions inefficient or ineffective. In this section,
we first review the requirements associated with the core
MAC functions identified above, and we then present an
architecture that allows us to support high performance
MACs while maintaining host control.

4.1 Core Requirements
Implementing the core MAC functions from Section 3
raises three challenges.

Bus delay: The delay introduced by transmission of
data over the bus can be constant and predictable, de-
pending on the technology. A constant delay is relatively

easy to accommodate in supporting precision schedul-
ing, as discussed in Section 5.1. However, the bus delay
does impact the performance of carrier sense, dependent
packets, and fast packet recognition. The effect of bus
latency on performance for SDR NICs is discussed in
previous work [14].

Queuing delay: The delay introduced by queues may
be smaller than the bus transmission delay but has signif-
icant jitter, which makes precision scheduling difficult,
if not impossible. The jitter can modify the inter-packet
spacing through compression or dispersion as the data is
processed in the host and at the ends of the bus. In Sec-
tion 5.1.2, we present measurements that show that this
compression can be so significant in the given architec-
ture that spacing transmissions by under 1ms cannot be
achieved reliably using host-CPU based scheduling.

Stream-based architecture of SDRs: The frontend
operates on streams of samples, which can make fine-
grained radio control and access to physical layer infor-
mation from the host ineffective. The reason is that it
adds complexity to the interaction between a MAC layer
executing on a host CPU (or NIC CPU) and the radio
frontend since it is difficult to associate control informa-
tion or radio information with particular groups of sam-
ples (e.g., those belonging to a packet). This problem
consists of two components: (1) how to propagate in-
formation within the software environment that performs
physical and MAC layer processing, and (2) how to prop-
agate the information between the host and the frontend,
across the bus and SDR hardware. This first issue is
being addressed in the GNU Radio design with the in-
troduction of m-blocks [2], which is briefly discussed in
Section 7, but we must address the second issue.

4.2 Overcoming the Limitations

We now present an architecture that overcomes the above
limitations. The goal is to allow as much of the pro-
tocol to execute on the host as possible to achieve the
flexibility and ease of development goals, both of which
are important to a wireless platform for protocol devel-
opment, as identified in Section 2. However, we must
ensure that the high latency and jitter between the host
and radio frontend does not result in poor performance
and limited control, the other two criteria in Section 2.
This is done by introducing two architectural features,
per-block meta-data and a control channel, shown in
Figure 2. The novelty is not in the two new architectural
features, but in how we use them to implement the core
MAC functions (Section 3) in such a way that we main-
tain flexibility, while increasing performance (Section 5).
We first discuss both features in more detail.

Per block meta-data: Enabling the association of in-
formation with a packet is crucial to the support of nearly
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Figure 2: Split SDR architecture.

all of the core requirements in Section 3. Each packet is
modulated into blocks of samples, for which we intro-
duce per block meta-data. The meta-data stored in the
header includes a timestamp (inbound and outbound), a
channel flag (data/control), a payload length, and single
bit flags to mark events such as overrun, underrun, or to
request specific functions that we implement on the ra-
dio hardware. We limit the scope of the meta-data to the
minimum needed to support the core requirements, thus
minimizing the overhead on the bus.

Control Channel: The control channel allows us
to implement a rich API between the host and radio
hardware and allows for less frequent information to be
passed. It consists of control blocks that are interleaved
with the data blocks over the same bus. Control blocks
carry the same meta-data header as data blocks but have
the channel field in the header set to CONTROL. The
control block payload contains one or more command
subblocks. Each subblock specifies the command type,
the length of the subblock, and information relevant to
the specific command (e.g., a register number). Exam-
ples of commands include: reading or writing configu-
ration registers on the SDR device, changing the carrier
frequency, and setting the signal sampling rate.

With these two features, we can effectively partition
the core MAC functions into a part that runs on the radio
hardware close to the radio frontend, and a control part
that runs on the host. Of course, meta-data and control
channels are used in many contexts. The contribution lies
in how we use them to partition the core MAC functions,
which is the focus of the next section.

5 Core Component Design and
Evaluation

We now examine how the split-functionality approach
can be used to implement the core functions described
in Section 3. We also evaluate the performance of the
implementation of each core function. We focus our dis-
cussion on the GNU Radio and USRP platform.

5.1 Precise Scheduling in Time
Precision scheduling needs to be implemented close to
the radio to achieve the fine-grained timing required for
TDMA, spread spectrum, and contention based proto-
cols. This is especially important when a large amount of
jitter exists in the system from multiple stages of queuing
and process scheduling, explored in Section 2.1.

For nodes to synchronize to the time of a global ref-
erence point, such as a beacon transmission for synchro-
nization to the start of a round in a TDMA protocol, the
nodes need to accurately estimate the reference point.
Jitter at the transmitter can cause the actual transmission
of the beacon to vary from its target time by δt , the maxi-
mum transmission jitter. Moreover, the estimated time of
the beacon transmission as a global reference point will
vary by δr, the maximum reception jitter. The maximum
error is therefore δt + δr, which defines the minimum
guard time needed by a TDMA protocol. By minimiz-
ing δt and δr, we increase channel capacity.

5.1.1 Precision Scheduling Design

Our delay measurements in Section 2.1 suggest that
much of the delay jitter is created near the host. There-
fore, the triggering mechanism for packet transmissions
should reside beyond the introduction of the jitter. Like-
wise, to obtain an accurate local time at which a recep-
tion occurs, the time should be recorded prior to the in-
troduction of the jitter on the RX path. To enable preci-
sion scheduling, we use a free running clock on the radio
hardware to coordinate transmission/reception times as
follows.

Transmit: To reduce the transmission jitter (δt ), we
insert a timestamp on all sample blocks sent from the
host to the radio hardware. When the radio hardware
receives the sample block, it waits until the local clock
is equal to the timestamp value before transmitting the
samples. This allows for timing compression or disper-
sion of data in the system with no effect on the preci-
sion scheduling of the transmission. The host must en-
sure the transmission reaches the radio hardware before
the timestamp is equal to the hardware clock, else the
transmission is discarded. The host is notified on failure,
which can be treated as notification to schedule transmis-
sions earlier. To support traditional best-effort streaming,
we use a special timestamp value, called NOW, to trans-
mit the block immediately.

In practice, the samples for a packet will be frag-
mented across multiple blocks. To make sure that a sin-
gle packet’s transmission is continuous and that if the
packet is dropped all fragments are dropped, we imple-
ment start of packet and end of packet flags in the block
headers. The first block carrying the packet will have the
start of packet flag set and the timestamp for transmis-
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Figure 3: Evaluation setup using 3 USRPs.

sion. All remaining blocks carry a timestamp value of
NOW to ensure continuous transmission. The hardware
detects the last fragment using the end of packet flag, and
can also report underruns to the host by detecting a gap
between fragments.

A common solution to achieve precise transmission
spacing from the host is to leave the transmitter enabled
at all times and space transmissions with 0 valued sam-
ples. This solution is inefficient since it wastes both host
CPU cycles and bus bandwidth, and it does not eliminate
jitter on the receive side.

Receive: To reduce the receiver jitter (δr), the radio
hardware timestamps all incoming sample blocks with
the radio clock time at which the first sample in the block
was generated by the ADC. Given that the sampling rate
is set by the host, the host knows the exact spacing be-
tween samples. It can therefore calculate the exact time
at which any sample was received, eliminating δr and al-
lowing for full synchronization between transmitter and
receiver.

5.1.2 Precision Scheduling Evaluation

To evaluate precision scheduling, we compare the
timestamp-based release of packets using the split-
functionality approach with a timer-based implementa-
tion in GNU Radio and in the kernel. We enable the real-
time scheduling mechanism, which sets the GNU Radio
processes to the highest priority. Our experiment trans-
mits a frame used as a logical time reference, and then at-
tempts to transmit another frame at a controlled spacing
over the air. With no error, the actual spacing over the air
is equal to the targeted spacing. We measure the actual
spacings achieved using a monitoring node (Figure 3). A
USRP on the monitoring node measures the magnitude
of received complex samples at 8 megasamples per sec-
ond, resulting in a precision of 125 nanoseconds. With
no transmission jitter (δt ), the spacing between beacons
will exactly match their transmission rate, while any vari-
ability in scheduling will affect the spacings. The nodes
are connected via coaxial cable to avoid the impact of
external signals.

We compare the measured spacing of 50 transmis-
sions with targeting spacings from 100ms to 1µs. Fig-
ure 4 shows the host and kernel based implementations
to have approximately 1ms and 35µs of error, respec-
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Figure 4: Split-functionality vs. host scheduling.

tively. The timestamp-based mechanism achieves exact
spacing to our monitoring node’s precision. Therefore,
moving timestamps to the kernel improves accuracy, but
the error is still at least an order of magnitude greater
than in the split-functionality design. Section 6.1 quan-
tifies the benefits further through the implementation of
a Bluetooth-like TDMA protocol. In the evaluation, we
also measure δr with the split-functionality approach to
be within 312ns. The average results show one-sided er-
ror, illustrating that compression of data across the bus
dominates over dispersion. This is likely due to the mul-
tiple stages of buffers, including the buffers on the radio
hardware to read the data from the FX2 controller. While
dispersion is recorded, it occurs infrequently.

5.2 Carrier Sense
The performance of carrier sense is crucial to CSMA
protocols: the longer it takes to transmit a packet after
the channel goes idle, the greater the chance of colli-
sion. This turnaround time is referred to as the carrier
sense ‘blind spot” by Schmid et al. [14]. This blind spot
has 4 components: signal propagation delay, the delay
between the radio hardware and host for incoming sam-
ples, the processing delay involved in carrier detection at
the host, and the complete transmission delay once the
medium is detected idle at the host; this includes mod-
ulation of a packet and transferring the samples to the
radio hardware for transmission.

5.2.1 Carrier Sense Design

To significantly reduce the size of the carrier sense blind
spot, we must avoid the associated delays by placing the
decision at the radio hardware. However, the decision
process should be controlled by software running on the
host CPU to maintain flexibility. The first assumption we
can make is that if carrier sense is to be performed, the
host has data to transmit and can modulate it and pass
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Figure 5: Carrier sense blind spot measurement.

it to the radio hardware to pend on carrier sense. The
per block meta-data for the transmission has a single bit
flag set to indicate the block should be held until there
is no carrier using a locally computed RSSI value. The
host can control the carrier sense threshold via the con-
trol channel. We use an RSSI value recorded in the radio
hardware to implement a simple RSSI threshold carrier
sense mechanism.

5.2.2 Carrier Sense Evaluation

We now present an evaluation of the carrier sense com-
ponent in comparison to performing carrier sense at the
host. In the host implementation, the received signal
strength is estimated from the incoming sample stream
and uses thresholds to control outgoing transmissions.
We use the evaluation setup in Figure 3, described in
Section 5.1.2, to achieve a 125 nanosecond resolution
in measuring the archived carrier sense blind spot. The
two contending nodes exchange the channel using car-
rier sense 100 times and we measure the spacing be-
tween each transmission, as illustrated in Figure 5. The
first contending node, C1, finishes transmission T Xn, and
C2 takes T1 time to detect the channel as idle and be-
gin transmission T Xn+1. T1 represents the carrier sense
turnaround time, or blind spot.

We plot two example channel exchanges using both
implementations in Figure 6. Time is relative in the fig-
ure and we align the contending node’s end of transmis-
sion at time 100. We highlight the gap in both implemen-
tations, and present the average gap observed across 100
exchanges: 1.5µs and 1.98ms for the split-functionality
and host implementations, respectively. The host based
latency could be reduced closer to 1ms, or on the order
of tens of microseconds, by splitting the functionality to
the USRP device driver, or the kernel, respectively. In
our evaluation, the times were recorded at a higher-level
block in GNU Radio where a MAC protocol would re-
side. These measurements illustrate our design’s abil-
ity to reduce the carrier sense blind spot by three orders
of magnitude, while maintaining host control on a per-
packet basis. This can significantly increase the capac-
ity in the channel by reducing the time it takes to detect
it is idle. The host can even control the threshold on a
per-packet basis by placing a control packet with a new
threshold on the bus before the data packet.

 0

Split-functionality1.5µs average

 0

 0  500  1000  1500  2000  2500
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Figure 6: Measured carrier sense blind spots.

5.3 Backoff

In contention based protocols, backoff is used to reduce
collisions and increase fairness. Although the technique
varies by protocol, a common implementation is to re-
duce collisions by forcing a transmission delay and to
increase fairness by making this delay random. The
various delay components in SDRs prevent fine-grained
backoff at the host. As shown in Section 5.1, a host
backoff of less than 1ms is unachievable and values be-
tween 1ms and 100ms would be unpredictable. There-
fore, backoff at the host would require a large minimum
backoff time, which decreases channel capacity.

Despite our timestamping mechanism achieving mi-
crosecond level accuracy (Section 5.1.2), such a mecha-
nism alone is insufficient. If a new backoff time is to be
computed once a failure is reported to the MAC on the
host, the retransmission would incur at least a radio-to-
host RTT after the previous transmission, meaning the
minimum backoff in a host implementation is an RTT.
The average RTT measured in Section 2.1 was 612µs
with a standard deviation was 789µs and a maximum
observed value of 9ms. This is insufficient by current
protocol standards. Placing the backoff algorithm on the
radio hardware would require developers to make low
level changes. We therefore explore a split-functionality
approach for backoff.

5.3.1 Backoff Design

To enable flexible fine-grained backoff we build upon
the precision scheduling mechanism (Section 5.1) to in-
troduce a technique that leaves the backoff algorithm
and computations at the host, and the actual transmis-
sion delay on the radio hardware. The key observation
that enables our technique is that all backoff times, from
the initial transmission n 0 to n MAX RETRIES, can be pre-
calculated by the host. The host calculates the backoff
time for transmission n 0, and then assuming failure cal-
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culates all remaining backoffs from 1 to MAX RETRIES,
including each in the per packet meta-data.

A flag is set in the per block meta-data for the radio
hardware to interpret the timestamp value as the maxi-
mum number of retries (M), and the first M 32-bit words
pre-pended in the data payload to be interpreted as back-
off times for each retransmission. Each value is inter-
preted as a time-to-wait, where the transmission is sched-
uled at current clock+backoff. Moreover, we implement
a control channel command that allows the host to con-
figure the interpretation of a backoff value as an absolute
time-to-wait, or a channel idle time-to-wait (most com-
mon).

This technique does not affect scheduling of future
transmissions, as for example in 802.11 the contention
window is reset to the minimum on a successful trans-
mission. This means that the host can fully schedule a
transmission and before a success/failure notification is
given by the hardware, it can prepare the next transmis-
sion and buffer it on the radio hardware.

5.3.2 Backoff Evaluation

Given that the backoff technique uses the precision
scheduling mechanism, its accuracy is the same as the
precision scheduling mechanism and on the order of mi-
croseconds. We also use the backoff technique in our
split-functionality 802.11-like protocol evaluation found
in Section 6.

5.4 Fast Packet Recognition
Traditional software-defined radios, in the receive state,
stream captured samples at some decimated rate between
the radio hardware and the host. For many MAC pro-
tocols, such as CSMA-style designs, the radio cannot
determine when packets for the attached node will ar-
rive. As a result, the radio must remain in the receiving
state. The downside to this is that the demodulation pro-
cess uses significant memory and processor resources de-
spite the fact that incoming packets destined for the radio
are infrequent. As such radios become more ubiquitous
and common for implementation, resource usage will
become increasingly important, especially for energy-
constrained devices such as the battery-powered Kansas
University Agile Radio [9].

One simple solution would be to send samples when
the RSSI is above some threshold. However, this does
not filter out transmissions destined to other hosts and
external signals. A better solution would be to have
the radio hardware look for the packet preamble and
the destination address, then transfer a maximum packet
size worth of samples to the host after any match. At
first glance, it may seem that fast packet recognition
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is not a “necessary” function for implementing MAC
protocols, especially since the CPU and bus bandwidth
resource consumption can become insignificant rather
quickly (i.e., due to Moore’s Law). However, trends in
bus delay do not have this same property. As we will dis-
cuss further in Section 5.5, the ability to identify packets
and process them partially on the SDR hardware is crit-
ical to supporting low-latency MAC interactions (e.g.,
packet/ACK exchanges or RTS/CTS) in a high-latency
architecture.

5.4.1 Fast Packet Recognition Design

Our goal is to accurately detect packets at the radio hard-
ware without demodulating the signal (to keep flexibil-
ity), for which we perform signal detection. The most
relevant work in signal detection comes from the area of
radar and sonar system design. From this area, we bor-
row a well-known technique, called a matched filter, to
detect incoming packets at the radio hardware without
the demodulation stage. For the purpose of design dis-
cussion, we refer to the bottom half of Figure 7.

Matched filter: A matched filter is the optimal lin-
ear filter that maximizes the output signal to noise ratio
for use in correlating a known signal to the unknown re-
ceived signal. For use in packet detection, the known
signal would be the time-reversed complex conjugate of
the modulated framing bits. This known signal is stored
as the coefficients of the matched filter (Figure 7). The
received sample stream is convolved with the coefficients
to perform cross-correlation, where the output can be
treated as a correlation score between the unknown and
known signals. The correlation score is then compared
with a threshold to trigger the transfer of samples to the
host. The matched filter is flexible to different modula-
tion schemes (e.g., GMSK, PSK, QAM), but requires a
Fast Fourier transform for OFDM, given that the sym-
bols are in the frequency domain. This would require an
FFT implementation on the radio hardware.

To also detect that the frame is destined to the par-
ticular host, two different methods that have mathemat-
ically different properties can be used. Single Stage:
Use a frame format where the destination address is the
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first field after the framing bits, and use this complete
modulated sequence as the matched filter coefficients.
Dual Stages: detect the framing bits first, then change the
coefficients to the modulated destination address. Our
implementation uses the single stage approach for sim-
plification. However, a dual stage is more appropriate
for monitoring multiple addresses such as a local address
and a broadcast address.

5.4.2 Fast Packet Recognition Evaluation

We evaluate the effectiveness of the matched filter at de-
tecting incoming sequences using simulations where we
can control the noise level. Results are presented from
over the air experiments with the presence of interfer-
ence, multipath, and fading in Section 5.5.

To evaluate the effectiveness of the matched filter with
varying signal quality, we first run experiments with
controlled signal-to-noise ratios (SNR) using the GNU
Radio software. We introduce additive white Gaussian
noise (AWGN) to control the SNR in terms of dB:

SNR(dB) = 10∗ log10 ∗
Powersignal

Powernoise
(1)

To introduce noise, we compute the noise power based
on the specified snr and power in the signal:

SNR = 10(snr/10)

Powersignal =
Signalampl

2

Powernoise = Powersignal
SNR

For evaluation, 1000 frames of 1500 bytes are encoded
using the Gaussian minimum-shift keying (GMSK) mod-
ulation scheme. These frames are used as the ground
truth and mixed with the noise. We require that the
matched filter detect the framing bits and that the trans-
mission is destined for the attached host using the single-
stage scheme (Section 5.4.1). The success rate is defined
as the number of detected frames over the total number
of frames in the dataset (1000). For comparison, we also
include the success rate of the full GMSK decoder. At
a high noise level, even the full decoder will fail at de-
tecting the frames. The success rate, as a function of
the SNR, is shown in Figure 8. The results show that
the matched filter can detect the frames at a much higher
success rate than the decoder can, even at low SNR levels
where the noise power is greater than the signal power.

Given these results, and further real-world results
presented in Section 5.5, we conclude that using the
matched filter for detecting relevant packets is accurate
enough that the host will never miss an actual frame due
to the filter. In fact, the filter triggering samples to the
host can been seen from a different perspective as pro-
viding further confidence to the host that there is actually
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Figure 8: Success rate of the matched filter.

a frame within the sample stream. The host could then
perform additional processing in an attempt to decode
the frame successfully.

5.5 Dependent Packets
Dependent packets are packets generated in response to
another packet (e.g., an ACK or RTS packet). MAC pro-
tocols often leave the channel idle during the dependent
packet exchanges such as RTS-CTS and data-ACK ex-
changes. As a result, reducing the turnaround time of
such exchanges can significantly increase overall capac-
ity. In a host-based MAC, three sources contribute to the
delay associated with dependent packet generation: bus
transmission delay, queuing delay, and processing time.
In this section, we explore the use of a matched filter
along with additional techniques for triggering depen-
dent packet responses on the radio hardware. The tech-
nique minimizes processing time by placing the packet
detection as close to the radio as possible and avoids
bus transmission and queuing delays by triggering a pre-
modulated packet stored on the radio hardware.

5.5.1 Decoding Delay at the Host

We begin by quantifying the processing delay associated
with host-based dependent packet generation. Note that
we have already quantified bus delays in Section 2.1. We
measure decode time for various frame sizes at the maxi-
mum supported decoding rate of the USRP: 2Mbps. The
larger frame sizes would be representative of process-
ing time for data/ACK exchanges, and the smaller frame
sizes for RTS/CTS exchanges.

We use two 3.0GHz Pentium 4 machines running
GNU Radio with their USRPs transmitting/receiving us-
ing the GMSK modulation scheme. Using host based
timers, we record the minimum, average, and maxi-
mum time to decode 6 different frame sizes seen in Fig-
ure 9. The average decoding time is close to the mini-
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Figure 9: Decode times for various frame sizes.

mum recorded times for each frame size, however, rather
large delays can be experienced at each frame size, likely
due to the jitter introduced by queuing delays and pro-
cess scheduling. Therefore, if one were to implement
the matched filter at the radio hardware to detect in-
coming dependent packets and generate responses, any-
where from several milliseconds to 70 milliseconds can
be saved solely in host processing.

5.5.2 Generating Fast-Dependent Packets

As an optimization to circumvent the decoding delays
described, we develop a mechanism for fast-dependent
packet generation in the radio hardware. This is not nec-
essarily limited to host-PHY architectures. Although bus
delay is reduced in NIC-PHY architectures, they typi-
cally use slower processors that increases decoding de-
lays. Fast-dependent packet generation has three stages:
(1) fast-packet detection of the initiating packet (e.g.,
RTS), (2) conditionals specific to the protocol that trig-
ger the dependent packet, and (3) transmission of a pre-
modulated dependent packet. We discuss stages 2 and
3 in this section. Stage 1 was detailed in Section 5.4,
although it is important to point out that by running mul-
tiple matched filters in parallel, it is possible to detect and
respond to different initiating packets.

Stage 2: To introduce protocol dependent behavior
after stage 1 detects the initiating packet and its end
of transmission (the incoming signal drops to the noise
floor), protocol developers can introduce a set of condi-
tionals that control when a dependent packet is gener-
ated. In our current implementation this must be written
in a hardware description language (Verilog), which has
primitives similar to those in C/C++ (e.g., if, else, case,
etc.). A simple example is the conditional for generating
a CTS in Verilog. It checks that the receiver and channel
are idle: if(!receiving && RSSI < carrier sense thresh).

A more interesting example is the fast-ACK genera-
tor developed for our 802.11-like protocol (Section 6.3).

We write 3 simple conditional statements around an SNR
value. If any of the conditionals pass during the transmis-
sion, the radio hardware concludes that the host would
not have been able to decode the packet, and a fast-ACK
should not be triggered. The following are the 3 condi-
tionals, with reasons as to why the fast-ACK should not
be generated based on the conditional passing. (1) if(SNR
< lowest thresh): interference throughout the transmis-
sion. (2) if(last SNR val - SNR < drop thresh): interfer-
ence at the tail of the transmission, or fading. (3) if(SNR -
last SNR val> increase thresh): interference at the head
of the transmission, or multipath. The technique is illus-
trated in the overall system in Figure 7, where the cor-
relation threshold for a data packet raises a signal which
streams the samples to the SNR monitor. The final con-
ditional is to detect the carrier as idle; then the fast-ACK
is generated.

Stage 3: To satisfy fast-dependent packet generation,
the dependent packet must be pre-modulated and stored
on the radio hardware, for which we provide a mech-
anism on the control channel. Pre-modulation restricts
the dependent packet to not contain fields dependent on
the initiating packet (e.g., a MAC address). However, it
still permits many dependent packets like those in cur-
rent protocol standards (e.g., ACKs, RTS/CTS). For ex-
ample, despite 802.11’s requirement for a destination ad-
dress in an ACK packet, we can still develop and evaluate
an 802.11-like protocol where senders assume the desti-
nation of the ACK based on data transmissions. We re-
mind the reader that a goal of our work is to enable MAC
implementations and building blocks for novel MAC de-
signs, not to necessarily support every current protocol
to its specification. Future work could be in the de-
velopment of a technique which extracts part of an in-
coming signal (e.g., destination address) and then per-
forms additional processing to use this raw signal in a
pre-modulated dependent packet. This would essentially
enable dynamic fast-dependent packets, without the in-
teraction of the host. We do not explore this in the scope
of our work.

Fast-Dependent Packet Evaluation: To illustrate the
fast-dependent packet generator, we evaluate an imple-
mentation of the fast-ACK generator outlined in the de-
scription of stage 2. First, we use the control channel to
setup a matched filter which detects the framing bits and
the attached node’s address (satisfying stage 1). Then,
we pre-modulate an ACK that uses the broadcast address
as the destination address for all active nodes to parse it
(satisfying stage 3).

To evaluate the SNR monitoring technique, and fur-
ther evaluate the matched filter’s ability to detect packets
in a real world scenario, we use a 2 USRP-node setup
in the ISM band for presence of 802.11 and Bluetooth
devices, incorporating real world interference in our re-
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sults. We detected 6 active 802.11 devices within inter-
ference range, but ensured that none were within 40 feet
of either node. To test in adversarial conditions with mul-
tipath interference, the two USRPs were placed in sepa-
rate rooms with no direct line of sight. The matched fil-
ter and fast-ACK technique are enabled at the receiver,
for which we transmit 10000 frames to at 1Mbps. These
frames are considered the ground truth for the matched
filter, which we are trying to determine the accuracy of in
detecting the frames. Full decoding of the data packets at
the host is used as the ground truth for the fast-ACK gen-
erator. If the full decoder successfully decodes the frame,
and the SNR monitor triggers a fast-ACK, it is consid-
ered success. If the SNR monitor chose to not generate
a fast-ACK in this scenario, it is considered failure. An
additional failure scenario is triggering a fast-ACK when
the host could not decode the frame.

For the 10000 frames transmitted, we find that the
matched filter is able to detect the transmissions with
100% success rate, reinforcing the simulation results
from Section 5.4.2 with real world signal propagation
properties. Of the 10000 frames, 460 transmissions were
not decodable. Using the SNR monitoring technique we
detect 457 of the corrupted frames for a failure rate of
0.6%. Inspection of the 3 misses could not determine
the cause of transmission failure. The error rate of not
generating an ACK, when one should have been, is 4%.

There are implications to incorrectly generating
ACKs, which the MAC can be designed to recover from,
or higher layers such as TCP can be relied on. Our eval-
uation further explores the matched filter’s accuracy and
illustrates the ability to implement fast-dependent pack-
ets. Reducing the error rates seen by our technique is
future work, either by improving the SNR monitoring
technique, or introducing other fast-ACK techniques. An
example for improvement would be detecting multipath
during SNR monitoring, which is a property that can re-
duce decoding probability.

5.6 Access to Physical Layer Information
and Fine-grained Radio Control

The underlying radio hardware in an SDR platform has
many controls that are not configured by the transmitted
sample stream (e.g., transmission frequency and power),
and can make many observations that are not easily de-
rived from the input sample stream (e.g., RSSI). We use
our control channel between the SDR hardware and host
to expose these controls and physical layer information
to the MAC protocol implementation. Many existing net-
work interface use similar designs for setting the trans-
mission channel and obtaining RSSI measurements. One
key difference is that our interface operates on blocks of
samples instead of packets.

Physical Layer Information: Access to physical layer
information at all other layers in the processing chain is
important for supporting common cross-layer optimiza-
tions. This can be seen through recent work where per-bit
confidence levels are used to perform partial packet re-
covery [7]. In our design, information from the SDR can
be sent to the host using either the control channel or per
block meta-data. We use this mechanism to report RSSI
to the host. Note that the host could calculate RSSI us-
ing the raw samples, but an RSSI value which takes into
account the gain or attenuation in the RF stages is only
available at the radio hardware. The control protocol is
easily modified to support reporting additional proper-
ties, however, developers must reprogram the FPGA to
report the desired values.

Radio Control: We implement a set of radio hardware
control messages on the control channel (Section 4.2)
that can be synchronized with packet transmissions us-
ing the timestamp. For example, by placing a control
block with a timestamp T before a data packet on the
bus, which uses a NOW timestamp, the radio will be re-
configured at time T and the data packet will be trans-
mitted immediately after the reconfiguration. This can
be used to implement common techniques such as rapid
frequency hopping. Unfortunately on the USRP, the
daughterboards are tuned directly from the FX2 USB
controller using the I2C bus, which has no connection
to the FPGA. Therefore, we cannot issue daughterboard
commands from the FPGA using the control channel and
hardware clock to implement rapid frequency hopping.
The USRP2 tunes the daughterboards directly from the
FPGA. Therefore, if our design was implemented on the
USRP2, unavailable at the time, rapid frequency hopping
could be achieved.

6 MAC Evaluation

We now provide end-to-end results for a Bluetooth-like
TDMA protocol and 802.11-like CSMA protocol. The
protocols use the split-functionality design described in
Section 5 and we compare their performance with that of
full host-based implementations.

6.1 Bluetooth-like TDMA Protocol
To illustrate the effectiveness of the overall system
design, we implement a tightly timed Bluetooth-like
TDMA protocol. Like Bluetooth, the network (piconet)
consists of a master and a maximum of 7 slaves. The
slaves communicate with the master in a round-robin
fashion within a slot time of 625µs. Unlike Bluetooth,
our protocol fixes its frequency instead of hopping (a
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limitation of the USRP discussed in Section 5.6), varies
slightly in synchronization (bypasses pairing), and the
slot guard time is varied for evaluation.

Each slave in the network synchronizes with the start
of a round by listening for the master’s beacon, and cal-
culates the start of transmission (Section 5.1) as the log-
ical synchronization time T . The beacon frame also
carries the total number of registered slaves (N) and
the guard time (Tg). The slave can then compute the
total round time, which must account for the master:
Tr = N +1∗ (Ts +Tg), where Ts is the slot time (625µs).
The start of round k is computed as: Tk = T +Tr ∗ k. We
remind the reader that this is a logical time kept at each
node, taken from the beacon frame which is a global ref-
erence point. Global hardware clock synchronization is
explored in Section 6.2. Finally, each slave’s slot offset is
computed from its node ID (n), δn = n∗ (Ts +Tg), which
is then used to compute the local start time of slave n’s
slot in round k: Tn(k) = Rk +δn.

6.1.1 TDMA Results

We use two metrics in our evaluation: ability to main-
tain tight synchronization and overall throughput. The
synchronization error at the master is 15ns, computed by
measuring the actual spacing of 1000 beacons using a
monitoring node (discussed in Section 5.1.2). This il-
lustrates the tight timing of the master’s beacon trans-
missions. To measure the synchronization error at the
slaves, we record the calculated timestamps of 1000 bea-
cons at 4 slaves. Each timestamp should be exactly Tr
apart from the next. The absolute error in spacing rep-
resents shifts in the slave’s calculation of the start of the
round. We find the maximum error of the 1000 beacons
at all 4 slaves to be 312 nanoseconds, with an average
of 140ns. This answers the question of our platform’s
ability to obtain tight synchronization at both transmit-
ters (master) and receivers (slaves).

We compare a split-functionality implementation to a
host implementation, which differ in their guard times.
A guard time of 1µs is used for the split-functionality
implementation, which is nearly 3 times the maximum
error. We use our round trip host and radio hardware
delay measurements from Section 2.1, which accounts
for both transmissions and reception timing variability,
to estimate the host guard time needed. A guard time of
9ms would be needed to account for the maximum er-
ror, however, this delay occurs rarely and we therefore
present results using a generous guard time of 3ms (ap-
proximately 3 ∗ sdev) and a more realistic guard time of
6ms based on our recorded delay distribution.

We perform 100KB file transfers, varying the num-
ber of registered slaves and presenting averaged results
across 100 transfers in Figure 10. The split-functionality
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Figure 10: TDMA throughput comparison results.

implementation is able to achieve an average of 4 times
the throughput of the host based implementation. While
we had only been able to answer the question of ob-
taining synchronization, we find that throughout the full
transfers no slave drifts into another slot period using
only the initial beacon for synchronization, illustrating
the ability to maintain tight synchronization. These re-
sults are promising for the development of TDMA pro-
tocols on the platform.

6.2 Additional TDMA Protocols
Another common TDMA implementation is the use of
global clock synchronization. We extend the Bluetooth-
like protocol to use global clock synchronization on the
platform rather than the logical clock. The implementa-
tion design is as follows. The global clock in the network
is the clock of the master, to which all slaves synchronize
via beacon frames. In addition to the information sent
in each beacon frame described in Section 6.1, the mas-
ter includes the timestamp at which the beacon is locally
scheduled for transmission.

For global synchronization, the slave takes its esti-
mated local time of the master’s beacon transmission
and subtracts the incoming global clock timestamp in-
cluded in the beacon to calculate δ , the local clock offset
from the master. The error is within 312ns plus over-
the-air propagation delay. The MAC framework can now
synchronize to the global clock with a command packet
(Section 4.2) which adds δ to the local clock. Another
option is to use a timestamp transformation where the
MAC adds δ to all timestamps. Using this methodol-
ogy, we are able to achieve measurement results similar
to those in Figure 10 using global synchronization.

6.3 802.11-like CSMA Protocol
We implemented two 802.11-like CSMA MAC proto-
cols, one fully on the host CPU and one using our
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pairs Avg (Kbps) min max
plat f orm 1 408 387 415
host 1 215 190 240
plat f orm 2 205 201 210
host 2 112 101 130

Table 2: 802.11-like CSMA protocol per-pair results.

split-functionality optimizations including on-board car-
rier sense (Section 5.2), dependent packet ACK genera-
tion (Section 5.5), and backoff (Section 5.3). The MAC
implements 802.11’s clear channel assessment (CCA),
exponential backoff, and ACK’ing. Our protocol does
not implement SIFS and DIFS periods; this work is in
progress. For space reasons, we focus our description on
how the 802.11-like protocol uses our architecture.

The host-based implementation places all functional-
ity on the host CPU, including carrier sense, ACK gener-
ation, and the backoff. The optimized implementation
uses the matched filter and SNR monitoring for ACK
generation, and performs carrier sense and backoff on
the radio hardware. We configure the USRPs for a target
rate of 0.5Mbps, and run 100 1MB file transfers for each
implementation using a center frequency of 2.485GHz in
an attempt to avoid 802.11 interference. This allows us
to present results that highlight the differences in the im-
plementation without the effect of uncontrolled interfer-
ence. We also vary the number of nodes in the network,
where each pair of nodes performs a transfer.

The results for the two implementations are shown
in Table 2. We see significant performance increases
from the use of the split-functionality implementation.
This nearly doubles the throughput on average, likely
due to the time saved in decoding to generate the ACK,
and the delays associated with carrier sense and backoff.
We note that the matched filter detected every framing
sequence, and the fast-ACK generation technique only
failed 2 times over the total number of runs. To recover
from these failures, we implemented a feedback mecha-
nism on the host that checks the SNR monitoring tech-
nique’s decision and retransmits. This is needed since we
did not use a higher-layer recover mechanism like TCP.

7 Related Work

We review related work in the area of MAC development.
Existing platforms mostly use the extremes of the design
space where either the majority of functionality is fixed
on the network card (Traditional NICs), or perform all
processing at the host (Software-defined Radios).

7.1 Traditional NICs
Several efforts [13, 4, 16] have built new MAC protocols
on top of existing commercial NICs (e.g., 802.11 cards).
Unfortunately, commercial 802.11 cards implement the
bulk of the MAC functionality in proprietary microcode
on the card, limiting what functions can be changed by
researchers. As a result, this approach is not very sat-
isfactory: the range of MAC protocols that can be im-
plemented is limited and performance (e.g. throughput,
capacity) is often poor from the MAC needing to be im-
plemented on the host. For example, past efforts have
mostly implemented TDMA-based schemes.

7.2 Software-defined Radios
Software-defined radios (SDRs) provide a compelling
architecture for flexible wireless protocol development
since most aspects of both the MAC and physical layer
are, by design, implemented in software and thus in prin-
ciple, easy to modify. However, so far, SDR efforts
have focused on implementing the physical layer [19]
while MAC and higher layer protocol development has
received little attention.

Recent work by Schmid et al [14] examines the im-
pact of increased latency in software-defined radios us-
ing GNU Radio and the USRP. The authors address how
the bus latency creates “blind spots” that increase colli-
sion rates when carrier sense is performed at the host, and
how pre-computation of packets is not possible without
fully demodulating (at the host), resulting in larger inter-
frame spacing. Our design provides solutions for both of
these issues in Sections 5.2 and 5.4, respectively. Bus de-
lay measurements were also taken by Valentin et al [18].

On top of these hardware challenges, the original
streaming-based design of GNU Radio and the fixed size
data limitation on its blocks prevents packet process-
ing. Dhar et al [3] take the approach of integrating the
Click modular router [12] with GNU Radio. GNU Ra-
dio blocks are imported into Click to handle the physical
layer, while Click is used to implement the MAC layer.
Additionally, the authors interface with the USRP to pro-
vide a full SDR. Another approach extended the GNU
Radio architecture with m-blocks [2], blocks that allow
variable length data passing and include meta-data that
can be used to represent packets. Our work is comple-
mentary to the above efforts: while they focus on a MAC
development environment on the host, we focus on the
partitioning of MAC layer processing between the host
and radio hardware. Our architecture and results also do
not depend on a particular environment on the host.

A number of groups have developed software radios
with architectures that differ from the current GNU Ra-
dio and USRP design by including a CPU on the ra-
dio hardware (NC-CPU), either as a separate compo-
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nent or as a core on the FPGA. Examples include the
Rice University Wireless Open-Access Research Plat-
form (WARP) [20] and USRP2. These designs are more
expensive, but they offer additional flexibility for par-
titioning the MAC. However, there is still a non-trivial
delay (compared with traditional radios) due to physi-
cal layer processing and queueing. The NC-CPU is also
likely to be slower than the host CPU, increasing the pro-
cessing delay. Finally, in deployed products based on
this architecture, the NC-CPU is likely to be off-limit to
users, similar to the current situation with commercial
wireless cards. As a result, we expect that our architec-
ture will be useful this type of platform as well.

8 Conclusions

In this paper, we presented a set of techniques that sup-
port the implementation of diverse, high-performance
MAC protocols on software radios. The work is mo-
tivated by the observation that a single one-size fits all
MAC protocol cannot meet the demands of increasingly
diverse deployments and application loads. Software ra-
dios offer flexibility, but their architecture, specifically
the delay between the host and the radio frontend, has
traditionally been a problem for MAC protocols. We in-
troduce a split-functionally approach, which addresses
this problem, and show that it enables the implementa-
tion of a set of core MAC functions. An implementation
for the USRP and GNU Radio, along with the imple-
mentation of an 802.11-like and Bluetooth-like protocol,
shows the approach is effective. To our best knowledge,
these protocol implementations are the first high-speed,
bi-directional MAC implementations for the GNU soft-
ware radio platform. For future work, we plan to im-
plement a more diverse set of MAC protocols to further
evaluate our design and implement the architecture on
different SDR platforms to evaluate its generality.

Acknowledgments

We thank the GNU Radio community for the help pro-
vided, especially the support from Eric Blossom and
Matt Ettus, and their collaboration in the design of the
control channel. A sincere thank you to Brian Padalino
for the constant feedback and guidance throughout our
work. This work was supported by grant CNS-0626827
from the National Science Foundation.

References
[1] A. Akella, G. Judd, S. Seshan, and P. Steenkiste. Self-

management in chaotic wireless deployments. In ACM Mobi-

Com, pages 185–199, 2005. ISBN 1-59593-020-5. doi: http:
//doi.acm.org/10.1145/1080829.1080849.

[2] BBN:ArchChanges. BBN Technologies Corpera-
tion, GNU Radio Architectural Changes (m-block).
http://acert.ir.bbn.com/downloads/adroit/
gnuradio-architectural-enhancements-3.pdf.

[3] R. Dhar, G. George, A. Malani, and P. Steenkiste. Supporting
Integrated MAC and PHY Software Development for the USRP
SDR. In IEEE Workshop on Networking Technologies for Soft-
ware Defined Radio (SDR) Networks, Reston, 2006.

[4] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. C. Sicker, and
D. Grunwald. MultiMAC - An Adaptive MAC Framework for
Dynamic Radio Networking . In IEEE DySPAN, 2005.

[5] S. Gollakota and D. Katabi. Zigzag decoding: Combating hidden
terminals in wireless networks. In ACM SIGCOMM, New York,
NY, USA, 2008. ACM Press.

[6] GR. Gnu radio. http://www.gnu.org/software/
gnuradio/.

[7] K. Jamieson and H. Balakrishnan. Ppr: partial packet recovery
for wireless networks. SIGCOMM Comput. Commun. Rev., 37
(4):409–420, 2007. ISSN 0146-4833. doi: http://doi.acm.org/10.
1145/1282427.1282426.

[8] S. Katti, D. Katabi, H. Balakrishnan, and M. Medard. Symbol-
level network coding for wireless mesh networks. In ACM SIG-
COMM, New York, NY, USA, 2008. ACM Press.

[9] kuagile. Kansas university agile radio. https://
agileradio.ittc.ku.edu/.

[10] M.-H. Lu, P. Steenkiste, and T. Chen. Flexmac: a wireless
protocol development and evaluation platform based on com-
modity hardware. In WiNTECH ’08: Proceedings of the third
ACM international workshop on Wireless network testbeds, ex-
perimental evaluation and characterization, pages 105–106, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-187-3. doi:
http://doi.acm.org/10.1145/1410077.1410102.

[11] A. Mishra, V. Shrivastava, D. Agrawal, S. Banerjee, and S. Gan-
guly. Distributed channel management in uncoordinated wireless
environments. In ACM MobiCom, pages 170–181, 2006. ISBN 1-
59593-286-0. doi: http://doi.acm.org/10.1145/1161089.1161109.

[12] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click
modular router. volume 33, pages 217–231, New York, NY, USA,
1999. ACM. doi: http://doi.acm.org/10.1145/319344.319166.

[13] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald. Soft-
MAC - Flexible Wireless Research Platform. In Fourth Workshop
on Hot Topics in Networks (HotNets), 2005.

[14] T. Schmid, O. Sekkat, and M. B. Srivastava. An Experimental
Study of Network Performance Impact of Increased Latency in
Software Defined Radios. In WiNTECH’07, 2007.

[15] A. Sharma and E. M. Belding. Freemac: framework for multi-
channel mac development on 802.11 hardware. In PRESTO,
pages 69–74, 2008.

[16] A. Sharma, M. Tiwari, and H. Zheng. MadMAC: Building a Re-
configurable Radio Testbed Using Commodity 802.11 Hardware.
In IEEE Workshop on Networking Technologies for Software De-
fined Radio Networks, Reston, 2006.

[17] USRP. The universal software radio peripheral. http://www.
ettus.com/.

[18] S. Valentin, H. von Malm, and H. Karl. Evaluating the gnu soft-
ware radio platform for wireless testbeds. In Technical Report
TR-RT-06-273, 2006.

[19] Vanu. Vanu software radio systems. http://www.vanu.
com.

[20] WARP. Rice university wireless open-access research platform
(warp). http://warp.rice.edu.


