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Abstract

We show how to build cheap and large CAMs, or
CLAMs, using a combination of DRAM and flash mem-
ory. These are targeted at emerging data-intensive net-
worked systems that require massive hash tables running
into a hundred GB or more, with items being inserted,
updated and looked up at a rapid rate. For such systems,
using DRAM to maintain hash tables is quite expen-
sive, while on-disk approaches are too slow. In contrast,
CLAMs cost nearly the same as using existing on-disk
approaches but offer orders of magnitude better perfor-
mance. Our design leverages an efficient flash-oriented
data-structure called BufferHash that significantly lowers
the amortized cost of random hash insertions and updates
on flash. BufferHash also supports flexible CLAM evic-
tion policies. We prototype CLAMs using SSDs from
two different vendors. We find that they can offer aver-
age insert and lookup latencies of 0.006ms and 0.06ms
(for a 40% lookup success rate), respectively. We show
that using our CLAM prototype significantly improves
the speed and effectiveness of WAN optimizers.

1 Introduction
In recent years, a number of data-intensive networked
systems have emerged where there is a need to maintain
hash tables as large as tens to a few hundred gigabytes in
size. Consider WAN optimizers [1, 2, 7, 8], for example,
that maintain “data fingerprints” to aid in identifying and
eliminating duplicate content. The fingerprints are 32-
64b hashes computed over∼4-8KB chunks of content.
The net size of content is∼10TB stored on disk [9]. Thus
the hash table storing the mapping from fingerprints to
on-disk addresses of data chunks could be≥32GB. Just
storing the fingerprints requires∼16GB.

The hash tables in these content-based systems are
also inserted into, looked up and updated frequently. For
instance, a WAN optimizer connected to a 0.5Gbps link
may require roughly 10,000 fingerprint lookups, inser-
tions and updates each per second. Other examples of
systems that employ similar large hash tables include
data deduplication systems [4, 45], online backup ser-
vices [5], and directory services in data-oriented network
architectures [32, 37, 42]. These systems are becoming
increasingly popular and being widely adopted [3].

This paper arises from the quest to design effective
hash tables in these systems. The key requirement is that
the mechanisms used becost-effectivefor the function-

ality they support. That is, the mechanisms should of-
fer a high number of hash table operations (> 10K) per
second while keeping the overall cost low. We refer to
mechanisms that satisfy these requirements asCLAMs,
for cheap and large CAMs.

There are two possible approaches today for support-
ing the aforementioned systems. The first is to maintain
hash tables in DRAM which can offer very low latencies
for hash table operations. However, provisioning large
amounts of DRAM is expensive. For instance, a 128GB
RamSan DRAM-SSD offers 300K random IOs per sec-
ond, but, it has a very high cost of ownership, includ-
ing the device cost of $120K and an energy footprint of
650W [20]. In other words, it can support fewer than2.5
hash table operations per second per dollar.

A much cheaper alternative is to store the hash ta-
bles on magnetic disks using database indexes, such as
Berkeley-DB (or BDB) [6]. However, poor throughput
of random inserts, lookups, and updates in BDB can
severely undermine the effectiveness of the aforemen-
tioned systems and force them to run at low speeds. For
example, a BDB-based WAN optimizer is effective for
link speeds of only up to 10Mbps (§8). Note that exist-
ing fast stream databases [22, 11, 14] and wire-speed data
collection systems [24, 29] are not suitable as CLAMs as
they do not include any archiving and indexing schemes.

In this paper we design and evaluate an approach that
is 1-2 orders of magnitude betterin terms of hash ope-
rations/sec/$ compared toboth disk-based and DRAM-
based approaches. Our approach uses a commodity
two-level storage/memory hierarchy consisting of some
DRAM and a much larger amount offlash storage(could
be flash memory chips or solid state disks (SSDs)). Our
design consumes most of the I/Os in the DRAM, giv-
ing low latency and high throughput I/Os compared to a
flash-only design. On the other hand, using flash allows
us to support a large hash table in a cheaper way than
DRAM-only solutions. We choose flash over magnetic
disks for its many superior properties, such as, higher I/O
per second per dollar and greater reliability, as well as far
superior power efficiency compared to both DRAM and
magnetic disks. Newer generation of SSDs are rapidly
getting bigger and cheaper. Configuring our design with
4GB of memory and 80GB of flash, for instance, costs as
little as $400 using current hardware.

Despite flash’s attractive I/O properties, building a
CLAM using flash is challenging. In particular, since
the available DRAM is limited, a large part of the hash
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table must be stored in flash (unlike recent works, e.g.,
FAWN [13], where the hash index is fully in DRAM).
Thus, hash insertion would require random I/Os, which
are expensive on flash. Moreover, the granularity of a
flash I/O is orders of magnitude bigger than that of an
individual hash table operation in the systems we target.
Thus, unless designed carefully, the CLAM could per-
form poorer than a traditional disk-based approach.

To address these challenges, we introduce a novel data
structure, called BufferHash. BufferHash represents a
careful synthesis of prior ideas along with a few novel
algorithms. A key idea behind BufferHash is that instead
of performing individual random insertions directly on
flash, DRAM can be used to buffer multiple insertions
and writes to flash can happen in abatch. This shares the
cost of a flash I/O operation across multiple hash table
operations, resulting in a better amortized cost per op-
eration. Like a log-structured file system [39], batches
are written to flash sequentially, the most efficient write
pattern for flash. The idea of batching operations to
amortize I/O costs has been used before in many sys-
tems [15, 28]. However using it for hash tables is novel,
and it poses several challenges for flash storage.
Fast lookup: With batched writes, a given(key, value)
pair may reside in any prior batch, depending on the
time it was written out to flash. A naive lookup al-
gorithm would examine all batches for the key, which
would incur high and potentially unacceptable flash I/O
costs. To reduce the overhead of examining on-flash
batches, BufferHash (i) partitions the key space to limit
the lookup to one partition, instead of the entire flash
(similar to how FAWN spreads lookups across multiple
“wimpy nodes”) [13]), and (ii) uses in-memory Bloom
filters (as Hyperion [23] does) to efficiently determine a
small set of batches that may contain the key.
Limited flash: In many of the streaming applications
mentioned earlier, insertion of new(key, value) entries
into the CLAM requires creating space by evicting old
keys. BufferHash uses a novel age-based internal or-
ganization that naturally supports bulk evictions of old
entries in an I/O-efficient manner. BufferHash also sup-
ports other flexible eviction policies (e.g. priority-based
removal) to match different application needs, albeit at
additional performance cost. Existing proposals for in-
dexing archived streaming data ignore eviction entirely.
Updates:Since flash does not support efficient update or
deletion, modifying existing(key, value) mappingsin
situ is expensive. To support good update latencies, we
adopt alazy updateapproach whereall value mappings,
including deleted or updated ones, are temporarily left
on flash and later deleted in batch during eviction. Such
lazy updates have been previously used in other contexts,
such as buffer-trees [15] and lazy garbage collection in
log-structured file systems [39].

Performance tuning: The unique I/O properties of flash
demand careful choice of various parameters in our de-
sign of CLAMs, such as the amount of DRAM to use,
and the sizes of batches and Bloom filters. Suboptimal
choice of these parameters may result in poor overall
CLAM performance. We model the impact of these pa-
rameters on latencies of different hash table operations
and show how to select the optimal settings.

We build CLAM prototypes using SSDs from two ven-
dors. Using extensive analysis based on a variety of
workloads, we study the latencies supported in each case
and compare the CLAMs against popular approaches
such as using Berkeley-DB (BDB) on disk. In particu-
lar, we find that our Intel SSD-based CLAM offers an
averageinsertlatency of 0.006ms compared to 7ms from
using BDB on disk. For a workload with 40% hit rate,
the averagelookup latency is 0.06ms for this CLAM,
but 7ms for BDB. Thus, our CLAM design can yield
42 lookups/sec/$ and 420 insertions/sec/$ which is 1-2
orders of magnitude better than RamSan DRAM-SSD
(2.5 hash operations/sec/$). The superior energy effi-
ciency of flash and rapidly declining prices compared to
DRAM [21] mean that the gap between our CLAM de-
sign and DRAM-based solutions is greater than indicated
in our evaluation and likely to widen further. Finally, us-
ing real traces, we study the benefits of employing the
CLAM prototypes in WAN optimizers. Using a CLAM,
the speed of a WAN optimizer can be improved≥ 10X
compared to using BDB (a common choice today [2]).

Our CLAM design marks a key step in building
fast and effective indexing support for high-performance
content-based networked systems. We do not claim
that our design is final. We speculate that there may
be smarter data structures and algorithms, that perhaps
leverage newer memory technologies (e.g. Phase Change
Memory), offering much higher hash operations/sec/$.

2 Related Work
In this section, we describe prior work on designing data
structures for flash and recent proposals for supporting
data-intensive streaming networked systems.

Data structures for flash: Recent work has shown
how to design efficient data structures on flash mem-
ory. Examples include MicroHash [44], a hash table and
FlashDB [36], a B-Tree index. Unlike BufferHash, these
data structures are designed for memory-constrained em-
bedded devices where the design goal is to optimize en-
ergy usage and minimize memory footprint—latency is
typically not a design goal. For example, a lookup oper-
ation in MicroHash may need to follow multiple pointers
to locate the desired key in a chain of flash blocks and can
be very slow. Other recent works on designing efficient
codes for flash memory to increase its effective capac-
ity [30, 27] are orthogonal to our work, and BufferHash

2



can be implemented on top of these codes.
A flash-based key-value store:Closely related to our

design of CLAMs is the recent FAWN proposal [13].
FAWN-KV is a clustered key-value storage built on a
large number of tiny nodes that each use embedded
processors and small amounts of flash memory. There
are crucial differences between our CLAM design and
FAWN. First, FAWN assumes that each wimpy node can
keep its hash index in DRAM. In contrast, our design tar-
gets situations where the actual hash index is bigger than
available DRAM and hence part of the index needs to be
stored in flash. In this sense, our design is complemen-
tary to FAWN; if the hash index in each wimpy node gets
bigger than its DRAM, it can use BufferHash to organize
the index. Second, being a cluster-based solution, FAWN
optimizes for throughput, not for latency. As the evalu-
ation of FAWN shows, some of the lookups can be very
slow (> 500ms). In contrast, our design provides better
worst-case latency (< 1ms), which is crucial for systems
such as WAN optimizers. Finally, FAWN-KV does not
focus on efficient eviction of indexed data.

Along similar lines is HashCache [16], a cache that
can run on cheap commodity laptops. It uses an in-
memory index for objects stored on disk. Our approach
is complementary to HashCache, just as it is with FAWN.

DRAM-only solutions: DRAM-SSDs provide ex-
tremely fast I/Os, at the cost of high device cost and
energy footprint. For example, a 128GB RamSan de-
vice can support 300K IOPS, but costs120K$ and con-
sumes 650W [20]. A cheaper alternative from Vio-
lin memory supports 200K IOPS, but still costs around
50K$ [40]. Our CLAM prototypes significantly outper-
form traditional hash tables designed in these DRAM-
SSDs in terms of operations/s/$.

Large scale streaming systems:Hyperion [23] en-
ables archival, indexing, and on-line retrieval of high-
volume data streams. However, Hyperion does not suit
the applications we target as it does not offer CAM-like
functionality. For example, to lookup a key, Hyperion
may need to examine prohibitively high volume of data
resulting in a high latency. Second, it does not consider
using flash storage, and hence does not aim to optimize
design parameters for flash. Finally, it does not support
efficient update or eviction of indexed data.

Existing data stream systems [11, 14, 22] do not sup-
port queries over archived data. StreamBase [41] sup-
ports archiving data and processing queries over past
data; but the data is archived in conventional hash or
B-Tree-indexed tables, both of which are slow and are
suitable only for offline queries. Endace DAG [24]
and CoMo [29] are designed for wire-speed data collec-
tion and archiving; but they provide no query interface.
Existing DBMSs can support CAM-like functionalities.
However, they are designed neither for high update and

lookup rates (see [14]) nor for flash storage (see [36]).

3 Motivating Applications
In this section, we describe three networked systems that
could benefit from effective mechanisms for building and
maintaining large hash tables that can be written to and
looked up at a very fast rate.

WAN optimization. WAN optimizers [1, 2, 8, 7] are
used by enterprises and data centers to improve network
utilization by looking for and suppressing redundant in-
formation in network transfers. A WAN optimizer com-
putes fingerprints of each arriving data object and looks
them up in a hash table of fingerprints found in prior con-
tent. The fingerprints are 32-64b hashes computed over
∼4-8KB data chunks. Upon finding a match, the cor-
responding duplicate content is removed, and the “com-
pressed object” is transmitted to the destination, where
it gets reconstructed. Fingerprints for the original object
are inserted into the index to aid in future matches. The
content is typically≥10TB in net size [10]. Thus the
fingerprint hash tables could be≥32GB.

Consider a WAN optimizer connected to a heavily-
loaded 500Mbps link. Roughly 10,000 content finger-
prints are created per second. Depending on the imple-
mentation, three scenarios may arise during hash inser-
tion and lookup: (1) lookups for upcoming objects are
held-up until prior inserts complete, or (2) upcoming ob-
jects are transmitted without fingerprinting and lookup,
or (3) insertions are aborted mid-way and upcoming ob-
jects looked up against an “incomplete index.” Fast sup-
port for insertions and lookups can improve all three situ-
ations and help identify more content redundancy. In§8,
we show that a BDB-based WAN optimizer can function
effectively only at low speeds (10Mbps) due to BDB’s
poor support for random insertions and lookups, even
if BDB is maintained on an Intel SSD. A CLAM-based
WAN optimizer using a low-end transcend SSD that is
an order of magnitude slower than an Intel SSD is highly
effective even at 200-300Mbps.

Data deduplication and backup. Data de-
duplication [4] is the process of suppressing duplicate
content from enterprise data leaving only one copy of
the data to be stored for archival. Prior work suggests
that data sets in de-dup systems could be roughly 8-10TB
and employ 20GB indexes [4, 45].

A time-consuming activity in deduplication is merg-
ing data sets and the corresponding indexes. To merge
a smaller index into a larger one, fingerprints from the
latter dataset need to be looked up, and the larger in-
dex updated with any new information. We estimate that
merging fingerprints into a larger index using Berkeley-
DB could take as long as 2hrs. In contrast, our CLAM
prototypes can help the merge finish in under 2mins. We
note that a similar set of challenges arise in online backup
services [5] which allow users to constantly, and in an
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online fashion, update a central repository with “diffs”
of the files they are editing, and to retrieve changes from
any remote location on demand.

Central directory for a data-oriented network. Re-
cent proposals argue for a new resolution infrastruc-
ture to dereference content names directly to host loca-
tions [32, 37, 42]. The names are hashes computed over
chunks of content inside data objects. As new sources of
data arise or as old sources leave the network, the reso-
lution infrastructure should be updated accordingly. To
support scalability, the architectures have conventionally
relied on a distributed resolution mechanism based on
DHTs [32, 37, 42]. However, in some deployment sce-
narios (e.g. a large corporation), the resolution may have
to be provided by a trusted central entity. To ensure high
availability and throughput for a large user-base, the cen-
tralized deployment should support fast inserts and effi-
cient lookups of the mappings. The CLAMs we design
can support such an architecture effectively.

4 Flash Storage and Hash Tables
Flash provides a non-volatile memory store with several
significant benefits over typical magnetic hard disks such
as fast random reads (≪ 1 ms), power-efficient I/Os (<1
Watt), better shock resistance, etc. [33, 36]. However,
because of the unique characteristics of flash storage, ap-
plications designed for flash should follow a few well-
known design principles:(P1)Applications should avoid
random writes, in-place updates, and sub-block deletions
as they are significantly expensive on flash. For example,
updating a single 2KB page in-place requires first eras-
ing an entire erase block (128KB-256KB) of pages, and
then writing the modified block in its entirety. As shown
in [35], such operations are over two orders of magni-
tude slower than sequential writes, out-of-place updates,
and block deletions respectively, on both flash chips and
SSDs.(P2) Since reads and writes happen at the granu-
larity of a flash page (or an SSD sector), an I/O of size
smaller than a flash page (2KB) costs at least as much
as a full-page I/O. Thus, applications should avoid small
I/Os if possible. (P3) The high fixed initialization cost
of an I/O can be amortized with a large I/O size [12].
Thus, applications should batch I/Os whenever possible.
In designing flash-based CLAMs using BufferHash, we
follow these design principles.

A conventional hash table on flash.Before going into
the details of our BufferHash design, it might be useful
to see why a conventional hash table on flash is likely to
suffer from poor performance. Successive keys inserted
into a hash table are likely to hash to random locations in
the hash table; therefore, values written to those hashed
locations will result in random writes, violating the de-
sign principleP1above.

Updates and deletions are immediately applied to a

conventional hash table, resulting in in-place updates and
sub-block deletions (since each hashed value is typically
much smaller than a flash block), and violation ofP1.

Since each hashed value is much smaller than a flash
page (or an SSD sector), inserting a single key in an in-
flash hash table violates principlesP2 andP3. Violation
of these principles results in a poor performance of a con-
ventional hash table on flash, as we demonstrate in§7.

One can try to improve the performance by buffering a
part of the hash table in DRAM and keeping the remain-
ing in flash. However, since hash operations exhibit neg-
ligible locality, such a flat partitioning has very little per-
formance improvement. Recent research has confirmed
that a memory buffer is practically useless for external
hashing for a read-write mixed workload [43].

5 The BufferHash Data Structure
BufferHash is a flash-friendly data structure that supports
hash table-like operations on(key, value) pairs1. The
key idea underlying BufferHash is that instead of per-
forming individual insertions/deletions one at a time to
the hash table on flash, we can perform multiple opera-
tions all at once. This way, the cost of a flash I/O oper-
ation can be shared among multiple insertions, resulting
in a better amortized cost for each operation (similar to
buffer trees [15] and group commits in DBMS and file
systems [28]). For simplicity, we consider only insertion
and lookup operations for now; we will discuss updates
and deletions later.

To allow multiple insertions to be performed all at
once, BufferHash operates in a lazy batched manner: it
accumulates insertions in small in-memory hash tables
(called buffers), without actually performing the inser-
tions on flash. When a buffer fills up, all inserted items
are pushed into flash in a batch. For I/O efficiency, items
pushed from a buffer to flash are sequentially written as
a new hash table, instead of performing expensive up-
date to existing in-flash hash tables. Thus, at any point
of time, the flash contains a large number of small hash
tables. During lookup, a set of Bloom filters is used
to determine which in-flash hash tables may contain the
desired key, and only those tables are retrieved from
flash. At a high level, the efficiency of this organiza-
tion comes from batch I/O and sequential writes during
insertions. Successful lookup operations may still need
random page reads, however, random page reads are al-
most as efficient as sequential page reads in flash.

5.1 A Super Table
BufferHash consists of multiplesuper tables. Each super
table has three main components: a buffer, an incarnation
table, and a set of Bloom filters. These components are

1For clarity purposes we note that BufferHash is a data-structure
while a CLAM is BufferHash applied atop DRAM and flash.
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Figure 1: A Super Table

organized in two levels of hierarchy, as shown in Fig-
ure 1. Components in the higher level are maintained in
DRAM, while those in the lower level are maintained in
flash.

Buffer. This is an in-memory hash table where all newly
inserted hash values are stored. The hash table can be
built using existing fast algorithms such as multiple-
choice hashing [18, 31]. A buffer can hold a fixed max-
imum number of items, determined by its size and the
desired upper bound of hash collisions. When the num-
ber of items in the buffer reaches its capacity, the en-
tire buffer is flushed to flash, after which the buffer is
re-initialized for inserting new keys. The buffers flushed
to flash are calledincarnations.

Incarnation table. This is an in-flash table that contains
old and flushed incarnations of the in-memory buffer.
The table containsk incarnations, wherek denotes the
ratio of the size of the incarnation table and the buffer.
The table is organized as a circular list, where a new in-
carnation is sequentially written at the list-head. To make
space for a new incarnation, the oldest incarnation, at the
tail of the circular list, is evicted from the table.

Depending on application’s eviction policy, some
items in an evicted incarnation may need to be retained
and are re-inserted into the buffer (details in§5.1.2).

Bloom filters. Since the incarnation table contains a se-
quence of incarnations, the value for a given hash key
may reside in any of the incarnations depending on its in-
sertion time. A naive lookup algorithm for an item would
examine all incarnations, which would require reading
all incarnations from flash. To avoid this excessive I/O
cost, a super table maintains a set of in-memory Bloom
filters [19], one per incarnation. The Bloom filter for
an incarnation is a compact signature built on the hash
keys in that incarnation. To search for a particular hash
key, we first test the Bloom filters for all incarnations; if
any Bloom filter matches, then the corresponding incar-
nation is retrieved from flash and looked up for the de-
sired key. Bloom filter-based lookups may result in false
positive; thus, a match could be indicated even though
there is none, resulting in unnecessary flash I/O. As the
filter size increases, the false positive rate drops, result-
ing in lower I/O overhead. However, since the available
DRAM is limited, filters cannot be too large in size. We

examine the tradeoff in§6.4.
The Bloom filters are maintained as follows: When a

buffer is initialized after a flush, a Bloom filter is created
for it. When items are inserted into the buffer, the Bloom
filter is updated with the corresponding key. When the
buffer is flushed as an incarnation, the Bloom filter is
saved in memory as the Bloom filter for that incarnation.
Finally, when an incarnation is evicted, it’s Bloom filter
is discarded from memory.

5.1.1 Super Table Operations
A super table supports all standard hash table operations.

Insert. To insert a(key, value) pair, the value is in-
serted in the hash table in the buffer. If the buffer does not
have space to accommodate the key, the buffer is flushed
and written as a new incarnation in the incarnation table.
The incarnation table may need to evict an old incarna-
tion to make space.

Lookup. A key is first looked up in the buffer. If
found, the corresponding value is returned. Otherwise,
in-flash incarnations are examined in the order of their
age until the key is found. To examine an incarnation,
first its Bloom filter is checked to see if the incarnation
might include the key. If the Bloom filter matches, the
incarnation is read from flash, and checked if it really
contains the key. Note that since each incarnation is in
fact a hash table, to lookup a key in an incarnation, only
the relevant part of the incarnation (e.g., a flash page) can
be read directly.

Update/Delete. As mentioned earlier, flash does not
support small updates/deletions efficiently; hence, we
support them in a lazy manner. Suppose a super table
contains an item(k, v), and later, the item needs to be
updated with the item(k, v′). In a traditional hash table,
the item(k, v) is immediately replaced with(k, v′). If
(k, v) is still in the buffer when(k, v′) is inserted, we
do the same. However, if(k, v) has already been writ-
ten to flash, replacing(k, v) will be expensive. Hence,
we simply insert(k, v′) without doing anything to(k, v).
Since the incarnations are examined in order of their age
during lookup, if the same key is inserted with multiple
updated values, the latest value (in this example,v′) is
returned by a lookup. Similarly, for deleting a keyk, a
super table does not delete the corresponding item unless
it is still in the buffer; rather the deleted key is kept in a
separate list (or, a small in-memory hash table), which is
consulted before lookup—if the key is in the delete list,
it is assumed to be deleted even though it is present in
some incarnation. Lazy update wastes space on flash, as
outdated items are left on flash; the space is reclaimed
during incarnation eviction.

5.1.2 Incarnation Eviction
In a streaming application, BufferHash may have to evict
old in-flash items to make space for new items. The de-
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cision of what to evict depends on application policy.
For I/O efficiency, BufferHash evicts items in granu-

larity of an incarnation. Since each incarnation is an in-
dependent hash table, discarding a part of it may require
expensive reorganization of the table and expensive I/O
to write it back to flash. To this end, BufferHash provides
two basic eviction primitives. Thefull discardprimitive
entirely evicts the oldest incarnation. Thepartial discard
primitive also evicts the oldest incarnation, but it scans
through all the items in the incarnation before eviction,
selects some items to be retained (based on a specified
policy), and re-inserts them into the buffer. Given these
two basic primitives, applications can configure Buffer-
Hash to implement different eviction policies as follows.

FIFO. The full discard primitive naturally implements
the FIFO policy. Since items with similar ages (i.e., items
that are flushed together from the buffer) are clustered in
the same incarnation, discarding the oldest incarnation
evicts the oldest items. Commercial WAN optimizers
work in this fashion [8, 2].

LRU. An LRU policy can be implemented via the full
discard mechanism with one additional mechanism: on
every use of an item not present in the buffer, the item
is re-inserted. Intuitively, a recently used item will be
present in a recent incarnation, and hence it will still
be present after discarding the oldest incarnation. This
implementation incurs additional space overhead as the
same item can be present in multiple incarnations.

Update-based eviction. With a workload with many
deletes and updates, BufferHash uses the partial discard
mechanism to discard items that have been deleted or up-
dated. The former can be determined by examining the
in-memory delete list, while the latter can be determined
by checking the in-memory Bloom filters.

Priority-based eviction. In a priority-based policy, an
item is discarded if its priority is less than a threshold
(the threshold can change over time, as in [35]). It can
be implemented with the partial discard primitive, where
an item in the discarded incarnation is re-inserted if its
current priority is above a threshold.

The FIFO policy is the most efficient, and the default
policy in BufferHash. The other policies incur additional
space and latency overhead due to more frequent buffer
flushes and re-insertion.

Note that BufferHash may not be able tostrictly fol-
low an eviction policy other than FIFO if enough slow
storage is not available. Suppose an item is calledlive
if it is supposed to be present in the hash table under a
given eviction policy (e.g., for the update-based eviction
policy, the item has not been updated or deleted), and
deadotherwise. BufferHash is supposed to evictonly the
dead items, and it does so if the flash has enough space
to hold all live and unevicted dead items. On the other

hand, if available flash space is limited and there are not
enough dead items to evict in order to make room for
newer items, BufferHash is forced to evictlive items in a
FIFO order. 2 We note that this sort of behavior is un-
avoidable inanystorage scheme dealing with too many
items to be fit in a limited amount of storage.

5.1.3 Bit-slicing with a Sliding Window

To support efficient Bloom filter lookup, we organize the
Bloom filters for all incarnations within a super table in
bit-sliced fashion [26]. Suppose a super table contains
k incarnations, and the Bloom filter for each incarnation
hasm bits. We store allk Bloom filters asm k-bit slices,
where thei’th slice is constructed by concatenating bit
i from each of thek Bloom filters. Then, if a Bloom
filter usesh hash functions, we apply them on the key
x to geth bit positions in a Bloom filter, retrieveh bit
slices at those positions, compute bit-wise AND of those
slices. Then, the positions of 1-bits in this aggregated
slice, which can be looked up from a pre-computed table,
represent the incarnations that may contain the keyx.

As new incarnations are added and old ones evicted,
bit slices need to be updated accordingly. A naive ap-
proach would reset the left-most bits of allm bit-slices
on every eviction, further increasing the cost of an evic-
tion operation. To avoid this, we appendw extra bits with
every bit-slice, wherew is the size of a word that can
be reset to 0 with one memory operation. Within each
(k+w)-bit-slice, a window ofk bits represent the Bloom
filter bits of k current incarnations, and only these bits
are used during lookup. After an incarnation is evicted,
the window is shifted one bit right. Since the bit falling
off the window is no longer used for lookup, it can be
left unchanged. When the window has shiftedw bits, en-
tire w-bit words are reset to zero at once, resulting in a
small amortized cost. The window wraps around after it
reaches the end of a bit-slice. For lack of space we omit
the details, which can be found in [12].

5.2 Partitioned Super Tables
Maintaining a single super table is not scalable because
the buffer and individual incarnations will become very
large with a large available DRAM. As the entire buffer
is flushed at once, the flushing operation can take a long
time. Since flash I/Os are blocking operations, lookup
operations that go to flash during this long flushing pe-
riod will block (insertions can still happen as they go to
in-memory buffer). Moreover, an entire incarnation from
the incarnation table is evicted at a time, increasing the
eviction cost with partial discard.

2With the update-based eviction policy, a live item can also be
evicted if the in-memory Bloom filter incorrectly concludesthat the
item has been updated. However, the probability is small (equals to the
false positive rate of the Bloom filters).
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Figure 2: A BufferHash with multiple super tables

BufferHash avoids this problem by partitioning the
hash key space and maintaining one super table for each
partition (Figure 2): Suppose each hash key hask =
k1 + k2 bits; then, BufferHash maintains2k1 super ta-
bles. The firstk1 bits of a key represents the index of the
super table containing the key, while the lastk2 bits are
used as the key within the particular super table.

Partitioning enables using small buffers in super ta-
bles, thus avoiding the problems caused by a large buffer.
However, we show in§6.4 that too many partitions
(i.e., very small buffers) can also adversely affect perfor-
mance. We show how to choose the number of partitions
for good performance. For example, we show for flash
chips that the number of partitions should be such that
the size of a buffer matches the flash block size.

BufferHash with multiple super tables can be imple-
mented on a flash chip by statically partitioning it and
allocating each partition to a super table. A super table
writes its incarnations in its partition in a circular way—
after the last block of the partition is written, the first
block of the partition is erased and the corresponding in-
carnations are evicted. However, this approach may not
be optimal for an SSD, where a Flash Translation Layer
(FTL) hides the underlying flash chips. Even though
writes within a single partition are sequential, writes
from different super tables to different partitions may be
interleaved, resulting in a performance worse than a sin-
gle sequential write (see [17] for empirical results). To
deal with that, BufferHash uses the entire SSD as a single
circular list and writes incarnations from different super
tables sequentially, in the order they are flushed to the
flash. (This is in contrast to the log rotation approach
of Hyperion [23] that provides FIFO semantics for each
partition, instead of the entire key space.) Note that par-
titioning also naturally supports using multiple SSDs in
parallel, by distributing partitions to different SSDs. This
scheme, however, spreads the incarnations of a super ta-
ble all over the SSD. To locate incarnations for a given
super table, we maintain their flash addresses along with
their Bloom filters and use the addresses during lookup.

6 Analysis of Costs
In this section, we first analyze the I/O costs of insertion
and lookup operations in CLAMs built using BufferHash
for flash-based storage, and then use the analytical results
to determine optimal values of two important parameters
of BufferHash. We use the notations in Table 1.

Symbol Meaning
N Total number of items inserted
M Total memory size
B Total size of buffers
b Total size of Bloom filters
k Number of incarnations in a super table
F Total flash size
s Average size taken by a hash entry
h Number of hash functions
B′ Size of a single buffer (=B/n)
Sp Size of a flash page/sector
Sb Size of a flash block

Table 1: Notations used in cost analysis.

6.1 Insertion Cost
We now analyze the amortized and the worst case cost
of an insertion operation. We assume that BufferHash is
maintained on a flash chip; later we show how the re-
sults can be trivially extended to SSDs. Based on em-
pirical results [12], we use linear cost functions for flash
I/Os—reading, writing, and erasingx bits, at appropriate
granularities, costar + brx, aw + bwx, andae + bex,
respectively.

Consider a workload of insertingN keys. Most inser-
tions are consumed in buffers, and hence do not need any
I/O. However, expensive flash I/O occurs when a buffer
fills and is flushed to flash. Each flush operation involves
three different types of I/O costs. First, each flush re-
quires writingni = ⌈B′/Sp⌉ pages, whereB′ is the size
of a buffer in a super table, andSp is the size of a flash
page (or an SSD sector). This results in a write cost of

C1 = aw + bwniSp

Second, each flush operation requires evicting an old
incarnation from the incarnation table. For simplicity,
we consider full discard policy for an evicted incarna-
tion. Note that each incarnation occupiesni = ⌈B′/Sp⌉
flash pages, and each flash block hasnb = Sb/Sp pages,
whereSb is the size of a flash block. Ifni ≥ nb, every
flush will require erasing flash blocks; otherwise, only
ni/nb fraction of the flushes will require erasing blocks.
Finally, during each erase, we need to erase⌈ni/nb⌉
flash blocks. Putting all together, we get the erase cost
of a single flush operation as

C2 = Min(1, ni/nb)(ae + be⌈ni/nb⌉Sb)

Finally, a flash block to be erased may contain valid
pages (from other incarnations), which must be backed
up before erase and copied back after erase. This can
happen because flash can be erased only at the granu-
larity of a block and an incarnation to be evicted may
occupy only part of a block. In this case,p′ = (nb − ni)
mod nb pages must be read and written during each
flush. This results in a copying cost of

C3 = ar + p′brSp + aw + p′bwSp

Amortized cost. Consider insertion ofN keys. If
each hash entry occupies a space ofs, each buffer can
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hold B′/s entries, and hence buffers will be flushed to
flash a total ofnf = Ns/B′ times. Thus, the amortized
insertion cost is

Camortized = nf (C1+C2+C3)/N = (C1+C2+C3)s/B′

Note that the cost is independent ofN and inversely
proportional to the buffer sizeB′.

Worst case cost.An insert operation experiences the
worst-case performance when the buffer for the key is
full, and hence must be flushed. Thus, the worst case
cost of an insert operation is

Cworst = C1 + C2 + C3

SSD.The above analysis extends to SSDs. Since the
costsC2 andC3 in an SSD are handled by its FTL, the
overheads of erasing blocks and copying valid pages are
reflected in its write cost parametersaw andbw. Hence,
for an SSD, we can ignore the cost ofC2 andC3. Thus,
we get:Camortized = C1s/B′ andCworst = C1.

6.2 Lookup Cost
A lookup operation in a super table involves first check-
ing the buffer for the key, checking the Bloom filters to
determine which incarnations may contain the key, and
reading a flash page for each of those incarnations to ac-
tually lookup the key. Since a Bloom filter may produce
false positives, some of these incarnations may not con-
tain the key, and hence some of the I/Os may redundant.

Suppose BufferHash containsnt super tables. Then,
each super table will haveB′ = B/nt bits for its buffer,
and b′ = b/nt bits for Bloom filters. In steady state,
each super table will containk = (F/nt)/(B/nt) =
F/B incarnations. Each incarnation containsn′ = B′/s
entries, and a Bloom filter for an incarnation will have
m′ = b′/k bits. For a givenm′ andn′, the false positive
rate of a Bloom filter is minimized withh = m′ ln 2/n′

hash functions [19]. Thus, the probability that a Bloom
filter will return a hit (i.e., indicating the presence of a
given key) is given byp = (1/2)h. For each hit, we need
to read a flash page. Since there arec incarnations, the
expected flash I/O cost is given by

Clookup = kpcr = k(1/2)hcr

= F/B(1/2)bs ln 2/F cr

wherecr is the cost of reading a single flash page from a
flash chip, or a single sector from an SSD.

6.3 Discussion
The above analysis can provide insights into benefits and
overheads of various BufferHash components that are
not used in traditional hash tables. Consider a tradi-
tional hash table stored on an SSD; without any buffer-
ing, each insertion operation would require one random

sector write. Suppose, sequentially writing a buffer of
sizeB′ is α times more expensive than randomly writ-
ing one sector of an SSD.α is typically small even for
a buffer significantly bigger than a sector, mainly due
to two reasons. First, sequential writes are significantly
cheaper than random writes in most existing SSDs. Sec-
ond, writing multiple consecutive sectors in a batch has
better per sector latency. In fact, for many existing SSDs,
the value ofα is less than 1 even for a buffer size of
256KB (e.g., 0.39 and 0.36 for Samsung and MTron
SSDs respectively). For Intel SSD, the gap between se-
quential and random writes is small; still the value ofα
is less than 10 due to I/O batching.

Clearly, the worst case insertion cost into a CLAM us-
ing BufferHash for flash isα times more expensive than
that of a traditional hash table without buffering—a tradi-
tional hash table requires writing a random sector, while
BufferHash sequentially writes the entire buffer. As dis-
cussed above, the value ofα is small for existing SSDs.
On the other hand, our previous analysis shows that the
amortized insertion cost of BufferHash on flash is at least
B′

αs times less than a traditional hash table, even if we as-
sume random writes required by traditional hash table
are as cheap as sequential writes required by BufferHash
on flash. In practice, random writes are more expensive,
and therefore, the amortized insertion cost when using
BufferHash on flash is even more cheap than that of a
traditional hash table.

Similarly, a traditional hash table on flash will need
one read operation for each lookup operation, even for
unsuccessful lookups. In contrast, the use of Bloom fil-
ter can significantly reduce the number of flash reads for
unsuccessful lookups. More precisely, if the Bloom fil-
ters are configured to provide a false positive rate ofp,
use of Bloom filter can reduce the cost of an unsuccess-
ful lookup by a factor of1/p. Note that the same benefit
can be realized by using Bloom filters with a traditional
hash table as well. Even though BufferHash maintains
multiple Bloom filters over different partitions and in-
carnations, the total size of all Bloom filters will be the
same as the size of a single Bloom filter computed over
all items. This is because for a given false positive rate,
the size of a Bloom filter is proportional to the number of
unique items in the filter,

6.4 Parameter Tuning
Tuning BufferHash for good CLAM performance re-
quires tuning two key parameters. First, one needs to
decide how much DRAM to use, and if a large enough
DRAM is available, how much of it is to allocate for
buffer and how much to allocate for Bloom filters. Sec-
ond, once the total size of in-memory buffers is decided,
one needs to decide how many super tables to use. We
use the cost analysis above to address these issues.
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Optimal buffer size. Assume that the total memory size
is M bits, of whichB bits are allocated for (all) buffers
(in all super tables) andb = M −B bits are allocated for
Bloom filters. Our previous analysis shows that the value
of B does not directly affect insertion cost; however, it
affects lookup cost. So, we would like to find the optimal
value ofB that minimizes the expected lookup cost.

Intuitively, the size of a buffer poses a tradeoff be-
tween the total number of incarnations and the proba-
bility of an incarnation being read from flash during
lookup. As our previous analysis showed, the I/O cost is
proportional to the product of the number of incarnations
and the hit rate of Bloom filters. On one hand, reducing
buffer size increases the number of incarnations, increas-
ing the cost. On the other hand, increasing buffer size
leaves less memory for Bloom filters, which increases its
false positive rate and I/O cost.

We can use our previous analysis to find a sweet-spot.
Our analysis showed that the lookup cost is given byC =
F/B · (1/2)(M−B)s ln 2/F · cr. The costC is minimized
whendC/dB = 0, or, equivalentlyd(log2(C))/dB = 0.
Solving this equation gives the optimal value ofB as,

Bopt =
F

s(ln 2)2
≈

2F

s

Interestingly, this optimal value ofB does not depend
onM ; rather, it depends only on the total sizeF of flash
and the average spaces taken by each hashed item. Thus,
given some memory of sizeM > B, we should use
≈ 2F/s bits for buffers, and the remaining for Bloom
filters. If additional memory is available, that should be
used only for Bloom filters, and not for the buffers.

Total memory size. We can also determine how much
total memory to use for BufferHash. Intuitively, using
more memory improves lookup performance, as this al-
lows using larger Bloom filters and lowering false pos-
itive rates. Suppose, we want to limit the I/O overhead
due to false positives toCtarget. Then, we can determine
b′, the required size of Bloom filters as follows.

Ctarget ≥
F

B

(

1

2

)b′s ln 2/F

· cr

b′ ≥
F

s(ln 2)2
ln

(

s(ln 2)2cr

Ctarget

)

Figure 3 shows required size of a Bloom filter for dif-
ferent expected I/O overheads. As the graph shows, the
benefit of using large Bloom filter diminishes after a cer-
tain size. For example, for BufferHash with 32GB flash
and 16 bytes per entry (effective size of 32 bytes per en-
try for 50% utilization of hashtables), allocating 1GB for
all Bloom filters is sufficient to limit the expected I/O
overheadCtarget below 1ms.
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Figure 3: Expected I/O overhead vs Bloom filter size

Hence, in order to limit I/O overhead during lookup to
Ctarget, BufferHash requires(Bopt +b′) bits of memory,
of whichBopt is for buffers and the rest for Bloom filters.

Number of super tables.Given a fixed memory sizeB
for all buffers, the number of super tables determines the
sizeB′ of a buffer within a super table. As our anal-
ysis shows,B′ does not affect the lookup cost; rather,
it affects the amortized and worst case cost of insertion.
Thus,B′ should be set to minimize insertion cost.

Figure 4 shows the insertion cost of using BufferHash,
based on our previous analysis, on two flash-based me-
dia. (The SSD performs better because it uses multi-
ple flash chips in parallel.). For the flash chip, both
amortized and worst-case cost minimize when the buffer
size B′ matches the flashblock size. The situation is
slightly different for SSDs; as Figure 4(b) and (c) show, a
large buffer reduces average latency but increases worst
case latency. An application should use its tolerance for
average- and worst-case latencies and our analytical re-
sults to determine the desired size ofB′ and the number
of super tablesB/B′.

7 Implementation and Evaluation

In this section, we measure and dissect the performance
of various hash table operations in our CLAM design un-
der a variety of workloads. Our goal is to answer the
following key questions:

(i) What is the baseline performance of lookups and in-
serts in our design? How does the performance com-
pare against existing disk-based indexes (e.g., the popu-
lar Berkeley-DB)? Are there specific workloads that our
approach is best suited for?

(ii ) To what extent do different optimizations in our de-
sign – namely, buffering of writes, use of bloom filters
and use of bit-slicing – contribute towards our CLAM’s
overall performance?

(iii ) To what extent does the use of flash-based secondary
storage contribute to the performance?

(iv) How well does our design support a variety of hash
table eviction policies?

We start by describing our implementation and how
we configure it for our experiments.
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Figure 4: Amortized and worst-case insertion cost on a flash chip and anIntel SSD. Only flash I/O costs are shown.

7.1 Implementation and Configuration
We have implemented BufferHash in∼3000 lines of
C++ code. The hash table in a buffer is implemented
using Cuckoo hashing [25] with two hash functions.
Cuckoo hashing utilizes space efficiently and avoids the
need for hash chaining in the case of collisions.

To simplify implementation, each partition is main-
tained in a separate file with all its incarnations. A new
incarnation is written by overwriting the portion of file
corresponding to the oldest incarnation in its super table.
Thus, the performance numbers we report include small
overheads imposed by theext3 file system we use. One
can achieve better performance by writing directly to the
disk as a raw device, bypassing the file system.

We run the BufferHash implementation atop two dif-
ferent SSDs: an Intel SSD (model: X18-M, which rep-
resents a new generation SSD), and a Transcend SSD
(model: TS32GSSD25, which represents a relatively old
generation but cheaper SSD).

7.1.1 Configuring the CLAM
As mentioned in§3, our key motivating applications like
WAN optimization and deduplication employ hash ta-
bles of size 16-32GB. To match this, we configure our
CLAMs with 32GB of slow storage and 4GB of DRAM.
The size of a buffer in a super table is set to 128KB, as
suggested by our analysis in§6.4. We limit the utilization
of the hash table in a buffer to 50% as a higher utilization
increases hash collision and the possibility of re-building
the hash table for cuckoo hashing. Also, each hash en-
try takes 16 bytes of space. Thus, each buffer (and each
incarnation) contains 4096 hash entries.

According to the analysis in§6.4, the optimal size of
buffers for the above configuration is 266MB. We now
experimentally validate this. Figure 5 shows the varia-
tion of false positive rates as the memory allocated to
buffers is varied from 128KB to 3072MB in our proto-
type. The overall trend is similar to that shown by our
analysis in§6.4, with the optimal spurious rate of 0.0001
occurring at a 256MB net size of buffers. The small dif-
ference from our analytically-derived optimal of 266MB
arises because our analysis does not restrict the optimal
number of hash functions to be an integer.

Note that the spurious rate is low even at 2GB (0.01).
We select this configuration – 2GB for buffers and 32GB

 0.2
 0.05
 0.01

 0  500  1000  1500  2000  2500  3000

S
pu

rio
us

 lo
ok

up
 r

at
e

Buffer size (MB)

Figure 5: Spurious rate vs. memory allocated to buffers;
BufferHash configured with 4GB RAM and 32GB SSD.

# of Probability Latency (ms)
flash I/O 0% LSR 40% LSR Flash chip Intel SSD

0 0.9899 0.6032 0 0
1 0.0094 0.3894 0.24 0.31
2 0.0005 0.0073 0.48 0.62
3 0.00005 0.00003 0.72 0.93

Table 2: A deeper look at lookup latencies.

for slow storage – as the candidate configuration for the
rest of our experiments. This gives us 16 incarnations per
buffer and total of 16,384 buffers in memory.

7.2 Lookups and Inserts
We start by considering the performance of basic hash
table operations, namely lookups and inserts. We study
other operations such as updates in§7.4.

We use synthetic workloads to understand the perfor-
mance. Each synthetic workload consists of a sequence
of lookups and insertions of keys. For simplicity, we
focus on a single workload for the most part. In this
workload, every key is first looked up, and then inserted.
The keys are generated using random distribution with
varying range; the range effects the lookup success rate
(or, “LSR”) of a key. These workloads are motivated by
the WAN optimization application discussed in§8. We
also consider other workloads with different ratio of in-
sert and lookup operations in§7.2.3. Further, in order to
stress-test our CLAM design, we assume that keys arrive
in a continuous backlogged fashion in each workload.

7.2.1 Latencies
In Figure 6(a), we show the distribution of latencies for
lookup operations on our CLAM with both an Intel and
a Transcend SSD (the curves labeledBH + SSD) . This
workload has an LSR of approximately 40%. Around
62% of the time, the lookups take little time (< 0.02ms)
for both Intel and Transcend SSD, as they are served by
either the in-memory bloom filters or in-memory buffers.
99.8% of the lookup times are less than 0.176ms for the
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Figure 6: CLAM latencies on different media.

Intel SSD. For Transcend SSD, 90% of the lookup times
are under 0.6ms, and the maximum is 1ms. The Intel
SSD offers significantly better performance than Tran-
scend SSD.

To understand the lookup latencies better, we exam-
ine the flash I/Os required by a lookup operation in our
CLAM prototypes, under two different lookup success
ratios in Table 2. Most lookups go to slow storage only
when required, i.e., key is on slow storage (which hap-
pens in 0% of cases for LSR = 0 and in slightly under
40% of cases for LSR = 0.4); spurious flash I/O may
be needed in the rare case of false positives (recall that
BufferHash is configured for 0.01 false positive rate).
Nevertheless,> 99% lookups require at most one flash
read only.

In Figure 6(b), we show the latencies for insertions on
different CLAM prototypes. Since BufferHash buffers
writes in memory before writing to flash, most insert ope-
rations are done in memory. Thus, the average insert cost
is very small (0.006 ms and 0.007 ms for Intel and Tran-
scend SSDs respectively). Since a buffer holds around
4096 items, only 1 out of 4096 insertions on average re-
quires writing to flash. The worst case latency, when a
buffer is flushed to the SSD and requires erasing a block,
is 2.72 ms and 30 ms for Intel and Transcend SSDs, re-
spectively.

On the whole, we note that our CLAM design achieves
good lookup and insert performance by reducing unsuc-
cessful lookups in slow storage and by batching multiple
insertions into one big write.

7.2.2 Comparison with DB-Indexes
We now compare our CLAM prototypes against the hash
table structure in Berkeley-DB (BDB) [6], a popular
database index. We use the same workload as above.
(We also considered the B-Tree index of BDB, but the
performance was worse than the hash table. Results are
omitted for brevity.) We consider the following system
configurations: (1)DB+SSD: BDB running on an SSD,
with BDB recommended configurations for SSDs, and
(2) DB+Disk: BDB running on a magnetic disk.

Figures 7(a) and (b) show the lookup and the insert
latencies for the two systems. The average lookup and
insert latencies forDB+Disk are 6.8 ms and 7 ms re-

spectively. More than 60% of the lookups and more than
40% of the inserts have latencies greater than 5 ms, cor-
responding to high seek cost on disks. Surprisingly, for
the Intel SSD, the average lookup and insert latencies are
also high – 4.6 ms and 4.8 ms respectively. Around 40%
of lookups and 40% inserts have latencies greater than 5
ms! This is counterintuitive given that Intel SSD has sig-
nificantly faster random I/O latency (0.15ms) than mag-
netic disks. This is explained by the fact that the low
latency of an SSD is achieved only when the write load
on the SSD is “low”; i.e., there are sufficient pauses be-
tween bursts of writes so that the SSD has enough time
to clean dirty blocks to produce erased blocks for new
writes [17]. Under a high write rate, the SSD quickly
uses up its pool of erased blocks and then I/Os block un-
til the SSD has reclaimed enough space from dirty blocks
via garbage collection.

This result shows that existing disk based solutions
that send all I/O requests to disks are not likely to per-
form well on SSDs, even if SSDs are significantly faster
than disks (i.e., for workloads that give SSDs sufficient
time for garbage collection). In other words, these solu-
tions are not likely to exploit the performance benefit of
SSDs under “high” write load. In contrast, since Buffer-
Hash writes to flash only when a buffer fills up, it poses
a relatively “light” load on SSD, resulting in faster reads.

We do note that it is possible to supplement the
BDB index with an in-memory Bloom filter to improve
lookups. We anticipate that, on disks, a BDB with in-
memory Bloom filter will have similar lookup latencies
as a BufferHash. However, on SSDs, a BufferHash is
likely to have a better lookup performance—because of
the lack of buffering, insertions in BDB will incur a large
number of small writes, which adversely affect SSDs’
read performance due to fragmentation and background
garbage collection activities.

7.2.3 Other Workloads

We evaluate how our CLAM design performs with work-
loads having different relative fractions of inserts and
lookups. Our goal is to understand the workloads where
the benefits of our design are the most significant. Ta-
ble 3 shows the variation of the latency per opera-
tion with different lookup fractions in the workload for
BH+SSDandDB+SSDon Transcend-SSD.

As Table 3 shows, the latency per operation for BDB
decreases with increasing fraction of lookups. This is
due to two reasons. First, (random) reads are signifi-
cantly cheaper than random writes in SSDs. Since the
increasing lookup fraction increases the overall fraction
of flash reads, it reduces the overall latency per operation.
Second, even the latency of individual lookups decreases
with increasing fraction of lookups (not shown in the ta-
ble). This is because, with a smaller fraction of flash
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Fraction of Latency per operation (ms)
lookups Bufferhash Berkeley DB

0 0.007 18.4
0.3 0.01 13.5
0.5 0.09 10.3
0.7 0.11 5.3
1 0.12 0.3

Table 3: Per-operation latencies with different lookup
fractions in workloads. LSR=0.4 for all workloads and
Transcend SSD is employed.
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Figure 7: Berkeley-DB latencies for lookups and inserts.

write I/O, SSDs involve less garbage collection overhead
that could interfere with all flash I/Os in general.

In contrast, for a CLAM, the latency per operation im-
proves with decreasing fraction of lookups. This can be
attributed to buffering due to which the average insert la-
tency for a CLAM is reduced. As Table 3 shows, our
CLAM design is17× faster for write-intensive work-
loads than for read-intensive workloads.

7.3 Dissecting Performance Benefits
In what follows, we examine the contribution of different
aspects of our CLAM design on the overall performance
benefits it offers.

7.3.1 Contribution of BufferHash optimizations
The performance of our CLAM comes from three main
optimizations within BufferHash: (1) buffering of in-
serts, (2) using Bloom filters, and (3) using windowed
bit-slicing. To understand how much each of these op-
timizations contributes towards CLAM’s performance,
we evaluate our Intel SSD-based CLAM without one of
these optimizations at a time.

The effect of buffering is obvious; without it, all inser-
tions go to the flash, yielding an average insertion latency
of ∼4.8ms at high insert rate i.e. continuous key inser-
tions (compared to∼0.006ms with buffering). Even at
low insert rate, average insertion latency is∼0.3ms and
thus buffering gives significant benefits.

Without Bloom filters, each lookup operation needs to
check many incarnations until the key is found or all in-
carnations have been checked. Since checking an incar-
nation involves a flash read, this makes lookups slower.
The worst case happens with 0% redundancy, in which
case each lookup needs to check all 16 incarnations. Our
experiments show that even for 40% and 80% LSR, the
average flash I/O latencies are 1.95ms and 1.5ms respec-
tively without using Bloom filters. In contrast, using

Bloom filters avoids expensive flash I/O, reducing flash
I/O costs to 0.06ms and 0.13ms for 40% and 80% LSR
respectively and giving a speedup of 10-30×.

Bit-slicing improves lookup latencies by∼20% under
low LSR, where the lookup workload is mostly memory
bound. However, the benefit of using bit-slicing becomes
negligible under a high LSR, since the lookup latency is
then dominated by flash I/O latency.

7.3.2 Contribution of Flash-based Storage
The design of BufferHash is targeted specifically to-
ward flash-based storage. In this section, we evalu-
ate the contribution of the I/O properties of flash-based
storage to the overall performance of our CLAM de-
sign. To aid in this, we compare two CLAM designs:
(1) BH+SSD: BufferHash running on an SSD and (2)
BH+Disk: BufferHash running on a magnetic disk (Hi-
tachi Deskstar 7K80 drive). We use a workload with 40%
look-up success rate over random keys with interleaved
inserts and lookups.

Figures 6(a) and (b) also show the latencies for
lookups and inserts inBH+Disk. Lookup latencies range
from 0.1 to 12ms, an order of magnitude worse than the
SSD prototypes (BH+SSD) due to the high seek laten-
cies in disks. The average insert cost is very small and
the worst case insert cost is 12ms, corresponding to a
high seek latency for disk. Thus, the use of SSD con-
tributes to the overall high performance of CLAM.

Comparing Figures 6 and 7, we see thatBH+Disk
performs better thanDB+SSD and DB+Disk on both
lookups and inserts. This shows that while using SSDs
is important, it is not sufficient for high performance. It
is crucial to employ BufferHash to best leverage the I/O
properties of the SSDs.

7.4 Eviction Policies
Our experiments so far are based on the default FIFO
eviction policy of BufferHash which we implement using
the full discard primitive (§5.1.2). As stated earlier, the
design of BufferHash is ideally suited for this policy. We
now consider other eviction policies.
LRU. We implemented LRU using the full discard prim-
itive as noted in§5.1.2. Omitting the details of our eval-
uation in the interest of brevity, we note that the per-
formance of lookups was largely unaffected compared
to FIFO; this is because the “re-insertion” operations
that help emulate LRU happen asynchronously without
blocking lookups (§5.1.2). In the case of inserts, the
in-memory buffers get filled faster due to re-insertions,
causing flushes to slower storage to become more fre-
quent. The resulting increase in average insert latency,
however, is very small: with a 40%-LSR workload hav-
ing equal fractions of lookups and inserts, the average in-
sert latency increases from 0.007ms to 0.008ms on Tran-
scend SSD.
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Figure 8: (a) CCDF of insert latencies for the update-
based policy. Both axes are in log-scale. (b) CDF of the
number of incarnations tried upon a buffer flush. In both
cases, the workload has 40% LSR and equal fractions of
inserts and lookups.

Partial discard. We now consider the two partial dis-
card policies discussed in§5.1.2: theupdate-based pol-
icy, where only the stale entries are discarded, and the
priority-based policy, where entries with priority lower
than a threshold are discarded. We use a workload of
40% update rate using keys generated by random distri-
bution. Figure 8(a) shows the CCDF of insert latencies
on Transcend and Intel SSDs for the update-based pol-
icy. We note that an overwhelming fraction of the laten-
cies remain unchanged, but the rest of the latencies (1%)
worsen significantly. On the whole, this causes the aver-
age insertion cost to increase significantly to 0.56ms on
Transcend SSD and 0.08ms on an Intel SSD. Neverthe-
less, this is still an order or magnitude smaller than the
average latency when employing BerkeleyDB on SSDs.
For priority-based policy, we used priority values equally
distributed over keys. With different thresolds, we ob-
tained similar qualitative performance (results omitted
for brevity).

Three factors contribute to the higher latency observed
in the tail of the distribution above: (1) When a buffer is
flushed to slow storage, there is the additional cost of
reading entries from the oldest incarnation and finding
entries to be retained. (2) In the worst case, all entries
in the evicted incarnation may have to be retained (for
example, in the update-based policy this happens when
none of the entries in the evicted incarnation have been
updated or deleted). In that case, the in-memory buffer
becomes full and is again flushed causing an eviction of
the next oldest incarnation. These “cascaded evictions”
continue until some entries in an evicted incarnation can
be discarded, or all incarnations have been tried. In the
latter case, all entries of the oldest incarnation are dis-
carded. Cascaded evictions contribute to the high inser-
tion cost seen in the tail of the distribution in Figure 8(a).
(3) Since some of the entries are being retained after
eviction, the buffer starts filling up more frequently and
number of flushes to slow storage increases as a result.

We find that when buffer becomes full on a key inser-
tion and needs to be flushed, the overall additional cost of

insertion operations on Transcend SSD is 17.4ms (on av-
erage) for the update-based policy. Of this, the additional
cost arising from reading and checking the entries of
each incarnation is 1.62ms. Note that this is the only ad-
ditional cost incurred when an incarnation eviction does
not result in cascaded evictions. For priority-based pol-
icy, this cost is lower – 1.48 ms. The update-based policy
is more expensive as it needs to search Bloom filters to
see if an entry has already been updated.

We further find that only on rare occasions do cas-
caded evictions result in multiple incarnations getting ac-
cessed. In almost 90% of the cases where cascades hap-
pen, no more than 3 incarnations are tried as shown in
Figure 8(b). On average, just 1.5 incarnations are tried
(i.e., 0.5 incarnations are additionally flushed to slow
storage, on average).

Thus, our approach supports FIFO and LRU eviction
well, but it imposes a substantially higher cost for a small
fraction of requests in other general eviction policies.
The high cost can be controlled by loosening the se-
mantics of the partial discard policies in order to limit
cascaded evictions. For instance, applications using the
priority-based policy could retain the top-k high priority
entries rather than using a fixed threshold on priority. It
is up to the application designer to select the right trade-
off between the semantics of the eviction policies and the
additional overhead incurred.

7.5 Evaluation Summary
The above evaluation highlights the following aspects of
our CLAM design:
(1) BufferHash on Intel SSD offers lookup latency of
0.06 ms and insert latency of 0.006 ms, and gives an
order of magnitude improvement over Berkeley DB on
Intel SSD.
(2) Buffering of writes significantly improves insert
latency. Bloom filters significantly reduce unwanted
lookups on slow storage, achieving10×-30× improve-
ment over BufferHash without bloom filters. Bit-slicing
contributes 20% improvement when the lookup work-
load is mostly memory bound.
(3) For lookups, BufferHash on SSDs is an order of mag-
nitude better than BufferHash on disk. However, SSDs
alone are not sufficient to give high performance.

8 WAN Optimizer Using CLAM
In this section, we study the benefits of using our CLAM
prototypes in an important application scenario, namely,
WAN optimization.

A typical WAN optimizer has three components:
(1) Connection management (CM) front-end: When
bytes from a connection arrive at the connection manage-
ment front-end, they are accumulated into buffers for a
short amount of time (we use 25ms). The buffered object
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data is divided into chunks by computing content-based
chunk boundaries using Rabin-Karp fingerprints [38,
34]. A SHA-1 hash is computed for each chunk thus
identified.
(2) Compression engine (CE):The CE maintains a
large content cache on a magnetic disk. SHA-1 finger-
prints of cached content are stored in a large hash table.
Fingerprints handed over by the CM are looked up in
the hash table to identify similarity against prior content
chunks. After redundancy has been identified, the in-
coming object is compressed and handed over to the net-
work subsystem (described next). The object’s chunks
are inserted into the content cache in a serial fashion,
and SHA-1 hashes for its chunks are inserted into the
hash table with pointers to the on-disk addresses of cor-
responding chunks.

The CE’s hash table can be stored either in a CLAM
or using BDB on flash. The CLAM is configured with
4GB RAM and 32GB of Transcend SSD. The CLAM
implements the full BufferHash functionality, including
lazy updates with FIFO eviction as well as windowed bit
slicing. For BDB-based WAN optimizer, we implement
FIFO eviction from the hash table by maintaining an in-
memory delete list of invalidated old hash table entries.
The BDB hash table is also 32GB in size.
(3) Network sub-system (NS):The NS simply transmits
the bytes handed over by CE over the outgoing network
link. In commercial WAN optimizers, the NS uses an op-
timized custom TCP implementation that can send data
at the highest possible rate (without needing repeated
slow start, congestion avoidance etc.)

In order to focus on the efficacy of CE, we employ two
simplifications in our evaluation: (1) We emulate a high-
speed CM by pre-computing chunks and SHA-1 finger-
prints for objects. (2) To emulate TCP optimization in
NS, we simply use UDP to transmit data at close to link
speed and turn off flow and control congestion control.

In our experiments, we vary the WAN link speed from
10Mbps to 0.5Gbps.

Evaluation: We use real packet traces in our eval-
uation. These traces were collected at University of
Wisconsin-Madison’s access link to the Internet and at
the access link of a high volume Web server in the univer-
sity. From these packet traces we construct object-level
traces by grouping packets with the same connection 4-
tuple into a single object and using an inactivity timeout
of 10s. We also conducted thorough evaluation using a
variety of synthetic traces where we varied the redun-
dancy fraction. We omit the results for brevity and note
that they are qualitatively similar.

Scenarios.We study two scenarios both based on re-
playing traces against our experimental setup:

(1) Throughput test:All objects arrive at once. We
then measure the total time taken to transmit the objects

with and without using our WAN optimizer. The ratio
of the latter to the former measures the extent to which
the WAN optimizer helps improve effective capacity of
the attached WAN link, and we refer to it as theeffective
bandwidth improvement.

(2) Acceleration under high load:Here, objects arrive
at a rate matching the link speed; thus, the link is 100%
utilized when there is no compression. For each object,
we measure the time difference from object arrival to
the last byte of the object being sent, with and without
WAN optimization. In either case, we also measure the
throughput the object achieves (= effective size/time dif-
ference). When WAN optimization is used, the time dif-
ference includes the time to fingerprint the object, look
for matches and compress the object. In addition, it may
include delays due to earlier objects (e.g., updating the
index with fingerprints for the earlier object). Finally,
we measure theper object throughput improvementas
the ratio of an object’s throughput with and without the
WAN optimizer.

8.1 Benefits of Using CLAMs
Scenario 1:Figure 9 shows the effective bandwidth im-
provement using CLAM-based and BDB based WAN-
optimizers at different link speeds. Both WAN optimiz-
ers use Transcend-SSD. Figure 9(a) shows the results for
a high (50%) redundancy trace (i.e., optimal improve-
ment factor 2). The BDB-based WAN optimizer gives
close-to-optimal improvement (2×) at low link speeds of
up to 10Mbps. However, at higher link speeds it becomes
a bottleneck and drastically reduces the effective band-
width instead of improving it. In comparison, CLAM-
based WAN-optimizer gives close-to-ideal improvement
at 10× higher (100Mbps) link speeds and gives rea-
sonable improvements even at 200 Mbps. It becomes
a bottleneck at 400Mbps making its usage obsolete at
such speeds. Using Intel-SSD, the CLAM-based WAN-
optimizer can run up to 500 Mbps while offering close
to ideal improvement, but using Intel-SSD with BDB
does not improve the situation significantly. A similar
trend was observed for the low (15%) redundancy trace
(i.e., optimal improvement factor1.18) whose results are
shown in Figure 9(b). In this case, CLAM-based WAN-
optimizer is able to operate at even higher link speeds
while giving close to ideal improvement. This is because,
when redundancy is low, lookups in the case of CLAMs
seldom go to flash, which results in higher throughput.

Scenario 2: We fix the link speed to be 10Mbps
for this analysis, because BDB is ineffective at higher
speeds. We use a trace with 50% redundancy. We now
take a closer look at the improvements by CLAMs and
BDB. Figures 10 (a) and (b) show the relative through-
put improvement on an object-by-object basis (Only im-
provements up to factor of 2 is shown). We see that
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Figure 9: Effective capacity improvement vs different
link rates for (a) 50% and (b) 15% redundancy traces.
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Figure 10: Heavy load scenario: Throughput improve-
ment per object for (a) BufferHash-based CLAM using
Transcend SSD and (b) Berkeley-DB on Transcend SSD.

Berkeley-DB has a negative effect on the throughputs
of a large number of objects (compared to ideal), es-
pecially objects 500KB or smaller; their throughput is
worsened by a factor of two or more due to the high costs
of lookups and inserts (the latter for fingerprints of prior
objects). Our CLAM also imposes overhead on some
of these objects, but this happens on far fewer occasions
and the overhead is significantly lower. Also, the average
per-object improvement is 3.1 for our CLAM, which is
65% better than BDB (average improvement of 1.9).

9 Conclusions
We have designed and implemented CLAMs (Cheap and
Large CAMs) for high-performance content-based net-
worked systems that require large hash tables (up to
100GB or more) with support for fast insertion, lookups
and updates. Our design uses a combination of DRAM
and flash storage along with a novel data structure, called
BufferHash, to facilitate fast hash table operations. Our
CLAM supports a larger index than DRAM-only solu-
tions, and faster hash operations than disk- or flash-only
solutions. It can offer a few orders of magnitude more
hash operations/s/$ than these alternatives. We have in-
corporated our CLAM prototype in a WAN optimizer
and showed that it can enhance the benefits significantly.

Our design is not final, but it is a key step toward sup-
porting high speed operation of modern data-intensive
networked systems. It may be possible to design bet-
ter CLAMs by leveraging space-saving ideas from recent
systems such as FAWN [13] (to help control the amount

of DRAM needed by BufferHash), using coding tech-
niques such as floating codes (for better eviction sup-
port), or by using newer memory technologies such as
Phase Change Memory (which can support much better
read/write latencies than flash).
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