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Abstract

Antivirus software is one of the most widely used tools
for detecting and stopping malicious and unwanted files.
However, the long term effectiveness of traditional host-
based antivirus is questionable. Antivirus software fails
to detect many modern threats and its increasing com-
plexity has resulted in vulnerabilities that are being ex-
ploited by malware. This paper advocates a new model
for malware detection on end hosts based on providing
antivirus as an in-cloud network service. This model en-
ables identification of malicious and unwanted software
by multiple, heterogeneous detection engines in paral-
lel, a technique we term ‘N-version protection’. This
approach provides several important benefits including
better detection of malicious software, enhanced foren-
sics capabilities, retrospective detection, and improved
deployability and management. To explore this idea we
construct and deploy a production quality in-cloud an-
tivirus system called CloudAV. CloudAV includes a
lightweight, cross-platform host agent and a network ser-
vice with ten antivirus engines and two behavioral detec-
tion engines. We evaluate the performance, scalability,
and efficacy of the system using data from a real-world
deployment lasting more than six months and a database
of 7220 malware samples covering a one year period.
Using this dataset we find that CloudAV provides 35%
better detection coverage against recent threats compared
to a single antivirus engine and a 98% detection rate
across the full dataset. We show that the average length
of time to detect new threats by an antivirus engine is 48
days and that retrospective detection can greatly mini-
mize the impact of this delay. Finally, we relate two case
studies demonstrating how the forensics capabilities of
CloudAV were used by operators during the deployment.

1 Introduction

Detecting malicious software is a complex problem. The
vast, ever-increasing ecosystem of malicious software

and tools presents a daunting challenge for network op-
erators and IT administrators. Antivirus software is one
of the most widely used tools for detecting and stopping
malicious and unwanted software. However, the elevat-
ing sophistication of modern malicious software means
that it is increasingly challenging for any single vendor to
develop signatures for every new threat. Indeed, a recent
Microsoft survey found more than 45,000 new variants
of backdoors, trojans, and bots during the second half of
2006 [17].

Two important trends call into question the long term
effectiveness of products from a single antivirus vendor.
First, there is a significant vulnerability window between
when a threat first appears and when antivirus vendors
generate a signature. Moreover, a substantial percentage
of malware is never detected by antivirus software. This
means that end systems with the latest antivirus software
and signatures can still be vulnerable for long periods of
time. The second important trend is that the increasing
complexity of antivirus software and services has indi-
rectly resulted in vulnerabilities that can and are being
exploited by malware. That is, malware is actually us-
ing vulnerabilities in antivirus software itself as a means
to infect systems. SANS has listed vulnerabilities in an-
tivirus software as one of the top 20 threats of 2007 [27].

In this paper we suggest a new model for the detec-
tion functionality currently performed by host-based an-
tivirus software. This shift is characterized by two key
changes.

1. Antivirus as a network service: First, the detec-
tion capabilities currently provided by host-based
antivirus software can be more efficiently and ef-
fectively provided as an in-cloud network service.
Instead of running complex analysis software on ev-
ery end host, we suggest that each end host run a
lightweight process to detect new files, send them to
a network service for analysis, and then permit ac-
cess or quarantine them based on a report returned
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by the network service.

2. N-version protection: Second, the identification of
malicious and unwanted software should be deter-
mined by multiple, heterogeneous detection engines
in parallel. Similar to the idea of N-version pro-
gramming, we propose the notion of N-version pro-
tection and suggest that malware detection systems
should leverage the detection capabilities of multi-
ple, heterogeneous detection engines to more effec-
tively determine malicious and unwanted files.

This new model provides several important benefits.
(1) Better detection of malicious software: antivirus en-
gines have complementary detection capabilities and a
combination of many different engines can improve the
overall identification of malicious and unwanted soft-
ware. (2) Enhanced forensics capabilities: information
about what hosts accessed what files provides an incred-
ibly rich database of information for forensics and intru-
sion analysis. Such information provides temporal rela-
tionships between file access events on the same or dif-
ferent hosts. (3) Retrospective detection: when a new
threat is identified, historical information can be used
to identify exactly which hosts or users open similar or
identical files. For example, if a new botnet is detected,
an in-cloud antivirus service can use the execution his-
tory of hosts on a network to identify which hosts have
been infected and notify administrators or even automat-
ically quarantine infected hosts. (4) Improved deploya-
bility and management: Moving detection off the host
and into the network significantly simplifies host soft-
ware enabling deployment on a wider range of platforms
and enabling administrators to centrally control signa-
tures and enforce file access policies.

To explore and validate this new antivirus model, we
propose an in-cloud antivirus architecture that consists
of three major components: a lightweight host agent run
on end hosts like desktops, laptops, and mobiles devices
that identifies new files and sends them into the network
for analysis; a network service that receives files from
hosts and identifies malicious or unwanted content; and
an archival and forensics service that stores information
about analyzed files and provides a management inter-
face for operators.

We construct, deploy, and evaluate a production qual-
ity in-cloud antivirus system called CloudAV. CloudAV
includes a lightweight, cross-platform host agent for
Windows, Linux, and FreeBSD and a network service
consisting of ten antivirus engines and two behavioral
detection engines. We provide a detailed evaluation of
the system using a dataset of 7220 malware samples col-
lected in the wild over a period of a year [20] and a pro-
duction deployment of our system on a campus network

in computer labs spanning multiple departments for a pe-
riod of over 6 months.

Using the malware dataset, we show how the Clou-
dAV N-version protection approach provides 35% better
detection coverage against recent threats compared to a
single antivirus engine and 98% detection coverage of
the entire dataset compared to 83% with a single engine.
In addition, we empirically find that the average length of
time to detect new threats by a single engine is 48 days
and show how retrospective detection can greatly mini-
mize the impact of this delay.

Finally, we analyze the performance and scalability of
the system using deployment results and show that while
the total number of executables run by all the systems in
a computing lab is quite large (an average of 20,500 per
day), the number of unique executables run per day is
two orders of magnitude smaller (an average of 217 per
day). This means that the caching mechanisms employed
in the network service achieves a hit rate of over 99.8%,
reducing the load on the network and, in the rare case
of a cache miss, we show that the average time required
to analyze a file using CloudAV’s detection engines is
approximately 1.3 seconds.

2 Limitations of Antivirus Software

Antivirus software is one of the most successful and
widely used tools for detecting and stopping malicious
and unwanted software. Antivirus software is deployed
on most desktops and workstations in enterprises across
the world. The market for antivirus and other security
software is estimated to increase to over $10 billion dol-
lars in 2008 [10].

The ubiquitous deployment of antivirus software is
closely tied to the ever-expanding ecosystem of mali-
cious software and tools. As the construction of mali-
cious software has shifted from the work of novices to a
commercial and financially lucrative enterprise, antivirus
vendors must expend more resources to keep up. The
rise of botnets and targeted malware attacks for the pur-
poses of spam, fraud, and identity theft present an evolv-
ing challenge for antivirus companies. For example, the
recent Storm worm demonstrated the use of encrypted
peer-to-peer command and control, and the rapid deploy-
ment of new variants to continually evade the signatures
of antivirus software [4].

However, two important trends call into question the
long term effectiveness of products from a single an-
tivirus vendor. The first is that antivirus software fails
to detect a significant percentage of malware in the wild.
Moreover, there is a significant vulnerability window be-
tween when a threat first appears and when antivirus ven-
dors generate a signature or modify their software to de-
tect the threat. This means that end systems with the
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AV Vendor Version 3 Months 1 Month 1 Week
Avast 4.7.1043 62.7% 45.8% 39.6%
AVG 7.5.503 83.8% 78.6% 72.2%
BitDefender 7.1.2559 83.9% 79.7% 78.5%
ClamAV 0.91.2 57.5% 48.8% 46.8%
CWSandbox | 2.0 N/A N/A N/A

F-Prot 6.0.8.0 70.4% 49.6% 46.0%
F-Secure 8.00.101 80.9% 74.4% 60.3%
Kaspersky 7.0.0.125 89.2% 84.0% 78.5%
McAfee 8.5.01 70.5% 56.7% 53.9%
Norman 1.8 N/A N/A N/A

Symantec 15.0.0.58 60.8% 38.8% 45.2%
Trend Micro 16.00 79.4% 74.6% 75.3%
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Figure 1: Detection rate for ten popular antivirus products as a function of the age of the malware samples.

latest antivirus software and signatures can still be vul-
nerable for long periods of time. The second important
trend is that the increasing complexity of antivirus soft-
ware and services has indirectly resulted in vulnerabili-
ties that can and are being exploited by malware. That
is, malware is actually using vulnerabilities in antivirus
software as means to infect systems.

2.1 Vulnerability Window

The sheer volume of new threats means that it is diffi-
cult for any one antivirus vendor to create signatures for
all new threats. The ability of any single vendor to cre-
ate signatures is dependent on many factors such as de-
tection algorithms, collection methodology of malware
samples, and response time to 0-day malware. The end
result is that there is a significant period of time between
when a threat appears and when a signature is created by
antivirus vendors (the vulnerability window).

To quantify the vulnerability window, we analyzed the
detection rate of multiple antivirus engines across mal-
ware samples collected over a one year period. The
dataset included 7220 samples that were collected be-
tween November 11th, 2006 to November 10th, 2007.
The malware dataset is described in further detail in Sec-
tion 6. The signatures used for the antivirus were updated
the day after collection ended, November 11th, 2007, and
stayed constant through the analysis.

In the first experiment, we analyzed the detection of
recent malware. We created three groups of malware:
one that included malware collected more recently than
3 months ago, one that included malware collected more
recently than 1 month ago, and one that included mal-
ware collected more recently than 1 week ago. The an-
tivirus engine and signature versions along with their as-
sociated detection rates for each time period are listed

in Figure 1(a). The table clearly shows that the detec-
tion rate decreases as the malware becomes more recent.
Specifically, the number of malware samples detected in
the 1 week time period, arguably the most recent and im-
portant threats, is quite low.

In the second experiment, we extended this analysis
across all the days in the year over which the malware
samples were collected. Figure 1(b) shows significant
degradation of antivirus engine detection rates as the age,
or recency, of the malware sample is varied. As can
be seen in the figure, detection rates can drop over 45%
when one day’s worth of malware is compared to a year’s
worth. As the plot shows, antivirus engines tend to be ef-
fective against malware that is a year old but much less
useful in detecting more recent malware, which pose the
greatest threat to end hosts.

2.2 Antivirus Software Vulnerabilities

A second major concern about the long term viability
of host-based antivirus software is that the complexity
of antivirus software has resulted in an increased risk
of security vulnerabilities. Indeed, severe vulnerabil-
ities have been discovered in the antivirus engines of
nearly every vendor. While local exploits are more com-
mon (ioctl vulnerabilities, overflows in decompression
routines, etc), remote exploits in management interfaces
have been observed in the wild [30]. Due to the inherent
need for elevated privileges by antivirus software, many
of these vulnerabilities result in a complete compromise
of the affected end host.

Figure 2 shows the number of vulnerabilities reported
in the National Vulnerability Database [21] for ten popu-
lar antivirus vendors between 2005 and November 2007.
This large number of reported vulnerabilities demon-
strates not only the risk involved in deploying antivirus
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Figure 2: Number of vulnerabilities reported in the Na-
tional Vulnerability Database (NVD) for ten antivirus
vendors between 2005 and November 2007

software, but also an evolution in tactics as attackers are
now targeting vulnerabilities in antivirus software itself.

3 Approach

This paper advocates a new model for the detection
functionality currently performed by antivirus software.
First, the detection capabilities currently provided by
host-based antivirus software can be more efficiently and
effectively provided as an in-cloud network service. Sec-
ond, the identification of malicious and unwanted soft-
ware should be determined by multiple, heterogeneous
detection engines in parallel.

3.1 Deployment Environment

Before getting into details of the approach, it is impor-
tant to understand the environment in which such an ar-
chitecture is most effective. First and foremost, we do
not see the architecture replacing existing antivirus or in-
trusion detection solutions. We base our approach on the
same threat model as existing host-based antivirus solu-
tions and assume an in-cloud antivirus service would run
as an additional layer of protection to augment existing
security systems such as those inside an organizational
network like an enterprise. Some possible deployment
environments include:

o Enterprise networks: Enterprise networks tend to
be highly controlled environments in which IT ad-
ministrators control both desktop and server soft-
ware. In addition, enterprises typically have good
network connectivity with low latencies and high
bandwidth between workstations and back office
systems.

e Government networks: Like enterprise networks,
government networks tend to be highly controlled

with strictly enforced software and security prac-
tices. In addition, policy enforcement, access con-
trol, and forensic logging can be useful in tracking
sensitive information.

o Mobile/Cellular networks: The rise of ubiqui-
tous WiFi and mobile 2.5G and 3G data networks
also provide an excellent platform for a provider-
managed antivirus solution. As mobile devices be-
come increasingly complex, there is an increasing
need for mobile security software. Antivirus soft-
ware has recently become available from multiple
vendors for mobile phones [9, 13, 31].

Privacy implications: Shifting file analysis to a central
location provides significant benefits but also has impor-
tant privacy implications. It is critical that users of an in-
cloud antivirus solution understand that their files may
be transferred to another computer for analysis. There
are may be situations where this might not be acceptable
to users (e.g. many law firms and many consumer broad-
band customers). However, in controlled environments
with explicit network access policies, like many enter-
prises, such issues are less of a concern. Moreover, the
amount of information that is collected can be carefully
controlled depending on the environment. As we will
discuss later, information about each file analyzed and
what files are cached can be controlled depending on the
policies of the network.

3.2 In-Cloud Detection

The core of the proposed approach is moving the detec-
tion of malicious and unwanted files from end hosts and
into the network. This idea was originally introduced in
[23] and we significantly extend and evaluate the concept
in this paper.

There is currently a strong trend toward moving ser-
vices from end host and monolithic servers into the net-
work cloud. For example, in-cloud email [5, 7, 28] and
HTTP [18, 25] filtering systems are already popular and
are used to provide an additional layer of security for
enterprise networks. In addition, there have been sev-
eral attempts to provide network services as overlay net-
works [29, 33].

Moving the detection of malicious and unwanted files
into the network significantly lowers the complexity of
host-based monitoring software. Clients no longer need
to continually update their local signature database, re-
ducing administrative cost. Simplifying the host soft-
ware also decreases the chance that it could contain ex-
ploitable vulnerabilities [15, 30]. Finally, a lightweight
host agent allows the service to be extended to mobile
and resource-limited devices that lack sufficient process-
ing power but remain an enticing target for malware.
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3.3 N-Version Protection

The second core component of the proposed approach
is a set of heterogeneous detection engines that are used
to provide analysis results on a file, also known as N-
version protection. This approach is very similar to N-
version programming, a paradigm in which multiple im-
plementations of critical software are written by inde-
pendent parties to increase the reliability of software by
reducing the probability of concurrent failures [2]. Tra-
ditionally, N-version programming has been applied to
systems requiring high availability such as distributed
filesystems [26]. N-version programming has also been
applied to security realm to detect implementation faults
in web services that may be exploited by an attacker [19].
While N-version programming uses multiple implemen-
tations to increase fault tolerance in complex software,
the proposed approach uses multiple independent im-
plementations of detection engines to increase coverage
against a highly complex and ever-evolving ecosystem of
malicious software.

A few online services have recently been constructed
that implement N-version detection techniques. For ex-
ample, there are online web services for malware sub-
mission and analysis [6, 11, 22]. However, these services
are designed for the occasional manual upload of a virus
sample, rather than the automated and real-time protec-
tion of end hosts.

4 Architecture

In order to move the detection of malicious and unwanted
files from end hosts and into the network, several impor-
tant challenges must be overcome: (1) unlike existing
antivirus software, files must transported into the net-
work for analysis; (2) an efficient analysis system must
be constructed to handle the analysis of files from many
different hosts using many different detection engines in
parallel; and (3) the performance of the system must be
similar or better than existing detection systems such as
antivirus software.

To address these problems we envision an architec-
ture that includes three major components. The first is a
lightweight host agent run on end systems like desktops,
laptops, and mobiles devices that identifies new files and
sends them into the network for analysis. The second is
a network service that receives files from the host agent,
identifies malicious and unwanted content, and instructs
hosts whether access to the files is safe. The third com-
ponent is an archival and forensics service that stores in-
formation about what files were analyzed and provides
a query and alerting interface for operators. Figure 3
shows the high level architecture of the approach.

4.1 Client Software

Malicious and unwanted files can enter an organization
from many sources. For example, mobile devices, USB
drives, email attachments, downloads, and vulnerable
network services are all common entry points. Due to
the broad range of entry vectors, the proposed architec-
ture uses a lightweight file acquisition agent run on each
end system.

Just like existing antivirus software, the host agent
runs on each end host and inspects each file on the sys-
tem. Access to each file is trapped and diverted to a han-
dling routine which begins by generating a unique identi-
fier (UID) of the file and comparing that identifier against
a cache of previously analyzed files. If a file UID is not
present in the cache then the file is sent to the in-cloud
network service for analysis.

To make the analysis process more efficient, the archi-
tecture provides a method for sending a file for analysis
as soon as it is written on the end host’s filesystem (e.g.,
via file-copy, installation, or download). Doing so amor-
tizes the transmission and analysis cost over the time
elapsed between file creation and system or user-initiated
access.

4.1.1 Threat Model

The threat model for the host agent is similar to that
of existing software protection mechanisms such as an-
tivirus, host-based firewalls, and host-based intrusion de-
tection. As with these host-based systems, if an attacker
has already achieved code execution privileges, it may be
possible to evade or disable the host agent. As described
in Section 2, antivirus software contains many vulnera-
bilities that can be directly targeted by malware due to
its complexity. By reducing the complexity of the host
agent by moving detection into the network, it is possi-
ble to reduce the vulnerability footprint of host software
that may lead to elevated privileges or code execution.

4.1.2 File Unique Identifiers

One of the core components of the host agent is the file
unique identifier (UID) generator. The goal of the UID
generator is to provide a compact summary of a file. That
summary is transmitted over the network to determine if
an identical file has already been analyzed by the net-
work service. One of the simplest methods of generat-
ing such a UID is a cryptographic hash of a file, such as
MDS5 or SHA-1. Cryptographic hashes are fast and pro-
vide excellent resistance to collision attacks. However,
the same collision resistance also means that changing a
single byte in a file results in completely different UID.
To combat polymorphic threats, a more complex UID
generator algorithm could be employed. For example,
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Figure 3: Architectural approach for in-cloud file analysis service.

a method such as locality-preserving hashing in multi-
dimensional spaces [12] could be used track differences
between two files in a compact manner.

4.1.3 User Interface

We envision three majors modes of operation that affect
how users interact with the host agent that range from
less to more interactive.

e Transparent mode: In this mode, the detection
software is completely transparent to the end user.
Files are sent into the cloud for analysis but the ex-
ecution or loading of a file is never blocked or inter-
rupted. In this mode end hosts can become infected
by known malware but administrators can use de-
tection alerts and detailed forensic information to
aid in cleaning up infected systems.

e Warning mode: In this mode, access to a file is
blocked until an access directive has been returned
to the host agent. If the file is classified as unsafe
then a warning is presented to the user instructing
them why the file is suspicious. The user is then
allowed to make the decision of whether to proceed
in accessing the file or not.

e Blocking mode: In this mode, access to a file is
blocked until an access directive has been returned
to the host agent. If the file is classified as suspi-
cious then access to the file is denied and the user is
informed with an error dialog.

4.1.4 Other File Acquisition Methods

While the host agent is the primary method of acquiring
candidate files and transmitting them to the network ser-
vice for analysis, other methods can also be employed
to increase the performance and visibility of the system.
For example, a network sensor or tap monitoring the traf-
fic of a network may pull files directly out of a network

stream using deep packet inspection (DPI) techniques.
By identifying files and performing analysis before the
file even reaches the destination host, the need to retrans-
mit the file to the network service is alleviated and user-
perceived latencies can be reduced. Clearly this approach
cannot completely replace the host agent as network traf-
fic can be encrypted, files may be encapsulated in un-
known protocols, and the network is only one source of
malicious content.

4.2 Network Service

The second major component of the architecture is the
network service responsible for file analysis. The core
task of the network service is to determine whether a file
is malicious or unwanted. Unlike existing systems, each
file is analyzed by a collection of detection engines. That
is, each file is analyzed by multiple detection engines in
parallel and a final determination of whether a file is ma-
licious or unwanted is made by aggregating these indi-
vidual results into a threat report.

4.2.1 Detection Engines

A cluster of servers can quickly analyze files using mul-
tiple detection techniques. Additional detection engines
can easily be integrated into a network service, allow-
ing for considerable extensibility. Such comprehensive
analysis can significantly increase the detection cover-
age of malicious software. In addition, the use of en-
gines from different vendors using different detection
techniques means that the overall result does not rely too
heavily on a single vendor or detection technology.

A wide range of both lightweight and heavyweight de-
tection techniques can be used in the backend. For exam-
ple, lightweight detection systems like existing antivirus
engines can be used to evaluate candidate files. In addi-
tion, more heavyweight detectors like behavioral analyz-
ers can also be used. A behavioral system executes a sus-
picious file in a sandboxed environment (e.g., Norman
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Sandbox [22], CWSandbox [6]) or virtual machine and
records host state changes and network activity. Such
deep analysis is difficult or impossible to accomplish on
resource-constrained devices like mobile phones but is
possible when detection is moved to dedicated servers.
In addition, instead of forcing signature updates to every
host, detection engines can be kept up-to-date with the
latest vendor signatures at a central source.

Finally, running multiple detection engines within the
same service provides the ability to correlation informa-
tion between engines. For example, if a detector finds
that the behavior of an unknown file is similar to that of
an file previously classified as malicious by antivirus en-
gines, the unknown file can be marked as suspicious [23].

4.2.2 Result Aggregation

The results from the different detection engines must be
combined to determine whether a file is safe to open, ac-
cess, or execute. Several variables may impact this pro-
cess.

First, results from the detection engines may reach the
aggregator at different times — if a detector fails, it may
never return any results. In order to prevent a slow or
failed detector from holding up a host, the aggregator can
use a subset of results to determine if a file is safe. Deter-
mining the size of such a quorum depends on the deploy-
ment scenario and variables like the number of detection
engines, security policies, and latency requirements.

Second, the metadata returned by each detector may
be different so the detection results are wrapped in a con-
tainer object that describes how the data should be inter-
preted. For example, behavioral analysis reports may not
indicate whether a file is safe but can be attached to the
final aggregation report to help users, operators, or exter-
nal programs interpret the results.

Lastly, the threshold at which a candidate file is
deemed unsafe or malicious may be defined by secu-
rity policy of the network’s administrators. For example,
some administrators may opt for a strict policy where a
single engine is sufficient to deem a file malicious while
less security-conscious administrators may require mul-
tiple engines to agree to deem a file malicious. We dis-
cuss the balance between coverage and confidence fur-
ther in Section 7.

The result of the aggregation process is a threat report
that is sent to the host agent and can be cached on the
server. A threat report can contain a variety of metadata
and analysis results about a file. The specific contents
of the report depend on the deployment scenario. Some
possible report sections include: (1) an operation direc-
tive; a set of instructions indicating the action to be per-
formed by the host agent, such as how the file should
be accessed, opened, executed, or quarantined; (2) fam-

ily/variant labels; a list of malware family/variant classi-
fication labels assigned to the file by the different detec-
tion engines; and (3) behavioral analysis; a list of host
and network behaviors observed during simulation. This
may include information about processes spawned, files
and registry keys modified, network activity, or other
state changes.

4.2.3 Caching

Once a threat report has been generated for a candidate
file, it can be stored in both a local cache on the host
agent and in a shared remote cache on the server. This
means that once a file has been analyzed, subsequent ac-
cesses to that file by the user can be determined locally
without requiring network access. Moreover, once a sin-
gle host in a network has accessed a file and sent it to
the network service for analysis, any subsequent access
of the same file by other hosts in the network can lever-
age the existing threat report in the shared remote cache
on the server. Cached reports stored in the network ser-
vice may also periodically be pushed to the host agent to
speed up future accesses and invalidated when deemed
necessary.

4.3 Archival and Forensics Service

The third and final component of the architecture is a ser-
vice that provides information on file usage across partic-
ipating hosts which can assist in post-infection forensic
analysis. While some forensics tracking systems [14, 8]
provide fine-grained details tracing back to the exact vul-
nerable processes and system objects involved in an in-
fection, they are often accompanied by high storage re-
quirements and performance degradation. Instead, we
opt for a lightweight solution consisting of file access in-
formation sent by the host agent and stored securely by
the network service, in addition to the behavioral pro-
files of malicious software generated by the behavioral
detection engines. Depending on the privacy policy of
organization, a tunable amount of forensics information
can be logged and sent to the archival service. For exam-
ple, a more security conscious organization could spec-
ify that information about every executable launch be
recorded and sent to the archival service. Another pol-
icy might specify that only accesses to unsafe files be
archived without any personally identifiable information.

Archiving forensic and file usage information provides
a rich information source for both security professionals
and administrators. From a security perspective, tracking
the system events leading up to an infection can assist
in determining its cause, assessing the risk involved with
the compromise, and aiding in any necessary disinfection
and cleanup. In addition, threat reports from behavioral
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engines provide a valuable source of forensic data as the
exact operations performed by a piece of malicious soft-
ware can be analyzed in detail. From a general adminis-
tration perspective, knowledge of what applications and
files are frequently in use can aid the placement of file
caches, application servers, and even be used to deter-
mine the optimal number of licenses needed for expen-
sive applications.

Consider the outbreak of a zero-day exploit. An en-
terprise might receive a notice of a new malware attack
and wonder how many of their systems were infected.
In the past, this might require performing an inventory
of all systems, determining which were running vulnera-
ble software, and then manually inspecting each system.
Using the forensics archival interface in the proposed ar-
chitecture, an operator could search for the UID of the
malicious file over the past few months and instantly find
out where, when, and who opened the file and what mali-
cious actions the file performed. The impacted machines
could then immediately be quarantined.

The forensics archive also enables retrospective detec-
tion. The complete archive of files that are transmitted to
the network service may be re-scanned by available en-
gines whenever a signature update occurs. Retrospective
detection allows previously undetected malware that has
infected a host to be identified and quarantined.

S CloudAV Implementation

To explore and validate the proposed in-cloud antivirus
architecture, we constructed a production quality imple-
mentation called CloudAV. In this section we describe
how CloudAV implements each of the three main com-
ponents of the architecture.

5.1 Host Agent

We implement the host agent for a variety of platforms
including Windows 2000/XP/Vista, Linux 2.4/2.6, and
FreeBSD 6.0+. The implementation of the host agent is
designed to acquire executable files for analysis by the
in-cloud network service, as executables are a common
source of malicious content. We discuss how the agent
can be extended to acquire DLLs, documents, and other
common malcode-bearing files types in Section 7.
While the exact APIs are platform dependent (Cre-
ateProcess on Win32, execve syscall on Linux 2.4, LSM
hooks on Linux 2.6, etc), the host agent hooks and in-
terposes on system events. This interposition is im-
plemented via the MadCodeHook [16] package on the
Win32 platform and via the Dazuko [24] framework for
the other platforms. Process creation events are inter-
posed upon by the host agent to acquire and process can-
didate executables before they are allowed to continue.

In addition, filesystem events are captured to identify
new files entering a host and preemptively transfer them
to the network service before execution to eliminate any
user-perceived latencies.

As motivating factors of our work include the com-
plexity and security risks involved in running host-based
antivirus, the host agent was designed to be simple and
lightweight, both in code size and resource requirements.
The Win32 agent is approximately 1500 lines of code of
which 60% is managed code, further reducing the vul-
nerability profile of the agent. The agent for the other
platforms is written in python and is under 300 lines of
code.

While the host agent is primarily targeted at end hosts,
our architecture is also effective in other deployment sce-
narios such as mail servers. To demonstrate this, we also
implemented a milter (mail filter) frontend for use with
mail transfer agents (MTAs) such as Sendmail and Post-
fix to scan all attachments on incoming emails. Using
the pymilter API, the milter frontend weighs in at ap-
proximately 100 lines of code.

5.2 Network Service

The network service acts as a dispatch manager between
the host agent and the backend analysis engines. Incom-
ing candidate files are received, analyzed, and a threat
report is returned to the host agent dictating the appro-
priate action to take. Communication between the host
agent and the network service uses a HTTP wire protocol
protected by mutually authenticated SSL/TLS. Between
the components within the network service itself, com-
munication is performed via a publish/subscribe bus to
allow modularization and effective scalability.

The network service allows for various priorities to be
assigned to analysis requests to aid latency-sensitive ap-
plications and penalize misbehaving hosts. For example,
application and mail scanning may take higher analysis
priority than background analysis tasks such as retroac-
tive detection (described in Section 7). This also enables
the system to penalize or temporarily suspend misbehav-
ing hosts than may try to submit many analysis requests
or otherwise flood the system.

Each backend engine runs in a Xen virtualized con-
tainer, which offers significant advantages in terms of
isolation and scalability. Given the numerous vulnera-
bilities in existing antivirus software discussed in Sec-
tion 2, isolation of the antivirus engines from the rest of
the system is vital. If one of the antivirus engines in the
backend is targeted and successfully exploited by a mali-
cious candidate file, the virtualized container can simply
be disposed of and immediately reverted to a clean snap-
shot. As for scalability, virtualized containers allows the
network service to spin up multiple instances of a partic-
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Figure 4: Screen captures of the detection engine VM monitoring interface (a) and the web management portal which

provides access to forensic data and threat reports (b).

ular engine when demand for its services increase.

Our current implementation employs 12 engines: 10
traditional antivirus engines (Avast, AVG, BitDefender,
ClamAV, F-Prot, F-Secure, Kaspersky, McAfee, Syman-
tec, and Trend Micro) and 2 behavioral engines (Nor-
man Sandbox and CWSandbox). The exact version of
each detection engine is listed in Figure 1(a). 9 of the
backend engines run in a Windows XP environment us-
ing Xen’s HVM capabilities while the other 3 run in a
Gentoo Linux environment using Xen domU paravirtu-
alization. Implementing each particular engine for the
backend is a simple task and extending the backend with
additional engines in the future is equally as simple. For
reference, the amount of code required for each engine is
42 lines of python code on average with a median of 26
lines of code.

5.3 Management Interface

The third component is a management interface which
provides access to the forensics archive, policy enforce-
ment, alerting, and report generation. These inter-
faces are exposed to network administrators via a web-
based management interface. The web interface is im-
plemented using Cherrypy, a python web development
framework. A screen capture of the dashboard of the
management interface is depicted in Figure 4.

The centralized management and network-based ar-
chitecture allows for administrators to enforce network-
wide policies and define alerts when those policies are
violated. Alerts are defined through a flexible specifica-
tion language consisting of attributes describing an ac-
cess request from the host agent and boolean predicates
similar to an SQL WHERE clause. The specification
language allows for notification for triggered alerts (via
email, syslog, SNMP) and enforcement of administrator-
defined policies.

For example, network administrators may desire to
block certain applications from being used on end hosts.
While these unwanted applications may not be explic-
itly malicious, they may have a negative effect on host or
network performance or be against acceptable use poli-
cies. We observed several classes of these potentially
unwanted applications in our production deployment in-
cluding P2P applications (uTorrent, Limewire, etc) and
multi-player gaming (World of Warcraft, online poker,
etc). Other policies can be defined to reinforce prudent
security practices, such as blocking the user from execut-
ing attachments from an email application.

6 Evaluation

In this section, we provide an evaluation of the proposed
architecture through two distinct sources of data. The
first source is a dataset of malicious software collected
over a period of a year. Using this dataset, we evaluate
the effectiveness of N-version protection and retrospec-
tive detection. We also utilize this malware dataset to
empirically quantify the size of vulnerability window.

The second data source is derived from a production
deployment of the system on a campus network in com-
puter labs spanning multiple departments for a period of
over 6 months. We use the data collected from this de-
ployment to explore the performance characteristics of
CloudAV. For example, we analyze the number of files
handled by the network service, the utility of the caching
system, and the time it takes the detection engines to ana-
lyze individual files. In addition, we use deployment data
to demonstrate the forensics capabilities of the approach.
We detail two real-world case studies from the deploy-
ment, one involving an infection by malicious software
and one involving a suspicious, yet legitimate executable.
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Engines || 3 Months | 1 Month | 1 Week
1 73.9% 63.1% 59.6%
2 87.7% 81.0% 77.6%
3 92.0% 87.8% 84.8%
4 93.8% 90.9% 88.4%
5 94.8% 92.4% 90.5%
6 95.4% 93.4% 91.8%
7 95.9% 94.0% 92.8%
8 96.2% 94.5% 93.5%
9 96.5% 94.8% 94.0%
10 96.7% 95.0% 94.4%
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Figure 5: The average detection coverage for the various datasets (a) and the continuous coverage over time (b) when

a given number of engines are used in parallel.

6.1 Malware Dataset Results

The first component of the evaluation is based on a mal-
ware dataset obtained through Arbor Network’s Arbor
Malware Library (AML) [20]. AML is composed of mal-
ware collected using a variety of techniques such as dis-
tributed darknet honeypots, spam traps, and honeyclient
spidering. The use of a diverse set of collection tech-
niques means that the malware samples are more rep-
resentative of threats faced by end hosts than malware
datasets collected using only a single collection method-
ology such as Nepenthes [3]. The AML dataset used in
this paper consists of 7220 unique malware samples col-
lected over a period of one year (November 12th, 2006 to
November 11th, 2007). An average of 20 samples were
collected each day with a standard deviation of 19.6 sam-
ples.

6.1.1 N-Version Protection

We used the AML malware dataset to assess the effec-
tiveness of a set of heterogeneous detection engines. Fig-
ure 5(a) and (b) show the overall detection rate across dif-
ferent time ranges of malware samples as the number of
detection engines is increased. The detection rates were
determined by looking at the average performance across
all combinations of N engines for a given N. For exam-
ple, the average detection rate across all combinations of
two detection engines over the most recent 3 months of
malware was 87.7%.

Figure 5(a) demonstrates how the use of multiple het-
erogeneous engines allows CloudAV to significantly im-
prove the aggregate detection rate. Figure 5(b) shows the
detection rate over malware samples ranging from one
day old to one year old. The graph shows how using

ten engines can increase the detection rate for the entire
year-long AML dataset as high as 98%.

The graph also reveals that CloudAV significantly im-
proves the detection rate of more recent malware. When
a single antivirus engine is used, the detection rate de-
grades from 82% against a year old dataset to 52%
against a day old dataset (a decrease of 30%). How-
ever, using ten antivirus engines the detection coverage
only goes from 98% down to 88% (a decrease of only
10%). These results show that not only do multiple en-
gines complement each other to provide a higher detec-
tion rate, but the combination has resistance to coverage
degradation as the encountered threats become more re-
cent. As the most recent threats are typically the most
important, a detection rate of 88% versus 52% is a sig-
nificant advantage.

Another noticeable feature of Figure 5 is the decrease
in incremental coverage. Moving from 1 to 2 engines
results in a large jump in detection rate, moving from
2 to 3 is smaller, moving from 3 to 4 is even smaller,
and so on. The diminishing marginal utility of additional
engines shows that a practical balance may be reached
between detection coverage and licensing costs, which
we discuss further in Section 7.

In addition to the averages presented in Figure 5, the
minimum and maximum detection coverage for a given
number of engines is of interest. For the one week time
range, the maximum detection coverage when using only
a single engine is 78.6% (Kaspersky) and the minimum
is 39.7% (Avast). When using 3 engines in parallel,
the maximum detection coverage is 93.6% (BitDefender,
Kaspersky, and Trend Micro) and the minimum is 69.1%
(ClamAY, F-Prot, and McAfee). However, the optimal
combination of antivirus vendors to achieve the most
comprehensive protection against malware may not be
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a simple measure of total detection coverage. Rather, a
number of complex factors may influence the best choice
of detection engines, including the types of threats most
commonly faced by the hosts being protected, the algo-
rithms used for detection by a particular vendor, the ven-
dor’s response time to 0-day malware, and the collection
methodology and visibility employed by the vendor to
collect new malware.

6.2 Retrospective Detection

We also used the AML malware dataset to understand the
utility of retrospective detection. Recall that retrospec-
tive detection is the ability to use historical information
and archived files stored by CloudAV to retrospectively
detect and identify hosts infected that with malware that
has previously gone undetected. Retrospective detection
is an especially important post-infection defense against
0-day threats and is independent of the number or vendor
of antivirus engines employed. Imagine a polymorphic
threat not detected by any antivirus or behavioral engine
that infects a few hosts on a network. In the host-based
antivirus paradigm, those hosts could become infected,
have their antivirus software disabled, and continue to be
infected indefinitely.

In the proposed system, the infected file would be
sent to the network service for analysis, deemed clean,
archived at the network service, and the host would be-
come infected. Then, when any of the antivirus ven-
dors update their signature databases to detect the threat,
the previously undetected malware can be re-scanned
in the network service’s archive and flagged as mali-
cious. Instantly, armed with this new information, the
network service can identify which hosts on the network
have been infected in the past by this malware from its
database of execution history and notify the administra-
tors with detailed forensic information.

Retrospective detection is especially important as fre-
quent signature updates from vendors continually add
coverage for previously undetected malware. Using our
AML dataset and an archive of a year’s worth of McAfee
DAT signature files (with a one week granularity), we de-
termined that approximately 100 new malware samples
were detected each week on average (with a standard de-
viation of 57) by the McAfee updates. More importantly,
for those samples that were eventually detected by a sig-
nature update (5147 out of 7220), the average time from
when a piece of malware was observed to when it was
detected (i.e. the vulnerability window) was approxi-
mately 48 days. A cumulative distribution function of
the days between observation and detection is depicted
in Figure 6.
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Figure 6: Cumulative distribution function depicting the
number of days between when a malware sample is ob-
served and when it is first detected by the McAfee an-
tivirus engine.

6.3 Deployment Results

With the aid of network operations and security staff we
deployed CloudAV across a large campus network. In
this section, we discuss results based on the data col-
lected as a part of this deployment.

6.3.1 Executable Events

One of the core variables that impacts the resource re-
quirements of the network service is the rate at which
new files must be analyzed. If this rate is extremely high,
extensive computing resources will be required to handle
the analysis load. Figure 7 shows the number of total ex-
ecution events and unique executables observed during a
one month period in a university computing lab.

Figure 7 shows that while the total number of executa-
bles run by all the systems in the lab is quite large (an
average of 20,500 per day), the number of unique exe-
cutables run per day is two orders of magnitude smaller
(an average of 217 per day). Moreover, the number of
unique executables is likely inflated due to the fact that
these machines are frequently used by students to work
on computer science class projects, resulting in a large
number of distinct executables with each compile of a
project. A more static, non-development environment
would likely see even less unique executables.

We also investigated the origins of these executables
based on the file path of 1000 unique executables stored
in the forensics archive. Table 1 shows the break down
of these sources. The majority of executables originate
from the local hard drive but a significant portion were
launched from various network sources. Executables
from the temp directory often indicate that they were
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Figure 7: Executable launches (a) and unique executable launches (b) per day over a one month period in a represen-
tative sample of 50 machines in the deployment.

Program Files 22.3%

Local Drives Temp Directory 14.2%
52.4% Windows Directory 13.4%
Other 2.4%

Engineering Apps 23.6%

Network Drives | User Desktop Shares | 9.3%
43.3% User AFS Shares 8.3%
Other 2.1%

External Media | USB Flash 2.4%
4.4% CDROM Drive 2.0%

Table 1: A distribution of the sources of 1000 executa-
bles observed in during the deployment of our host agent
over a six-month period.

downloaded via a web browser and executed, contribut-
ing even more to networked origins. In addition, a non-
trivial number of executables were introduced to the sys-
tem directly from external media such as a CDROM
drive and USB flash media. This diversity exemplifies
the need for a host agent that is capable of acquiring files
from a variety of sources.

6.3.2 Caching and Performance

A second important variable that determines the scalabil-
ity and performance of the system is the cache hit rate. A
hit in the local cache can prevent network requests, and
a hit in the remote cache can prevent unnecessary files
transfers to the network service. The hosts instrumented
as a part of the deployment were heavily loaded Win-

dows XP workstations. The Windows Start Menu con-
tained over 250 executable applications including a wide
range of internet, multimedia, and engineering packages.

Our results indicate that 10 processes were launched
from when the host agent service loads to when the login
screen appears and another 52 processes were launched
before the user’s desktop loaded. As a measure of over-
head, we measured the number of bytes transferred be-
tween a specific client and network service under dif-
ferent caching conditions. With a warm remote cache,
the boot-up process took 8.7 KB and the login process
took 46.2 KB. In the case of a cold remote cache, which
would only ever occur a single time when the first host in
the network loaded for the first time, the boot-up process
took 406 KB and the login process took 12.5 MB. For
comparison, the Active Directory service installed on the
deployment machines took 171 KB and 270 KB on boot
and login respectively.

It is also possible to evaluate the performance of the
caching system by looking at Figure 7. We recorded al-
most over 615,000 total execution events over one month
yet only observed 1300 unique executables. As a remote
cache miss only happens when a new executable is ob-
served, the remote cache hit rate is approximately 99.8%.
Even more significant, the local cache can be pre-seeded
with known installed software during the host agent in-
stallation process, improving the hit rate further. In the
infrequent case when a miss occurs in both the local and
remote cache, the candidate file must be transferred to
the network service. Network latency, throughput, and
analysis time all affect the user-perceived delay between
when a file is acquired by the host agent and a threat
report is returned by the network service. As local net-
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works usually have low latencies and high bandwidth,
the analysis time of files will often dominate the network
latency and throughput delay. The average time for a
detection engine to analyze a candidate file in the AML
dataset was approximately 1.3 seconds with a standard
deviation of 1.8 seconds.

6.3.3 Forensics Case Studies

We review two case studies from the deployment
concerning two real-world events that demonstrate the
utility of the forensics archive.

Malware Case Study: While running the host agent in
transparent mode in the campus deployment, the Clou-
dAV system alerted us to a candidate executable that had
been marked as malicious by multiple antivirus engines.
It is important to note that this malicious file success-
fully evaded the local antivirus software (McAfee) that
was installed along side our host agent. Immediately, we
accessed the management interface to view the forensics
information associated with the tracked execution event
and runtime behavioral results provided the two behav-
ioral engines employed in our network service.

The initial executable launched by the user was
warcraft3keygen.exe, an apparent serial number
generator for the game Warcraft 3. This executable was
just a bootstrap for the m222 . exe executable which was
written to the Windows temp directory and subsequently
launched via CreateProcess. m222.exe then copied
itself to C:\Program Files\Intel\Intel, made itself
hidden and read-only, and created a fraudulent Windows
service via the Service Control Manager (SCM) called
Remote Procedure Call (RPC) MO to launch itself
automatically at system startup.  Additionally, the
malware attempted to contact command and control
infrastructure through DNS requests for several names
including 50216.ipread.com, but the domains had
already been blackholed.

Legitimate Case Study: In another instance, we were
alerted to a candidate executable that was flagged as sus-
picious by several engines. The executable in question
was the PsExec utility from SysInternals which allows
for remote control and command execution. Given that
this utility can be used for both malicious and legitimate
purposes, it was worthy of further investigation to deter-
mine its origin.

Using the management interface, we were able to im-
mediately drill down to the affected host, user, files, and
environment of the suspected event. The PsExec service
psexesvc.exe was first launched from the parent pro-
cess services.exe when an incoming remote execution
request arrived from the PsExec client. The next execu-

tion event was net . exe with the command line argument
localgroup administrators, which results in the list-
ing of all the users in the local administrators group.

Three factors led us to dismiss the event as legitimate.
First, the operation performed by the net command was
not overtly malicious. Second, the user performing this
action was a known network administrator. Lastly, we
were able to determine the net.exe executable was iden-
tical to the one deployed across all the hosts in the net-
work, ruling out the case where the net.exe program it-
self may have been a trojaned version. While this event
could be seen as a false positive, it is actually an impor-
tant alert that needs to dealt with by a network adminis-
trator. The forensic and historical information provided
through the management interface allows these events to
be dealt with remotely in an accurate and efficient man-
ner.

7 Discussion and Limitations

Moving detection functionality into the network cloud
has other technical and practical implications. In this
section we attempt to highlight limitations of the pro-
posed model and then describe a few resulting benefits.

7.1 User Context and Environment in De-
tection Engines

One important benefit of running detection engines on
end systems is that local context such as user input, net-
work input, operating system state, and the local filesys-
tem are available to aid detection algorithms. For ex-
ample, many antivirus vendors use behavioral detection
routines that monitor running processes to identify mis-
behaving or potentially malicious programs.

While it is difficult to replicate the entire state of end
systems inside the network cloud, there are two general
techniques an in-cloud antivirus system can use to pro-
vide additional context to detection engines. First, de-
tection engines can open or execute files inside a VM
instance. For example, existing antivirus behavioral de-
tection system can be leveraged by opening and running
files inside a virtual antivirus detection instance. A sec-
ond technique is to replicate more of the local end sys-
tem state in the cloud. For example, when a file is sent
to the network service, contextual metadata such as other
running processes can be attached to the submission and
used to aid detection. However, because complete local
state can be quite large, there are many instances where
deploying local detection agents may be required to com-
pliment in-cloud detection.
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7.2 Disconnected Operation

Another challenge with moving detection into the net-
work is that network connectivity is needed to analyze
files. An end host participating in the service may enter
a disconnected state for many reasons including network
outages, mobility constraints, misconfiguration, or denial
of service attacks. In such a disconnected state, the host
agent may not be able to reach the network service to
check the remote cache or to submit new files for analy-
sis. Therefore, in certain scenarios, the end host may be
unable to complete its desired operations.

Addressing the issue of disconnected operation is pri-
marily an issue of policy, although the architecture in-
cludes technical components that aid in continued pro-
tection in a disconnected state. For example, the local
caching employed by our host agent effectively allows
a disconnected user to access files that have previously
been analyzed by the network service. However, for files
that have not yet been analyzed, a policy decision is nec-
essary. Security-conscious organizations may select a
strict policy requiring that users have network connec-
tivity before accessing new applications, while organiza-
tions with less strict security policies may desire more
flexibility. As our host agent works together with host-
based antivirus, local antivirus software installed on the
end host may provide adequate protection for these en-
vironments with more liberal security policies until net-
work access is restored.

7.3 Sources of Malicious Behavior

Malicious code or inputs that cause unwanted program
behavior can be present in many places such as in the
linking, loading, or running of the initial program in-
structions, and the reading of input from memory, the
filesystem, or the network. For example, some types of
malware use external files such as DLLs loaded at run-
time to store and later execute malicious code. In addi-
tion, recent vulnerabilities in desktop software such as
Adobe Acrobat [1] and Microsoft Word [32] have exem-
plified the threat from documents, multimedia, and other
non-executable malcode-bearing file types. Developing
a host agent that handles all these different sources of
malicious behavior is challenging.

The CloudAV implementation described in this paper
focuses on executables, but the host agent can be ex-
tended to identify other file types. To explore the chal-
lenges of extending the system we modified the host
agent to monitor the DLL dependencies for each exe-
cutable acquired by the host agent. Each dependent DLL
of an application is processed similar to the executable it-
self: the local and remote cache is checked to determine
if it has been previously analyzed, and if not, it is trans-

AV Vendor 3 Months | 1 Month | 1 Week
Avast +14.8% +16.6% | +24.6%
AVG +5.9% +6.8% +8.7%
BitDefender +4.0% +5.3% +3.1%
ClamAV +0.0% +0.0% +0.0%
F-Prot +9.9% +15.3% | +12.6%
F-Secure +7.9% +9.3% +15.0%
Kaspersky +1.5% +1.9% +2.3%
McAfee +10.6% +14.0% | +14.2%
Symantec +17.8% +23.0% | +20.6%
Trend Micro +9.8% +11.5% | +12.6%

Table 2: The percentage increase in detection coverage
obtained when ClamAV, a truly free engine, is added to a
deployment with only a single engine.

mitted to the network service for analysis. Extending the
host agent further to handle documents would be as sim-
ple as instructing the host agent to listen for filesystem
events for the desired file types. In fact, the types of files
acquired by the host agent could be dynamically config-
ured at a central location by an administrator to adapt to
evolving threats.

7.4 Detection Engine Licensing

Most of the antivirus and behavioral engines employed
in our architecture required paid licenses. Acquiring li-
censes for all the engines may be infeasible for some or-
ganizations. While we have chosen a large number of
engines for evaluation and measurement purposes, the
full amount may not be necessary to obtain effective pro-
tection. As seen in Figure 5, ten engines may not be
the most effective price/performance point as diminish-
ing returns are observed as more engines are added.

We currently employ four free engines in our sys-
tem for which paid licenses were not necessary: AVG,
Avast, BitDefender, and ClamAV. Using only these four
engines, we are still able to obtain 94.3%, 92.0%, and
88.0% detection coverage over periods of 3 months, 1
month, and 1 week respectively. These detection cover-
age values for the combined free engines exceed every
single vendor in each dataset period.

While the interpretation of the various antivirus li-
censes is unclear in our architecture, especially with re-
gards to virtualization, it is likely that site-wide licenses
would be needed for the “free” engines for a commercial
deployment. Even if only one licensed engine is used,
our system still maintains the benefits such as forensics
and management. As an experiment for this scenario, we
measured how much detection coverage would be gained
by adding the only truly free (GPL licensed) antivirus
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product, ClamAYV, to an existing system employing only
a single engine. Although ClamAV is not an especially
effective engine by itself, it can add a significant amount
of detection coverage, up to a 25% increase when paired
with another engine as seen in Table 2.

7.5 Managing False Positives

The use of parallel detection engines has important im-
plications for the management of false positives. While
multiple detection engines can increase detection cov-
erage, the number of false positives encountered during
normal operation may increase when compared to a sin-
gle engine. While antivirus vendors try hard to reduce
false positives, they can severely impair productivity and
take weeks to be corrected by a vendor.

The proposed architecture provides the ability to ag-
gregate results from different detection techniques which
enables the unique ability to trade-off detection coverage
for false positive resistance. If an administrator wanted
maximal detection coverage they could set the aggrega-
tion function to declare a candidate file unsafe if any de-
tector indicated the file malicious. However, a false pos-
itive in any of the detector would cause the aggregator to
declare the file unsafe.

In contrast, an administrator more concerned about
false positives may set the aggregation function to de-
clare a candidate file unsafe if at least half of the detec-
tors deemed the file malicious. In this way multiple de-
tection engines can be used to reduce the impact of false
positives associated with any single engine.

To explore this trade-off, we collected 12 real-world
false positives that impact different detectors in Clou-
dAV. These files range from printer drivers to password
recovery utilities to self-extracting zip files. We defined
a threshold, or confidence index, of the number of en-
gines required to detect a file before deeming it unsafe.
For each threshold value, we measured the number of
remaining false positives and also the corresponding de-
tection rate of true positives.

The results of this experiment are seen in Table 3. Ata
threshold of 4 engines, all of the false positives are elim-
inated while only decreasing the overall detection cover-
age by less than 4%. As this threshold can be adjusted at
any time via the management interface, it can set by an
administrator based on the perceived threat model of the
network and the actual number of false positives encoun-
tered during operation.

A second method of handling false positives is enabled
by the centralized management of the network service. In
the case of a standard host-based antivirus deployment,
encountering a false positive may mean weeks of delay
and loss of productivity while the antivirus vendor ana-
lyzes the false positive and releases an updated signature

Threshold || False Positives | Detection
1 12 97.7%
2 5 96.3%
3 2 95.2%
4 0 93.9%

Table 3: The number of false positives observed at each
engine threshold and the associated detection coverage
over the full malware dataset.

set to all affected clients. In the network-based architec-
ture, the false positive can be added to a network-wide
whitelist through the management interface in a matter of
minutes by a local administrator. This whitelist manage-
ment allows administrators to alleviate the pain of false
positives and empowers them to cut out the antivirus ven-
dor middle-man and make more informed and rapid de-
cisions about threats on their network.

7.6 Breaking Free of Vendor Lock-in

Finally, a serious issue associated with extensive deploy-
ments of host-based antivirus in a large enterprise or or-
ganizational network is vendor lock-in. Once a partic-
ular vendor has been selected through an organization’s
evaluation process and software is deployed to all depart-
ments, it is often hard to switch to a new vendor at a later
point due to technical, management, and bureaucratic is-
sues. In reality, organizations may wish to switch an-
tivirus vendors for a number of reasons such as increased
detection coverage, decreased licensing costs, or integra-
tion with network management devices.

The proposed antivirus architecture is innately vendor-
neutral as it separates the acquisition of candidate files
on the end host from the actual analysis and detection
process performed in the network service. Therefore,
even if only one detection engine is employed in the net-
work service, a network administrator can easily replace
it with another vendor’s offering if so desired, without an
upheaval of existing infrastructure.

8 Conclusion

To address the ever-growing sophistication and threat of
modern malicious software, we have proposed a new
model for antivirus deployment by providing antivirus
functionality as a network service using N-version pro-
tection. This novel paradigm provides significant ad-
vantages over traditional host-based antivirus including
better detection of malicious software, enhanced foren-
sics capabilities, retrospective detection, and improved
deployability and management. Using a production im-
plementation and real-world deployment of the CloudAV
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platform, we evaluated the effectiveness of the proposed
architecture and demonstrated how it provides signifi-
cantly greater protection of end hosts against modern
threats.

In the future, we plan to investigate the application
of N-version protection to intrusion detection, phishing,
and other realms of security that may benefit from het-
erogeneity. We also plan to open our backend analysis
infrastructure to security researchers to aid in the detec-
tion and classification of collected malware samples.

Acknowledgments

This work was supported in part by the Department of Home-
land Security (DHS) under contract number NBCHC060090
and by the National Science Foundation (NSF) under contract
number CNS 0627445.

References

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]
(12]

[13]

Adobe Systems Incorporated.  Apsb07-18: Adobe reader
and acrobat vulnerability. http://www.adobe.com/support/
security/bulletins/apsb07-18.html, 2007.

Algirdas Avizienis. The n-version approach to fault-tolerant soft-
ware. I[EEE Transactions on Software Engineering, 1985.

Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dorn-
seif, and Felix Freiling. The nepenthes platform: An efficient ap-
proach to collect malware. In 9th International Symposium On
Recent Advances In Intrusion Detection. Springer-Verlag, 2006.

Josh Ballard. An Eye on the Storm: Inside the Storm Epidemic.
41st Meeting of the North Americian Network Operators Group,
October 2007.

Barracuda Networks. Barracuda spam firewall. http://www.
barracudanetworks.com, 2007.

Carsten Willems and Thorsten Holz. Cwsandbox. http://www.
cwsandbox.org/, 2007.

Cloudmark. Cloudmark authority anti-virus.
cloudmark.com, 2007.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza Bas-
rai, and Peter M. Chen. ReVirt: Enabling intrusion analysis
through virtual-machine logging and replay. In Proceedings of
the 2002 Symposium on Operating Systems Design and Imple-
mentaiton (OSDI), December 2002.

F-Secure Corporation. F-secure mobile anti-virus.
mobile.f-secure.com/, 2007.

http://www.

http://

Gartner, Inc. Forecast: Security software worldwide, 2006-
2011, update. http://www.gartner.com/DisplayDocument?
ref=g_search&id=510567&subref=ad%vsearch, 2007.

Hispasec Sistemas. Virus total. http://virustotal.com, 2004.

Piotr Indyk, Rajeev Motwani, Prabhakar Raghavan, and San-
tosh Vempala. Locality-preserving hashing in multidimensional
spaces. In Proceedings of the twenty-ninth annual ACM sympo-
sium on Theory of computing (STOC 1997), May 1997.

Kaspersky Lab. Kaspersky mobile security. http://usa.
kaspersky.com/products_services/antivirus-mobile.
php, 2007.

[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Samuel T. King and Peter M. Chen. Backtracking intrusions. In
Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP’03), Bolton Landing, NY, USA, 2003.

Abhishek Kumar, Vern Paxson, and Nicholas Weaver. Exploit-
ing underlying structure for detailed reconstruction of an internet-
scale event. Proceedings of the USENIX/ACM Internet Measure-
ment Conference, October 2005.

Mathias Rauen. madcodehook. http://madshi.net/, 2008.

Microsoft. Microsoft security intelligence report:  July-
december 2006. http://www.microsoft.com/technet/
security/default.mspx, May 2007.

Alexander Moshchuk, Tanya Bragin, Damien Deville, Steven D.
Gribble, and Henry M. Levy. Spyproxy: Execution-based de-
tection of malicious web content. In Proceedings of the 16th
USENIX Security Symposium, August 2007.

Lajos Nagy, Richard Ford, and William Allen. N-version pro-
gramming for the detection of zero-day exploits. In IEEE Topi-
cal Conference on Cybersecurity, Daytona Beach, Florida, USA,
2006.

Arbor Networks. Arbor malware library (AML). http://www.
arbornetworks.com, 2007.

NIST/DHS/US-CERT. National vulnerability database. http:
//nvd.nist.gov/, 2007.

Norman  Solutions. Norman sandbox  whitepaper.
http://download.norman.no/whitepapers/whitepaper_
Norman_SandBox.pdf, 2003.

Jon Oberheide, Evan Cooke, and Farnam Jahanian. Rethink-
ing antivirus: Executable analysis in the network cloud. In 2nd
USENIX Workshop on Hot Topics in Security (HotSec 2007), Au-
gust 2007.

John Ogness. Dazuko: An open solution to facilitate on-access
scanning. Virus Bulletin, 2003.

Niels Provos. Spybye.

spybye, 2007.

Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. Base:
using abstraction to improve fault tolerance. In Proceedings of
the eighteenth ACM symposium on Operating systems principles,
New York, NY, USA, 2001.

SANS. Top-20 2007 security risks.
top20/,2007.

S. Sidiroglou, J. Ioannidis, A.D. Keromytis, and S.J. Stolfo. An
Email Worm Vaccine Architecture. Proceedings of the 1st Infor-
mation Security Practice and Experience Conference (ISPEC),
pages 97-108, 2005.

Stelios Sidiroglou, Angelos Stavrou, and Angelos D. Keromytis.
Mediated overlay services (moses): Network security as a com-
posable service. In Proceedings of the IEEE Sarnoff Symposium,
Princeton, NJ, USA, 2007.

Symantec Corporation. Symantec security advisory (sym06-
010). http://www.symantec.com/avcenter/security/
Content/2006.05.25.html, 2006.

Symantec Corporation. Symantec mobile antivirus for win-
dows mobile. http://www.symantec.com/norton/products/
overview. jsp?pcid=pfepvid=smavwsm, 2007.

http://www.monkey.org/ provos/

http://www.sans.org/

Symantec Security Response Team. Ms word exploit creation
tool. http://www.symantec.com/enterprise/security_
response/weblog/2007/04/ms_%word_exploit_creation_
tool.html, 2007.

Vinod Yegneswaran, Paul Barford, and Somesh Jha. Global intru-
sion detection in the DOMINO overlay system. In Proceedings
of Network and Distributed System Security Symposium (NDSS
’04), San Diego, CA, February 2004.

106

17th USENIX Security Symposium

USENIX Association





