
Towards Semantics for Provenance Security

Stephen Chong
School of Engineering and Applied Sciences

Harvard University

Abstract
Provenance records the history of data. Careless use
of provenance may violate the security policies of data.
Moreover, the provenance itself may be sensitive in-
formation, necessitating restrictions on the use of both
data and provenance to enforce security requirements.
This paper proposes extensional semantic definitions for
provenance security. The semantic definitions require
that provenance information released to the user does not
reveal confidential data, and that neither the provenance
information given to the user, nor the program’s output,
reveal sensitive provenance information.

1 Introduction

The interaction between information security and prove-
nance is complex, and not well understood. When data
manipulated by a system contains confidential informa-
tion, careless use of provenance can lead to violations of
information security. When some or all of the prove-
nance information itself is confidential, care must be
taken with the use of both data and provenance infor-
mation to ensure appropriate security is enforced.

It is an open question what constitutes “appropriate
security” for provenance. Previous work has consid-
ered access control to provenance information (e.g., [4,
1, 2, 7, 6]), but it is unclear what security guarantees this
provides. Preventing unauthorized access to confiden-
tial provenance is insufficient to ensure that confidential
provenance remains confidential. Also, permitting ac-
cess to (non-confidential) provenance may reveal infor-
mation about confidential data.

In this paper, we propose extensional semantic defi-
nitions for provenance security. We require that prove-
nance information released to the user does not reveal
confidential data, and that neither the provenance infor-
mation given to the user nor the program’s output reveal
sensitive provenance information.

Data and provenance can have different security re-
quirements. For example, at the end of the peer review
process, authors are allowed to know the contents of the
reviews, but are typically not allowed to know the iden-
tity of the reviewers. Thus, the data (the reviews) are
public, but the provenance (who wrote the reviews) is
confidential. Another example, due to Braun et al. [1],
is a letter of recommendation, where the subject of the
letter is typically not allowed to know the contents, but is
permitted to know the author. In this case, the data (the
contents of the letter) are confidential, but the provenance
(who authored the letter) is public.

Many applications manipulate both public and confi-
dential data, and data with different provenance security
requirements. In such settings, it is not always clear what
provenance information a given user is allowed to ac-
cess. Some supposedly public provenance may reveal
confidential data, and some supposedly public data may
reveal confidential provenance. This work provides a se-
mantic basis for determining whether provenance infor-
mation provided to a user satisfies the security policies
of provenance and data.

We build on the work of Cheney, Acar, and Ahmed
[3], who propose provenance traces as a semantic foun-
dation for provenance in databases. Provenance traces
explain a program’s execution by showing how the out-
put was produced from the inputs. However, a complete
explanation of a program’s execution may violate the se-
curity of data or provenance: it may reveal confidential
data or confidential provenance. Thus, to respect the se-
curity of data and provenance, it may not be possible to
provide a full provenance trace to a user. We allow parts
of a provenance trace to be elided, and define conditions
to ensure that the provenance trace contains as much in-
formation as possible, while still respecting the security
of both data and provenance.

The rest of this paper is structured as follows. Sec-
tion 2 presents syntax and semantics of a simple lan-
guage, and defines provenance traces for it. Section 3

1

σ, l⇐e⇓σ[l 7→ σ(e)]
l 6∈ dom(σ)

σ, l′⇐c0⇓σ′ σ′, l⇐c1[l
′/x]⇓σ′′

σ, l⇐ let x = c0 in c1⇓σ′′ l′ 6∈ dom(σ)

σ, l⇐ci⇓σ′

σ, l⇐ if l′ then c0 else c1⇓σ′ i =

(
0 if σ(l′) 6= 0

1 otherwise

Figure 1: Operational semantics

defines security policies for data and provenance. Sec-
tion 4 defines semantic conditions for provenance secu-
rity. Section 5 discusses future work.

2 Language

We use a simple calculus that is sufficient to investigate
issues in provenance security. We expect the results of
this paper to apply in a straightforward manner to richer
languages. Programs c include let-commands, condi-
tionals, and expressions e. We assume that expressions
contain variables x, literal values v, and locations l, but
leave them otherwise unspecified.

c ::= e | let x = c0 in c1 | if x then c0 else c1

e ::= x | v | l | . . .

We define a large-step operational semantics for the
language. The operational semantics uses stores, which
are functions from locations to values. Following the no-
tation of Cheney et al. [3], the judgment σ, l ⇐ c ⇓ σ′

means that given initial store σ, the program c evaluates
to store σ′, and the result of the program is σ′(l); we call
l the output location, as this is where the result is stored.
Inference rules for the semantics are given in Figure 1.
We write σ(e) for the result of evaluating e with all loca-
tions l replaced by σ(l). We write σ[l 7→ v] for the store
that maps location l to value v and otherwise behaves
exactly like σ. We write c[l/x] for the result of substitut-
ing location l for every occurrence of free variable x in
program c.

Note that a value stored in a location is never over-
written: if σ, l ⇐ c ⇓ σ′ then l 6∈ dom(σ) and for all
l′ ∈ dom(σ), σ(l′) = σ′(l′). Also, c will read the value
of location l in initial store σ only if l appears in c. We
write loc(c) for the set of locations that appear in c, and
refer to loc(c) as the input locations of c.

2.1 Provenance traces
A provenance trace summarizes the execution of a pro-
gram. The provenance traces used in this paper are sim-

ilar to those of Cheney et al. [3], but we permit parts of
the trace to be elided, indicated with the symbol ?. The
syntax of provenance traces is:

T ::= l← e | T0;T1 | cond(l, v, T)
| l← ? | cond(?, v, T) | cond(l, ?, ?) | ?

Assignment trace l ← e records that new location l
was created, and the value assigned to l was the evalu-
ation of expression e. Partial assignment trace l ← ?
records that new location l was created, but does not
record the provenance of the value stored there. Sequen-
tial composition trace T0;T1 records that first trace T0

was performed, and then trace T1. Conditional trace
cond(l, v, T) records that a conditional command was
executed: location l was evaluated to determine which
branch to take, v ∈ {0, 1} indicates which branch was
taken, and trace T records the evaluation of the branch.
The partial conditional trace cond(?, v, T) records which
branch was taken, and the trace for that branch, but does
not record which location was used as the test. Similarly,
the partial conditional trace cond(l, ?, ?) records which
location was used as the test, but not the result of the test
or the trace for the appropriate branch. Finally, unknown
trace ? records no information about the execution.

Given evaluation σ, l⇐c⇓σ′ and provenance trace T ,
trace consistency judgment σ, l⇐c⇓σ′ � T states that
T is consistent with the evaluation. Figure 2 presents in-
ference rules for the judgment. Intuitively, elided trace
? is consistent with any evaluation, partial assignment
trace l ← ? is consistent with any assignment to loca-
tion l, and the partial conditional traces cond(?, v, T) and
cond(l, ?, ?) are consistent with conditional commands
regardless of, respectively, the location tested, and the
branch taken. Assignment trace l ← e is consistent with
only command e. Conditional trace cond(l, v, T) is con-
sistent with conditional command if l then c0 else c1 pro-
vided that branch cv was evaluated and T is consistent
with that evaluation. Finally, trace T ;T ′ is consistent
with command let x = c0 in c1 if T is consistent with
the evaluation of c0 and T ′ is consistent with the evalu-
ation of c1, where variable x is replaced with the output
location for the evaluation of c0.

Trace consistency is similar to consistency as defined
by Cheney et al. [3]: both require that the trace describe
what happened during the execution. Cheney et al. [3]
also define fidelity, which requires that traces contain
enough information to describe how the program would
have executed with different inputs. We ignore fidelity in
this paper: traces with parts elided for security purposes
may not contain enough information to fully reconstruct
the execution of a program, and thus will not satisfy fi-
delity.1

1Our disregard of fidelity is also the reason our conditional traces

2

σ, l⇐e⇓σ′ � l← e

σ, l′⇐c0⇓σ′ � T σ′, l⇐c1[l
′/x]⇓σ′′ � T ′

σ, l⇐ let x = c0 in c1⇓σ′′ � T ;T ′ σ, l⇐e⇓σ′ � l← ?

σ, l⇐cv ⇓σ′ � T v =


0 if σ(l′) 6= 0
1 otherwise

σ, l⇐ if l′ then c0 else c1⇓σ′ � cond(l′, v, T)

σ, l⇐cv ⇓σ′ � T v =


0 if σ(l′) 6= 0
1 otherwise

σ, l⇐ if l′ then c0 else c1⇓σ′ � cond(?, v, T)

σ, l⇐cv ⇓σ′ � T v =


0 if σ(l′) 6= 0
1 otherwise

σ, l⇐ if l′ then c0 else c1⇓σ′ � cond(l′, ?, ?)
σ, l⇐c⇓σ′ � ?

Figure 2: Trace consistency σ, l⇐c⇓σ′ � T

T ≤ T ? ≤ T
T0 ≤ T1

cond(l, v, T0) ≤ cond(l, v, T1)

l← ? ≤ l← e

T0 ≤ T1

cond(?, v, T0) ≤ cond(l, v, T1)

T0 ≤ T1 T ′
0 ≤ T ′

1

T0;T
′
0 ≤ T1;T

′
1 cond(l, ?, ?) ≤ cond(l, v, T)

Figure 3: Information order ≤ on traces

We define an information order≤ on traces. Inference
rules for the relation are given in Figure 3. Intuitively,
if T0 ≤ T1 then T0 contains less information about an
evaluation than T1. The following theorem shows that if
T0 contains less information than T1, and T1 is consistent
with an evaluation, then so is T0.

Theorem 1 Given evaluation σ, l⇐c⇓σ′ and traces T0

and T1 such that T0 ≤ T1, if σ, l⇐ c ⇓ σ′ � T1 then
σ, l⇐c⇓σ′ � T0.

We say that input location l affects the result of pro-
gram c if the result produced by c depends on the value
stored in location l. That is, changing the value stored in
l has the potential to change the result of the program.

Definition 1 Given initial store σ and location l ∈
dom(σ)∩ loc(c), l affects the result of program c if there
exists values v0 and v1 such that σ[l 7→ v0], l′⇐ c ⇓ σ′

0

and σ[l 7→ v1], l′⇐c⇓σ′
1 and σ′

0(l′) 6= σ′
1(l′).

We write depend(c, σ) for the set of all locations in σ
that affect the result of c.

A location may appear in a (consistent) provenance
trace of an evaluation of c even if it does not affect the
result of c. For example, given the program l0 × 0 + l1,
location l0 does not affect the result, and l1 does. How-
ever, both locations are in the trace l2 ← l0 × 0 + l1,
which is consistent with the program’s evaluation.

cond(l, v, T) have fewer annotations than those of Cheney et al. [3].

3 Security policies

In this section we define security policies for locations.
The security policies declare whether the data stored
in a location is confidential data or public data, and
whether the location has confidential provenance or pub-
lic provenance. A location has confidential provenance if
it should not be known whether this location affects the
result of the computation.

We assume a set of security levels S with a partial or-
der v. If s0 v s1 then security level s1 is at least as
restrictive as security level s0. For the rest of the pa-
per we use the two element lattice S = {L,H} where
L v H . Level H represents high confidentiality, or se-
cret, and level L represents low confidentiality, or public.
The results generalize to arbitrary sets S.

Policies for locations are of the form s0 locs1 where
s0, s1 ∈ S . The level s0 is the data security level, the
security level to enforce on the contents of a location; s1

is the provenance security level and is the security level
to enforce on information about whether the location af-
fects the result of the evaluation.

A security context for program c is a function Γ :
loc(c) → Policy that assigns security policies to the
input locations of c. In this paper, we are concerned with
enforcing security policies of input locations; determin-
ing and enforcing security policies on intermediate and
output locations is left to future work.

For convenience we use Γ to define some sets of lo-
cations. Set DataLowΓ are locations in dom(Γ) with
data security level L; set DataHighΓ are locations in
dom(Γ) with data security level H (or equivalently, the
locations not in DataLowΓ). Set ProvHighΓ are lo-
cations in dom(Γ) with provenance security level H .

DataLowΓ = {l ∈ dom(Γ) | Γ(l) = L locs, s ∈ S}
DataHighΓ = {l ∈ dom(Γ) | l 6∈ DataLowΓ}
ProvHighΓ = {l ∈ dom(Γ) | Γ(l) = s locH , s ∈ S}

3

4 Provenance security

Given program c, initial store σ, and security context
Γ, we assume that there is a low observer, an agent
that can observe the contents of any input location l ∈
DataLowΓ. The low observer does not directly observe
the evaluation of c, but given evaluation σ, l⇐c⇓σ′, the
low observer can observe σ′(l), the content of output lo-
cation l. The observer is then given a provenance trace
T that is consistent with the evaluation σ, l ⇐ c ⇓ σ′.
(The observer could be given the entire provenance trace
T , or T could be used to determine the access control
policy for the observer’s access to provenance.)

To ensure the security policies of input locations are
respected, we must define security requirements that
ensure neither the program result nor the provenance
trace reveal anything about the values stored in locations
DataHighΓ or which locations in ProvHighΓ affect
the result of the program. Ideally, the trace T should be
maximal in the information ordering ≤ while satisfying
the security requirements.

In this paper we propose extensional security require-
ments that restrict what information is revealed by the
provenance trace, and that ensure the program result re-
spects the provenance security policies. We do not con-
sider what information the program result reveals about
confidential input values; much work in language-based
security considers this problem [5].

A naive attempt to ensure that the trace T does not
reveal which locations in ProvHighΓ affect the result
is to require that T does not contain any location in
ProvHighΓ, but allow it to contain any other location,
i.e., to require that loc(T) ∩ ProvHighΓ = ∅, where
loc(T) is the set of locations that appear in trace T . This
is analogous to using access control to prevent access to
parts of the provenance marked as sensitive, but allowing
all other accesses.

However, consider the following program.

let x = l0 in
if x then (l1 xor l2) else (l1 xor l3)

where the policies of locations are

Γ(l0) = L locL Γ(l1) = H locL

Γ(l2) = H locH Γ(l3) = H locH .

Note that the low observer is allowed to know the value
stored in location l0, but not the values stored in other lo-
cations. The low observer is permitted to learn whether
l1 affects the result, but not whether l2 or l3 do. Sup-
pose that the value in location l0 is 42. Then trace
T = l4 ← l0; cond(l4, 0, ?) is consistent with the pro-
gram evaluation, and does not contain any locations
from ProvHighΓ. However, given trace T (and as-
suming the observer knows the program text) the low

observer knows which branch of the if command was
taken, and thus can infer that location l2 affects the re-
sult, violating the security policy of l2. Thus we reject
loc(T)∩ProvHighΓ = ∅ as a suitable security require-
ment.

We propose instead provenance security which re-
quires that for any location l ∈ ProvHighΓ, the prove-
nance trace T is consistent with two evaluations, one in
which l affects the result, and one in which l does not af-
fect the result. The two evaluations must have the same
values in the low-observable input locations, and must
produce the same result. This ensures that neither the
provenance trace nor the result reveals which locations
in ProvHighΓ affect the result.

Definition 2 (Provenance security) Provenance trace
T satisfies provenance security for σ0, l⇐ c⇓σ′

0 exactly
when:

σ0, l⇐c⇓σ′
0 � T and

for all l′ ∈ ProvHighΓ there is a store σ1 such that
σ0(l′′) = σ1(l′′) for all l ∈ DataLowΓ and
σ1, l⇐c⇓σ′

1 and σ′
0(l) = σ′

1(l) and
σ1, l⇐c⇓σ′

1 � T and
l′ ∈ depend(c, σ0) ⇐⇒ l′ 6∈ depend(c, σ1).

For any location l ∈ ProvHighΓ, provenance secu-
rity provides plausible deniability: if l affects the result,
then there is an evaluation in which l does not affect the
result, and that evaluation produces the same result, is
consistent with trace T , and has the same values in the
low-observable input locations. Similarly, if l does not
not affect the result, then there is an evaluation in which
l affects the result, and that evaluation produces the same
result, is consistent with trace T , and has the same values
in the low-observable input locations.

Returning to the example above, we see that the
trace T = l4 ← l0; cond(l4, 0, ?) does not sat-
isfy provenance security for the program let x =
l0 in if x then (l1 xor l2) else (l1 xor l3), since only eval-
uations that execute the l1 xor l2 branch are compati-
ble with T , and thus T reveals that the result depends
on l2. Indeed, there is no trace that satisfies prove-
nance security for any evaluation of this command, since
l0 ∈ DataLowΓ, and so the low observer always knows
which branch is executed.

Implicit in provenance security is the conservative as-
sumption that the low observer knows the program c
that was evaluated. If we make the stronger (and po-
tentially dangerous2) assumption that the low observer
does not know some parts of the program then we can
use a weaker security condition: for every location in

2Security by obscurity is generally regarded as an inadequate mech-
anism to ensure security.

4

ProvHighΓ there is both an initial store σ1 and a pro-
gram c′ such that the evaluation of c′ from initial store
σ1 satisfies the appropriate conditions, and c′ is appro-
priately similar to c. Depending on the application, this
weaker security condition may be appropriate. For ex-
ample, if the program is executing on a trusted server,
and the observer does not have access to either the source
code or binary executable, then it may be reasonable to
assume that the observer does not know the program be-
ing evaluated, and cannot distinguish programs that take
approximately the same amount of time to execute.

Provenance security ensures that neither the result nor
the provenance trace reveal information about which lo-
cations in ProvHighΓ affect the result. Additionally,
the provenance trace should not reveal secret input data
inappropriately. For example, consider the program

let x = l0 mod 2 in
if x then 0 else 0

where Γ(l0) = H locL. Note that the output of the pro-
gram does not reveal the secret input data stored in loca-
tion l0. However, the trace T = l1 ← l0 mod 2; l2 ←
cond(l, 1, ?) is consistent with an evaluation of the pro-
gram, satisfies provenance security, but inappropriately
reveals that the value stored in l0 is even.

We propose the security condition data security to en-
force that provenance does not reveal confidential data.
Data security requires that a provenance trace does not
reveal anything about values stored in DataHighΓ lo-
cations: trace T must be consistent with all evaluations
from initial states with identical values in low-observable
input locations.

Definition 3 (Data security) Provenance trace T satis-
fies data security for σ0, l⇐c⇓σ′

0 exactly when:

σ0, l⇐c⇓σ′
0 � T and

for all σ1 such that
σ0(l′) = σ1(l′) for all l′ ∈ DataLowΓ

σ1, l⇐c⇓σ′
1 implies σ1, l⇐c⇓σ′

1 � T .

Like provenance security, data security provides plau-
sible deniability: for any evaluation of the command
that is consistent with trace T , there is another evalua-
tion that is also consistent with T where the public in-
put values are the same, but the secret input values are
completely different. Returning to the example above,
the trace T = l1 ← l0 mod 2; l2 ← cond(l, ?, ?) satis-
fies data provenance for any evaluation of the command
let x = l0 mod 2 in if x then 0 else 0.

5 Future work

The ultimate goal of this work is to provide precise,
useful, and intuitive, semantic definitions of provenance

security, and efficient mechanisms for enforcing them.
This paper proposes some semantic definitions for prove-
nance security. Much work remains, including construc-
tive techniques for producing maximal provenance traces
that satisfy the security conditions, and proof techniques
for proving provenance security and data security for
all possible evaluations of a program. Extensions to
this work include defining other elisions of provenance
traces, and considering the impact of treating provenance
as first-class entities, allowing the program to inspect
provenance as it executes.

This work is compatible with the use of (discretionary)
access control to restrict users’ access to provenance: it
provides a semantic basis for determining the access con-
trol policy for provenance information.

In many provenance-aware applications intermediate
results will persist after program execution terminates.
As such, it is important to determine appropriate security
policies and semantic security requirements for interme-
diate results. Currently, this work considers specification
and enforcement of security only for input locations, and
assumes the value in the output location is observable by
the low observer.

Acknowledgments

Thanks to Kim Bruce, Melissa O’Neill, and Chris Stone for
giving useful feedback on an earlier version of this work. This
paper was written while visiting the Computer Science Depart-
ments at Pomona College and Harvey Mudd College. Thanks
also to the anonymous reviewers for their useful comments.

References
[1] U. Braun, A. Shinnar, and M. Seltzer. Securing provenance. In

Proceedings of the 3rd USENIX Workshop on Hot Topics in Secu-
rity, 2008.

[2] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang. Secure
scientific workflow provenance querying with security views. In
Proceedings of the Ninth International Conference on Web-Age In-
formation Management, pages 349–356. IEEE Computer Society,
2008.

[3] J. Cheney, U. Acar, and A. Ahmed. Provenance traces.
arXiv:0812.0564v1, December 2008.

[4] R. Hasan, R. Sion, and M. Winslett. The case of the fake Picasso:
Preventing history forgery with secure provenance. In Proceedings
of the 7th USENIX Conference on File and Storage Technologies,
June 2009.

[5] A. Sabelfeld and A. Myers. Language-based information-flow se-
curity. IEEE Journal on Selected Areas in Communications, 21(1):
5–19, Jan. 2003.

[6] C. Sar and P. Cao. Lineage file system. Online at http:
//theory.stanford.edu/˜cao/lineage.

[7] V. Tan, P. Groth, S. Miles, S. Jiang, S. Munroe, S. Tsasakou, and
L. Moreau. Security issues in a SOA-based provenance system.
Lecture Notes in Computer Science, 4145, 2006.

5

http://theory.stanford.edu/~cao/lineage
http://theory.stanford.edu/~cao/lineage

	1 Introduction
	2 Language
	2.1 Provenance traces

	3 Security policies
	4 Provenance security
	5 Future work

