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Abstract

One practical problem with building large scale Bayesian network models is an expo-
nential growth of the number of numerical parameters in conditional probability tables.
Obtaining large number of probabilities from domain experts is too expensive and too time
demanding in practice. A widely accepted solution to this problem is the assumption of
independence of causal influences (ICI) which allows for parametric models that define
conditional probability distributions using only a number of parameters that is linear in
the number of causes. ICI models, such as the noisy-OR and the noisy-AND gates, have
been widely used by practitioners. In this paper we propose PICI, probabilistic ICI, an
extension of the ICI assumption that leads to more expressive parametric models. We
provide examples of three PICI models and demonstrate how they can cope with a com-
bination of positive and negative influences, something that is hard for noisy-OR and
noisy-AND gates.

1 INTRODUCTION

Bayesian networks (Pearl, 1988) have proved
their value as a modeling tool in many distinct
domains. One of the most serious bottlenecks in
applying this modeling tool is the costly process
of creating the model. Although practically ap-
plicable algorithms for learning BN from data
are available (Heckerman, 1999), still there are
many applications that lack quality data and re-
quire using an expert’s knowledge to build mod-
els.

One of the most serious problems related to
building practical models is the large number
of conditional probability distributions needed
to be specified when a node in the graph has
large number of parent nodes. In the case of
discrete variables, which we assume in this pa-
per, conditional probabilities are encoded in the
form of conditional probability tables (CPTs)
that are indexed by all possible combinations
of parent states. For example, 15 binary par-
ent variables result in over 32,000 parameters, a
number that is impossible to specify in a direct

manner. There are two qualitatively different
approaches to avoiding the problem of specify-
ing large CPTs. The first is to exploit inter-
nal structure within a CPT – which basically
means to encode efficiently symmetries in CPTs
(Boutilier et al., 1996; Boutilier et al., 1995).
The other is to assume some model of interac-
tion among causes (parent influences) that de-
fines the effect’s (child node’s) CPT. The most
popular class of model in this category is based
on the concept known as causal independence or
independence of causal influences (ICI) (Heck-
erman and Breese, 1994) which we describe in
Section 2. These two approaches should be
viewed as complementary. It is because they
are able to capture two distinct types of inter-
actions between causes.

In practical applications, the noisy-OR
(Good, 1961; Pearl, 1988) model together with
its extension capable of handling multi-valued
variables, the noisy-MAX (Henrion, 1989),
and the complementary models the noisy-
AND/MIN (D́ıez and Druzdzel, 2002) are the
most often applied ICI models. One of the ob-



vious limitations of these models is that they
capture only a small set of patterns of interac-
tions among causes, in particular they do not
allow for combining both positive and negative
influences. In this paper we introduce an ex-
tension to the independence of causal influences
which allows us to define models that capture
both positive and negative influences. We be-
lieve that the new models are of practical impor-
tance as practitioners with whom we have had
contact often express a need for conditional dis-
tribution models that allow for a combination
of promoting and inhibiting causes.

The problem of insufficient expressive power
of the ICI models has been recognized by prac-
titioners and we are aware of at least two at-
tempts to propose models that are based on the
ICI idea, but are not strictly ICI models. The
first of them is the recursive noisy-OR (Lemmer
and Gossink, 2004) which allows the specifica-
tion of interactions among parent causes, but
still is limited to only positive influences. The
other interesting proposal is the CAST logic
(Chang et al., 1994; Rosen and Smith, 1996)
which allows for combining both positive and
negative influences in a single model, however
detaches from a probabilistic interpretation of
the parameters, and consequently leads to diffi-
culties with their interpretation and it can not
be exploited to speed-up inference.

The remainder of this paper is organized as
follows. In Section 2, we briefly describe in-
dependence of causal influences. In Section 3
we discuss the amechanistic property of the ICI
models, while in Section 4 we introduce an ex-
tension of ICI – a new family of models – proba-
bilistic independence of causal influences. In the
following two Sections 5 and 6, we introduce two
examples of models for local probability distri-
butions, that belong to the new family. Finally,
we conclude our paper with discussion of our
proposal in Section 7.

2 INDEPENDENCE OF CAUSAL
INFLUENCES (ICI)

In this section we briefly introduce the concept
of independence of causal influences (ICI). First

Figure 1: General form of independence of
causal interactions

however we introduce notation used throughout
the paper. We denote an effect (child) vari-
able as Y and its n parent variables as X =
{X1, . . . ,Xn}. We denote the states of a vari-
able with lower case, e.g. X = x. When it is
unambiguous we use x instead of X = x.

In the ICI model, the interaction between
variables Xi and Y is defined by means of
(1) the mechanism variables Mi, introduced to
quantify the influence of each cause on the effect
separately, and (2) the deterministic function f

that maps the outputs of Mi into Y . Formally,
the causal independence model is a model for
which two independence assertions hold: (1) for
any two mechanism variables Mi and Mj (i 6= j)
Mi is independent of Mj given X1, . . . ,Xn, and
(2) Mi and any other variable in the network
that does not belong to the causal mechanism
are independent given X1, . . . ,Xn and Y . An
ICI model is shown in Figure 1.

The most popular example of an ICI model
is the noisy-OR model. The noisy-OR model
assumes that all variables involved in the inter-
action are binary. The mechanism variables in
the context of the noisy-OR are often referred
to as inhibitors. The inhibitors have the same
range as Y and their CPTs are defined as fol-
lows:

P (Mi = y|Xi = xi) = pi

P (Mi = y|Xi = xi) = 0 . (1)

Function f that combines the individual influ-
ences is the deterministic OR. It is important



to note that the domain of the function defin-
ing the individual influences are the outcomes
(states) of Y (each mechanism variable maps
Range(Xi) to Range(Y )). This means that f

is of the form Y = f(M1, . . . ,Mn), where typ-
ically all variables Mi and Y take values from
the same set. In the case of the noisy-OR model
it is {y, y}. The noisy-MAX model is an ex-
tension of the noisy-OR model to multi-valued
variables where the combination function is the
deterministic MAX defined over Y ’s outcomes.

3 AMECHANISTIC PROPERTY

The amechanistic property of the causal interac-
tion models was explicated by Breese and Heck-
erman, originally under the name of atemporal
(Heckerman, 1993), although later the authors
changed the name to amechanistic (Heckerman
and Breese, 1996). The amechanistic property
of ICI models relates to a major problem of
this proposal — namely the problem of deter-
mining semantic meaning of causal mechanisms.
In practice, it is often impossible to say any-
thing about the nature of causal mechanisms
(as they can often be simply artificial constructs
for the sake of modeling) and therefore they, or
their parameters, can not be specified explicitly.
Even though Heckerman and Breese proposed a
strict definition of the amechanistic property,
in this paper we will broaden this definition
and assume that an ICI model is an amecha-
nistic model, when its parameterization can be
defined exclusively by means of (a subset) of
conditional probabilities P (Y |X) without men-
tioning Mis explicitly. This removes the burden
of defining mechanisms directly.

To achieve this goal it is assumed that one
of the states of each cause Xi is a special state
(also referred to as as the distinguished state).
Usually such a state is the normal state, like
ok in hardware diagnostic systems or absent for
a disease in a medical system, but such asso-
ciation depends on the modeled domain. We
will use * symbol to denote the distinguished
state. Given that all causes Xi are in their dis-
tinguished states, the effect variable Y is guar-
anteed to be in its distinguished state. The idea

is to allow for easy elicitation of parameters of
the intermediate nodes Mi, even though these
can not be observed directly. This is achieved
through a particular way of setting (control-
ling) the causes Xi. Assuming that all causes
except for a single cause Xi are in their dis-
tinguished states and Xi is in some state (not
distinguished), it is easy to determine the prob-
ability distribution for the hidden variable Mi.

Not surprisingly, the noisy-OR model is an
example of an amechanistic model. In this case,
the distinguished states are usually false or ab-
sent states, because the effect variable is guar-
anteed to be in the distinguished state given
that all the causes are in their distinguished
states Xi = xi. Equation 1 reflects the amecha-
nistic assumption and results in the fact that the
parameters of the mechanisms (inhibitors) can
be obtained directly as the conditional proba-
bilities: P (Y = y|x1, . . . , xi−1, xi, xi+1, . . . , xn).
Similarly, the noisy-MAX is an amechanistic
model – it assumes that each parent variable has
a distinguished state (arbitrarily selected) and
the effect variable has a distinguished state. In
the case of the effect variable, the distinguished
state is assumed to be the lowest state (with re-
spect to the ordering relation imposed on the ef-
fect variable’s states). We strongly believe that
the amechanistic property is highly significant
from the point of view of knowledge acquisi-
tion. Even though we introduce a parametric
model instead of a traditional CPT, the amech-
anistic property causes the parametric model to
be defined in terms of a conditional probability
distribution P (Y |X) and, therefore, is concep-
tually consistent with the BN framework. We
believe that the specification of a parametric
model in terms of probabilities has contributed
to the great popularity of the noisy-OR model.

4 PROBABILISTIC ICI

The combination function in the ICI models is
defined as a mapping of mechanisms’ states into
the states of the effect variable Y . Therefore,
it can be written as Y = f(M), where M is
a vector of mechanism variables. Let Qi be
a set of parameters of CPT of node Mi, and



Q = {Q1, . . . , Qn} be a set of all parameters
of all mechanism variables. Now we define the
new family probabilistic independence of causal
interactions (PICI) for local probability distrib-
utions. A PICI model for the variable Y consists
of (1) a set of n mechanism variables Mi, where
each variable Mi corresponds to exactly one par-
ent Xi and has the same range as Y , and (2) a
combination function f that transforms a set of
probability distributions Qi into a single prob-
ability distribution over Y . The mechanisms
Mi in the PICI obey the same independence as-
sumptions as in the ICI. The PICI family is de-
fined in a way similar to the ICI family, with
the exception of the combination function, that
is defined in the form P (Y ) = f(Q,M). The
PICI family includes both ICI models, which
can be easily seen from its definition, as f(M)
is a subset of f(Q,M), assuming Q is the empty
set.

In other words, in the case of ICI for a given
instantiation of the states of the mechanism
variables, the state of Y is a function of the
states of the mechanism variables, while for the
PICI the distribution over Y is a function of
the states of the mechanism variables and some
parameters Q.

Heckerman and Breese (Heckerman, 1993)
identified other forms (or rather properties) of
the ICI models that are interesting from the
practical point of view. We would like to note
that those forms (decomposable, multiple de-
composable, and temporal ICI) are related to
properties of the function f , and can be applied
to the PICI models in the same way as they are
applied to the ICI models.

5 NOISY-AVERAGE MODEL

In this section, we propose a new local distrib-
ution model that is a PICI model. Our goal
is to propose a model that (1) is convenient
for knowledge elicitation from human experts
by providing a clear parameterization, and (2)
is able to express interactions that are impos-
sible to capture by other widely used models
(like the noisy-MAX model). With this model
we are interested in modeling positive and neg-

Figure 2: BN model for probabilistic indepen-
dence of causal interactions, where P (Y |M) =
f(Q,M).

ative influences on the effect variable that has a
distinguished state in the middle of the scale.

We assume that the parent nodes Xi are dis-
crete (not necessarily binary, nor an ordering
relation between states is required), and each of
them has one distinguished state, that we de-
note as x∗

i . The distinguished state is not a
property of a parent variable, but rather a part
of a definition of a causal interaction model — a
variable that is a parent in two causal indepen-
dence models may have different distinguished
states in each of these models. The effect vari-
able Y also has its distinguished state, and by
analogy we will denote it by y∗. The range of
the mechanism variables Mi is the same as the
range of Y . Unlike the noisy-MAX model, the
distinguished state may be in the middle of the
scale.

In terms of parameterization of the mecha-
nisms, the only constraint on the distribution
of Mi conditional on Xi = x∗

i is:

P (Mi = m∗
i |Xi = x∗

i ) = 1

P (Mi 6= m∗
i |Xi = x∗

i ) = 0 , (2)

while the other parameters in the CPT of Mi

can take arbitrary values.

The definition of the CPT for Y is a key el-
ement of our proposal. In the ICI models, the
CPT for Y was by definition constrained to be
a deterministic function, mapping states of Mis
to the states of Y . In our proposal, we define
the CPT of Y to be a function of probabilities



of the Mis:

P (y|x) =

{

∏n
i=1 P (Mi = y∗|xi) for y = y∗

α
n

∑n
i=1 P (Mi = y|xi) for y 6= y∗

where α is a normalizing constant discussed
later. Let q

j∗

i = q∗i . For simplicity of notation

assume that q
j
i = P (Mi = yj|xi), q∗i = P (Mi =

y∗|xi), and D =
∏n

i=1 P (Mi = y∗|xi). Then we
can write:

my
∑

j=1

P (yj|x) = D +

my
∑

j=1,j 6=j∗

α

n

n
∑

i=1

q
j
i =

= D +
α

n

my
∑

j=1,j 6=j∗

n
∑

i=1

q
j
i = D +

α

n

n
∑

i=1

(1 − q∗i ),

where my is the number of states of Y . Since
the sum on the left must equal 1, as it defines
the probability distribution P (Y |x), we can cal-
culate α as:

α =
n(1 − D)

∑n
i=1 (1 − q∗i )

.

The definition above does not define P (Y |M)
but rather P (Y |X). It is possible to calculate
P (Y |M) from P (Y |X), though it is not needed
to use the model. Now we discuss how to ob-
tain the probabilities P (Mi|Xi). Using defini-
tion of P (y|x) and the amechanistic property,
this task amounts to obtaining the probabilities
of Y given that Xi is in its non-distinguished
state and all other causes are in their distin-
guished states (in a very similar way to how the
noisy-OR parameters are obtained). P (y|x) in
this case takes the form:

P (Y = y|x∗
1, . . . , x

∗
i−1, xi, . . . , x

∗
i+1, x

∗
n) =

= P (Mi = y|xi) , (3)

and, therefore, defines an easy and intuitive way
for parameterizing the model by just asking for
conditional probabilities, in a very similar way
to the noisy-OR model. It is easy to notice that
P (Y = y∗|x∗

1, . . . , x
∗
i , . . . , x

∗
n) = 1, which poses

a constraint that may be unacceptable from a
modeling point of view. We can address this
limitation in a very similar way to the noisy-
OR model, by assuming a dummy variable X0

(often referred to as leak), that stands for all
unmodeled causes and is assumed to be always
in some state x0. The leak probabilities are ob-
tained using:

P (Y = y|x∗
1, . . . , x

∗
n) = P (M0 = y) .

However, this slightly complicates the schema
for obtaining parameters P (Mi = y|xi). In
the case of the leaky model, the equality in
Equation 3 does not hold, since X0 acts as
a regular parent variable that is in a non-
distinguished state. Therefore, the parameters
for other mechanism variables should be ob-
tained using conditional probabilities P (Y =
y|x∗

1, . . . , xi, . . . , x
∗
n), P (M0 = y|x0) and the

combination function. This implies that the
acquired probabilities should fulfil some non-
trivial constraints. Because of space limitation,
we decided to skip the discussion of these con-
straints. In a nutshell, these constraints are sim-
ilar in nature to constraints for the leaky noisy-
MAX model. These constraints should not be a
problem in practice, when P (M0 = y∗) is large
(which implies that the leak cause has marginal
influence on non-distinguished states).

Now we introduce an example of the applica-
tion of the new model. Imagine a simple di-
agnostic model for an engine cooling system.
The pressure sensor reading (S) can be in three
states high, normal, or low {hi, nr, lo}, that
correspond to pressure in a hose. Two possible
faults included in our model are: pump failure
(P) and crack (C). The pump can malfunction
in two distinct ways: work non-stop instead of
adjusting its speed, or simply fail and not work
at all. The states for pump failure are: {ns, fa,
ok}. For simplicity we assume that the crack on
the hose can be present or absent {pr,ab}. The
BN for this problem is presented in Figure 3.
The noisy-MAX model is not appropriate here,
because the distinguished state of the effect
variable (S) does not correspond to the lowest
value in the ordering relation. In other words,
the neutral value is not one of the extremes,
but lies in the middle, which makes use of the
MAX function over the states inappropriate. To
apply the noisy-average model, first we should
identify the distinguished states of the variables.



Figure 3: BN model for the pump example.

In our example, they will be: normal for sen-
sor reading, ok for pump failure and absent for
crack. The next step is to decide whether we
should add an influence of non-modeled causes
on the sensor (a leak probability). If such an
influence is not included, this would imply that
P (S = nr ∗ |P = ok∗, C = ab∗) = 1, otherwise
this probability distribution can take arbitrary
values from the range (0, 1], but in practice it
should always be close to 1.

Assuming that the influence of non-modeled
causes is not included, the acquisition of the
mechanism parameters is performed directly
by asking for conditional probabilities of form
P (Y |x∗

1, . . . , xi, . . . , x
∗
n). In that case, a typical

question asked of an expert would be: What
is the probability of the sensor being in the low
state, given that a crack was observed but the
pump is in state ok? However, if the unmod-
eled influences were significant, an adjustment
for the leak probability is needed. Having ob-
tained all the mechanism parameters, the noisy-
average model specifies a conditional probabil-
ity in a CPT by means of the combination func-
tion.

Intuitively, the noisy-average combines the
various influences by averaging probabilities. In
case where all active influences (the parents in
non-distinguished states) imply high probabil-
ity of one value, this value will have a high
posterior probability, and the synergetic effect
will take place similarly to the noisy-OR/MAX
models. If the active parents will ‘vote’ for dif-
ferent effect’s states, the combined effect will be
an average of the individual influences. More-
over, the noisy-average model is a decomposable

model — the CPT of Y can be decomposed in
pairwise relations (Figure 4) and such a decom-
position can be exploited for sake of improved
inference speed in the same way as for decom-
posable ICI models.

Figure 4: Decomposition of a combination func-
tion.

It is important to note that the noisy-average
model does not take into account the ordering
of states (only the distinguished state is treated
in a special manner). If a two causes have high
probability of high and low pressure, one should
not expect that combined effect will have prob-
ability of normal state (the value in-between).

6 AVERAGE MODEL

Another example of a PICI model we want to
present is the model that averages influences
of mechanisms. This model highlights another
property of the PICI models that is important
in practice. If we look at the representation of
a PICI model, we will see that the size of the
CPT of node Y is exponential in the number of
mechanisms (or causes). Hence, in general case
it does not guarantee a low number of distrib-
utions. One solution is to define a combination
function that can be expressed explicitly in the
form of a BN but in such a way that it has sig-
nificantly fewer parameters. In the case of ICI
models, the decomposability property (Hecker-
man and Breese, 1996) served this purpose, and
can do too for in PICI models. This property
allows for significant speed-ups in inference.

In the average model, the probability distrib-
ution over Y given the mechanisms is basically
a ratio of the number of mechanisms that are
in given state divided by the total number of
mechanisms (by definition Y and M have the



same range):

P (Y = y|M1, . . . ,Mn) =
1

n

n
∑

i=1

I(Mi = y) .

(4)
where I is the identity function. Basically, this
combination function says that the probability
of the effect being in state y is the ratio of mech-
anisms that result in state y to all mechanisms.
Please note that the definition of how a cause Xi

results in the effect is defined in the probability
distribution P (Mi|Xi). The pairwise decompo-
sition can be done as follows:

P (Yi = y|Yi−1 = a,Mn = b)

=
i

i + 1
I(y = a) +

1

i + 1
I(y = b) ,

for Y2, . . . , Yn. Y1 is defined as:

P (Y1 = y|M1 = a,M2 = b) =

=
1

2
I(y = a) +

1

2
I(y = b) .

The fact that the combination function is de-
composable may be easily exploited by inference
algorithms. Additionally, we showed that this
model presents benefits for learning from small
data sets (Zagorecki et al., 2006).

Theoretically, this model is amechanistic, be-
cause it is possible to obtain parameters of
this model (probability distributions over mech-
anism variables) by asking an expert only for
probabilities in the form of P (Y |X). For ex-
ample, assuming variables in the model are bi-
nary, we have 2n parameters in the model. It
would be enough to select 2n arbitrary proba-
bilities P (Y |X) out of 2n and create a set of 2n
linear equations applying Equation 4. Though
in practice, one needs to ensure that the set of
equations has exactly one solution what in gen-
eral case is not guaranteed.

As an example, let us assume that we want
to model classification of a threat at a mili-
tary checkpoint. There is an expected terrorist
threat at that location and there are particular
elements of behavior that can help spot a terror-
ist. We can expect that a terrorist can approach
the checkpoint in a large vehicle, being the only

person in the vehicle, try to carry the attack
at rush hours or time when the security is less
strict, etc. Each of these behaviors is not nec-
essarily a strong indicator of terrorist activity,
but several of them occurring at the same time
may indicate possible threat.

The average model can be used to model this
situation as follows: separately for each of sus-
picious activities (causes) a probability distribu-
tion of terrorist presence given this activity can
be obtained which basically means specification
of probability distribution of mechanisms. Then
combination function for the average model acts
as ”popular voting” to determine P (Y |X).

The average model draws ideas from the lin-
ear models, but unlike the linear models, the lin-
ear sum is done over probabilities (as it is PICI),
and it has explicit hidden mechanism variables
that define influence of single cause on the ef-
fect.

7 CONCLUSIONS

In this paper, we formally introduced a new
class of models for local probability distribu-
tions that is called PICI. The new class is an
extension of the widely accepted concept of in-
dependence of causal influences. The basic idea
is to relax the assumption that the combination
function should be deterministic. We claim that
such an assumption is not necessary either for
clarity of the models and their parameters, nor
for other aspects such as convenient decompo-
sitions of the combination function that can be
exploited by inference algorithms.

To support our claim, we presented two con-
ceptually distinct models for local probability
distributions that address different limitations
of existing models based on the ICI. These mod-
els have clear parameterizations that facilitate
their use by human experts. The proposed mod-
els can be directly exploited by inference al-
gorithms due to fact that they can be explic-
itly represented by means of a BN, and their
combination function can be decomposed into a
chain of binary relationships. This property has
been recognized to provide significant inference
speed-ups for the ICI models. Finally, because



they can be represented in form of hidden vari-
ables, their parameters can be learned using the
EM algorithm.

We believe that the concept of PICI may lead
to new models not described here. One remark
we shall make here: it is important that new
models should be explicitly expressible in terms
of a BN. If a model does not allow for com-
pact representation and needs to be specified as
a CPT for inference purposes, it undermines a
significant benefit of models for local probabil-
ity distributions – a way to avoid using large
conditional probability tables.
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