
Interpolation-based Function Summaries in
Bounded Model Checking?

Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina

Formal Verification Lab, University of Lugano, Switzerland
{ondrej.sery,grigory.fedyukovich,natasha.sharygina}@usi.ch

http://verify.inf.usi.ch/

Abstract During model checking of software against various specifica-
tions, it is often the case that the same parts of the program have to be
modeled/verified multiple times. To reduce the overall verification effort,
this paper proposes a new technique that extracts function summaries
after the initial successful verification run, and then uses them for more
efficient subsequent analysis of the other specifications. Function sum-
maries are computed as over-approximations using Craig interpolation,
a mechanism which is well-known to preserve the most relevant informa-
tion, and thus tend to be a good substitute for the functions that were
examined in the previous verification runs. In our summarization-based
verification approach, the spurious behaviors introduced as a side effect
of the over-approximation, are ruled out automatically by means of the
counter-example guided refinement of the function summaries. We im-
plemented interpolation-based summarization in our FunFrog tool, and
compared it with several state-of-the-art software model checking tools.
Our experiments demonstrate the feasibility of the new technique and
confirm its advantages on the large programs.

1 Introduction

Model checking is a popular technique for automated analysis of software. Due to
the state explosion problem, it is usually infeasible to analyze a whole program
in a single run starting from its entry point (e.g., the main function). Instead, the
problem is often modularized and a model checker is used to exhaustively explore
portions of the program for different properties. Typically, this means that the
same code (e.g., same functions) of the original program is used in multiple
model checker runs and it is analyzed multiple times. We observe that significant
savings can be achieved if information concerning the already analyzed code is
reused in the subsequent runs of the model checker.

We present a technique for extracting and reusing information about the
already analyzed code, in the form of function summaries. The novelty of our
work lies in the use of Craig interpolation [8] to extract function summaries
? This work is partially supported by the European Community under the call FP7-
ICT-2009-5 — project PINCETTE 257647.

after a successful verification run. An interpolant-based function summary is an
over-approximation of the actual function behavior and it symbolically captures
all execution traces through the function. Since interpolants tend to contain
mostly the relevant information, the computed function summaries are more
compact than a precise representation of the function, and thus result in the
overall verification efficiency gain. We prove that no errors are missed due to
the use of the interpolation-based summaries. On the other hand, when spurious
errors occur as a side-effect of over-approximation, our approach uses a counter-
example guided strategy to automatically refine summaries.

The implementation of the proposed technique, the FunFrog tool, is based
on the CBMC bounded model checker [6]. We use propositional encoding to
get bit-precise reasoning. However, our approach is general and works also with
SMT encodings for which an interpolation algorithm exists. To evaluate the new
approach, we compared running times of FunFrog with the state-of-the-art model
checkers CBMC, SATABS [7], and CPAchecker [4] on various benchmarks. The
experimental results demonstrate feasibility and advantages of our approach.

2 Preliminaries

As customary in model checking, we use an adapted definition of interpolation:

Definition 1 (Craig interpolation). Let A and B be formulas and A ∧B be
unsatisfiable. Craig interpolant of (A,B) is a formula I such that A→ I, I ∧B
is unsatisfiable, and I contains only free variables common to A and B.

For an unsatisfiable pair of formulas (A,B), an interpolant always exists [8].
For many theories, an interpolant can be constructed from a proof of unsatisfi-
ablity [19]. In this work, interpolation is used to extract function summaries in
the context of bounded model checking (BMC). Therefore, for the sake of sim-
plicity but without a loss of generality, the paper refers to unwound programs
without loops and recursion as an input of the summarization algorithm. Intu-
itively, such a program is created from the original one by unwinding all loops
and recursive calls by the given number (bound). Note that in our implementa-
tion the unwinding is performed on-the-fly when needed.

Definition 2. An unwound program for a bound ν is a tuple Pν = (F, fmain),
s.t. F is a finite set of functions and fmain ∈ F is an entry point.

We use relations child, subtree ⊆ F ×F , where child relates each function f
to all the functions invoked by f , and subtree is a transitive closure of child. In
addition, we use F̂ to denote the finite set of unique function calls, i.e., function
call with a unique combination of a call stack, a program location, and a target
function (denoted by target : F̂ → F). F̂ corresponds to the invocation tree of
the unwound program. By f̂main we denote the implicit call of the program entry
point and target(f̂main) = fmain. We extend the relations child and subtree to
F̂ in a natural way, s.t. ∀f̂ , ĝ ∈ F̂ : child(f̂ , ĝ)→ child(target(f̂), target(ĝ)) and
subtree is a transitive closure of the extended relation child.

f(int a) {
if (a < 10)

return a;
return a - 10;

}

main() {
int y = 1;
int x = nondet();

if (x > 0)
y = f(x);

assert(y >= 0);
}

(a) C code

// main
y0 = 1;
x0 = nondet();
if (x0 > 0) {

a0 = x0;
// f
if (a0 < 10)

ret0 = a0;
else

ret1 = a0 - 10;
ret2 = phi(ret0, ret1);
// end f
y1 = ret2;

}
y2 = phi(y0, y1);
assert(y2 >= 0);

(b) SSA form

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
ret0 = a0 ∧
ret1 = a0 − 10 ∧
(x0 > 0 ∧ a0 < 10⇒

ret2 = ret0) ∧
(x0 > 0 ∧ a0 ≥ 10⇒

ret2 = ret1) ∧
y1 = ret2 ∧
(x0 > 0⇒ y2 = y1) ∧
(x0 ≤ 0⇒ y2 = y0) ∧
y2 < 0

(c) BMC formula

Figure 1: BMC formula generation

Standard BMC of software encodes an unwound program to a BMC formula
in a way illustrated in Fig. 1 (more details on the encoding can be found in [6]).
First, the unwound program is converted into the SSA form (Fig. 1b), where each
variable is assigned at most once. A so called φ-function is used to merge values
from different control-flow paths. Functions are expanded in the call site as if
being inlined. Then a BMC formula (Fig. 1c) is constructed from the SSA form.
Assignments are converted to equalities, path conditions are computed from
branching conditions and used to encode φ-functions. Negation of the assertion
condition guarded by its path condition (true in this case) is conjuncted with
the BMC formula. The resulting BMC formula is unsatisfiable if the assertion
holds. In the other case, a satisfying assignment identifies an error trace.

3 Function Summaries

This section first defines function summaries as a means to over-approximate
functions in BMC. Then it shows how interpolation can be used as a way to ex-
tract function summaries after a successful verification run. Finally, it presents a
BMC algorithm extended with the interpolation-based function summarization.

A function summary relates input and output arguments of a function. There-
fore, a notion of arguments of a function is necessary. For this purpose, we expect
to have a set of program variables V and a domain function D which assigns a
domain (i.e., set of possible values) to every variable from V.

Definition 3. For a function f , sequences of variables argsfin = 〈in1, . . . , inm〉
and argsfout = 〈out1, . . . , outn〉 denote the input and output arguments of f ,

where ini, outj ∈ V for 1 ≤ i ≤ m and 1 ≤ j ≤ n. In addition, argsf =
〈in1, . . . , inm, out1, . . . , outn〉 denotes all the arguments of f . As a shortcut, we
use D(f) = D(in1)× . . .× D(inm)× D(out1)× . . .× D(outn).

In the following, we expect that functions do not have other than input
and output arguments, which include also the return value. Note that an in-out
argument1 is split into one input and one output argument. Similarly, a global
variable accessed by a function is rewritten into the corresponding input or/and
output argument, depending on the mode of access (i.e., read or/and write).

Precise behavior of a function can be defined as a relation over values of
input and output arguments of the function as follows.

Definition 4 (Relational Representation). Let f be a function, then the
relation Rf ⊆ D(f) is the relational representation of the function f , if Rf
contains exactly all the tuples v̄ = 〈v1, . . . , v|argsf |〉 such that the function f
called with the input values 〈v1, . . . , v|argsf

in
|〉 can finish with the output values

〈v|argsf
in

|+1, . . . , v|argsf |〉.

Note that Def. 4 admits multiple combinations of values of the output argu-
ments for the same combination of values of the input arguments. This is useful
to model nondeterministic behavior, and for abstraction of the precise behavior
of a function. In this work, the summaries are applied in BMC. For this reason,
the rest of the text will be restricted to the following bounded version of Def. 4.

Definition 5 (Bounded Relational Representation). Let f be a function
and ν be a bound, then the relation Rfν ⊆ Rf is the bounded relational represen-
tation of the function f , if Rfν contains only the tuples representing computations
with all loops and recursive calls unwound up to ν times.

Then a summary of a function is an over-approximation of the precise be-
havior of the given function under the given bound. In other words, a summary
captures all the behaviors of the function and possibly more.

Definition 6 (Summary). Let f be a function and ν be a bound, then a rela-
tion S such that Rfν ⊆ S ⊆ D(f) is a summary of the function f .

The relational view on a function behavior is intuitive but impractical for
implementation. Typically, these relations are captured by means of logical for-
mulas. Def. 7 makes a connection between these two views.

Definition 7 (Summary Formula). Let f be a function, ν a bound, σ a for-
mula with free variables only from argsf , and S a relation induced by σ as
S = {v̄ ∈ D(f) | σ[v̄/argsf] |= true}. If S is a summary of the function f and
bound ν, then σ is a summary formula of the function f and bound ν.

A summary formula of a function can be directly used during construction of
the BMC formula to represent a function call. This way, the part of the SSA form
1 E.g., a parameter passed by reference

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
(a0 > 0⇒ ret0 > 0) ∧

y1 = ret0 ∧
(x0 > 0⇒ y2 = y1) ∧
(x0 ≤ 0⇒ y2 = y0) ∧
y2 < 0

Figure 2: BMC formula created using summary a > 0⇒ ret > 0 for function f

corresponding to the called function does not have to be created and converted
to a part of the BMC formula. Moreover, the summary formula tends to be
smaller. Of course, the arguments have to be assigned the correct SSA version.
Considering the example in Fig. 1, using the summary formula a > 0⇒ ret > 0
for the function f yields the BMC formula in Fig. 2.

The important property of the resulting BMC formula is that if it is unsat-
isfiable (as in Fig. 2) then also the formula without summaries (in Fig. 1c) is
unsatisfiable. Therefore, no errors are missed due to the use of summaries.

Lemma 1. Let φ be a BMC formula of an unwound program P for a given
bound ν, and let φ′ be a BMC formula of P and ν, with some function calls
substituted by the corresponding summary formulas bounded by ν′, ν′ ≥ ν. If φ′

is unsatisfiable then φ is unsatisfiable as well.

Proof. Without loss of generality, suppose that there is only one summary for-
mula σf substituted in φ′ for a call to a function f . If multiple summary formulas
are substituted, we can apply the following reasoning for all of them.

For a contradiction, suppose that φ′ is unsatisfiable and φ is satisfiable. From
the satisfying assignment of φ, we get values 〈v1, . . . , v|argsf |〉 of the arguments
to the call to the function f . Assuming correctness of construction of the BMC
formula φ, the function f given the input arguments 〈v1, . . . , v|argsf

in
|〉 can fin-

ish with the output arguments 〈v|argsf
in

|+1, . . . , v|argsf |〉 and with all loops and
recursive calls unwound at most ν times. Therefore, by definition of the sum-
mary formula, the values 〈v1, . . . , v|argsf |〉 also satisfy σf . Since the rest of the
formulas φ and φ′ is the same, the satisfying assignment of φ is also a satisfying
assignment of φ′ (up to SSA version renaming). ut

3.1 Interpolation-based Summaries

There may be multiple ways to obtain a summary formula. In this section, we
present a way to extract summary formulas using Craig interpolation. To use
interpolation, the BMC formula φ should have the form

∧
f̂∈F̂ φf̂ such that every

φf̂ symbolically represents the function f , a target of the call f̂ . Moreover, the
symbols of φf̂ shared with the rest of the formula are only the elements of argsf .

Note that the BMC formula is generally not in this form. Variables from the
calling context tend to leak into the formulas of the called function as a part

y0 = 1 ∧
x0 = nondet0 ∧
a0 = x0 ∧
x0 > 0⇔ callstartf̂ ∧ (1)
y1 = ret0 ∧
(x0 > 0⇒ y2 = y1) ∧
(x0 ≤ 0⇒ y2 = y0) ∧
(callendf̂ ∨ x0 ≤ 0) ∧ y2 < 0 (2)

(a) formula φf̂main

ret1 = a0 ∧
ret2 = a0 − 10 ∧
(callstartf̂ ∧ a0 < 10⇒ ret0 = ret1) ∧ (3)
(callstartf̂ ∧ a0 ≥ 10⇒ ret0 = ret2) ∧ (4)
(callendf̂ ⇒ callstartf̂) (5)

(b) formula φf̂
Figure 3: Partitioned bounded model checking formula

of the path condition. For example in Fig. 1c, the variable x0 from the calling
context of the function f appears in the bold part, which represents f itself. To
achieve the desired form, we generate the parts of the formula corresponding to
the individual functions in separation and bind them together using two boolean
variables for every function call: callstartf̂ and callendf̂ . We call the resulting
formula a partitioned bounded model checking (PBMC) formula.

Fig. 3 demonstrates creation of a PBMC formula for the example from Fig. 1.
Intuitively, callstartf̂ should be true when the corresponding function call is
reached. Therefore, the formula of the calling context (Fig. 3a) makes it equiv-
alent to the path condition of the call (1). The callendf̂ variable is true if the
call returns. It is conjuncted with the path condition so it occurs in the guard
of the assertion check (2). In the called function (Fig. 3b), callstartf̂ is taken
as the initial path condition, and thus it appears in the expanded φ-function (3,
4). The value of callendf̂ is derived from the path conditions2 at function exit
points (5). The two helper variables are added to the set of function arguments
argsf . Therefore, the variables shared between the individual formulas φf̂ and
the rest of the PBMC formula (here φf̂main

) are only the variables from argsf .
If the resulting PBMC formula is unsatisfiable, we compute multiple Craig

interpolants from a single proof of unsatisfiability to get function summaries.

Definition 8 (Interpolant summary formula). Let f̂ be a function call of
an unwound program P , ν a bound, and φ ≡

∧
ĝ∈F̂ φĝ an unsatisfiable PBMC

formula for P . Furthermore, let I f̂ν be a Craig interpolant of (A,B) such that
A ≡

∧
ĝ∈F̂ :subtree(f̂ ,ĝ) φĝ, and B ≡

∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ) φĥ. Then the interpolant

I f̂ν is an interpolant summary formula.

Of course, an important property of the interpolant summary formula is that
it is indeed a summary formula from Def. 7.
2 Note that the implication may be more complicated, e.g., if the function can exit the
program or if it contains user assumptions that prune some computational paths.

Lemma 2. The interpolant I f̂ν constructed by Def. 8 is a summary formula for
the function f and the bound ν.

Proof. By definition of Craig interpolation, the only free variables of I f̂ν are from
argsf . Moreover, we know that A ⇒ I f̂ν and that A represents the call f̂ with
all function invocations within it. By construction of A and the PBMC formula
φ, every tuple of values v̄ ∈ Rfν defines a partial valuation of A that can be
extended to a satisfying valuation of A. Therefore by A ⇒ I f̂ν , all these partial
valuations satisfy I f̂ν as well. The relation S induced by the satisfying valuations
of I f̂ν thus satisfies Rfν ⊆ S ⊆ D(f). ut

Another useful property of the interpolant summary formula is that I f̂ν ∧ B
is unsatisfiable (by Def. 1). In other words, the interpolant summary formula
contains all the necessary information for showing that the program under anal-
ysis is safe with respect to the property being analyzed. Since the interpolant
is created from a proof of unsatisfiablity of A ∧ B, it tends to contain only the
relevant part and thus be smaller than A. An important consequence is that the
interpolant summary formulas can be used to abstract function calls in BMC
without missing errors that are reachable within the given bound.

Theorem 1. Let φ be a BMC formula of an unwound program P for a given
bound ν and let φ′ be a BMC formula of P and ν, with some function calls
substituted by the corresponding interpolant summary formulas bounded by ν′,
ν′ ≥ ν. If φ′ is unsatisfiable then φ is unsatisfiable as well.

Proof. The proof directly follows from Lemmas 1 and 2. ut

3.2 Algorithm

An overview of the BMC algorithm for creation of the PBMC formula and
extraction of interpolant summaries is depicted in Alg. 1. First, the algorithm
creates the PBMC formula. It takes one function at a time and creates the
corresponding part of the formula (line 12) using the SSA encoding as sketched
in Section 2. The difference lies in handling of function calls. When available,
function summaries (line 8) are used instead of processing the function body
(ApplySummary maps the symbols in the summary to the correct SSA version).
Otherwise, the function is queued for later processing (line 10). In both cases, a
glue part of the formula, which reserves the argument SSA versions and generates
the callstartf̂ and callendf̂ bindings as described above, is created (line 6).

Having the PBMC formula, the algorithm calls a SAT or SMT solver. In
the case of a successful verification (UNSAT answer), the algorithm extracts
new function summaries (line 18-24). For many functions, the summary is just a
trivial true formula, which means that the function is not relevant for validity of
the property being verified. Note that the function StoreSummary (line 23) also
does a simple filtering, i.e., if there are multiple summaries for a single function,
it checks that none of them implies any other. Though this means a quadratic
number of solver calls in general, in our experience, the actual cost is very small.

Algorithm 1: BMC algorithm with summary application and extraction.
Input: Unwound program Pν = (F, fmain) with function calls F̂
Output: Verification result: {SAFE,UNSAFE}
Data: D: queued function calls, φ: PBMC formula

1 D ← {f̂main}, φ← true ; // (1) formula creation
2 while D 6= ∅ do
3 choose f̂ ∈ D, and D ← D \ {f̂};
4 φf̂ ← true;
5 foreach ĝ s.t. child(f̂ , ĝ) do
6 φf̂ ← φf̂∧ ReserveArguments(ĝ);
7 if HasSummary(ĝ) then
8 φf̂ ← φf̂∧ ApplySummary(ĝ) ; // apply summaries
9 else

10 D ← D ∪ {ĝ} ; // process ĝ later
11 end
12 φf̂ ← φf̂∧ CreateFormula(f̂);
13 φ← φ ∧ φf̂
14 end
15 result← Solve(φ) ; // (2) run solver
16 if result = SAT then
17 return UNSAFE;
18 foreach f̂ ∈ F̂ do // (3) extract summaries
19 A←

∧
ĝ∈F̂ :subtree(f̂ ,ĝ) φĝ;

20 B ←
∧
ĥ∈F̂ :¬subtree(f̂ ,ĥ) φĥ;

21 If̂ ← Interpolate(A,B);
22 if If̂ 6= true then
23 StoreSummary(If̂);
24 end
25 return SAFE;

4 Refinement

When the PBMC formula is satisfiable, the BMC algorithm reports an error
(line 17 of Alg. 1), which can be either a real or a spurious violation since function
summaries are computed using over-approximation. This section introduces an
algorithm that iteratively refines the PBMC formula until either a real error is
found or an unsatisfiable PBMC formula is detected. The refinement algorithm
uses the generalized version of Alg. 1 that can be executed with a specified level
of approximation.

Definition 9. A substitution scenario for function calls is a function Ω : F̂ →
{inline, sum, havoc}.

For each function call, a substitution scenario determines a level of approxi-
mation as one of the following three options: inline when it processes the whole

function body; sum when it substitutes the call by an existing summary, and
havoc when it treats the call as a nondeterministic function. The havoc option
abstracts from the call; it is equivalent to using a summary formula true. To
employ these options, we replace lines 7-10 of Alg. 1 by the following code:

7 switch Ω(ĝ) do
8 case sum: φf̂ ← φf̂∧ ApplySummary(ĝ) ; // apply summaries
9 case inline: D ← D ∪ {ĝ} ; // process ĝ later

10 case havoc: skip; // treat ĝ nondeterministically
11 endsw
For example, a substitution scenario that makes the generalized algorithm

equivalent to Alg. 1 looks as follows:

Ω0(ĝ) =
{
sum, if HasSummary(ĝ) = true
inline, otherwise

The substitution scenario used as the initial approximation is called initial
scenario and denoted as Ω0. The above initial scenario is eager, since it eagerly
processes bodies of functions without available summaries. Alternatively, one
can use a lazy initial scenario to treat functions without available summaries as
nondeterministic ones (by replacing the inline with havoc case). This results in a
smaller initial PBMC formula and leaves identification of the important function
calls to the refinement loop, possibly resulting in more refinement iterations.

When a substitution scenario Ωi leads to a satisfiable PBMC formula, a re-
finement strategy either shows that the error is real or looks for another substitu-
tion scenario Ωi+1. In the latter case, Ωi+1 represents a tighter approximation,
i.e., it refines Ωi.

Definition 10. Given two substitution scenarios Ω1, Ω2, we say that Ω2 refines
Ω1, if ∀f̂ ∈ F̂ : Ω1(f̂) = inline → Ω2(f̂) = inline, and ∃ĝ ∈ F̂ : Ω1(ĝ) 6=
inline ∧Ω2(ĝ) = inline.

Note, that due to a finite size of F̂ , the refinement loop terminates inde-
pendently from the refinement strategy (i.e., the choice of Ωi+1). Rephrasing
Def. 10, we have {f̂ ∈ F̂ | Ωi(f̂) = inline} ⊂ {f̂ ∈ F̂ | Ωi+1(f̂) = inline} ⊆ F̂ .
Therefore, the sequence of sets {f̂ ∈ F̂ | Ωi(f̂) = inline} grows strictly mono-
tonically while being bounded by F̂ . If the refinement loop reaches a substituting
scenario Ω> such that ∀f̂ ∈ F̂ : Ω>(f̂) = inline, the generalized algorithm using
Ω> is equivalent to BMC without summarization, thus yielding the same precise
answer. In the following, we call Ω> the supreme scenario.

Counter-example guided refinement. We propose a refinement strategy
based on analysis of an error trace. When refining a substitution scenario Ωi,
the counter-example guided refinement strategy refines the function calls that
(1) are substituted by a summary or havoced in Ωi and (2) are on the error trace
corresponding to the given satisfying assignment of the current PBMC formula
and (3) do influence validity of the assertion being analyzed.

The second point is deduced from the satisfying assignment of the PBMC
formula. By construction of the PBMC formula, a variable callstartf̂ is valuated

to true, if and only if the satisfying assignment represents a trace that includes
the function call f̂ . Therefore, all function calls for which the callstart variable is
assigned true are suspected. The third point is decided based on a path-sensitive
dependency analysis over the SSA form. As a result, only the function calls that
actually influence validity of the assertion are marked inline in Ωi+1. If no such
function call exists, the error trace is real and it is reported to a user.

Ωi+1(ĝ) =
{
inline, if Ωi(ĝ) 6= inline ∧ callstartĝ = true ∧ InfluenceProp(ĝ)
Ωi(ĝ), otherwise

Note that we do not explicitly test whether the error trace is feasible. The
error trace can be simulated exactly, where summaries are not used. However,
a summary hides precise paths inside the substituted function and only the
inputs and outputs of the functions are preserved in the satisfying assignment.
Thus all the possible paths through the function would have to be considered
to see whether this combination of inputs and outputs is indeed possible. This
becomes costly for summaries of large functions and the advantage of having a
simple abstraction might be lost.

For experimentation purposes, we define another simplistic refinement strat-
egy, a greedy one. When the PBMC formula corresponding to the chosen initial
scenario Ω0 is satisfiable, the greedy strategy simply refines Ω0 directly to the
supreme scenario Ω>. This way, the greedy strategy fallbacks to the standard
BMC when the approximation is too coarse to prove the assertion being verified.

5 Evaluation

We implemented the interpolation-based function summarization and refinement
in a tool called FunFrog, extending the CBMC model checker. Currently, there
is a limited support for pointers. The OpenSMT solver [5] is used both for
satisfiability checks and interpolation. Note that OpenSMT is used as a SAT
solver, which gives us bit-precise reasoning3. FunFrog and the benchmarks used
for its evaluation are available for other researchers4.

We run FunFrog on industrial benchmarks to show that it works correctly for
real-life purposes, and on artificial programs (artN), to stress-test the implemen-
tation. Three benchmarks are taken from the Versicec5 suite (verisecN), small
string manipulating programs. The most interesting benchmarks (kbfiltrN,
diskperfN, floppyN) are taken from [18], which are three Windows device
drivers, each of which contains user defined assertions. All the assertions hold,
i.e., FunFrog may generate and reuse summaries.

To evaluate FunFrog, we compared it with CBMC (v3.9), SATABS (v2.4
with Cadence SMV v10-11-02p46), and CPAchecker (rev3901). SATABS and
CPAchecker are CEGAR-based model checkers of C. Being a bounded model
3 Specialized SAT solvers without proof construction generally outperform OpenSMT
in the satisfiability checks though they lack the interpolant generation features.

4 http://verify.inf.usi.ch/funfrog
5 se.cs.toronto.edu/index.php/Verisec_Suite

http://verify.inf.usi.ch/funfrog
se.cs.toronto.edu/index.php/Verisec_Suite

benchmark FunFrog CBMC SATABS CPAchecker
name #assert LoC total time itp. time
verisec1 2 63 0.020 0.002 0.003 1.004 2.851
verisec2 2 101 0.515 0.005 0.016 0.003 0.896
verisec3 2 81 0.093 0.004 0.011 TO 1.91
art1 2 242 1.731 0.034 0.280 534.8 65.37
art2 2 63 3.327 0.030 0.408 881.2 WA
art3 4 120 1.811 0.076 2.112 TO WA
kbfiltr1 8 12253 6.718 0.003 5.742 106.457 WA
kbfiltr2 5 12253 2.665 0.008 3.702 13.002 WA
diskperf1 9 6321 5.284 0.037 20.309 433.74 15.045
diskperf2 4 6321 43.486 2.005 11.620 1064.2 24.849
floppy1 2 10259 2.196 0.001 18.028 2735.4 15.246
floppy2 4 10259 2.283 0.003 53.801 1402.1 47.891
floppy3 11 10259 45.073 0.006 99.512 2208.5 97.436

Table 1: Verification times (sec.) of FunFrog, CBMC, SATABS, and CPAchecker.
Number of assertions and lines of code in the benchmarks and interpolation time
for FunFrog are shown. WA: wrong answer, TO: 1 hour timeout exceeded

checker, CBMC is the closest tool to compare with. We used the same bounds
for FunFrog and CBMC, sufficient to traverse the state space of the benchmarks.
In order to make the results comparable, we manually unwound the benchmarks
to represent the same verification task for SATABS and CPAchecker.

We expected reusability of the interpolation-based function summaries to be
sensitive to the mutual relevance of the assertions in the code. Therefore, for
the large benchmarks (kbfiltrN, diskperfN, floppyN), we experimented with
multiple groups of assertions with a different level of mutual relevance, ignoring
the other assertions.

The experimental results are captured in Table 1. The timings are in seconds
and denote the whole verification process6. FunFrog performs very favorably
on the larger benchmarks as it outperforms all other tools. In some cases, it
outperforms CBMC, the second best tool, by an order of magnitude. However,
as may be expected, the benefit is not general for all assertions. Clearly, when a
set of unrelated assertions is checked, the generated function summaries are not
reusable (see diskperf2). In this case, a number of refinement steps is needed
to construct a precise approximation (which is close to the supreme substitution
scenario). Since CBMC creates the full BMC formula right away without the
iterative refinement, it outperforms FunFrog on this benchmark. Even in this
case, running time of FunFrog is still comparable to the other tools.

As expected, FunFrog is less competitive on the small benchmarks, as it, for
example, is outperformed by CBMC. We identified several reasons for this. First,
there is a rather small number of function calls in these benchmarks. Thus the
6 On some benchmarks, the simplified handling of pointers and the known implemen-
tation bug prevent CPAchecker from producing the correct results. We reported the
problems to the developers of CPAchecker.

benefit of function summarization is smaller compared to the overhead of using
a slower solver and the extra work on partitioning the formula. Second, CBMC
can prove trivially holding assertions using only constant propagation, which is
currently not implemented in FunFrog.

Notably, the overhead of our technique is small as the actual interpolation
time is very low (itp. time in Table 1). Still, some cost (not measured) is hidden
in the need to create an unsatisfiability proof, which hinders the solver.

Comparison of refinement strategies. Table 2 compares verification
times for different combinations of refinement strategies and initial scenarios.
Due to their realistic size, only the benchmarks from [18] are considered.

We note that the counter-example guided refinement strategy (noted as CEG
to prevent confusion with classical CEGAR) is better or comparable to the
greedy one on almost all the benchmarks. The exception (diskperf2) is the
case where CBMC outperforms FunFrog. In this case, the number of refinement
iterations is quite large due to too coarse summaries. In general, however, the
number of refinement iterations needed is small. Therefore, we conclude that the
counter-example guided refinement strategy performs well.

Based on the experiments, neither initial scenario is universally better. De-
spite winning in some cases, the lazy initial scenario performs very poor on some
others. The eager initial scenario tends to perform consistently well in general,
even though loosing sometimes. Therefore, the eager initial scenario combined
with counter-example based refinement strategy is a safer, less volatile choice.

6 Related Work

Function summaries date back to Hoare [13]. Now it is commonly used in pro-
gram analysis to achieve scalable interprocedural analysis [1,9]. Each function is
processed only once, its summary is created and applied for other calls of the
function. To get more fine grained summaries, multiple summaries may be cre-
ated for different input conditions [9]. In BMC, state exploration of the unwound
symbolically encoded program is left to a SAT/SMT solver. Thus, the program
analysis approaches using fixpoint computation are not directly applicable.

Another domain of function summaries is model checking of pushdown sys-
tems (PDS). Here the most related work is [2] proposing a method to create
function summaries for bounded model checking of PDS using a QBF solver.
As admitted in [2], QBF queries constitute a major bottleneck. In our case, we
extract multiple function summaries from a single proof of unsatisfiability of a
BMC formula, which is inexpensive in comparison.

Less frequently, the idea of function summaries is used in concolic execu-
tion [10] and explicit-state model checking [20]. For example, the model checker
Zing records explicit summaries as a set of tuples of explicit input and out-
put values that were observed on an execution trace during state space traver-
sal [20]. Summaries used in Zing also contain lock-related information necessary
for checking concurrent software. In contrast, in FunFrog each summary sym-
bolically defines an over-approximation of all explicit execution traces through

benchmark (assertion) lazy/greedy eager/greedy lazy/CEG eager/CEG
time #RI time #RI time #RI time #RI

kbfiltr1 (1/5) 0.637 1 0.448 0 0.639 1 0.446 0
kbfiltr1 (2/5) 0.650 1 0.975 1 0.187 1 0.801 1
kbfiltr1 (3/5) 0.115 0 0.468 0 0.133 0 0.466 0
kbfiltr1 (4/5) 0.124 0 0.493 0 0.121 0 0.444 0
kbfiltr1 (5/5) 0.120 0 0.501 0 0.114 0 0.508 0
kbfiltr2 (1/8) 1.141 1 1.029 0 1.133 1 1.042 0
kbfiltr2 (2/8) 0.595 1 0.908 1 0.058 1 0.811 1
kbfiltr2 (3/8) 0.036 0 0.251 0 0.061 1 0.525 1
kbfiltr2 (4/8) 0.634 1 0.518 0 0.104 1 0.864 1
kbfiltr2 (5/8) 0.693 1 0.491 0 1.170 2 0.927 1
kbfiltr2 (6/8) 0.074 0 0.294 0 0.101 1 0.597 1
kbfiltr2 (7/8) 0.662 1 0.491 0 0.653 2 0.865 1
kbfiltr2 (8/8) 0.586 1 0.849 1 0.601 2 1.087 2
diskperf1 (1/9) 1.686 1 1.493 0 1.727 1 1.462 0
diskperf1 (2/9) 0.061 0 0.370 0 0.055 0 0.372 0
diskperf1 (3/9) 0.060 0 0.379 0 0.055 0 0.369 0
diskperf1 (4/9) 0.031 0 1.287 0 0.028 0 0.252 0
diskperf1 (5/9) 0.044 0 1.222 0 0.034 0 1.310 0
diskperf1 (6/9) 0.060 0 0.343 0 0.065 0 0.335 0
diskperf1 (7/9) 1.545 1 0.523 0 1.544 2 0.535 0
diskperf1 (8/9) 0.075 0 0.385 0 0.073 0 0.376 0
diskperf1 (9/9) 0.030 0 0.267 0 0.029 0 0.273 0
diskperf2 (1/4) 6.917 1 1.110 0 7.032 1 1.129 0
diskperf2 (2/4) 5.397 1 6.007 1 8.631 11 6.075 1
diskperf2 (3/4) 5.660 1 5.267 1 9.630 11 20.025 10
diskperf2 (4/4) 8.910 1 9.084 1 13.713 12 16.257 10
floppy1 (1/4) 0.284 0 1.346 0 0.285 0 1.334 0
floppy1 (2/4) 0.281 0 0.472 0 0.287 0 0.477 0
floppy1 (3/4) 149.401 1 0.485 0 151.163 1 0.509 0
floppy1 (4/4) 31.510 1 0.504 0 31.017 1 0.503 0
floppy2 (1/2) 155.741 1 1.088 0 154.174 1 1.080 0
floppy2 (2/2) 161.395 1 1.111 0 39.875 1 1.116 0
floppy3 (1/11) 160.323 1 6.549 0 161.108 1 6.508 0
floppy3 (2/11) 159.470 1 148.587 1 39.213 1 12.956 1
floppy3 (3/11) 144.195 1 1.747 0 9.346 1 2.238 0
floppy3 (4/11) 160.492 1 1.739 0 9.345 1 2.254 0
floppy3 (5/11) 0.328 0 1.904 0 9.355 1 2.354 0
floppy3 (6/11) 0.312 0 1.835 0 0.294 0 2.339 0
floppy3 (7/11) 0.313 0 1.870 0 0.291 0 2.393 0
floppy3 (8/11) 0.320 0 2.716 0 9.401 1 3.452 0
floppy3 (9/11) 166.772 1 2.877 0 9.402 1 4.246 0
floppy3 (10/11) 0.313 0 2.840 0 9.493 1 4.180 0
floppy3 (11/11) 0.149 0 1.537 0 2.335 1 2.153 0

Table 2: Verification times (sec.) and refinement iterations (RI) per assertion

a function, but currently without concurrency related data.
Craig interpolation [8] is commonly used as a means of abstraction in model

checking [16]. It was used to speed up convergence of BMC by iterative over-
approximation of transition relation [15]. In the scope of predicate abstraction,
interpolation was used [12] to derive new predicates in the abstraction refinement
phase of CEGAR-based tools (e.g., Blast [3], CPAchecker [4]). In these tools, sets
of predicates are extracted from interpolants of the formulas corresponding to a
prefix and suffix of a spurious error trace. This results in predicates associated to
program locations along the spurious error trace yielding a more fine grained ab-
straction [12]. The authors also propose reordering of a path formula to generate
interpolants with local variables suitable for inter-procedural analysis. Focusing
on predicates, these works ignore the boolean structure of interpolants. Others
observed that interpolation can be directly used to create an inductive sequence
of interpolants [17,21]. The authors of [17] envision interpolation-based function
summaries that would be derived from a single spurious error trace. Unfortu-
nately, the idea is not further refined. In comparison, our function summaries are
derived from the whole BMC formula and thus they contain information about
all the paths through the function. Moreover, we provide a refinement strategy
to deal with too weak summaries. In [11], the authors extend the idea of finding
an inductive sequence of interpolants [17] to programs with function calls and
recursion. The work does not refine the idea of function summaries in any way.

Lazy annotation [18] also uses function summaries. It extends symbolic execu-
tion to remember a reason for infeasibility of an execution path, i.e., a blocking
annotation. Blocking annotations are used to reject other execution paths as
early as possible. Compared to our technique, lazy annotation uses interpolation
to derive and propagate the blocking annotations backwards for every program
instruction. If the annotation is to be propagated across a function call, a func-
tion summary merging blocking annotations from all paths through the function
is generated and stored for a later use. Our technique uses interpolation on the
whole BMC formula and creates one function summary from one interpolant.

7 Conclusion

This paper presented a new technique to speed up BMC by means of extracting
and reusing over-approximating function summaries. Our function summaries
are extracted from a successful verification run using Craig interpolation which
symbolically captures all execution traces through the function. We provided
a counter-example guided refinement strategy to automatically refine spurious
behaviors which are possible due to over-approximation. The new approach
was implemented in our tool FunFrog whose application to various benchmarks
demonstrated feasibility and advantages of our approach. Although the presented
technique is not strictly limited to BMC, it requires combining with another
technique for dealing with loops and recursion. We are therefore investigating
possible connection with an engine for loop invariant detection, e.g., the one
used in LoopFrog [14]. Nevertheless, we restrict the presentation in this paper

to the BMC case that is also covered by the implementation in FunFrog. An-
other restriction of our technique is that it is defined for sequential programs.
We believe that the generated summaries may be extended by a locking related
information in a similar way as in [20]. However, this is left for a future work.

References
1. Babic, D., Hu, A.J.: Calysto: scalable and precise extended static checking. In: Int.

Conference on Software Engineering (ICSE ’08). pp. 211–220. ACM (2008)
2. Basler, G., Kroening, D., Weissenbacher, G.: SAT-based summarization for

Boolean programs. In: SPIN Workshop (SPIN ’07). pp. 131–148. LNCS (2007)
3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker

Blast: Applications to software engineering. Int. J. STTT 9, 505–525 (2007)
4. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Veri-

fication. In: Computer Aided Verification (CAV ’11). pp. 184–190. LNCS (2011)
5. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In:

Tools and Alg. for Con. and Anal. of Sys. (TACAS ’10). pp. 150–153. LNCS (2010)
6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Tools

and Alg. for Con. and Anal. of Sys. (TACAS ’04). pp. 168–176. LNCS (2004)
7. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based Predicate

Abstraction for ANSI-C. In: Tools and Alg. for Con. and Anal. of Sys. (TACAS
’05). pp. 570–574. LNCS (2005)

8. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory
and proof theory. J. of Symbolic Logic pp. 269–285 (1957)

9. Engler, D., Ashcraft, K.: RacerX: effective, static detection of race conditions and
deadlocks. In: Symposium on OS Principles (SOSP ’03). pp. 237–252. ACM (2003)

10. Godefroid, P.: Compositional dynamic test generation. In: Principles of Prog. Lan-
guages (POPL ’07). pp. 47–54. ACM (2007)

11. Heizmann, M., Hoenicke, J., Podelski, A.: Nested interpolants. In: Principles of
Prog. Languages (POPL ’10). pp. 471–482. ACM (2010)

12. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: Principles of Prog. Languages (POPL ’04). pp. 232–244. ACM (2004)

13. Hoare, C.: Procedures and parameters: An axiomatic approach. Symposium on
Semantics of Algorithmic Languages pp. 102–116 (1971)

14. Kroening, D., Sharygina, N., Tonetta, S., Tsitovich, A., Wintersteiger, C.M.:
Loopfrog: A Static Analyzer for ANSI-C Programs. In: Automated Software Engi-
neering (ASE ’09). pp. 668–670. IEEE (2009)

15. McMillan, K.L.: Interpolation and SAT-Based Model Checking. In: Computer
Aided Verification (CAV ’03). pp. 1–13. LNCS (2003)

16. McMillan, K.L.: Applications of Craig Interpolation in Model Checking. In: Tools
and Alg. for Con. and Anal. of Sys. (TACAS ’05). pp. 1–12. LNCS (2005)

17. McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided Verifica-
tion (CAV ’06). pp. 123–136. LNCS (2006)

18. McMillan, K.L.: Lazy annotation for program testing and verification. In: Com-
puter Aided Verification (CAV’ 10). pp. 104–118. LNCS (2010)

19. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone
computations. Journal of Symbolic Logic 62(3), 981–998 (1997)

20. Qadeer, S., Rajamani, S.K., Rehof, J.: Summarizing procedures in concurrent pro-
grams. In: Principles of Prog. Languages (POPL ’04). pp. 245–255. ACM (2004)

21. Weissenbacher, G.: Program analysis with interpolants. PhD thesis, Oxford (2010)

	Interpolation-based Function Summaries in Bounded Model Checking

