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Abstract

In a lazy master replicated database, a transac-
tion can commit after updating one replica copy
at some master node. After the transaction com-
mits, the updates are propagated towards the
other replicas, which are updated in separate re-
fresh transactions. A central problem is the de-
sign of algorithms that maintain replica’s consis-
tency while minimizing the performance degrada-
tion due to the synchronization of refresh trans-
actions. We propose a simple and general refresh-
ment algorithm that solves this problem and we
prove its correctness. We then present two main
optimizations. One is based on specific properties
of replicas’ topology. The other uses an imme-
diate update propagation strategy. Our perfor-
mance evaluation demonstrates the effectiveness
of this optimization.

1 Introduction

Lazy replication (also called asynchronous replication)
is a widespread form of data replication in (relational)
distributed database systems [21]. With lazy repli-
cation, a transaction can commit after updating one
replica copy'. After the transaction commits, the up-
dates are propagated towards the other replicas, and
these replicas are updated in separate refresh transac-
tions. In this paper, we focus on a specific lazy repli-
cation scheme, called lazy master replication [10] (also
called Single-Master-Primary-Copy replication in [4]).
There, one replica copy is designated as the primary
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copy, stored at a master node, and update transac-
tions are only allowed on that replica. Updates on
a primary copy are distributed to the other replicas,
called secondary copies. A major virtue of lazy master
replication is its ease of deployment [4, 10]. In addi-
tion, lazy master replication has gained considerable
interest because it is the most widely used mechanism
to refresh data warehouses and data marts [5, 21].

However, lazy master replication may raise a consis-
tency problem between replicas. Indeed, an observer
of a set of replica copies at some node at time ¢t may see
a state I of these copies that can never be seen at any
time, before or after ¢, by another observer of the same
copies at some other node. We shall say that I is an in-
consistent state. As a first example, suppose that two
data marts S; and Sy both have secondary copies of
two primary copies stored at two different data source
nodes?. If the propagation of updates coming from dif-
ferent transactions at the master nodes is not properly
controlled, then refresh transactions can be performed
in a different order at S7 and S, thereby introducing
some inconsistencies between replicas. These inconsis-
tencies in turn can lead to inconsistent views that are
later almost impossible to reconciliate.

Let us expand the previous example into a second
example. Suppose that a materialized view V of S,
considered as a primary copy, is replicated in data
mart Ss. Now, additional synchronization is needed so
that the updates issued by the two data source nodes
and the updates of V issued by S; execute in the same
order for all replicas in S7 and Ss.

Thus, a central problem is the design of algo-
rithms that maintain replica’s consistency in lazy mas-
ter replicated databases, while minimizing the perfor-
mance degradation due to the synchronization of re-
fresh transactions. Considerable attention has been
given to the maintenance of replicas’ consistency.

2This frequent situation typically arises when no corporate
data warehouse has been set up between data sources and data
marts. Quite often, each data mart, no matter how focused,
ends up with views of the business that overlap and conflict
with views held by other data marts (e.g., sales and inventory
data marts). Hence, the same relations can be replicated in both
data marts.



First, many papers addressed this problem in the con-
text of lazy group replicated systems, which require
the reconciliation of updates coming from multiple pri-
mary copies [25, 15, 10, 28]. Some papers have pro-
posed to use weaker consistency criterias that depend
on the application semantics. For instance, in the OS-
CAR system [9], each node processes the updates re-
ceived from master nodes according to a specific weak-
consistency method that is associated with each sec-
ondary copy. However, their proposition does not yield
the same notion of consistency as ours. In [3, 26, 1],
authors propose some weak consistency criterias based
on time and space, e.g., a replica should be refreshed
after a time interval or after 10 updates on a primary
copy. There, the concern is not anymore on fast re-
freshment and hence these solutions are not adequate
to our problem. [2, 19, 24] achieve one-copy serial-
izability of synchronous update transactions in a fully
replicated database, which guarantees that all conflict-
ing transactions execute in the same order at all sites.
They share in common the use of broadcast primi-
tives (e.g., atomic broadcast in [19, 2], reliable broad-
cast in [24]), as a basis for their replication protocols.
However, their notion of consistency is different from
ours. Furthermore [19] studies relaxed notions of con-
sistency such as cursor stability and snapshot isolation
and proposes efficient protocols to handle node failures
and recovery. In [6], the authors give conditions over
the placement of secondary and primary copies into
sites under which a lazy master replicated database
can be guaranteed to be globally serializable (which
corresponds to our notion of consistency). However,
they do not propose any refreshment algorithm for the
cases that do not match their conditions, such as our
two previous examples. Finally, synchronization algo-
rithms have been proposed and implemented in com-
mercial systems, such as Digital’s Reliable Transac-
tion Router [4], where the refreshment of all secondary
copies of a primary copy is done in a distributed trans-
action. However, to the best of our knowledge, these
algorithms do not assure replica consistency in cases
like our second above example.

This paper makes three important contributions
with respect to the central problem mentionned be-
fore. First, we analyze different types of configura-
tions of a lazy master replicated system. A configura-
tion represents the topology of distribution of primary
and secondary copies accross the system nodes. It is
a directed graph where a directed arc connects a node
N to a node N' if N holds a primary copy of some
secondary copy in N'. We formally define the notion
of correct refreshment algorithm that assures database
consistency. Then, for each type of configuration, we
define sufficient conditions that must be satisfied by a
refreshment algorithm in order to be correct.

As a second contribution, we propose a simple and
general refreshment algorithm, which is proved to be
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correct for a large class of acyclic configurations (in-
cluding for instance, the two previous examples). We
show how to implement this algorithm using system
components that can be added to a regular database
system. Our algorithm makes use of a reliable mul-
ticast with a known upper bound, that preserves a
global FIFO order. Our algorithm also uses a deferred
update propagation strategy, as offered by all commer-
cial replicated database systems. The general principle
of the algorithm is to make every refresh transaction
wait a certain “deliver time” before being executed.

As a third contribution, we propose two main op-
timizations to this algorithm. First, using our cor-
rectness results on configurations types, we provide a
static characterization of nodes that do not need to
wait. Second, we give an optimized version of the al-
gorithm that uses an immediate update propagation
strategy, as defined in [23]. We give a performance
evaluation based on simulation that demonstrates the
value of this optimization by showing that it signifi-
cantly improves the freshness of secondary copies.

The rest of this paper is structured as follows. Sec-
tion 2 introduces our lazy master replication frame-
work, and the typology of configurations. Section 3
defines the correctness criteria for each type of con-
figuration. Section 4 describes our refreshment algo-
rithm, how to incorporate it in the system architecture
of nodes, and proves its correctness. Section 5 presents
our two main optimizations. Section 6 introduces our
simulation environment and presents our performance
evaluation. Section 7 discusses some related work. Fi-
nally, Section 8 concludes.

2 Lazy Master Replicated Databases

We define a (relational) lazy replicated database sys-
tem as a set of m interconnected database systems,
henceforth called nodes. Each node N; hosts a rela-
tional database whose schema consists of a set of pair-
wise distinct relational schemas, whose instances are
called relations. A replication scheme defines a par-
titioning of all relations of all nodes into partitions,
called replication sets. A replication set is a set of
relations having the same schema, henceforth called
replica copies®. We define a special class of replicated
systems, called lazy master, which is our framework.

2.1 Ownership

Following [10], the ownership defines the node capa-
bilities for updating replica copies. In a replication
set, there is a single updatable replica copy, called pri-
mary copy (denoted by a capital letter), and all the
other relations are called secondary copies (denoted
by lower-case letters). We assume that a node never
holds the primary copy and a secondary copy of the

3 A replication set can be reduced to a singleton if there exists
a single copy of a relation in the replicated system.



same replication set. We distinguish between three
kinds of nodes in a lazy master replicated system.

Definition 2.1 (Types of nodes).

1. A node M is said to be a master node iff : Ym €
M m is a primary copy.

2. A node S is said to be a slave node iff : Vs € S
s is a secondary copy of a primary copy of some
master node.

3. A node MS is said to be a master/slave node iff :
dms and ms' € MS, such that ms is a primary
copy and ms' is a secondary copy.

Finally, we define the following slave and master de-
pendencies between nodes. A node M is said to be a
master node of a node S iff there exists a secondary
copy r in S of a primary copy R in M. We also say
that S is a slave node of M.

2.2 Configurations

Slave dependencies define a DAG, called configuration.

Definition 2.2 (Configuration).
A configuration of a replicated system is defined by a
directed graph, whose nodes are the nodes of the repli-
cated system, and there is a directed arc from a node
N to a node N' iff N' is a slave node of N. Node N
s said to be a predecessor of N'.

In the following, we distinguish different types of con-
figurations. Intuitively, to each configuration will cor-
respond a correctness criteria to guarantee database
consistency. In the figures illustrating the configura-
tions, we use integers to represent nodes in order to
avoid confusion with the names of the relations that
are displayed as annotation of nodes.

Definition 2.3 (Imaster-per-slave configuration).
An acyclic configuration in which each node has at
most one predecessor is said to be a 1master-per-slave
configuration.

This configuration, illustrated in Figure 1(a), corre-
sponds to a “data dissemination” scheme whereby a
set of primary copies of a master or master/slave node
is disseminated towards a set of nodes. It characterizes
for instance the case of several data marts built over a
centralized corporate data warehouse.

Definition 2.4 (1slave-per-master configuration).
An acyclic configuration in which each node has at
most one successor is said to be a lslave-per-master
configuration.

This configuration, illustrated in Figure 1(b), corre-
sponds to what is often called a “data consolidation”
scheme, whereby primary copies coming from different
nodes are replicated into a single node. It characterizes
for instance a configuration wherein a data warehouse
node (or even, an operational data store node) holds a
set of materialized views defined over a set of relations
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stored by source nodes. In this context, replicating
the source relations in the data warehouse node has
two main benefits. First, one can take advantage of
the replication mechanism to propagate changes from
the source towards the data warehouse. Second, it as-
sures the self-maintainability of all materialized views
in the data warehouse, thereby avoiding the problems
mentioned in [29].

Definition 2.5 (bowtie configuration).

An acyclic configuration in which there exist two dis-
tinct replicas X1 and X2 and four distinct nodes M,
M>, S1 and Sz such that (i) My holds the primary copy
of X1 and My the primary copy of X2, and (ii) both
S1 and Sy hold secondary copies of both X, and X,.

Such configuration, illustrated in Figure 1(c), general-
izes the two previous configurations by enabling arbi-
trary slave dependencies between nodes. This config-
uration characterizes, for instance, the case of several
data marts built over several data sources. The ben-
efits of a replication mechanism are the same as for a
data consolidation configuration.
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b) 1slave-per-master

Definition 2.6 (triangular configuration).
An acyclic configuration in which there exist three dis-
tinct nodes M, MS and S such that (i) M S is a suc-
cessor of M, and (i) S is a successor of both M and
MS, is said to be a triangular configuration. Nodes
M, MS and S are said to form a triangle.

This configuration, illustrated in Figure 2(a), slightly
generalizes the two first configurations by enabling a
master/slave node to play an added intermediate role
between a master node and a slave node. This config-
uration was also considered in [6].

Definition 2.7 (materialized view).

A primary copy of a master/slave node M S which is
defined as the result of the query over a set of sec-
ondary copies of M S is called a materialized view.

Definition 2.8 (view triangular configuration).

A derived configuration in which all the primary copies
hold by any node M S of any triangle are materialized
views of local secondary copies, is said to be a view
triangular configuration.

This configuration, illustrated in Figure 2(b), char-
acterizes, for instance, the case of two independent
data marts defined over the same data warehouse in
which one of the data mart replicates some material-
ized view of the other data mart. Although they over-
lap, the bowtie and the view triangular configurations
are incomparable (none is included into the other).
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Figure 2: Examples of Configurations
2.3 Transaction Model

The transaction model defines the properties of the
transactions that access the replica copies at each
node. Moreover, we assume that once a transaction
is submitted for execution to a local transaction man-
ager at a node, all conflicts are handled by the local
concurrency control protocol, in such a way that seri-
alizability of local transactions is ensured.

We focus on three types of transactions that read
or write replica copies: wupdate transactions, refresh
transactions and queries. All these transactions access
only local data.

An update tramsaction is a local user transaction
(i.e., executing on a single node) that updates a set
of primary copies. Updates performed by an up-
date transaction 7' are made visible to other trans-
actions only after T’°s commitment. We denote Tg, g,
an update transaction T' that updates primary copies
R1, R;,. We assume that no user transaction can up-
date a materialized view.

A refresh transaction associated with an update
transaction 7" and a node N, is composed by the se-
rial sequence of write operations performed by T on
the replica copies hold by N. We denote RT}, ., a re-
fresh transaction that updates secondary copies 1, 7.
Finally, a query transaction, noted @, consists of a se-
quence of read operations on replica copies.

2.4 Propagation

The propagation parameter defines “when” the up-
dates to a primary copy must be multicast towards
the nodes storing its secondary copies. The multicast
is assumed to be reliable and to preserve the global
FIFO order [18]: the updates are received by the in-
volved nodes in the order they have been multicast by
the node having the primary copy.

Following [23], we focus on two types of propa-
gation: deferred and immediate. When using a de-
ferred propagation strategy, the sequence of operations
of each refresh transaction associated with an update
transaction 7' is multicast to the appropriate nodes
within a single message M, after the commitment of
T. When using an immediate propagation, each opera-
tion of a refresh transaction associated with an update
transaction 7' is immediately multicast inside a mes-
sage m, without waiting for the commitment of T'.

2.5 Refreshment

The refreshment algorithm defines: (i) the triggering
parameter i.e., when a refresh transaction is started,
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and (ii) the ordering parameter i.e., the commit order
of refresh transactions.

We consider three triggering modes: deferred, im-
mediate and wait. The combination of a propagation
parameter and a triggering mode determines a spe-
cific update propagation strategy. With a deferred-
immediate strategy, a refresh transaction RT is sub-
mitted for execution as soon as the corresponding mes-
sage M is received by the node. With an immediate-
immediate strategy, a refresh transaction RT is started
as soon as the first message m corresponding to the
first operation of RT is received. Finally, with an
immediate-wait strategy, a refresh transaction RT is
submitted for execution only after the last message m
corresponding to the commitment of the update trans-
action associated with RT is received.

3 Correctness Criteria

In this section, we first formally define the notion of
a correct refreshment algorithm, which characterizes a
refreshment algorithm that does not allow inconsistent
states in a lazy master replicated system. Then for
each type of configuration introduced in Section 2, we
provide criteria that must be satisfied by a refreshment
algorithm in order to be correct.

We now introduce useful preliminary definitions
similar to those used in [17] in order to define the no-
tion of a consistent replicated database state. We do
not consider node failures, which are out of the scope of
this paper. As a first requirement, we impose that any
committed update on a primary copy must be eventu-
ally reflected by all its secondary copies.

Definition 3.1 (Validity). A refreshment algorithm
used in a lazy master replicated system is said valid iff
any node that has a copy of a primary copy updated
by a committed transaction T is guaranteed to commit
the refresh transaction RT associated with T .

Definition 3.2 (Observable State). Let N be any
node of a lazy master replicated system, the observable
state of node N at local time t is the instance of the
local data that reflects all and only those update and
refresh transactions committed before t at node N.

In the next definitions, we assume a global clock so
that we can refer to global times in defining the notion
of consistent global database state. The global clock
is used for concept definition only. We shall also use
the notation I;[N](Q) to denote the result of a query
transaction () run at node N at time t.

Definition 3.3 (Quiescent State). A lazy master
replicated database system is in a quiescent state at
a global time t if all local update transactions submit-
ted before t have either aborted or committed, and all
the refresh transactions associated with the committed
update transactions have committed.



Definition 3.4 (Consistent Observable State). Let N
be any node of a lazy master replicated system D. Let
t be any global time at which a quiescent state of D is
reached. An observable state of node N at time ty <t
s said to be consistent iff for any node N' holding
a non-empty set X of replica copies hold by N and
for any query transaction @Q over X, there exists some
time tn» <t such that I [N)(Q) = I, [N'](Q).

Definition 3.5 (Correct Refreshment Algorithm for
a node N). A refreshment algorithm used in a lazy
master replicated system D, is said to be correct for a
node N of D iff it is valid and for any quiescent state
reached at time t, any observable state of N at time
tny <t is consistent.

Definition 3.6 (Correct Refreshment Algorithm). A
refreshment algorithm used in a lazy master replicated

system D, is said to be correct iff it is correct for any
node N of D.

In the following, we define correctness criteria for
acyclic configurations that are sufficient conditions on
the refreshment algorithm to guarantee that it is cor-
rect. Due to space limitation, the proofs of all proposi-
tions are omitted and can be found in the long version
of this paper [22].

3.1 Global FIFO Ordering

For 1master-per-slave configurations, inconsistencies
may arise if slaves can commit their refresh transac-
tions in an order different from their corresponding up-
date transactions. Although in 1slave-per-master con-
figurations, every primary copy has a single associated
secondary copy, the same case of inconsistency could
occur between the primary and secondary copies. The
following correctness criterion prevents this situation.

Definition 3.7 (Global FIFO order). Let Ty and T
be two update transactions committed by the same
master or master/slave node M. If M commits Ty be-
fore Ty, then at every node having a copy of a primary
copy updated by Ty, the refresh transaction associated
with T> can only commit after the refresh transaction
associated with Ty.

Proposition 3.1 If a lazy master replicated system D
has an acyclic configuration which is neither a bowtie
nor a triangular configuration, and D uses a valid re-
freshment algorithm meeting the global FIFO order cri-
terion, then this refreshment algorithm is correct.

A similar result was shown in [6] using serializability
theory.

3.2 Total Ordering

Global FIFO ordering is not sufficient to guarantee
the correctness of refreshment for bowtie configura-
tions. Consider the example in Figure 1(c). Two mas-
ter nodes, node 1 and node 2, store relations R(A)
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and S(B), respectively. The updates performed on R
by some transaction Tg: insert R(A : a), are multi-
cast towards nodes 3 and 4. In the same way, the up-
dates performed on S by some transaction T’s: insert
S(B : b), are multicast towards nodes 3 and 4. With
the correctness criterion of proposition 3.1, there is no
ordering among the commits of refresh transactions
RT, and RT; associated with T and Ts. Therefore,
it might happen that RT, commits before RT, at node
3 and in a reverse order at node 4. In which case, a sim-
ple query transaction @ that computes (R — S) could
return an empty result at node 4, which is impossible
at node 3. The following criterion requires that RT,
and RT, commit in the same order at nodes 3 and 4.

Definition 3.8 (Total order). Let Ty and T» be two
committed update transactions. If two nodes commit
both the associated refresh transactions RTy and RT5,
they both commit RT, and RT» in the same order.

Proposition 3.2 If a lazy master replicated system
D that has a bowtie configuration but not a triangular
configuration, uses a valid refreshment algorithm meet-
ing the global FIFO order and the total order criteria,
then this refreshment algorithm is correct.

3.3 Master/Slave Induced Ordering

We first extend the model presented in Section 2 to
deal with materialized views as follows. From now on,
we shall consider that in a master/slave node M S hav-
ing a materialized view, say V(s1), any refresh trans-
action of s is undegstood to encapsulate the update of
some virtual copy V. The actual replica copies V' and
v are then handled as if they were secondary copies of
V. Hence, we consider that the update of the virtual
copy V is associated with:

e at node M S, a refresh transaction of V, noted
RTy,

e at any node S having a secondary copy of v, a
refresh transaction of v, noted RT.

With this new modeling in mind, consider the exam-
ple of Figure 2(b). Let V(A) be the materialized view
defined from the secondary copy sl. Suppose that at
the initial time ¢, of the system, the instance of V(A)
is: {V(A : 8)} and the instance of S(B) is: {S(B:9)}.
Suppose that we have two update transactions T's and
T, running at nodes 1 and 2 respectively: Ts: [delete
S(B :9); insert S(B : 6)], and Ty [if exists S(B : z)
and z < 7 then delete V(A : 8); insert V(A : 5)]. Fi-
nally, suppose that we have the query transaction )
over V and S, Q: [if exists V(A : z) and S(B : y) and
y < z then bool = true else bool = false], where bool is
a variable local to Q.

Now, a possible execution is the following. First, Ts
commits at node 1 and its update is multicast towards
nodes 2 and 3. Then, RT,, commits at node 2. At this
point of time, say t1, the instance of sq is {s1(B : 6)}.



Then the update transaction 7Ty, commits, afterwards
the refresh transaction RTy commits. The instance of
Vis {V(A : 5)}. Then at node 3, RT, commits (the
instances of v and sy are {v(A4 : 5)} and {s2(B :9)}),
and finally, RT;, commits (the instances of v and so
are {v(A : 5)} and {s2(B:6)}). A quiescent state is
reached at this point of time, say t,.

However, there exists an inconsistent observable
state. Suppose that () executes at time ¢; on node
2. Then, @ will return a value true for bool. How-
ever, for any time between t, and t,, the execution of
@ on node 3 will return a value false for bool, which
contradicts our definition of consistency.

The following criterion imposes that the commit or-
der of refresh transactions must reflect the commit or-
der at the master/slave node.

Definition 3.9 (Master/slave induced order). If M'S
is a node holding a secondary copy s1 and a material-
ized view V', then any node N;, i > 1, having secondary
copies s; and v; must commit its refresh transactions
RT,, and RT,, in the same order as RTy and RTj,
commit at MS.

Proposition 3.3 If a lazy master replicated system
D that has a view triangular configuration but not
a bowtie configuration, uses a valid refreshment al-
gorithm meeting the global FIFO order and the mas-
ter/slave induced order criteria then this refreshment
algorithm is correct.

As said before, a configuration can be both a bowtie
and a view triangular configuration. In this case, the
criteria for both configurations must be enforced.

Proposition 3.4 If a lazy master replicated system
D having both a view triangular configuration and a
bowtie configuration, uses a wvalid refreshment algo-
rithm meeting the global FIFO order, the master/slave
induced order and the total order criteria, then this
refreshment algorithm is correct.

4 Refreshment Algorithm

We start this section by presenting the system archi-
tecture assumed by our algorithms. Then, we present
our refreshment algorithm that uses a deferred update
propagation strategy and prove its correctness. Finally
we discuss the rationale for our algorithm.

4.1 System Architecture of Nodes

To maintain the autonomy of each node, we assume
that four components are added to a regular database
system, that includes a transaction manager and a
query processor, in order to support a lazy master
replication scheme. Figure 3 illustrates these compo-
nents for a node having both primary and secondary
copies. The first component, called Replication Mod-
ule, is itself composed of three sub-components: a Log
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Monitor, a Propagator and a Receiver. The second
component, called Refresher, implements a refresh-
ment strategy. The third component, called Deliverer,
manages the submission of refresh transactions to the
local transaction manager. Finally, the last compo-
nent, called Network Interface, is used to propagate
and receive update messages (for simplicity, it is not
portrayed on Figure 3). We now detail the functional-
ity of these components.

We assume that the Network Interface provides a
global FIFO reliable multicast [18] with a known upper
bound [11]: messages multicast by a same node are
received in the order they have been multicast. We
also assume that each node has a local clock. For
fairness reasons, clocks are assumed to have a bounded
drift and to be e synchronized. This means that the
difference between any two correct clocks is not higher
than the precision e.
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Figure 3: Architecture of a Node

The Log Monitor uses log sniffing [25, 20] to extract
the changes to a primary copy by continuously read-
ing the content of a local History Log (noted H). We
safely assume (see Chap. 9 of [16]) that a log record
contains all the information we need such as the times-
tamp of a committed update transaction, and other
relevant attributes that will be presented in the next
section. Each committed update transaction 7" has a
timestamp (henceforth denoted C'), which corresponds
to the real time value at 7’s commitment time. When
the log monitor finds a write operation on a primary
copy, it reads the corresponding log record from H and
writes it into a stable storage, called Input Log, that is
used by the Propagator. We do not deal with conflicts
between the write operations on the History Log and
the read operations performed by the Log Monitor.

Replication Module

The Receiver implements update message recep-
tion. Messages coming from different masters or mas-
ter/slaves are received and stored into a Reception Log.
The receiver then reads messages from this log and
stores them in FIFO pending queues. We denote Maz,
the upper bound of the time needed to multicast a mes-
sage from a node and insert it into a pending queue
at a receiving node. A node N has as many pending
queues ¢i, ...q, as masters or master/slaves nodes from
which N has a secondary copy. The contents of these
queues form the input to the Refresher.



The Propagator implements the propagation of up-
date messages constructed from the Log Monitor.
Such messages are first written into the Input Log. The
propagator then continuously reads the Input Log and
propagates messages through the network interface.

The Refresher implements the refreshment algo-
rithm. First, it reads the contents of the pending
queues, and based on its refreshment parameters, sub-
mits refresh transactions by inserting them into a run-
ning queue. The running queue contains all ordered
refresh transactions not yet entirely executed.

Finally, the Deliverer submits refresh transactions
to the local transaction manager. It reads the content
of the running queue in a FIFO order and submits
each write operation as part of a refresh transaction to
the local transaction manager. The local transaction
manager ensures serializability of local transactions.
Moreover, it executes the operations requested by the
refresh transactions according to the submission order
given by the Deliverer.

4.2 Refreshment Algorithm

As described in Section 2, the refreshment algorithm
has a triggering and an ordering parameters. In this
section, we present the refreshment algorithm in the
case of a deferred-immediate update propagation strat-
egy (i.e., using an immediate triggering), and focus on
the ordering parameter.

Deferred-Immediate Refresher
input: pending queues qi...qn
output: running queue
variables:

curr_M, new_M: messages from pending queues;

timer: local reverse timer whose state is either active or inactive;
begin

timer.state = inactive;

curr_M = new_M = {;

repeat

on message arrival or change of timer’'s state to inactive do
Step 1:

new_M < message with min C among top messages of g1, gn;

Step 2:
if new-M # curr_M then
curr_M «— new_M;
calculate deliver_time(curr_M);
timer.value «— deliver _time(curr_M) — local_time
timer.state «— active;
endif
on timer.value = 0 do
Step 3:
write curr_M into running queue;
dequeue curr_M from its pending queue;
timer.state < inactive;
for ever
end
Figure 4: Deferred-Immediate Refreshment Algorithm

The principle of the refreshment algorithm is the
following. A refresh transaction RT is committed at a
slave or master/slave node (1) once all its write opera-
tions have been done, (2) according to the order given
by the timestamp C of its associated update transac-
tion, and (3) at the earliest, at real time C + Max + ¢,
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which is called the deliver time, noted deliver_time.
Therefore, as clocks are assumed to be € synchronized,
the effects of updates on secondary copies follow the
same chronological order in which their corresponding
primary copies were updated.

We now detail the algorithm given in Figure 4. Each
element of a pending queue is a message that contains:
a sequence of write operations corresponding to a re-
fresh transaction RT, and a timestamp C of the up-
date transaction associated with RT. Since messages
successively multicast by a same node are received in
that order by the destination nodes, in any pending
queue, messages are stored according to their multi-
cast order (or commitment order of their associated
update transactions).

Initially, all pending queues are empty, and curr_M
and new_M are empty too. Upon arrival of a new mes-
sage M into some pending queue signaled by an event,
the Refresher assigns variable new_M with the mes-
sage that has the smallest C' among all messages in
the top of all pending queues. If two messages have
equal timestamps, one is selected according to the mas-
ter or master/slave identification priorities. This cor-
responds to Step 1 of the algorithm. Then, the Re-
fresher compares new_M with the currently hold mes-
sage curr_M. If the timestamp of new_M is smaller
than the timestamp of curr_-M, then curr_M gets
the value of new_M. Its deliver time is then cal-
culated, and a local reverse timer is set with value
deliver time — local_time. This concludes Step 2 of
the algorithm. Finally, whenever the timer expires
its time, signaled by an event, the Refresher writes
curr_M into the running queue and dequeues it from
its pending queue. Each message of the running queue
will yield a different refresh transaction. If an update
message takes Max time to reach a pending queue, it
can be processed immediately by the Refresher.

4.3 Refreshment Algorithm Correctness

We first show that the refreshment algorithm is valid
for any acceptable configuration. A configuration is
said acceptable iff (i) it is acyclic, and (ii) if it is a
triangular configuration, then it is a view triangular
configuration.

Lemma 4.1 The Deferred-immediate refreshment al-
gorithm is valid for any acceptable configuration.

Lemma 4.2 (Chronological order). The Deferred-
immediate refreshment algorithm ensures for any ac-
ceptable configuration that, if T1 and T> are any two
update transactions committed respectively at global
times t1 and ty then :
o if to —t1 > ¢, the timestamps Cs for Ty and C
for Tty meet Cs > C1.
e any node that commits both associated refresh
transactions RTy and RT,, commits them in the
order given by Cy and Cs.



Lemma 4.3 The Deferred-immediate refreshment al-
gorithm satisfies the global FIFO order criterium for
any acceptable configuration.

Lemma 4.4 The Deferred-immediate refreshment al-
gorithm satisfies the total order criteria for any accept-
able configuration.

Lemma 4.5 The Deferred-immediate refreshment al-
gorithm satisfies the master/slave induced order crite-
ria for any acceptable configuration.

From the previous lemmas and propositions, we have:

Theorem 4.1 The Deferred-immediate refreshment
algorithm is correct for any acceptable configuration.

4.4 Discussion

A key aspect of our algorithm is to rely on the upper
bound Max on the transmission time of a message by
the global FIFO reliable multicast. Therefore, it is
essential to have a value of Max that is not overesti-
mated. The computation of Max resorts to scheduling
theory (e.g., see [27]). It usually takes into account
four kinds of parameters. First, there is the global re-
liable multicast algorithm itself (see for instance [18]).
Second, are the characteristics of the messages to mul-
ticast (e.g. arrival laws, size). For instance, in [12],
an estimation of Max is given for sporadic message
arrivals. Third, are the failures to be tolerated by the
multicast algorithm, and last are the services used by
the multicast algorithm (e.g. medium access proto-
col). It is also possible to compute an upper bound
Mazx; for each type i of message to multicast. In that
case, the refreshment algorithm at node N waits until
max;cy Mazx; where J is the set of message types that
can be received by node N.

Thus, an accurate estimation of Max depends on an
accurate knowledge of the above parameters. However,
accurate values of the application dependent parame-
ters can be obtained in performance sensitive repli-
cated database applications. For instance, in the case
of data warehouse applications that have strong re-
quirements on freshness, certain characteristics of mes-
sages can be derived from the characteristics of the
operational data sources (usually, transaction process-
ing systems). Furthermore, in a given application, the
variations in the transactional workload of the data
sources can often be predicted.

In summary, the approach taken by our refresh-
ment algorithm to enforce a total order over an algo-
rithm that implements a global FIFO reliable multi-
cast trades the use of a worst case multicast time at the
benefit of reducing the number of messages exchanged
on the network. This is a well known tradeoff. This
solution brings simplicity and ease of implementation.
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5 Optimizations of the Refreshment

In this section, we present two main optimizations
for the refreshment algorithm presented in Section 4.
First, we show that for some configurations, the deliver
time of a refresh transaction needs not to include the
upper bound (Maz) of the network and the clock pre-
cision (¢), thereby considerably reducing the waiting
time of a refresh transaction at a slave or master/slave
node. Second, we show that without sacrificing cor-
rectness, the principle of our refreshment algorithm
can be combined with immediate update propagation
strategies, as they were presented in [23]. Performance
measurements, reported in Section 6, will demonstrate
the value of this optimization.

5.1 Eliminating the Deliver Time

There are cases where the waiting time associated with
the deliver time of a refresh transaction can be elim-
inated. For instance, consider a multinational invest-
ment bank that has traders in several cities, including
New York, London, and Tokyo. These traders update
a local database of positions (securities held and quan-
tity), which is replicated using a lazy master scheme
(each site is a master for securities of that site) into a
central site that warehouses the common database for
all traders. The common database is necessary in or-
der for risk management software to put limits on what
can be traded and to support an internal market. A
trade will be the purchase of a basket of securities be-
longing to several sites. In this context, a delay in the
arrival of a trade notification may expose the bank to
excessive risk. Thus, the time needed to propagate up-
dates from a local site to the common database must
be very small (e.g., below a few seconds).

This scheme is a 1slave-per-master configuration,
which only requires a global FIFO order to ensure the
correctness of its refreshment algorithm (see proposi-
tion 3.1). Since, we assume a reliable FIFO multicast
network, there is no need for a refresh transaction to
wait at a slave node before being executed. More gen-
erally, given an arbitrary acceptable configuration, the
following proposition characterizes those slave nodes
that can process refresh transactions without waiting
for their deliver time.

Proposition 5.1 Let N a node of a lazy master repli-
cated system D. If for any node N' of D, X being the
set of common replicas between N and N', we have:
e cardinal(X) <1, or
o VX, X5 € X, the primary copies of X1 and X»
are hold by the same node,

then any valid refreshment algorithm meeting the
global FIFO order criteria is correct for node N.

From an implementation point of view, the same re-
freshment algorithm runs at each node. The behav-
ior of the refreshment algorithm regarding the need to



wait or not, is simply conditioned by a local variable.
Thus, when the configuration changes, only the value
of the variable of each node can possibly change.

5.2 Immediate Propagation

We assume that the Propagator and the Receiver both
implement an immediate propagation strategy as spec-
ified in [23], and we focus here on the Refresher. Due
to space limitations, we only present the immediate-
immediate refreshment algorithm. We have chosen
the immediate-immediate version because it is the one
that provides the best performance compared with
deferred-immediate, as indicated in [23].
Immediate_immediate Refresher
input: pending queues qi...qn
output: running queue
variables:
curr_m, new_m: messages from pending queues;
timer: local reverse timer whose state is either active or inactive;
begin
timer.state = inactive;
curr_m = new-m = {;
repeat
on message arrival or change of timer's state to inactive do
if m # commit then
write m into the running queue;
dequeue m from its pending queue;
else
new_m < commit message with min C
among top messages of q1...qn;
if new_m # curr_m then
curTom «— new-m;
calculate deliver_time(curr_m);
timer.value «— deliver_time(curr_m) — local_time
timer.state < active;
endif
endif
on timer.value = 0 do
write curr_-m into running queue;
dequeue curr_-m from its pending queue;
timer.state < inactive;
for ever
end
Figure 5: Immediate-Immediate Refreshment Algorithm

5.2.1 Immediate-Immediate Refreshment

We detail the algorithm of Figure 5. Unlike deferred-
immediate refreshment, each element of a pending
queue is a message m that carries an operation o of
some refresh transaction, and a timestamp C. Ini-
tially, all pending queues are empty. Upon arrival of a
new message m in some pending queue, signaled by an
event, the Refresher reads the message and if m does
not correspond to a commit, inserts it into the run-
ning queue. Thus, any operation carried by m other
than commit can be immediately submitted for execu-
tion to the local transaction manager. If m contains
a commit operation then new_m is assigned with the
commit message that has the smallest C' among all
messages in the top of all pending queues. Then,
new_m is compared with curr_m. If new_m has a
smallest timestamp than curr_m, then curr_m is as-
signed with new_m. Afterwards, the Refresher calcu-
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lates the deliver_time for curr_m, and timer is set as in
the deferred-immediate case. Finally, when the timer
expires, the Refresher writes curr_m into the running
queue, dequeues it from its pending queue, sets the
timer to inactive and re-executes Step 1.

5.2.2 Algorithm Correctness

Like the deferred-immediate refreshment algorithm,
the immediate-immediate algorithm enforces refresh
transactions to commit in the order of their associated
update transactions. Thus, the proofs of correctness
for any acceptable configuration are the same for both
refreshment algorithms.

6 Performance Evaluation

In this section, we summarize the main performance
gains obtained by an émmediate-immediate refresh-
ment algorithm against a deferred-immediate one.
More extensive performance results are reported in
[23]. We use a simulation environment that reflects
as much as possible a real replication context. We fo-
cus on a bowtie configuration which requires the use
of a Maz + ¢ deliver time, as explained in Section 5.2.
However, once we have fixed the time spent to reliably
multicast a message, we can safely run our experiments
with a single slave and several masters.

Our simulation environment is composed of Master,
Network, Slave modules and a database server. The
Master module implements all relevant capabilities of a
master node such as log monitoring and message prop-
agation. The Network module implements the most
significant factors that may impact our update propa-
gation strategies such as the delay to reliably multicast
a message. The Slave module implements the most rel-
evant components of the slave node architecture such
as Receiver, Refresher and Deliverer. In addition, for
performance evaluation purposes, we add the Query
component in the slave module, which implements the
execution of queries that read replicated data. Finally,
a database server is used to implement refresh trans-
actions and query execution.

Our environment is implemented on a Sun Solaris
workstation using Java/JDBC. We use sockets for
inter-process communication and Oracle 7.3 to imple-
ment refresh transaction and query processing. For
simulation purposes, each write operation corresponds
to an UPDATE command submitted to the server.

6.1 Performance Model

The metrics used to compare the two refreshment al-
gorithms is given by the freshness of secondary copies.
More formally, given a replica X, which is either a
secondary or a primary copy, we define n(X,t) as the
number of committed update transactions on X at
global time t. We assume that update transactions can
have different sizes but their occurence is uniformly



distributed over time. Using this assumption, we de-
fine the degree freshness of a secondary copy r at global
time t as: f(r,t) = n(r,t)/n(R,t). Therefore, a degree
of freshness close to 0 means bad data freshness while
close to 1 means excellent.

The mean degree of freshness of r at a global time
T is defined as: meany = 1/T fOTf(r, t)dt.

We now present the main parameters for our ex-
perimentations summarized in Table 6.1. We assume
that the mean time interval between update transac-
tions, noted A, as reflected by the history log of each
master, is bursty. Updates are done on the same at-
tribute of a different tuple. We focus on dense update
transactions, i.e., transactions with a small time inter-
val between each two writes. We define two types of
update transactions. Small update transactions have
size 5 (i.e., 5 write operations), while long transac-
tions have size 50. We define four scenarios in which
the proportion of long transactions, noted Iltr, is set
respectively to 0, 30, 60, and 100. Thus, in a scenario
where Itr = 30, 30 % of the executed update transac-
tions are long. Finally, we define an abort transaction
ratio, noted abr, of 0, 5%, 10%, 20%, that corresponds
to the percentage of transactions that abort in an ex-
periment. Furthermore, we assume that a transaction
abort always occurs after half of its execution.

Table 1: Performance Parameters

Param. Definition Values

At mean time between Trans. bursty:200ms
Aq mean time between Queries | low:15s
nbmaster | Number of Master nodes 1to8

Q| Query Size 5

|RT| Refresh Transaction Size 5; 50

ltr Long Transaction Ratio 0; 30; 60; 100%
abr Abort Ratio 0; 5; 10; 20%
tshort Multicast Time per record 20ms; 100ms

Network delay is calculated by 6 + ¢, where § is
the waiting time in the input queue of the Network
module, and ¢ is the reliable multicast time of a mes-
sage until its insertion in the pending queue of the
Refresher. Concerning the value of ¢ used in our exper-
iments, we have a short message multicast time, noted
tshort, Which represents the time needed to reliably
multicast a single log record. In addition, we consider
that the time spent to reliably multicast a sequence of
log records is linearly proportional to the number of
log records it carries. The network overhead delay, 6,
is implicity modeled by the system overhead to read
from and write to sockets. The Total propagation time
(noted t,) is the time spent to reliably multicast all
log records associated with a given transaction?. Fi-
nally, when ltr > 0, the value of Maz is calculated
using the maximun time spent to reliably multicast
a long transaction (50 * tshort). On the other hand,
when ltr = 0, the value of Max is calculated using

4Tf n represents the size of the transaction with immediate
propagation, we have t, = n X (6 + tsport ), While with deferred
propagation, we have t, = (6 +n X tsport)-
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the maximun time spent to reliably multicast a short
transaction (5 * tsport). The refresh transaction exe-
cution time is influenced by the existence of possible
conflicting queries that read secondary copies at the
slave node. Therefore, we need to model queries. We
assume that the mean time interval between queries is
low, and the number of data items read is small (fixed
to 5). We fix a 50% conflict rate for each secondary
copy, which means that each refresh transaction up-
dates 50% of the tuples of each secondary copy that
are read by a query.

To measure the mean degree of freshness, we use
the following variables. Each time an update trans-
action commits at a master, variable version_master
for that master, is incremented. Similarly, each time
a refresh transaction commits at the slave, variable
versiton_slave, is incremented. Whenever a query con-
flicts with a refresh transaction we measure the degree
of freshness.

6.2 Experiments

We present three experiments. The results are average
values obtained from the execution of 40 update trans-
actions. The first experiment shows the mean degree
of freshness obtained for the bursty workload. The sec-
ond experiment studies the impact on freshness when
update transactions abort. In the third experiment,
we study the effect of an increase in network delay.
We now summarize our major results. As depicted
in Figure 6, when ltr = 0 (short transactions), the
mean degree of freshness is already impacted because
on average, A\; < t,°. With 2, 4, and 8 masters, the
results of immediate-immediate are much better than
those of deferred-immediate, as ltr increases. For in-
stance, with 4 masters with ltr = 30, the mean degree
of freshness is 0.62 for immediate-immediate and 0.32
for deferred-immediate. In fact, immediate-immediate
always yields the best mean degree of freshness even
with network contention due to the parallelism of log
monitoring, propagation, and refreshment.

1
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Figure 6: Bursty Workload
With immediate-immediate, the mean query re-
sponse time may be seriously impacted because each
time a query conflicts with a refresh transaction, it
may be blocked during a long period of time since the
propagation time may be added to the refresh transac-
tion execution time. When A\, >> X, the probability

5Therefore, during T;’s update propagation, Tiy1...Ti4n may
be committed.



of conflicts is quite high. The higher the network delay
value, the higher are the query response times in con-
flict situations. However as also pointed out in [19],
we verified that the use of a multiversion protocol on
the slave node may significantly reduce query response
times, without a significant decrease in the mean de-
gree of freshness.

The abort of an update transaction with immediate-
immediate does not impact the mean degree of fresh-
ness since the delay introduced to undo a refresh trans-
action is insignificant compared to the propagation
time. As shown in Figure 7, for ltr = 0 and vari-
ous values of abr (5,10,20), the decrease of freshness
introduced by update transactions that abort with
immediate-immediate is insignificant®. This behavior
is the same for other values of ltr (30, 60, 100).
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deferred-immediate -
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o 20

Abort Ratio (Itr=0)

Figure 7: Abort Effects

Finally, the improvements brought by immediate-
immediate are more significant when the network de-
lay to propagate a single operation augments. Fig-
ure 8 and Figure 9 compares the freshness results ob-
tained when 6 = 100ms and § = 20ms. For instance,
when § = 20 and ltr = 100 immediate-immediate im-
proves 1.1 times better than deferred-immediate and
when § = 100, immediate-immediate improves 5 times
better. This clearly shows the advantages of having
tasks belzing executed in parallel.
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Figure 8: Network Delay =20ms

1

deferred-immediate -
o.8 - immediate-immediate -

0.6
N

0.4 \
0.2 | \—

o

Degree of Freshness

o 100

30 60
Long Transaction Ratio (Delay=100ms)

Figure 9: Network Delay =100ms
7 Related Work

Apart from the work cited in Section 1, the closest
work to ours is in [6]. The authors show that for

8In the worst case, it achieves 0.2.
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any strongly acyclic configuration a refreshment algo-
rithm which enforces a global FIFO ordering, guar-
antees a global serializability property, which is sim-
ilar to our notion of correction. Their result is anal-
ogous to our Proposition 3.1. They also propose an
algorithm, which assigns, when it is possible, a site to
each primary copy so that the resulting configuration
is strongly acyclic. However, no algorithm is provided
to refresh secondary copies in the cases of non strongly
acyclic configurations.

Much work has been devoted to the maintenance
of integrity constraints in federated or distributed
databases, including the case of replicated databases
[7, 13, 8, 17]. These papers propose algorithms and
protocols to prevent the violation of certain kind of
integrity constraints by local transactions. However,
their techniques are not concerned with the consistent
refreshment of replicas.

In [25], the authors describe a lazy group replica-
tion scheme in which the update propagation protocol
applies updates to replicated data in their arrival or-
der, possibly restoring inconsistencies when arrivals vi-
olate the timestamp ordering of transactions. The ma-
jor difference with our work is that they achieve con-
sistency by undoing and re-executing updates which
are out-of-order, whereas we do not allow inconsistent
database states.

The timestamp message delivery protocol in [15] im-
plements eventual delivery for a lazy group replication
scheme [10]. It uses periodic exchange of messages
between pairs of servers that propagate messages to
distinct groups of master nodes. At each master node
incoming messages are stored in a history log (as ini-
tially proposed in [20]) and later delivered to the ap-
plication in a defined order. Eventual delivery is not
appropriate in our framework since we are interested
in improving data freshness.

The goal of epidemic algorithms [28] is to ensure
that all replicas of a single data item converge to the
same value in a lazy group replication scheme. Up-
dates are executed locally at any node. Later, nodes
communicate to exchange up-to-date information. In
our approach, updates are propagated from each pri-
mary copy towards its secondary copies.

Formal concepts for specifying coherency conditions
in a replicated distributed database have been in-
troduced in [14]. The authors focus on a deferred-
immediate update propagation strategy and propose
concepts for computing a measure of relaxation’.
Their concept of version is closely related to our notion
of freshness.

8 Conclusion

In a lazy master replicated system, a transaction can
commit after updating one replica copy (primary copy)
at some node. The updates are propagated towards

"called coherency inde.



the other replicas (secondary copies), and these repli-
cas are refreshed in separate refresh transactions.

We proposed refreshment algorithms which address
the central problem of maintaining replicas’ consis-
tency. An observer of a set of replicas at some node
never observes a state which is never seen by another
oberver of the same set of replicas at another node.

This paper has three major contributions. Our first
contribution is a formal definition of (i) the notion
of correct refreshment algorithm and (ii) correctness
criteria for any acceptable configuration.

Our second contribution is an algorithm meeting
these correctness criteria for any acceptable configura-
tion. This algorithm can be easily implemented over
an existing database system. It is based on a deferred
update propagation, and it delays the execution of a
refresh transaction until its deliver time.

Our third contribution concerns optimizations of
the refreshment algorithm in order to improve the data
freshness. With the first optimization, we character-
ized the nodes that do not need to wait. The second
optimization uses immediate-immediate update prop-
agation strategy. This strategy allows parallelism be-
tween the propagation of updates and the execution of
the associated refresh transactions.

Finally, our performance evaluation shows that the
immediate-immediate strategy always yields the best
mean degree of freshness for a bursty workload.
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