Performance Measurements of Compressed Bitmap
Indices

Theodore Johnson
AT&T Labs — Research

johnsont@research.att.com

Abstract

Bitmap indices are commonly
used by DBMS’s to accelerate decision sup-
port queries. A bitmap index is a collection
of bitmaps in which each bit is mapped to a
record ID (RID). A bit in a bitmap is set if
the corresponding RID has property P (i.e.,
the RID represents a customer that lives in
New York), and is reset otherwise. A signifi-
cant advantage of bitmap indices is that com-
plex logical selection operations can be per-
formed very quickly, by performing bit-wise
AND, OR, and NOT operations. Bitmap are
also compact representations of densely popu-
lated sets. By using bitmap compression tech-
niques, they are also compact representations
of sparsely populated sets.

In spite of the great interest in bitmap indices,
little has been published about the compar-
ative performance of bitmap compression al-
gorithms (i.e., compression ratios and times
for Boolean operations) in a DBMS environ-
ment. We have implemented the three main
bitmap compression techniques (LZ compres-
sion, variable bit-length codes, and variable
byte-length codes) and built a generic bitmap
index from them. We have tested each of these
compression techniques (and their variants)
for their compression ratio on a wide variety
of synthetic and actual bitmap indices. Be-
cause bitmap indices are valuable for complex
selection conditions, we evaluate four meth-
ods for performing a Boolean operation be-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

278

tween compressed bitmaps, including meth-
ods that use compressed or partially uncom-
pressed bitmaps directly.

Our results show that the best bitmap index
compression technique and the best Boolean
operation algorithms strongly depend on the
bitmaps being compressed or operated on and
the operations being performed. These re-
sults are a step towards understanding the
space-time tradeoff in adaptive compressed
bitmap indices, developing a bitmap index
design methodology for compressed bitmaps,
and optimizing Boolean expression evaluation
on compressed bitmaps.

1 Introduction

A bitmap index is a bit string in which each bit is
mapped to a record ID (RID). A bit in the bitmap
index is set if the corresponding RID has property
P (i.e., the RID represents a customer that lives in
New York), and is reset otherwise. One advantage
of bitmap indices is that complex selection predicates
can be computed very quickly, by performing bit-wise
AND, OR, and NOT operations on the bitmap indices.
This property of bitmap indices has led to consider-
able interest in their use in Decision Support Systems
(DSS).

In a recent paper, O’Neil and Quass [10] provide
an excellent discussion of the architecture and use of
bitmap indices. Typically, a bitmap index is created
for each unique value of an indexed attribute. Each
bitmap 1s broken into fixed size fragments and stored
in an index structure. O’Neil and Graefe [9] show that
bitmap indices can be used as join indices for evalu-
ating complex DSS queries on star schemas. O’Neil
and Quass [10] point out that bitmap indices not only
accelerate the evaluation of complex Boolean expres-
sions, but can also be used to answer some aggregate
queries directly. Several DBMS vendors have incor-
porated bitmap index technology into their products
[12, 11].

A problem with using uncompressed (verbatim)
bitmap indices is their high storage costs and poten-
tially high query costs when the indexed attribute has

a high cardinality. Recent research has investigated
methods for organizing bitmap indices to solve these
problems. O’Neil and Quass [10] proposed bit-slice in-
dices, in which a bitmap is created for each binary
digit of the range of values of the indexed attribute.
Chan and Toannidis [3] propose attribute value decom-
position, which generalizes the bit-slice index to use
multiple radixes. They present an improved algorithm
for making range queries on attribute-value indices,
and for optimizing the design of attribute value de-
composition indices. Wu and Buchmann [13] propose
methods for improving the performance of hierarchy
range queries on bit-slice indices.

An alternative method for dealing with the problem
of using bitmap indices on high-cardinality attributes
is to compress the bitmaps. For example, in a sec-
ondary index B-tree each unique key value might be
shared by many records in a relation. Oracle uses com-
pressed bitmaps (BBC encoded) to represent these sets
of records [11]. A considerable body of work has been
devoted to the study of bitmap index compression (see
[7]). The use of bitmap compression has many poten-
tial performance advantages. Less disk space is re-
quired to store the indices, the indices can be read
from disk into memory faster, and more indices can
be cached in memory. However, the use of bitmap
compression can introduce some problems. Performing
Boolean operation requires the decompression or inter-
pretation of the compressed bitmap, and this overhead
might outweigh any savings in disk space or bitmap
loading time. In addition, storing the bitmap in com-
pressed form can make updates more expensive.

Using compression introduces many complications
into bitmap index design, but much of the existing
bitmap index design research [13, 3] applies to uncom-
pressed bitmaps only. Some of the issues include:

e The compressibility of the bitmap depends
strongly on the bit patterns in the bitmap.

e The compressibility of a bitmap depends on the
bitmap compression algorithm. Which of the
compression algorithms achieves the highest com-
pression depends strongly on the bit patterns in
the bitmap.

e There are several options for performing Boolean
operations between compressed bitmaps. The de-
fault method is to uncompress the both bitmaps,
then perform bitwise Boolean operations one word
at a time. However other algorithms are possi-
ble (including direct operations on the compressed
bitmaps) and they might be considerably faster.

Clearly, the best index design depends strongly on
the nature of the data being indexed and the types
of queries being performed. For bitmap indices on
low cardinality attributes, compression might be ef-
fective on some but not all of the component bitmaps.

279

For high cardinality attributes, an attribute value de-
composed bitmap index [3] is likely to require more
storage space than a compressed but non-decomposed
bitmap index. However, such an index will evaluate
range queries faster than a regular but compressed in-
dex if the query mix contains many large range queries.
In some cases, it might be appropriate to use the tech-
niques discussed in [13, 3] and compress the resulting
bitmaps. But in this case an accurate model of bitmap
compression ratios and Boolean operation costs should
be used in the design.

A principled design of bitmap indices that makes
use of compression requires an understanding of the
performance of bitmap compression algorithms and
their interaction with evaluating Boolean expressions.
In this paper, we present a performance measurement
study of several aspects of bitmap index compression,
making the following contributions:

¢ Evaluate bitmap compression algorithms in
a DBMS setting. We evaluate three representa-
tive approaches to bitmap compression: LZ com-
pression using the widely available z1ib library,
variable bit length encoding using the ExpGol al-
gorithm, and variable byte length encoding using
the BBC codes. We evaluate these algorithms for
their compression ratios on a wide variety of syn-
thetic and actual bitmaps with widely varied se-
lectivities and degrees of clusteredness.

¢ Evaluate algorithms for Boolean operations
on compressed bitmaps. In a DBMS setting,
one typically uses bitmap indices to evaluate com-
plex selection predicates. For example, “New
York, New Jersey, or Connecticut residents who
are married, have three to five children, own a
house, and work in a different state than their
residence”. The time to evaluate this expression
depends on the time to perform all of the neces-
sary Boolean operations. One option for perform-
ing the operations is to decompress each of the
bitmaps involved, and then evaluate the expres-
sion. However, other algorithms for performing
operations between compressed bitmaps are possi-
ble, including algorithms that operate directly on
the compressed bitmaps. We evaluate the perfor-
mance of four algorithms for performing Boolean
operations on compressed bitmaps using synthetic
bitmaps with a wide variety of selectivities and
degrees of clusteredness.

The results that we present are necessary for a va-
riety of follow-up research activities, including:

e Developing “adaptive compressed bitmaps” that
choose the best compression algorithms for a given
bitmap (based on compression ratios, time to per-
form Boolean operations, or both).

e Developing Boolean expression evaluation opti-
mizers that rearrange the evaluation tree and
choose algorithms for performing Boolean oper-
ations in order to minimize the total expression
evaluation time.

e Developing a theory of optimal compressed
bitmap indices similar to that described in [13,
3], but accounting for compression ratios and
Boolean operation execution times.

The paper proceeds as follows. In Section 2, we
discuss the three bitmap compression techniques eval-
uated in this paper. In Section 3.1, we evaluate the
performance of these bitmap compression algorithms
on a variety of synthetic and actual bitmap indices. In
Section 3.2, we evaluate four Boolean operator evalu-
ation algorithms using a variety of compression tech-
niques and synthetic bitmaps. In Section 4, we discuss
the impact of bitmap compression on bitmap index de-
sign. We discuss our conclusions in Section 5.

2 Bitmap Index Compression Algo-
rithms

In our search of the literature, we have found a vari-
ety of techniques for compressing bitmap indices. The
simplest method is to convert the bitmap into a Run-
Length Encoding (RLE), which is a list of differences in
the positions of successive set bits (Model 204 [8] uses a
related method). If four byte integers are used to rep-
resent the run lengths, then the RLE representation
uses less space than the uncompressed (verbatim) rep-
resentation if fewer than 1 bit in 32 is set. The repre-
sentation of run lengths as four-byte integers contains
a great deal of redundancy, and typically can be com-
pressed much further. We do not test RLE by itself as
one of the encoding methods, but it is a component of
the methods we do test.

We settled on three approaches to bitmap index
compression as being representative of the methods
that can be employed. The first method is to use
the widely available LZ compression algorithm, which
compresses repeated sequences of symbols. The second
method compresses the RLE using variable bit length
codes. The third method, the Byte-aligned Bitmap
Codes (BBC) uses a variable byte-length representa-
tion of the RLE in places where the bitmap is sparse,
and transcribes the bitmap where the bitmap is dense
(verbatim codes).

In this section, we describe the bitmap index com-
pression techniques used in this study. Each of the
compression algorithms accepts a block of bitmap data
and returns a block of compressed bitmap codes. By
encoding a large bitmap one block at a time and index-
ing the compressed bitmap blocks, one can uncompress
only those bits in a desired range.

280

2.1 LZ encoding

Lempel-Ziv encoding searches for long repeated strings
in a body of text and replaces them with short com-
pression codes. High-quality LZ compression software
is easily available, both as the gzip file compression
tool, and as the z1ib data compression library [6].
Because LZ software is so readily available, the natu-
ral default choice of a compression engine is LZ even
though the readily available implementation (z1ib) is
designed for text compression rather than for bitmap
compression.

We implemented two variations of LZ bitmap in-
dex compression. The first method, LZ, compresses
the verbatim bitmap, while LZ-RLF first converts the
bitmap into a RLE representation, then compressed

the RLE using LZ.

2.2 ExpGol encoding

A number of variable bit length techniques for com-
pressing the run length encodings of bitmaps have been
developed in the Information Retrieval literature. In
[7], Moffat and Zobel present a unifying description of
many of these coding techniques and a performance
comparison of them. We chose the ExpGol code as
representative of these techniques, as it is reported to
have the best performance of the codes that do not
rely on Huffman trees (LZ uses Huffman trees and the
ExpGol algorithm has performance competitive with
the highest compression algorithms discussed in [7]).
The discussion of the ExpGol code we present here is
based on the presentation given in [7].

A basic variable bit length representation of inte-
gers is a gamma code. The gamma code of integer n,
v(n) is |logy(n)| zero bits followed by the least signif-
icant |log,(n)] + 1 bits of the binary representation of
n. Note that the truncated binary representation of
n will always start with a 1. For example, v(1) = 1,
¥(2) = 010, (3) = 011, y(4) = 00100, and so on.
Interpreting a gamma code is done by counting the
number of bits from the starting position to the first 1
bit, then copying the truncated binary representation
of n to a location where it can be interpreted as an
integer.

Fraenkel and Klein [5] have observed that a large
class of bitmap encodings can be fit into a simple
framework. Let V be a list of positive integers wv;.
To encode n, we find the k such that

k—1 k
Zvj <n< Zvj
=1 =1
Let
k—1
d=n— Z v;—1
7j=1

To encode n, we write k£ in some encoding, followed
by d using [log,(d)] bits. For example, a 4 code en-
codes k in unary (a string of zero bits followed by a 1
bit) using the following vector: V = (1,2,4,8,16,...).

Moffat and Zoebel find that the following extension
to the ExpGol code gives the best compression. Let b
be an integer that is representative of gap lengths in a
bitmap. Then, use a gamma code to represent k£ and
set:

V = (b, 2b,4b,8b, 16, ..)

Moffat and Zoebel found that setting b to the me-
dian gap length, or to the geometric average of the
gap lengths, to be effective. We implemented both ap-
proaches (FzpGol median and ErpGol mean, respec-
tively).

2.3 Byte-aligned Bitmap Codes

Antoshenkov [2, 1] has proposed the use of Byte-
aligned Bitmap Codes (BBC). The claimed advantage
of BBC codes is their speed, since all operations occur
locally on full bytes. The BBC encoding algorithm is
a l-pass algorithm, which permits incremental bitmap
compression. Antoshenkov proposes logical opera-
tions on bitmaps that use only the compressed bitmap
codes, which can be substantially faster than operat-
ing on uncompressed bitmaps. Finally Antoshenkov
shows that his BBC codes achieve better compression
than do gamma-delta codes (but there was no compar-
ison to the considerably more efficient ExpGol codes).

BBC codes can be one-sided or two-sided. We first
discuss one-sided codes. Every BBC code consists of
two parts, a gap and an ending. The gap specifies the
number of zero bytes that precede the ending. The
ending can either be a bit (a byte with a single bit
set), or it can be a verbatim sequence of bitmap bytes.
Bit endings are used where the bitmap is sparse, while
verbatim endings are used where the bitmap is dense.
BBC codes use a clever packing to minimize space use;
if the gap is short, a bit code is expressed in one byte.
Long gaps are expressed with multi-byte codes. Two-
sided codes are similar, except that the gap can be
either zero-filled or one-filled.

In the course of our experiments, we found that a
few simple modifications to Antoshenkov’s encoding
scheme resulted in a substantial improvement in space
compression. All of the BBC related results in this
paper use the improved BBC codes. We do not have
space in this paper to discuss the improvements, but
will do so in the full paper.

3 Performance

The most important aspects of compressed bitmap
performance are the compression ratio (size of the
compressed bitmap divided by the size of the uncom-
pressed bitmap), and the time required to perform

281

Boolean operations. Secondary performance consid-
erations include the time to uncompress a bitmap,
whether the compressed representation can be incre-
mentally updated, storage management issues, and so
on. Because of space constraints, we must defer a dis-
cussion of these issues to the full paper. However, Fig-
ures 7 and 8 illustrate the timne to uncompress.

After performing the experiments, we found that
the LZ-RLE algorithm never had the best perfor-
mance. To avoid cluttering our charts, we do not
present LZ-RLE results. We also found that ExpGol
Mean and ExpGol Median have nearly identical per-
formance. We present results for ExpGol Mean only,
and refer to them as ExpGol.

We built a generic compressed bitmap index to sup-
port our experiments. The core of the index is a list
of pointers to compressed bitmap blocks, and the as-
sociated metadata. Each compressed bitmap block
represents a fixed-size block of uncompressed bitmap.
The minimal metadata associated with a compressed
bitmap block is the length of the block. Additionally,
one can store the type of compression used (to support
multiple compression methods) and so on. We ran our
experiments by generating a test bitmap, compress-
ing and storing the compressed representation in the
index, and then operating on the uncompressed repre-
sentation. Throughout this study, we used 32 Kbyte
blocks (which is the size of the compression window in
zlib).

All experiments were carried out on a 225 Mhz
Ultrasparc. We note that timing measurements are
highly dependent on processor architecture and coding
optimizations. However, we ported our code to an SGI
Challenge and to an Intel Pentium Pro, and obtained
nearly identical relative performance. We made efforts
to optimize the ExpGol and BBC coding and decoding
algorithms (by using pre-computed values, minimizing
data copies, etc.) but an extensive tuning effort would
probably yield faster code. We used zlib as it was pro-
vided. While small differences in execution speed are
not significant, we feel that we have captured the rel-
ative performance of the algorithms well enough that
large differences in execution speed are significant.

3.1 Bitmap Compression Ratio

In this section, we present the compression ratios
achieved by the bitmap compression algorithms with a
variety of input bitmaps. In our first experiments, we
generate uniform random bitmaps as test input. A bit
is set with probability p independently of all other bits
in the bitmap. This model describes bitmaps that are
uncorrelated with the sort attributes of the data set.
We refer to the proportion of set bits in the bitmap
as the bit density, which we represent with the symbol
p. In all of the charts, the X axis is the bit den-
sity. We generated an 8 Mbyte bitmap (64 Mbits),
and compressed in blocks of 32 Kbytes each. We

measured the compression ratio to be the size of the
compressed bitmap divided by the size of the uncom-
pressed bitmap.

Figure 1 shows the compression ratio of the four
compression algorithms as the bit density varies be-
tween .0001 and .9999. All of the algorithms achieve
a good degree of compression when p is close to zero,
but only the two-sided algorithms (LZ and BBC 2s)
achieve good compression when p is close to 1. the
LZ coding has the best compression on dense bitmaps
(roughly, .2 < p < .98). To minimize buffer use, we
modified the ExpGol encoders to return a verbatim
bitmap instead of an encoded bitmap if the encoded
bitmap is larger than the verbatim bitmap. For this
reason, their compression ratio is 1 when p > .2.

One can expect that many bitmaps are sparse,
whether because the indexed attribute has a high car-
dinality, or because the data distribution is highly
skewed. In Figure 2, we compare the compression ra-
tios of the algorithms as p ranges from .0001 to .1. To
better illustrate relative compression ratios, we present
the size of the compressed bitmap as a multiple of
the size of the ExpGol compressed bitmap. The Exp-
Gol algorithms achieve significantly better compres-
sion than the other algorithms on sparse bitmaps, for
example occupying one third the space of the LZ com-
pressed bitmap when p = .0001. The ExpGol algo-
rithms produce a 90% space reduction when p = .01,
and a 99.8% space reduction when p = .0001.

1.2

0.8

Lz
-©--ExpGol
—+—BBC 1S
—%—BBC 2S

0.6

0.4

Figure 1: Bitmap compression ratio vs. bit density,
uniform random.

If the indexed attribute is correlated with the sort
order of the data set, then the bitmap is likely to be
bursty. We model this type of burstiness with a recur-
swe biased distribution (RBD) [4]. Each bit b; in the
range i = 0...2" — 1 is assigned a probability of being
set, p;, and each bit is set or reset independently of
the other bits. Given a bias b, we set

g = bones(i)(l _ b)l—ones(i)

where ones(i) is the number of ones in the binary rep-

282

Lz
-©O--ExpGol mean
—+—BBC 1S
—><—BBC 2S

[}

0.0001 0.001 0.01 0.1

Figure 2: Compression ratio relative to ExpGol vs. bit
density, unif. random.

resentation of i. The value ¢; represents the chance
of receiving a ball in a ball-and-urn model. We throw
R balls into the 2! urns. We compute p; to be the
probability that urn ¢ is non-empty.

We have found that a RBD is a good model of a
clustered bitmap [4]. A bias of b = .5 produces uni-
form random bitmaps, while larger biases produce in-
creasingly clustered bitmaps. We generated synthetic
data by computing p; for i = 0...2' — 1, repeating this
pattern for the entire synthetic bitmap. Then each bit
i+ k2! is set with probability p;. We adjusted R to
adjust the bit density in the bitmap.

We present the relative compression ratio (Figure 3)
for a bias of .8. The charts (and charts for other values
of the bias) show that the relative performance of the
algorithms has not changed significantly. The com-
pression ratio of LZ and the BBC codes improve rela-
tive to ExpGol, with the crossover point moving from
a bit density of .1 closer to a bit density of .01. The
changes are more accentuated as the bias increases.

Lz
-©--ExpGol
—+—BBC 1S
—*%—BBC 2S

0.0001 0.001 0.01 0.1 1

Figure 3: Relative compression ratio vs. bit density,

bias=.8

While synthetic data is an excellent tool for the con-
trolled testing of algorithm performance, we also need
to evaluate the algorithms using actual bitmap data.
We collected data from AT&T data warehouses and
generated bitmap indices on the data. In the data set
A, the attribute range is 682 values, and the most com-
mon value appears in about 28% of the attributes. In
the data set B, the attribute range is 50 values, and
the the most common value appears in about 13% of
the tuples. In data set C, the attribute range is 11 val-
ues, and the most common value value occurs in about
80% of the tuples. The indexed attribute is correlated
with the sort order of data set A, and is uncorrelated
with the sort order of data sets B and C. The data
sets were about .5 Mbytes in size each. We catenated
the bitmaps to obtain 8 Mbyte bitmaps, for an easier
comparison to the results on the synthetic data.

The compression ratio for data set A is shown in
Figure 4. The compression performance is excellent,
as the BBC 2S encoding of all 682 bitmaps uses 1.04
bits per tuple, while BBC 1S uses 1.5 bits per tuple,
ExpGol encoding uses 1.75 bits per tuple, and LZ uses
2.25 bits per tuple. The relative performance of the
algorithms 1s similar to that obtained with a highly
biased RBD data set. The data set tends to contains
runs of 1’s as well as runs of 0’s even in low density
bitmaps. Because the BBC 2S code can represent runs
of 1’s succinctly, it 1s particularly effective at compress-
ing this data set. The ExpGol code obtains the best
compression, on the sparse data sets.

l Lz |
BBC +

& o

sy x

L) 2
Lz [1™
L] uy
BBC 25 .
.rl- -
Eeess X x =
RFx 2% x
BBC 1S T 5:_ %
* f»% X iz
2" 4 o ExpGol
L] - +BBC 1S
ExpGol xBBC 2S
05
0.0001 0.001 0.01 0.1 1

=

Figure 5:
data set B

Relative compression ratio vs. bit density

bits per tuple, the BBC codes require 2.5 bits per tu-
ple, and LZ requires 2.3 bits per tuple to represent
all 11 compressed bitmaps. The relative performance
of the algorithm is similar to that obtained with uni-
form random synthetic data. The ExpGol algorithm
generally obtains the best compression.

i [y
.
“.

. 6 .z
o EXPGOL
%’ . x BBC 1S
= l“ =

+BBC 2S

3
-
25
- -
>
L] nlZ
% - 15 o ExpGol
A XXMy +BBC 1S
AR | X X BBC 2S5
s
a %
X
L]
0:5
: : : 0
0.0001 0.001 0.01 0.1

] Eah

ExpGol

* oo

1E-07 1E-06 0.00001 0.0001 0.001 0.01 0.1 1

Figure 4: Relative compression ratio vs. bit density,

data set A

The compression ratio for data set B is shown in
Figure 5. The ExpGol algorithms require about 7.2
bits per tuple, the BBC codes require 8.5 bits per tu-
ple, and LZ requires 8.6 bits per tuple to represent all
50 compressed bitmaps. The relative performance of
the compression algorithms is similar to that obtained
with uniform random synthetic data.

The compression ratio for data set C is shown in
Figure 6. The ExpGol algorithms require about 2.3

283

Figure 6: Relative compression ratio vs. bit density

data set C

3.1.1 Summary

Existing bitmap compression algorithms can achieve
very good compression ratios. As our results indicate,
the best compression algorithm depends on the bitmap
to be compressed. For dense bitmaps (i.e., density
larger than about .1) usually the LZ algorithm will
give the best compression, although BBC 2S can work
better for clustered dense bitmaps.

For non-dense bitmaps, the choices are more com-
plex. In Table 1 we list the best compression algo-
rithm depending on whether the bitmap is uniform
or clustered, sparse or non-sparse. Non-sparse means
that the bit density is between .002 and .1, but these

boundaries are not precise.

sparse non-sparse
uniform | clustered | uniform clustered
ExpGol | ExpGol | ExpGol | LZ, BBC 2S5

Table 1: Best compression algorithms for non-dense
bitmaps.

3.2 Boolean Operation Performance

Clearly, compressing bitmap indices confers many per-
formance advantages, including reducing disk space
usage and decreasing the time to load the index into
memory. The primary advantage of using bitmap in-
dices in the first place is the fast evaluation of complex
selection predicates. The overhead of uncompressing
the bitmaps before performing the Boolean operations
can negate any advantage of using compression.

However, many Boolean operations can be per-
formed using the compressed or partially uncom-
pressed bitmaps. For some operations on some
bitmaps, using compressed bitmaps can lead to a speed
increase. In these experiments, we assume that a
foundset has been partially computed, and we need
to perform a Boolean operation between the foundset
and a compressed bitmap to create an updated found-
set. We investigate the following four algorithms for
performing a Boolean operation:

Basic: We are given a verbatim foundset and
a compressed bitmap. The bitmap is uncom-
pressed, and the bitwise operations between the
two bitmaps are performed. We used the largest
possible word size for these operations (e.g., 64
bit words).

Inplace: The Inplace algorithm [8] operates on the
foundset without materializing the bitmap. The
OR operation is performed by setting bits in
the foundset, while the AND operation zeros out
inter-bit gaps and perform AND operations be-
tween the foundset and the bitmap bits.

Merge: We are given a foundset in RLE format,
and a compressed bitmap. We partially uncom-
press the bitmap into RLE format. Then, it is
a simple matter to merge these two lists into an
output list while performing the desired Boolean
operation. In our implementation, we operate on
lists of sorted set bit positions instead of lists of
run lengths.

Direct: The Direct algorithm takes a compressed
foundset and a compressed bitmap, performs a
Boolean operation, and produces a compressed
foundset for output. The BBC codes best support
this algorithm [2, 1]. The main idea is simple.
Each BBC code expresses a gap and an ending.

284

We scan through the two BBC code blocks keep-
ing track of the current position in the codes. We
accumulate an output gap, then an output ending.
When the output code is finished (a gap occurs,
or the verbatim ending is too long), we create an
output BBC code word from the gap and ending
description.

The actual implementation is quite complex and
contains many special cases. For this reason, we
implemented the Direct algorithm only for the
BBC 1S code.

We implemented each of the algorithms for two
Boolean operations, AND and OR, which can exhibit
different performance characteristics. Other Boolean
operations can be implemented in a similar fashion,
and will have similar performance. For example, OR
NOT (e.g. P OR NOT Q) is similar to AND, while
XOR and AND NOT are similar to OR. The NOT
operation will perform well only on verbatim bitmaps
(or on two sided compression codes). However, many
NOT operations can be combined with other opera-
tions to form operations that can be performed quickly
from compressed bitmaps (e.g., the AND NOT and
OR NOT operations). It is also possible to compute
aggregate functions (e.g., count) on compressed or par-
tially uncompressed bitmap representations. However,
we do not address this issue here.

We note that some bitmap compression techniques
do not support all of the four Boolean operation al-
gorithms. The LZ encoding supports only the Basic
algorithm, and we have implemented the Direct algo-
rithm only for the BBC 1S algorithm.

For our experiments, we generated uniform and
clustered bitmaps (where the bias b = .8). For each ex-
periment, we assume that we have been given a found-
set (in an appropriate form) and a compressed bitmap,
and we want to perform a Boolean operation (AND,
OR) on them. We measure only the time to perform
the operation, not the time to generate the foundset.

In Figures 7 and 8, we show the time to per-
form an AND operation on an 8 Mbyte compressed
bitmap using the Basic evaluation algorithm (the per-
formance charts for the OR operation are identical). In
these experiments, we repeatedly fetched a 32 Kbyte
block from the foundset, uncompressed a 32 Kbyte
block from the compressed bitmap, then performed the
Boolean operation, until the entire bitmap was pro-
cessed. Because we operate on small chunks of data,
the bitmaps are cached at the time of the Boolean op-
eration giving a very fast operation time (about .05
seconds). If we had uncompressed the entire bitmap
before performing the operation, the overhead would
have been significantly larger (about .5 seconds). We
ran all of our experiments in this way, on the assump-
tion that one would want to take advantage of cache
locality to the greatest extent possible, especially when
evaluating complex Boolean predicates.

i LZ
--©--ExpGol
—+—BBC 1S
—*%-BBC2

Figure 7: Basic AND operation time (secs) vs. bit
density, uniform.

/ m-LZ
v -©--ExpGol

/ ——BBC 1S
/ ——BBC 2S

H

0.0001 0.001 0.01 0.1

Figure 8: Basic AND operation time (secs) vs. bit
density, bias=.8.

We note that these charts also represent the perfor-
mance of decompressing bitmaps for each of the com-
pression algorithms. We found that the decompression
time charts for data sets A, B, and C are similar to
those for the synthetic uniform data (B and C) or the
biased synthetic data (data set A). To save space, we
present timing results for the synthetic data only.

We next examined the performance of the Inplace
algorithm, relative to that of the Basic algorithm. In
Figures 9 and 10, we show the time to perform an AND
operation using uniform and RBD bitmaps. In Fig-
ures 11 and 12, we show the time to perform an OR op-
eration. These charts (and also Figures 13 through 16)
show the time to perform an operation as a multiple of
time for the Basic algorithm with the fastest encoding
for the identical bitmap. We use this convention be-
cause we are interested in relative performance, and we
can tell at a glance whether an evaluation algorithm
has better performance than the Basic algorithm.

285

Performing an Inplace AND operation generally
takes about the same amount of time as a Basic AND
operation. Although we save on a memory copy, the
logic for performing the operation is more complex and
therefore slower. However, performing an Inplace OR
operation using sparse bitmaps can be significantly
faster than the Basic OR operation because only a
small fraction of the output bytes must be modified.
For a highly clustered bitmap compressed with a BBC
code, the Inplace OR is faster than the Basic OR even
for fairly dense bitmaps.

time relative to
/| best Basic

v,
/
/
/
/
)/ —-o-ExpGol
] 2 ——BBC 1S
e —<—BBC 2S

0.0001 0.001 0.01 0.1

Figure 9: Inplace AND operation time (relative to best
Basic) vs. bit density, uniform.

®

time relative to
best Basic

@

»H \\@LH

-©-ExpGol
e ——BBC 1S
o —<—BBC 2S
2] - 3
o 2
e - o7
e : =P
‘ ‘ 8
0.0001 0.001 0.01 0.1

Figure 10: Inplace AND operation time (relative to
best Basic) vs. bit density, bias=.8.

Finally, we test the performance of the Merge and
the Direct algorithms. The foundset that is operated
on has a significant impact on the operation perfor-
mance (i.e., because the foundset is stored as a list of
RLEs). In Figures 13 and 14 we use a uniform ran-
dom bitmap with p = .0001 and show the time to
perform an AND operation using uniform and RBD
bitmaps. The OR operation is slower (because the re-
sult is larger), but the performance is similar. With

time relative to
best Basic

/ -©-ExpGol
e 2 —+—BBC 1S
/ —<—BBC 2S

Figure 11: Inplace OR operation time (relative to best
Basic) vs. bit density, uniform.

N

! time relative to
/ best Basic

-©-ExpGol
K —+—BBC 1S
/ —*%—BBC 2S

Figure 12: Inplace OR operation time (relative to best
Basic) vs. bit density, bias=.8.

uniform bitmaps, the RLE AND operation is faster
than the Basic algorithm for BBC codes and sparse
bitmaps. The Direct algorithm 1s the fastest on clus-
tered bitmaps, and the BBC codes are faster than the
Basic algorithm even for moderately sparse bitmaps.
In Figures 15 and 16, we perform the operations on a
uniform random bitmap with p = .1. In general the
operations become considerably slower when using the
Merge or Direct algorithms than when using the Basic
algorithm.

3.2.1 Summary

The best algorithm for performing an operation de-
pends on the operator, the density of the existing
foundset, and the density of the compressed bitmap.
The best algorithm to use in each case is listed in Ta-
ble 2. The computation cost of the algorithms de-
pend on the amount of data touched and also on the
complexity of the logic for performing the operation.

time relative to
best Basic

-©-- ExpGol
—+—BBC 1S

—<-BBC 25
z ——Direct

D

0.0001

Figure 13: Merge and Direct AND operation (relative
to best Basic) vs. bit density, unif. on unif. p = .0001.

| time relative to
/| best Basic

/
/
/
/
/
@ oY
7 v --©-ExpGol
J ——BBC 1S
2 —<—BBC 2S
/
2 —— Direct

0.0001 0.001 0.01 0.1

Figure 14: Merge and Direct AND operation (relative
to best Basic) vs. bit density, bias=.8 on unif. p =
.0001.

Because the Basic algorithm is so simple, it performs
surprisingly well. However, operations between sparse
bitmaps using the Inplace, Merge, or Direct algorithms
can occur 50 times faster than using Basic algorithm.

We note that in some cases, Boolean operations can
be performed faster with compressed bitmaps than
with with a verbatim bitmap. As we noted, the
time to perform a Boolean operation between verba-
tim bitmaps is about .05 seconds in this study. The
Merge algorithm is faster if the foundset and the com-
pressed bitmap have a bit density of .001. The Inplace
algorithm is faster if the foundset has a bit density of
.002 or less.

4 Implications for Index Design

In Sections 3.1 and 3.2, we have seen that the per-
formance of the alternatives for compressing bitmap
indices varies considerably with the density of the

286

foundset sparse foundset non-sparse foundset
operation type sparse bmp non-sparse bmp sparse bmp non-sparse bmp
AND uniform | Merge BBC, Direct Basic Inplace ExpGol Basic
AND clustered | Merge BBC, Direct Direct Basic Basic
OR uniform Inplace BBC Basic Inplace BBC Basic
OR clustered Inplace BBC Basic Inplace BBC Basic

Table 2: Best Boolean operation evaluation algorithms.

\ 5 . .
time relative to
best Basic
4
-
// 3 -©-- ExpGol
// 3 ——BBC 1S
/ —%—BBC 2S
2 —Direct
1
T T ©
0.0001 0.001 0.01 0.1

Figure 15: Merge and Direct AND operation time (rel-
ative to best Basic) vs. bit density, unif. on unif.

p="_.1.

bitmap, the clusteredness of the bitmap, and the oper-
ations to be performed on the bitmaps. In this section,
we discuss the implications of our measurement study
on bitmap index design.

Indices on Attributes:

When bitmaps are compressed, we can observe that
zeros are cheap. For example, AT&T data set A has
a range of 682 values, but the total size of all 682
compressed bitmaps is slightly more than one bit per
tuple. Data set B has a smaller range, but the bitmaps
are uncorrelated with the sort position. Still, all fifty
bitmaps require less than 8 bits per tuple, comparing
favorably with a projection index. This property has
been exploited, e.g. in [11]

An efficient bitmap compression algorithm such as
ExpGol achieves a compression ratio close to the en-
tropy encoding [7] on uniformly randomly generated
bitmaps. On clustered bitmaps, the compression ra-
tios are considerably better, as can be seen in Fig-
ures 17 and 18. These figures plot the number of com-
pressed bitmap bits required to represent each set bit
in the uncompressed bitmap, for data sets A and B
respectively. We use the algorithm with the highest
compression for each bitmap. We note that the flat
part at the right hand side of Figure 17 is due to the
clustering of set bits, which can make ones inexpensive
to represent also (in the LZ and 2-sided BBC codes).

? time relative to
/ best Basic
I/ 2
- 4
2
7
/
4] 3 -~ ExpGol
/// —+—BBC 1S
2 —%—BBC 2S
~— 52 2 —— Special
oo
‘ ‘ ‘ o
0.0001 0.001 0.01 0.1 1

Figure 16: Merge and Direct AND operation time (rel-
ative to best Basic) vs. bit density, bias=.8 on unif.

p="_.1.

Several recent papers have addressed the issue of
bitmap index design, with one goal being to minimize
space usage. This has been accomplished by reducing
the number of bitmaps required to represent a range
of values, but increasing their density. However, if
the goal of designing a bitmap index on an attribute
is only to minimize total space use, the bit-slice in-
dices discussed in [10, 13] and the range decomposed
bitmaps discussed in [3] are unlikely to significantly
reduce total space usage as compared to compressing
the per-value bitmaps. An uncompressed bit-slice in-
dex (i.e., the most compact range decomposed bitmap
index) on data sets A, B, and C will use 10, 6, and 4
bits per tuple, respectively, while the best compression
algorithms used 1.04, 7.2, and 2.3 bits per tuple for the
collection of per-value bitmaps.

However, an advantage of attribute value decom-
posed bitmap indices (including bit-slice indices) is the
ability to express range queries by accessing only a few
bitmaps. Algorithms for extracting ranges from bit-
slice or range decomposed indices have been proposed
in [10, 13, 3]. Chan and Toannidis [3] show that at
most 4n — 2 bitmaps must be accessed to evaluate a
two-sided range predicates, where n i1s the number of
levels of decomposition. However, n bitmaps must be
accessed for equality predicates.

The relative performance of attribute value decom-
posed bitmap indices versus regular but compressed

287

bitmap indices clearly depends on the query workload.
regular indices have the advantage for equality queries,
small ranges, or for selecting based on membership in
moderate sized non-contiguous sets; but a disadvan-
tage for large range or set membership queries. When
the regular bitmap index is compressed, a performance
comparison cannot be made only on the basis of the
number of bitmaps scanned because the time to load
or to perform a Boolean operation on a compressed
bitmap is highly data and operation dependent, as
charts 7 through 18 show. Given a sample of the
bitmap indices and a sample of the workload, it is clear
that an estimate of relative performance can be ob-
tained. Unfortunately, a full treatment of this subject
is beyond the scope of this paper.

Another dimension of designing bitmap indices
on table attributes is the possibility of compress-
ing attribute value decomposed and/or range encoded
bitmap indices. This possibility is briefly explored in
[3]. However, this subject is made difficult again be-
cause of the highly data dependent nature of the size
and Boolean operation time of compressed bitmaps.
The bitmap index optimization work [13, 3] assumes
that each bitmap occupies the same space and requires
the same amount of time to perform a Boolean oper-
ation. However this assumption clearly does not hold
when bitmaps are compressed. Considering just space
use, there are two problems. First, attribute value de-
composition has the potential to increase space use in-
stead of decreasing space use because of the increased
number of set bits. For an example, we decomposed
data set B using radixes (5, 10) (which is space-optimal
for a 2-level decomposition) without changing the or-
der of the bitmaps and using equality encoding. While
the 50 original bitmaps required only 7.15 bits per tu-
ple using the best compression, the 15 bitmaps in radix
decomposition form required 9.01 bits per tuple using
the best compression. A second problem is that differ-
ent methods of grouping per attribute-value bitmaps
into summary bitmaps will give different compression
ratios. For example, by making a few experiments in
which we reorder the per attribute-value bitmaps, we
adjusted the space use of the attribute value decom-
posed bitmap from 8.31 bits per tuple to 9.12 bits per
tuple.

Boolean Expression Evaluation Plans:

Current work in optimizing Boolean expression evalu-
ation on bitmaps [3, 13] assumes that every Boolean
operation on every bitmap requires the same amount
of time to execute. However, our experimental re-
sults show that this is clearly not the case, and that
the method by which the expression is evaluated has
a significant effect on performance. For example,
one should perform ORs on the sparse bitmaps using
the Merge algorithm until the result bitmap becomes
dense. Then one should uncompress the result bitmap

288

N
¢

D

aq

1E-07 0.000001 0.00001 0.0001 0.001 0.01 0.1 1

Figure 17: Bits per tuple, data set A

0.0001 0.001 0.01 0.1 1

Figure 18: Bits per tuple, data set B

and use the Inplace or Basic algorithm. It might be
possible to rearrange the evaluation order, use multi-
ple result bitmaps, and delay the changeover to the
Inplace and Basic algorithms for as long as possible.

Adaptive Bitmap Compression:

In the previous sections, we have seen that different
compression techniques work best on bitmaps with dif-
ferent characteristics. It is easy to design an index
structure which can manage multiple compression al-
gorithms (i.e., we built one for the experiments in this
paper). Therefore, we have the flexibility to choose
the compression algorithm on a bitmap-by-bitmap, or
even on a block-by-block basis.

Suppose that we want to minimize compressed
bitmap storage. By using the compression algorithm
that minimizes space use, we can reduce the space use
of the bitmap indices of data set A to .93 bits per tu-
ple (11% space reduction), of data set B to 6.9 bits per
tuple (2% space reduction), and of data set C to 2.01
bits per tuple (11% space reduction).

Another goal can be to minimize the time to eval-
uate a Boolean function of the bitmaps. A full treat-
ment of this issue requires a consideration of the work-
load and of the typical Boolean expression evaluation
plan. For the purpose of an example, we make some
simplifying assumptions; that only ExpGol compres-
sion is used, that only Inplace evaluation 1s used, that
OR operations occur three times as often as AND oper-
ations, and that the bitmaps are uniform. We further
assume that the database contains 64 million tuples.
For any bitmap, we want to determine whether or not
we should compress it.

The time to perform a Boolean operation between
the foundset and a bitmap is the sum of the time to
load the bitmap from disk and the time to perform the
operation once the bitmap is loaded into memory. If
the disk transfer rate is 6 Mbytes/sec, then performing
an operation with an uncompressed bitmap requires

(8 Mbytes)/(6 Mbytes/sec) + .05 sec = 1.38 sec

Evaluating the time to perform an operation with
an uncompressed bitmap is similar, but the size and
the operation time depend on the bit density. By using
the data from Figures 2 and 11, we can determine that
any bitmap with a bit density less than .06 should be
compressed, all others should be verbatim. If the disk
transfer rate is 10 Mbytes/sec, the cutoff is .04.

5 Conclusions

Bitmap indexing has received new attention recently
because of its application in OLAP and data ware-
houses. In many cases, bitmap compression can reduce
space usage and possibly Boolean operation evalua-
tion time, and can be a useful adjunct to index design.
However, bitmap compression introduces new compli-
cations, and its performance has not been studied in a
DBMS setting.

In this paper, we present a performance measure-
ment study of algorithms for compressed bitmap in-
dices. We evaluate the compression ratio of repre-
sentative bitmap compression algorithms on a variety
of synthetic and actual bitmap indices. Boolean ex-
pression evaluation time depends on the time to per-
form Boolean operations on the compressed bitmaps
(i.e., rather than on the decompression time). For
this reason, we evaluate four methods for performing a
Boolean operation between a compressed bitmap and a
(possibly compressed) foundset. We find that the vari-
ous compression methods and Boolean operation eval-
uation algorithms have regions of best performance,
which we summarize.

Based on our measurements, we find three areas of
future research.

o Adaptive compressed bitmaps that choose the best
compression scheme for each bitmap.

289

e Optimizing Boolean expression evaluation plans.

e Accounting for compression in bitmap index de-
sign.

Acknowledgements

We’d like to thank Pat O’Neil for his informative dis-
cussions concerning compressed bitmap indexes, and
for suggesting the use of adaptive compressed bitmaps.

References

[1] G. Antoshenkov. Byte-aligned data compression.
U.S. Patent number 5,363,098.

[2] G. Antoshenkov. Byte-aligned bitmap compres-
sion. Technical report, Oracle Corp., 1994.

[3] C.-Y. Chan and Y. Ioannidis. Bitmap index de-
sign and evaluation. In SIGMOD ’98, pages 355~
366, 1998.

[4] C. Faloutsos and T. Johnson. Accurate block se-
lectivities using the recursive biased distribution.
In submission, 1998.

[5] A. Fraenkel and S. Klein. Novel compression of
sparse bit-strings — preliminary report. In Com-
binatorial Algorithms on Words, pages 169-183.
Springer-Verlag, 1985. NATO ASI Series F.

[6] J.-L. Gailly and M. Adler.
http://quest.jpl.nasa.gov/zlib/.
[7] A. Moffat and J. Zobel. Parameterized compres-

sion of sparse bitmaps. In Proc. SIGIR Conf. on
Information Retrieval, 1992.

[8] P. O’Neil Model 204 Architecture and Perfor-
mance In 2nd Int. Workshop on High Perfor-
mance Transactions Systems, Springer-Verlag
Lecture Notes in Computer Science 359, pages
40-59, 1987.

[9] P. O'Neil and G. Graefe. Multi-table joins
through bitmapped join indices. ACM SIGMOD
Record, 24:8-11, 1995.

[10] P. O’Neil and D. Quass. Improved query per-
formance with variant indices. In SIGMOD ’97,
pages 38-49, 1997.

[11] Rdb7: Performance enhancements for 32 and 64
bit systems.
http://www.oracle.com/products/servers/rdb/
html/fs_vlm.html.

[12] Sybase iq indexes. In Sybase 1Q Administra-
tion Guide, Sybase 1Q Release 11.2 Collection,
Chapter 5., 1997. http://sybooks.sybase.com/cgi-
bin/nph-dynaweb/siq11201/iq.admin/1.toc.

[13] M.-C. Wu and A. Buchmann. Encoded bitmap
indexing for data warehouses. In Int. Conf. on
Data Engineering, pages 220-230, 1998.

Zlib home page.

