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Abstract

We propose a new class of algorithms that can be used to speed
up the execution of multi-way join queries or of queries that in-
volve one or more joins and a group-by. These new evaluation
techniques allow to perform several hash-based operations (join
and grouping) in one pass without repartitioning intermediate re-
sults. These techniques work particularly well for joining hierar-
chical structures, e.g., for evaluating functional join chains along
key/foreign-key relationships. The idea is to generalize the con-
cept of hash teams as proposed by Graefe et.al [GBC98] by indi-
rectly partitioning the input data. Indirect partitioning means to
partition the input data on an attribute that is not directly needed
for the next hash-based operation, and it involves the construc-
tion of bitmaps to approximate the partitioning for the attribute
that is needed in the next hash-based operation. Our performance
experiments show that such generalized hash teams perform sig-
nificantly better than conventional strategies for many common
classes of decision support queries.

1 Introduction

Decision support is emerging as one of the most important
database applications. Managers of large businesses, for
example, want to study the development ofsalesfor certain
productsby region, and they expect the database system to
return the relevant information within seconds or at most
few minutes.

Decision support typically involves the execution of
complex queries with join and group-by operations. To
support these kinds of queries, database vendors have sig-
nificantly extended their query processors and researchers
have just recently developed a large variety of new query
processing techniques; e.g., the use of bitmap indices, spe-
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cial joins that exploit bitmap join indices, new join meth-
ods [HWM98, CKK98], or multi-query optimization for
decision support to name just a few. In addition, a whole
new industry, data warehouses, has appeared with products
that materialize (i.e., pre-compute) query results and cache
the results of queries. Furthermore, the TPC-D bench-
mark [TPC95] has been proposed in order to evaluate the
performance of a database product for decision support
queries.

In this work, we present a new class of algorithms that
can be used to speed up the execution of decision support
queries that involve one or more joins and a group-by op-
eration. The idea is to partition the input data and, then,
carry out all join and group-by operations in one pass. To
make this possible, we propose to construct bitmaps in the
partitioning phase of a table and use these bitmaps in the
partitioning phase of other tables. The advantage of our
approach is that a great deal of disk IO can be saved, if
the data base and intermediate query results do not fit into
the available main memory: only one partitioning step per
table is required, rather than partitioning the inputs of ev-
ery join and group-by operation individually, as done by
conventional query execution engines today. Due to the
use of bitmaps, however, our approach might suffer from
so-calledfalse dropsin the partitioning phase and result in
overall increased disk IO and CPU cost in certain cases. A
query optimizer should, therefore, enumerate query evalu-
ation plans based on our new approach in addition to tra-
ditional query evaluation plans, and we will give formulae
that can be used by an optimizer in order to decide when to
use our approach.

Our approach can be seen as a generalization of hash
teams, as proposed in [Gra94, GBC98]. Our technique
adopts the main idea of hash teams to partition base data
once and carry out joins in one pass afterwards. Hash
teams, however, can only be applied if all the joins within a
team are carried out using the same join/group-by columns.
Our approach, on the other hand, can be applied to any
kind of (equi) join, and it works best for joining hierar-
chical structures, e.g., for evaluating functional join chains
along key/foreign-key relationships. We, therefore, refer to
our approach asgeneralized hash teams.

The remainder of this paper is organized as follows:
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In Section 2 we introduce the use of generalized hash
teams by way of a simple binary join followed by a group-
ing/aggregation. Section 3 provides more details on imple-
menting generalized hash teams. In Section 4 the appli-
cation of generalized hash teams for multi-way joins with
or without a subsequent grouping is described. In Sec-
tion 5 the number of false drops resulting from the indirect,
bitmap-based partitioning is analyzed. In Section 6 a few
representative decision support queries are benchmarked.
Section 7 compares our work to other related proposals,
and Section 8 concludes this paper with a summary.

2 Binary Joins with Aggregation
In this section, we will show how generalized hash teams
work for queries that involve one join and one group-by op-
eration. We will, furthermore, present a simplified variant,
calledpartition nested loops. As a running example, we
will use the following query which asks for the totalValue
of all Ordersgrouped by theCustomer City.

Query 1: selectc.City,sum(o.Value)
from Customer c, Order o
wherec.C# = o.C#
group by c.City;

2.1 Generalized Hash Teams

The traditional (state-of-the-art) plan to execute our exam-
ple query is shown in Figure 1. This plan uses hashing
in order to execute the join and the group-by operation.
This plan would first partition (abbreviatedptn in the fig-
ures) both theCustomerand theOrder tables byC# such
that either all theCustomeror all theOrder partitions fit
in memory; that is, this plan would carry out a (grace or
hybrid) hash join between these two tables [Sha86]. After
that, the traditional plan would use hashing (possibly with
early aggregation [Lar97]) to group the results of the join
by City. If there are moreCitiesthan fit into main memory,
this group-by operation would, again, involve partitioning
such that every partition can be aggregated in memory. In
all, there are three partitioning steps in this traditional plan,
incurring IO costs to write and read theCustomertable, the
Order table, and the result of the join. As an alternative,
sorting, rather thanhashing, can be used for the join and/or
the group by. In many cases, sorting has higher (CPU) cost
than hashing; in any case, however, a traditional plan based
on sorting would also involve IO costs to write and read the
Customertable, theOrder table, and the result of the join.

Figure 2 shows a plan that makes use of generalized
hash teams in order to execute our example query. Like
the traditional plan shown in Figure 1, this plan is based
on hashing to execute the join and the group-by operation.
The trick, however, is that theCustomertable is partitioned
by City, rather than byC#, so that the result of the join
is partitioned byCity as well and the group-by operation
does not require an additional partitioning step. To make
this work, this plan generates bitmaps while partitioning
theCustomertable. These bitmaps indicate in which parti-
tion everyCustomertuple is inserted and these bitmaps are

AggCity

ptnCity

�C#

ptnC#

Customer

ptnC#

Order

Figure 1: Traditional Plan

AggCity

�C#

ptnCity
Bit-
�� !

maps

Customer

ptnBitmaps

Order
Figure 2: Generalized Hash Team

used to partition theOrder table so thatOrder tuples and
matchingCustomertuples can be found in corresponding
Order andCustomerpartitions. That is, theOrder table is
partitionedindirectlyusing the bitmaps.

To make this clearer, let us look at Figure 3 which illus-
trates the whole process in more detail. The figure shows
a small example extension of theCustomertable and how
this Customertable is partitioned byCity into three par-
titions: the first partition contains allCustomerslocated
in PA and M, the second partition contains allCustomers
located in B and HH, and the third partition contains all
Customerslocated in NYC and LA. Just as in a traditional
(grace or hybrid) hash join, the goal is to generate partitions
that fit into main memory, and database statistics would be
used for this purpose. Corresponding to every partition,
there is one bitmap that keeps track of theC#’s stored in
the partition; in this small example, there are three bitmaps
of length ten each. If aCustomertuple is inserted into a
partition, the 1 + (C# mod 10)’th bit of the corresponding
bitmap is set. So, the fourth and sixth bit of the first bitmap
are set because the first partition containsCustomertuples
with C# = 5, 13, 25, and 23. Likewise, the first, third, sev-
enth, and tenth bit are set in the second bitmap.

The next step is to partition theOrder table using the
bitmaps. To see how, let us look at the firstOrder tu-
ple which refers toCustomer4. This Order is placed
into the thirdOrder partition because the bit at position
1+ (C# mod10) = 5 of the third bitmap is set. Likewise,
the secondOrderwhich refers toCustomer9 is placed into
the second partition, and the thirdOrder which refers to
Customer25 is placed into the first partition. Following
this approach, allOrderswhich refer toCustomersstored
in the firstCustomerpartition are placed into the firstOr-
der partition, and the equivalent holds forOrdersreferring
to Customersof the second and thirdCustomerpartitions.
Thus, the query result can be computed by joining in mem-
ory the firstOrder partition with the firstCustomerparti-
tion, thereby immediately carrying out the aggregation in
memory, and then doing the same procedure with the sec-
ond and thirdOrder andCustomerpartitions.

It is important to notice that in certain cases,Order tu-
ples must be placed into two or even moreOrderpartitions.
In Figure 3, for instance,Order 10 (highlighted by bold
face) is placed into the first and thirdOrder partitions be-
cause thisOrder refers toCustomer3 and the fourth bit of
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Customer
C# City

5 PA
13 M
3 NYC
9 B
17 LA
10 HH
4 NYC
7 LA
6 B
25 M
23 PA
42 HH

�! ptnCity

Customer1
C# City

5 PA
13 M
25 M
23 PA
Customer2
C# City

9 B
10 HH
6 B
42 HH
Customer3
C# City

3 NYC
17 LA
4 NYC
7 LA

Order
O# C# Value
23 4 13
27 9 54
7 25 10
59 10 13
10 3 66
22 17 42
43 5 33
6 9 45
19 42 75
40 10 1
28 7 9
33 6 51
42 5 34
24 13 0
3 7 12

! ptnBi

B1
0
0
0
1
0
1
0
0
0
0

B2
1
0
1
0
0
0
1
0
0
1

B3
0
0
0
1
1
0
0
1
0
0

Order1
O# C# Value

7 25 10
10 3 66
43 5 33
42 5 34
24 13 0

Order2
O# C# Value
27 9 54
59 10 13
6 9 45
19 42 75
40 10 1
33 6 51

Order3
O# C# Value
23 4 13
10 3 66
22 17 42
28 7 9
24 13 0
3 7 12

�C# ! AggCity !

�C# ! AggCity !

�C# ! AggCity !

AggrCity
City V alue

PA 33
M 10

AggrCity
City V alue

B 150
HH 89

AggrCity
City V alue
NYC 79
LA 63

Figure 3: Example Execution of a Generalized Hash Team

the first and third bitmaps are set. We refer to the accidental
placement ofOrder10 in the firstOrder partition as afalse
drop. False drops do not jeopardize the correctness of the
overall approach for regular joins because they are filtered
out in the join phase1, but false drops do impact the per-
formance: the more false drops, the higher the IO cost to
partition and re-read theOrders. The number of false drops
depends on the length of the bitmaps, and we will give for-
mulae that can be used in a cost model of a query opti-
mizer in Section 5. Furthermore,Order duplicates occur if
Customertuples with the sameC# are placed into differ-
entCustomerpartitions. Such a situation does not arise in
our example query becauseC# is the key of theCustomer
table. In general, such situations cannot arise if there is a
functional dependency between the join attribute (i.e.,C#)
and the partitioning attribute (i.e.,City). In the absence of
such a functional dependency,Ordersmust be duplicated
in order to find their join partners in the differentCustomer
partitions. In the remainder of this paper, we will assume
that such a functional dependency exists or that there is at
least a strong correlation between the join and partitioning
attributes, and we recommend not to use generalized hash

1Outer joins cannot always filter out false drops so that generalized
hash teams are not directly applicable for all outer join queries.

teams in other cases. One example, in which generalized
hash teams are not appropriate, according to this criterion,
would be a query in which the key of the group-by opera-
tion involves a column of theOrder table, e.g.,OrderDate.

To summarize, generalized hash teams save disk IO
costs for partitioning intermediate query results if these in-
termediate results do not fit into the available main mem-
ory. On the negative side, generalized hash teams require
additional main memory for the bitmaps in the partitioning
phase, they might involve additional disk IO due to false
drops, and they involve additional CPU costs to construct
and use the bitmaps. Also, the application of generalized
hash teams should be limited to situations in which a func-
tional dependency can be inferred from the join attributes
to the partitioning attributes. The optimizer of a database
system should, therefore, be extended to enumerate gen-
eralized hash team plans (where applicable) in addition to
traditional query plans.

2.2 Partition Nested Loop Joins

We now turn to another (novel) approach to execute our ex-
ample query; we refer to this approach aspartition nested
loops. As with generalized hash teams, the key idea is to
partition theCustomersby City before the join so that the
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group-by operation does not require an additional partition-
ing step. In this approach, however, the join is carried out
as a (blockwise hashed) nested loop join rather than using
a (grace or hybrid) hash join, and the partition nested loop
join approach is somewhat simpler than generalized hash
teams because no bitmaps need to be constructed.

In detail, partition nested loop joins work as follows for
our example query:

1. partition theCustomertable by City into memory-
sized partitions (as for generalized hash teams or any
traditional hash join, ifCity were the join column)

2. read theOrder table, project out the relevant columns
(i.e., C# andValue), applyOrder predicates (if any),
and write thereduced Ordertable to disk

3. read the firstCustomerpartition into memory and
build a main-memory hash table on theC# column.
Read thereduced Ordertable from disk and find the
Orders that refer to theCustomersof the first parti-
tion using the main-memoryC# hash table. Carry out
the aggregation on the fly. (Details on this step can be
found in Section 3.2.)

4. repeat Step 3 for the second, third, fourth, and so on
Customerpartition.

Step 2 and Step 3 for the firstCustomerpartition can be
carried out together in order to save disk IO costs. If no or
only marginal selections and projections are applicable on
theOrder table, then Step 2 can be omitted altogether and
Step 3 is carried out using the fullOrder table.

The tradeoffs between generalized hash teams and parti-
tion nested loop joins are fairly much the same as between
(grace and hybrid) hash joins and blockwise nested loop
joins; see, e.g., [HR96, HCLS97]. If theCustomertable
is large and must be partitioned into many partitions, par-
tition nested loop joins are likely to perform poorly for re-
reading the reducedOrder table many times. On the other
hand, partition nested loop joins might perform better than
generalized hash teams if it can be expected that there are
many false drops. Also, of course, generalized hash teams
require more main memory for the bitmaps in the parti-
tioning phase. This additional main memory, however, is
really only needed in the partitioning phase which usually
requires much less main memory than the join phase (or the
group-by operation). So, the bitmaps can be stored in the
extra space which is allocated for the join but not needed
during the partitioning phase so that the overall main mem-
ory requirements of the join and the whole query do not
increase.

3 Implementation Details

In this section we will describe the indirect partitioning of
generalized hashed teams and the actual execution (join and
grouping phase) of generalized hash teams and partition
nested-loop joins in more detail.

3.1 Fine-Tuning the Indirect Partitioning Phase

We will use ourCustomerandOrder example schema to
illustrate this discussion. In the initial partitioning step
the Customertable (abbreviatedC) is partitioned accord-
ing to theCity-attribute inton partitionsC1; : : : ; Cn. For
this purpose some partitioning (hash) functionp is needed
that mapsCity-values intof1; : : : ; ng. For each partition
Ci a separate bitmapBi of lengthb is maintained to ap-
proximate the partitioning of theC# values. These bitmaps
are initialized to0. For setting and probing these bitmaps a
second hash function, sayh is needed that mapsC# values
into f1; : : : ; bg. Now, consider a particular elementc 2 C:
it is inserted into thei-th partitionCi for i = p(c:City) and
thek-th bit of Bi is set wherek = h(c:C#). So, the first
partitioning ofC is done as follows:

forall c 2 C do
i := p(c:City);
k := h(c:C#);
insertc intoCi;
Bi[k] := 1;

od

Having partitionedC into C1; : : : ; Cn the n bitmaps
B1; : : : ; Bn approximate the partitioning function forCus-
tomeronC#. Then, when partitioning theOrder table (ab-
breviatedO) into O1; : : : ; On any elemento has to be in-
serted into partitionOi if the h(o:C#)-th bit of the i-th
bitmapBi is set. Due to false drops, it is possible that an
Order o is placed into more than one partition. Thus, the
partitioning function forOrdersis as follows:

forall o 2 O do
k := h(o:C#);
forall i 2 f1; : : : ; ng do

if (Bi[k] = 1) inserto intoOi;
od

od

We can tune this basic partitioning code in two ways:
First, we can identify thoseO-objects for which the inner
loop can be exited early. Second, we can increase the cache
locality when accessing the bitmaps.

Short-Cuts in the Inner Partitioning Loop

There are two kinds of objects for which the inner parti-
tioning loop can be entirely bypassed or exited early:

1. Objects Without Join Partner: For thoseo 2 O that
definitely do not have a join partner inC we need
not execute the inner loop at all. We will compute a
separate bitmap, calledused, to identify those objects.
(This kind of bitmap has also been proposed to speed
up traditional hash join operations [Bra84].)

2. Objects Without Collisions: For thoseo 2 O that
are definitely not inserted into more than one parti-
tion (i.e., objects that won’t drop into a false partition)
we can exit the inner loop as soon as they are inserted
into some partitionCi. Again, we maintain a separate
bitmap,collision, for identifying these objects.
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Theused bitmap can easily be computed as follows:

used := B1 j B2 j : : : j Bn

wherej denotes the componentwiseor operation.
The coll bitmap is set at positionk if two (or more)

bitmapsBi andBj are set at positionk, that is:

coll[k] :=

8<
:

1 : if there existsi 6= j 2 f1; : : : ; ng
such thatBi[k] = Bj [k] = 1

0 : otherwise

In our system, both bitmaps are actually computed dur-
ing the partitioning of theCustomertable. For our example
the two auxiliary bitmaps are shown below:

used

1
0
1
1
1
1
1
1
0
1

coll

0
0
0
1
0
0
0
0
0
0

B1

0
0
0
1
0
1
0
0
0
0

B2

1
0
1
0
0
0
1
0
0
1

B3

0
0
0
1
1
0
0
1
0
0

The tuned partitioning pseudo code for theOrdersthen
looks as follows:

forall o 2 O do
k := h(o:C#);
if (used [k] = 0) // definitely no join partner, proceed

with nexto 2 O
continue;

if (coll [k] = 0) // no collisions
forall i 2 f1; : : : ; ng do

if (Bi[k] = 1)
f inserto intoOi;

break; g // this was the one and only, proceed
with nexto 2 O

od
else// collisions and false drops

forall i 2 f1; : : : ; ng do
if (Bi[k] = 1)

inserto intoOi;
od

od

Increasing Locality on Bitmaps

We can also tune the storage structure of the bitmaps in
order to increase cache locality. We observe that the code
for partitioningO accesses sequentially thek-th position
of every bitmap,used, coll, B1; : : : ; Bn. This observation
allows us to achieve higher cache locality. Let’s view the
n+ 2 bitmaps of lengthb as a two-dimensional array with
n+2 columns andb rows. To achieve higher cache locality
we store this array in a single bitmapB of length (n +
2) � b by mapping the two-dimensional array inrow major
sequenceinto a one-dimensional vector. Then, the only
bitmapB contains the elements in the following order

B = [ u[1]; c[1]; B1[1]; B2[1]; : : : ;Bn[1]; : : :
u[k]; c[k]; B1[k];B2[k]; : : : ;Bn[k]; : : :
u[b]; c[b]; B1[b]; B2[b]; : : : ; Bn[b] ]

That is,u[k] is found at positionB[(k � 1) � (n+ 2) + 1],
c[k] atB[(k � 1) � (n+ 2) + 2], andBi[k] atB[(k � 1) �
(n+2)+2+i]. This way, the inner partitioning loop for the
Orderscan typically be carried out with a single processor
cache miss. The resulting organization is illustrated below:

0 1 0 01 x

0
1
0
.
.
.
0

1
x

B1 B2 B3 Bn: : :

: : :

used coll

1

k

b

(k � 1) � (n+ 2) + 1

1

B

b � (n+ 2)

3.2 Teaming up the Hash Join and the Aggregation

The bitmap-based partitioning ofO and C is the pre-
requisite for teaming up the hash join and the group-
ing/aggregation operator such that the join operator can di-
rectly deliver its result tuples to the aggregation operator—
without having to repartition the data and write it to disk.
The straight-forward implementation requires two separate
hash tables: one hash table onCi:C# for performing the
join with the probe inputOi and a second hash table on
Ci:City for grouping/aggregating the join result. These
two operators have to be managed by a so-called “team
manager”—as it was called in [GBC98]—such that they
switch to the next partition synchronously.

We will now devise a further optimization which is
based on combining the join and the aggregation opera-
tor such that they share a common hash table on the build
input C. This is illustrated in Figure 4. Let us first con-
centrate on the build phase during which the hash table for
the i-th partitionCi is constructed—shown in Figure 4(a).
While loading the partitionCi, two hash tables are main-
tained: one hash table calledHT Join on the join column
Ci:C# and a second, temporary hash table, calledtmp HT,
on the grouping columnCi:City . Both hash tables con-
tain pointers into theHashareain which the group entries
of the join/aggregation query are constructed. That is, the
Hashareawill contain one entry for everyCity value of
partition Ci. Let’s look at a particular build input tuple
c 2 Ci of the form c = [C# = 23;City = PA] and
trace how it is installed in the hash tables and the hash area.
First, itsC# value, 23, is inserted into theHT Join hash
table; second, the aggregation tuple for itsCity value,PA,
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Figure 4: Implementation of the Hash Tables

is looked up via thetmp HT hash table. If this was the
first Ci tuple withCity=PA, a new group entry is installed
in the Hashareaand the corresponding pointer is inserted
into thetmp HT . Third, the pointer to this group entry of
the Hashareais installed in theHT Join hash table. Af-
ter inserting all tuples of the current build input partition
Ci, the probe phase with partitionOi of the probe input
starts—shown in Figure 4(b). Let’s now trace theOrder
tuple [C# = 25;Value = 10]: TheHT Join hash table is
inspected and the pointer to the group entry in theHasharea
is traversed. TheValueis added to theAggrValueand the
JoinFlagis set to indicate that the group entry “has found”
a join partner (otherwise it would be discarded from the re-
sult when flushing theHashareaof thei-th partition). After
the current probe partition is exhausted, the result tuples are
retrieved (“flushed”) from theHashareaand the computa-
tion of the nextCustomer/Orderpartitions starts.

While this organization sounds complicated at first
glance, it is very easy to implement. The advantages are
that a great deal of main memory is saved because long
strings with, say,City names need only be stored once
in the Hasharearather than for eachCustomerindividu-
ally, and that a great deal of CPU costs is saved in many
cases because hashing byCity is carried out once for every
Customerrather than once for every tuple of the result of
theCustomer1 Order. This organization can be used for
generalized hash teams as well as for partition nested-loop

joins.

4 Multi-Way Joins

Generalized hash teams and partition nested-loop joins can
also be applied to multi-way joins. In the following, we
will discuss this for generalized hash teams. (For partition
nested-loop joins the tradeoffs are similar so we will omit
the discussion for brevity.) For illustration, let us look at
the following SQL query:

Query 2: selectc.City,sum(l.Price)
from Customer c, Order o, Lineitem l
wherec.C# = o.C#and l.O# = o.O#
group by c.City;

This is a three-way (functional) join ofCustomer, Order,
andLineitemfollowed by a grouping on theCity attribute of
Customer. Generalized hash teams are applicable by par-
titioning theCustomertable byCity, thereby constructing
bitmaps in order to guide the partitioning of theOrder ta-
ble, as in the binary case described in Section 2. While
partitioning theOrder table another set of bitmaps is con-
structed and this set of bitmaps is then used to partition the
Lineitemtable. After that, correspondingCustomer, Order,
andLineitempartitions can be joined and the result can be
aggregated in one pass in memory. After partitioning, the
join can be carried out in any particular order. Figure 5
shows two possible join orders for our example; the poly-
gons surround a team of three operators. In the first plan,
theCustomer-Orderjoin is carried out first; in the second
plan, theOrder-Lineitemjoin is carried out first. One of
the arguments of the first join serves as the probe input of
the whole team. In our example queryLineitemis the best
choice as the probe input, because of its high cardinality,
so that the second plan of Figure 5 would be better than the
first plan.

It should be noted that the memory requirements of gen-
eralized hash teams increase with the number of operations
that are teamed up. In our example, ifLineitemis chosen
as probe input we need to keep information of allOrders,
Customers, andCities of a partition in memory as part of
executing the team. (Our special organization described in
Section 3.2, however, does help to reduce the memory re-
quirements.) In the partitioning phase, memory for two sets
of bitmaps are required: While partitioning theOrders, the
Customerbitmaps must be probed and theOrder bitmaps
must be constructed; when partitioning theLineitems, only
theOrder bitmaps are relevant (theCustomerbitmaps can
be discarded at that point).

This Query 2 is a “classical” case for employing gener-
alized hash teams because the join/grouping columns form
a hierarchy as can be derived from the functional depen-
dencies

City  C# O#

This hierarchy of the relations is illustrated in Figure 6. In-
direct partitioning works particularly well for such hierar-
chical structures because, conceptually, thecross-relation
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(b) Order or Lineitemas Probe Input

Figure 5: Alternative Query Evaluation Teams For The Three-Way Join

partitions (denoted asPartition 1, Partition 2, andParti-
tion 3, and indicated by the shading) do not overlap. That
is, as part of the partitioning, all matching tuples of all re-
lations could be placed into a single cross-relation parti-
tion, and we are able to “team up” the two joins and the
group-by operators. This way, we save the cost of two re-
partitioning steps that would be carried out in a conven-
tional hash-join/hash-aggregation plan (one for the second
join and one for the aggregation). Of course, in practice,
the partitions do overlap due to false drops resulting in ex-
tra cost, but this extra cost is usually much smaller than
the cost of the additional partitioning steps carried out by
a conventional plan. We should stress that the generalized
hash team technique does not require disjoint cross-relation
partitions for correctness—it has only performance rele-
vance. Therefore, it could be applied to non-hierarchical
cross-relation partitions. However, the performance gain
will decrease as more tuples need to be inserted into multi-
ple partitions.
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Figure 6: Indirectly Partitioning a Hierarchical Structure

5 False Drop Analysis
In this section, we will devise formulae in order to esti-
mate the number of false drops that occur when executing
generalized hash teams. These formulae can be used dur-
ing query optimization in order to decide whether general-
ized hash teams are beneficial to execute parts of a query or
whether traditional join techniques or partition nested-loop

joins are more favorable. In addition to these formulae, the
optimizer must be extended by formulae that estimate the
overall cost of generalized hash teams (based on our false
drop analysis) and by enumeration rules that generate plans
with generalized hash teams. These extensions, however,
are straightforward and/or are virtually the same as the ex-
tensions made in Microsoft’s latest SQL Server product to
integrate ordinary hash teams [GBC98].

5.1 Binary Joins and Aggregation

We begin and estimate the number of false drops for binary
joins such as the Customer-Order query of Section 2. (We
will consider multi-way joins in the next subsection.) To
re-iterate, Figure 7 shows how false drops occur. The fig-
ure shows that theN Customerand the� Customerare as-
signed to different partitions but have the same hash value
for setting the bitmaps. As a result, allOrdersthat refer to
theN Customerwill produce one false drop because they
will be (accidently) copied into the second partition. Like-
wise, all theOrdersthat refer to the� Customerwill pro-
duce a false drop because they will accidently be copied
into the first partition. If there were anotherCustomerwith
the same hash value,i, and stored in the third partition
(not shown), then all theOrders referring to theN, �, or
this third Customerwould produce two false drops.Or-
derswhich refer to the� and� Customers, on the other
hand, do not produce any false drops: these twoCustomers
have the same hash value, but they are stored in the same
Customerpartition.

Statistically, the number of false drops can be estimated
fairly easily; similar formulae have, e.g., been devised
in [Car75, HM97].

To simplify the discussion, we will assume that the join
is a functional join and that there is a referential integrity
constraint so that everyOrder refers to exactly oneCus-
tomerin the join. (These assumptions can easily be relaxed
for cases in which there is e. g. a predicate that restricts the
Customersparticipating in the join.) Furthermore, we will
usen to denote the number of partitions,b for the length
of every bitmap,c for the number ofCustomers, ando for
the number ofOrders. Under these assumptions, anOrder
must be placed into at least one partition, and it is falsely
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Figure 7: False Drops in Binary Joins

copied into one of the othern � 1 partitions, if one of the
otherc � 1 Customersto which theOrder does not refer
has set the corresponding bit in the bitmap of that partition.
Putting it differently, the probability of a false drop for an
Order in a partition is:

1�

�
1�

1

n � b

�c�1

(Here, 1
n�b

is the probability that aCustomersets the rel-
evant bit;1 � 1

n�b
is the probability that aCustomerdoes

not set the relevant bit;(1� 1
n�b

)c�1 is the probability that
none of thec � 1 Customerssets the relevant bit; and fi-
nally, 1 � (1 � 1

n�b
)c�1 is the probability that at least one

of thec� 1 Customerssets the relevant bit.)
In all, the number of false drops for allOrdersconsider-

ing all of then� 1 “critical” partitions can be estimated as
follows:

o � (n� 1) �

 
1�

�
1�

1

n � b

�c�1!
(1)

It should be noted that this formula (and the actual num-
ber of false drops) is independent of skew betweenOrders
andCustomers; that is, if someCustomersgenerate more
Ordersthan others, this fact will (statistically) not affect the
number of false drops. This formula does assume that the
hash function used to hash theC# spreads evenly; if not,
the number of false drops will obviously be higher. The
formula also assumes that theCustomersare partitioned
evenly into partitions (this is the partitioning function ap-
plied to theCity attribute). If the partitioning function is
skewed, the number of false dropsdecreases. To see why,
consider again Figure 7 in whichOrdersreferring to the�
and� Customers do not produce false drops because these
two Customersare placed into the same partition. In the
extreme case in which allCustomersare placed into the
sameCustomerpartition, no false drops at all occur. (This
extreme case, however, is obviously not desirable for other
reasons.)

Unfortunately, Formula (1) cannot be used in a practical
query optimizer. Ifc andb are large, which they usually are,
computing the result of this formula with reasonable accu-
racy is prohibitively expensive. Also, computing the (stan-
dard) approximation usinge

x
y for (1� 1

y
)x is prohibitively

expensive. We, therefore, propose to use the following very
simple approximation in order to estimate the number of
false drops in a query optimizer:

o � (n� 1) �
c� 1

n � b
(2)

This formula simply estimates the probability that the rel-
evant bit in a “critical” partition is set by one of the other
c� 1 Customersas c�1

n�b
. The simplification consists in as-

suming that no two customers set the same bit in a bitmap.
This formula is conservative: it can be shown thatc�1

n�b
>

1 � (1 � 1
n�b

)c�1. Thus, a query optimizer using this for-
mula will overestimate the number of false drops and will
use generalized hash teams cautiously. For Query 1 of Sec-
tion 2, we measured how accurate this approximate formula
is depending on the amount of memory available to execute
a query, and we show the results in Figure 8. (The amount
of available main memory determinesn andb; we present
details of our experimental environment in Section 6, the
database cardinalities are summarized in Table 1, Page 10.)
We see that the estimates of the approximate formula are
quite precise compared to the actual number of false drops
measured while executing the query. Only for small mem-
ory sizes (and correspondingly short bitmaps, i.e., smallb),
the approximate formula visibly overestimates the number
of false drops.

5.2 Multi-way Joins

We now turn to multi-way join queries. Estimating the
number of false drops is complicated in this case, and we
have not yet found a statistically precise formula. Even
if we did, such a formula would, again, probably be pro-
hibitively expensive to compute. We, therefore, concen-
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Figure 9: False Drops for Query 2

trate on a very simple approximate formula that can be im-
plemented and evaluated by a query optimizer with very
little effort. We will, furthermore, concentrate on Query 2
of Section 4, as an example, and note that our results can
easily be generalized to other queries.

First of all we note that there areOrder andLineitem
false drops when using generalized hash teams for our
three-way join example query. TheOrder false drops can
be computed using exactly the same (approximate or exact)
formulae described in the previous subsection. Second, we
note that theLineitemfalse drops can occur in one of two
ways:

1. Ordersplaced into differentOrder partitions can have
the sameO# hash value; allLineitemsreferring to
suchOrders produce false drops. This is the same
phenomenon as depicted in Figure 7, just transposed
to theOrder-Lineitemjoin.

2. False Drop Propagation: If anOrder produces a false
drop, all theLineitemsthat refer to thatOrderproduce
a false drop as well. Consider, as an example, again
Figure 7. All Lineitemsthat refer to anOrder which
in turn refers to theN Customerare (falsely) copied
into the secondLineitempartition.

The first kind of false drop can be approximated using
Formula (2). Usingl as the number ofLineitemsandbo as
the length of theOrder bitmaps, we get:

l � (n� 1) �
o� 1

n � bo
(3)

The second kind of false drop can be estimated as

fo �
l

o
(4)

wherefo is the estimated number ofOrder false drops, es-
timated using again Formula (2). In all, we approximate the
number ofLineitemfalse drops as the sum of the number
of these two kinds of false drops. This is again a conserva-
tive approach that overestimates the number of false drops
and makes the optimizer be overly cautious to use general-
ized hash teams because this approach assumes that there is
no overlapbetween the two kinds of false drops. (Model-
ing the number of false drops precisely, this overlap would
have to be subtracted from the estimated total number of
false drops.)

Again, we would like to note that the number of false
drops is (statistically) independent of skew. The number
of false drops is also independent of the join order within
the generalized hash team. As stated in Section 4, joins can
freely be ordered within a team, but the partitioning order is
fixed and false drops only occur in the partitioning phase.
The number of false drops, however, does depend on the
quality of the hash function used to set the bitmaps and on
the partitioning function used to partition the first relation
(i.e.,Customerin our examples).

To measure the accuracy of our approximate formula for
multi-way joins, we ran Query 2 from Section 4 and com-
pared the actual number of false drops with the estimated
number of false drops. For these experiments, we used two
different database instances: (a)uniform with Orders re-
ferring toCustomersusing a uniform distribution, and (b)
skewedwith Orders referring toCustomersaccording to
a 80-20 self-similar distribution as defined in [GSE+94].
Figure 9 shows the total number of false drops for each
case. We see that our approximations overestimates the
number of false drops significantly in some cases; however,
for the purpose of query optimization the approximations
seems to be accurate enough. Furthermore, we see that the
actual number of false drops is independent of skew, as ex-
pected.

6 Experimental Results
In this section, we will present experimental results con-
ducted using an experimental implementation of general-
ized hash teams, partition nested loop joins, and tradi-
tional (hash-based) ways to carry out joins and aggrega-
tion. We will present the running times of our examples,
Query 1 and 2, using a syntheticCustomer-Order-Lineitem
database.

6.1 Experimental Environment

We integrated our implementation of generalized hash
teams and partition nested-loops into an experimental
query engine that is based on the iterator model [Gra93].
That query engine also provides iterators for traditional
(hash-based) joins and aggregation. All code is written in
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Table Tuple Width Cardinality Size in MB
Customer 88 bytes 750,000 66 MB
Order 112 bytes 7,500,000 840 MB
Lineitem 72 bytes 30,000,000 2,160 MB

Table 1: Database Characteristics

C++. We installed the query engine on a Sun UltraSPARC
station with a 167 MHz processor, 512 MB of main mem-
ory, and running Solaris 2.6. In all experiments, we varied
the amount of main memory available for query processing.
We used relatively small memory sizes in order to simulate
a multi-user environment in which many queries run con-
currently an only little main memory is available for each
query.We made use of Solaris’direct IO feature in order to
avoid caching at the operating system level. The database
was stored on a 9 GB Seagate Barracuda disk drive and
another 9 GB Barracuda disk drive was used to store inter-
mediate query results.

Our test database is characterized in Table 1. It consists
of a Customer, Order, andLineitem table with the usual
TPC-D-style schema [TPC95]. The cardinalities of the ta-
bles are set according to the TPC-D specifications at a scal-
ing factor of five. In some experiments, however, we varied
the cardinality of theOrder table in order to demonstrate
the scalability of the approaches along that dimension. We
generated random tuples using a uniform distribution wher-
ever appropriate. That is, theCustomer.Cityfields are uni-
formly distributed among 75,000 cities, theOrdersreferred
uniformly to Customers, andLineitemsreferred uniformly
to Orders. As stated in Section 5, we also experimented
with skewed databases, but we will not show the results
here because they were identical with the results obtained
using such a uniform database. TheC# andO# fields, the
keys of the tables, are also generated randomly, rather than
just sequentially. A database with sequentialC# andO#2

would have made the use of generalized hash teams even
more attractive because absolutely no false drops would oc-
cur in such a database ifb � c andbo � o.

As benchmark queries, we used Query 1 and 2 from
Sections 2 and 4. These are just two example queries for
which generalized hash teams and, to some extent, partition
nested loops are useful. Of course, many other examples
can be found and it is just as easy to find example queries
for which our new approaches are not useful (e.g., grouping
by an attribute of theOrder table). In all cases, we used the
best possible plans (including the join order) and the best
possible main memory allocation for each group of opera-
tors that run concurrently in a plan. Every operator (e.g.,
scan or partitioning) that reads and writes data to disk gets
memory so that blocks of at least 64K are read and written
to disk in order to avoid excessive random IO. For general-
ized hash teams, this minimum allocation was given to the
partitioning operators and the rest of the available mem-
ory was used for the bitmaps in the partitioning phase. For
the traditional plans (in particular if early aggregation was

2This is not unrealistic in practice because keys are typically generated
sequentially by the application or database system.

used), memory allocation was somewhat trickier because it
is difficult to decide how much memory to allocate to the
partitioning phase of the group-by which runs concurrently
with the last join—again, we experimented with different
configurations and report the best results.

6.2 Running Time of Query 1

Figure 10 shows the running time of Query 1 using gen-
eralized hash teams, partition nested loop joins, and two
traditional plans that use an ordinary hash join and hash ag-
gregation to execute the query. The difference between the
two traditional plans is that early aggregation (as described
in [Lar97]) is effected in one of the two plans. Early aggre-
gation reduces the size of the intermediate results that must
be written to disk in the partitioning phase of the group-by
operator. We observe that, as expected, generalized hash
teams and partition nested loop joins significantly outper-
form the traditional plans in the whole range of main mem-
ory sizes. The traditional plans perform particularly poorly
if there is only little memory available—in this case, the IO
costs of the join and group-by operators are very high be-
cause many small partitions must be created and thus, the
benefits of saving the partitioning step for the group-by op-
eration is high. Note that for small memory size, the num-
ber of false drops is also particularly high for generalized
hash teams (Figure 8), but the extra cost due to false drops
is much lower than the cost of an extra partitioning step.
Increasing the size of the memory, the advantages of our
new approaches get smaller, but only for very large mem-
ory sizes, when the join and/or group-by can completely be
carried out in memory, the traditional plans would perform
as well as our new approaches. For Query 1, generalized
hash teams and partition nested loop joins have almost the
same performance; in this case, processing false drops is
as expensive as re-reading the reducedOrder table for all
memory sizes.

6.3 Running Time of Query 2

Figure 11 shows the running time of Query 2 for various
different plans. Again, generalized hash teams are the over-
all winner. In this case, however, generalized hash teams
are only beneficial if a certain amount of memory is avail-
able. (Recall from Section 4 that the memory require-
ments increase with the number of operations that partici-
pate in the team.) For the traditional plans, the best memory
configuration involves carrying out the whole group-by in
memory so that early aggregation does not improve the run-
ning time in these experiments. The traditional plans loose
here because they require re-partitioning for the second join
(i.e., the join withLineitem). For Query 2, we studied two
plans that make use of partition nested loops: thePNL O, L
plan which carries out partition nested loops for both joins,
and thePNL L plan which carries out a (traditional) hash
join for Customer1 Order and partition nested loops for
the join withLineitem. Both plans show poor performance
if there is only little memory available, for re-reading the
reducedLineitemandOrder (for PNL O, L) tables several
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times, but both plans become better the more memory is
available. All other plans, in contrast, are fairly flat. Be-
yond 25 MB of memory (not shown), the partition nested
loop join plans flatten out as well and show the same per-
formance as generalized hash teams.

7 Related Work

The use of bitmaps is becoming increasingly popular to
support decision support queries. In the database context,
bitmaps have been used to speed-up the execution of joins
in distributed [Bab79, VG84] as well as centralized sys-
tems [Bra84]. In these proposals so-called Bloom-filters
[Blo70] are used to filter out tuples without join partners.
[HM97] use bitmap signatures for processing joins involv-
ing predicates on nested sets. Also, bitmap indexing is a
well-known concept; see, e.g., the early work on signature
files [CS89] or the bitmap indices in Model 204 [O’N87].
Indexing attribute values via bitmaps [OQ97, CI98, WB98]
and bitmap join indices [GO95] have recently received re-
newed attention in the context of query processing for data
warehouses. To the best of our knowledge, however, so far
nobody has used bitmaps for indirectly partitioning argu-
ments of hash joins (or grouping operators).

The most relevant related work are hash teams, which
were proposed in [GBC98]. As stated in the introduction,
our work extends hash teams so that they become appli-
cable in situations in which the columns of the join and
group-by operations are not the same. Sort/merge-joins
and sort-based aggregations can also be used to execute
join/group-by queries. Like regular hash teams, such sort-
based query techniques are only attractive if the columns
of at least some of the join and group-by operations are the
same. Generalized hash teams, on the other hand, are appli-
cable and attractive for a much wider spectrum of queries.

Furthermore, there have been a couple of proposals
to integrate join and group-by processing and for spe-
cial multi-way join operators [Ull89, RRS91, CM95]. In
[CKK98] we devised a technique for combining sorting
and hash join processing. The techniques proposed in that
work, however, differ significantly from the approach pro-
posed in this paper, and they would not perform as well as

generalized hash teams in the situations described in this
paper.

Another line of related work are approaches to optimize
queries with group-by operations [YL94, CS94]. Our ex-
ampleCustomer-Orderquery, for instance, could be im-
plemented by grouping theOrder table byC# before the
join and then grouping the result of the join byCity. In
this particular example, such a strategy would not be ben-
eficial because it would involve the execution of an addi-
tional expensive group-by operation without reducing the
cost of the other operations substantially. In general, how-
ever, generalized hash teams and early group-by process-
ing can be used independently, and they can, in particular,
both be used together to speed-up certain decision support
queries.

8 Conclusion

Graefe et. al. [GBC98] developed a new hash-based pro-
cessing technique calledhash teamswhich was integrated
into Microsoft’s SQL Server product. This technique al-
lows to “team up” several join (and grouping operators) that
are based on thesamecolumn. This way intermediate re-
partitioning is avoided in quite the same way that re-sorting
intermediate join results is avoided in sort/merge-joins.

[GBC98]’s technique requires that all operators of a
team are based on the same column. In this work, we pro-
posed generalized hash teams which allow to “team up”
join and grouping operators even if they are based on dif-
ferent columns. This, of course, makes generalized hash
teams applicable for a much larger class of queries. The
key idea is indirect partitioning: A relation is partitioned
on an attribute that is used in a later operation and bitmaps
are constructed in order to guide the partitioning of other
relations which are involved in the next operation. This
technique can (in theory) be applied to an arbitrary num-
ber of relations and join and group-by operations; in prac-
tice, however, the number of operations that participate in a
team is limited by the available memory needed to execute
the team (as in traditional hash teams) and to construct the
bitmaps.

In this paper, we presented details of suchgeneralized
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hash teamsand carried out experiments demonstrating the
usefulness of the approach for certain classes of decision
support queries. We also presented formulae that can be
used by a query optimizer in order to cost out plans with
generalized hash teams and thus decide when they are ben-
eficial. Furthermore, we described and evaluated another
new algorithm which we calledpartition nested loopsand
that can, in some sense, be seen as a simplified variant of
generalized hash teams. In our experiments, however, we
could not find cases in which partition nested loops out-
perform generalized hash teams, but we did find cases in
which partition nested loops perform much worse.
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