Implementation of Two Semantic Query Optimization
Techniques in DB2 Universal Database

Qi Cheng? Jarek Gryz?
Xiaoyan Qian!
IBM! Department of Computer Science?

Toronto York University, Toronto

Abstract

In the early 1980’s, researchers recognized
that semantic information stored in databases
as integrity constraints could be used for query
optimization. A new set of techniques called
semantic query optimization (SQO) was de-
veloped. Some of the ideas developed for SQO
have been used commercially, but to the best
of our knowledge, no extensive implementa-
tions of SQO exist today.

In this paper, we describe an implementation
of two SQO techniques, Predicate Introduc-
tion and Join Elimination, in DB2 Universal
Database. We present the implemented al-
gorithms and performance results using the
TPCD and APB-1 OLAP benchmarks. Our
experiments show that SQO can lead to dra-
matic query performance improvements. A
crucial aspect of our implementation of SQO
is the fact that it does not rely on complex
integrity constraints (as many previous SQO
techniques did); we use only referential in-
tegrity constraints and check constraints.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

687

Fred Koo!

Cliff Leung?
Bernhard Schiefer!

Linqgi Liu?*

IBM?
Almaden

Daedalian Systems Group Inc.*
Toronto

1 Introduction

Relational database systems became the predominant
technology for storing, handling, and querying data
only after a great improvement in the efficiency of
query evaluation in such systems. The key factor
in this improvement was the introduction and devel-
opment of query optimization techniques. The tra-
ditional types of optimization, however, exploit to
a limited extent the semantic information about the
stored data. In the late 1970’s and early 1980’s, re-
searchers [1, 7, 8, 9, 17] recognized that such infor-
mation could be used for further query optimization,
and developed a new set of techniques called semantic
query optimization (SQO). SQO uses the integrity con-
straints associated with the database to improve the
efficiency of query evaluation. The techniques most
often discussed in literature included the following;:

1. Join Elimination: A query may contain a join
for which the result is known a priori, hence, it
need not be avaluated. (For example, for some
queries involving a join between two tables related
through a referential integrity constraint).

2. Join Introduction: It may be advantegeous to add
a join with an additional relation, if that relation
is relatively small compared to the original rela-
tions as well as highly selective. (This is even
more appealing if the join attributes are indexed).

3. Predicate Elimination: If a predicate is known to
be always true it can be eliminated from the query.

4. Predicate Introduction: A new predicate on an
indexed attribute may allow for a more efficient
access method. Similarly, a new predicate on a
join attribute may reduce the cost of the join.

5. Detecting the Empty Answer Set: If the query
predicates are inconsistent with integrity con-
straints, the query does not have an answer.

Example 1. Consider the following two queries (both
asked against the TPCD [19]). The first query
illustrates the technique of Join Elimination.

Q;: select p_name, p_retailprice, s name,

s_address

tpcd.lineitem, tpcd.partsupp,

tpcd.part, tped.supplier

where p_partkey = ps_partkey and
s_suppkey = ps_suppkey and
ps-partkey = l_partkey and
ps_suppkey = l_suppkey and
l_shipdate between ’1994-01-01" and
’1996-06-30" and 1_discount > 0.1

group by p_name, p_retailprice, s_name,
s_address

order by p_name, s_name;

from

The following referential integrity constraints
(parent-child) have been defined in TPCD: part-
partsupp (on partkey), supplier-partsupp (on
suppkey), partsupp-lineitem (on partkey and
suppkey). Given the referential integrity con-
straints, the intermediate join with partsupp can
be eliminated from the query, since the tables
part and lineitem can be joined directly. We
show in Section 3 that this transformation im-
proves query performance.

The next query illustrates the technique of Pred-
icate Introduction.

P;: select sum(lextendedprice * 1_discount)
as revenue
from tpcd.lineitem
where | shipdate > date(’1994-01-01") and

l_shipdate < date(’1994-01-01")+1year

and l_discount between .06 — 0.01
and .06 + 0.01 and l_quantity < 24;

Since the following check constraint, 1 shipdate
< lreceiptdate, has been defined for TPCD, a
new predicate, 1 receiptdate > date(’1994-01-
01’), can be added to the where clause in the
query without changing its answer set. Now, if
the only index on lineitem table is a clustered
index in which [_receiptdate is a major column, a
new, potentially more efficient evaluation plan is
available for the query. Indeed, we show in Sec-
tion 4, that the use of this new plan leads to an
improved query performance.

The SQO techniques discussed in literature were de-
signed to be a part of a two-stage optimizer. In the first
step, queries that are logically equivalent - with respect
to the semantics of the database (that is, the stored
set of integrity constraints) - to the original query, are
generated. In the second step, these queries are sub-

688

mitted to the traditional optimizer which generates ac-
cess plans for all of them and the query with the low-
est estimated evaluation cost is chosen and submitted
for evaluation. Since the number of equivalent queries
generated in the first phase could be large (in general,
exponential in the number of integrity constraints that
relate semantically to the query), heuristics were nec-
essary to limit their number [1, 7, 16]. Although sev-
eral different techniques for SQO have been developed,
only simple prototypes have been built. To the best of
our knowledge, no extensive, commercial implemen-
tations of SQO exist today.! There are several rea-
sons why SQO has never caught up in the commercial
world. The most prominent one is the fact that SQO
was in many cases designed for deductive databases [1,
7, 8] and because of this association, SQO might not
appear useful for relational database technology. Sec-
ond, at the time when SQO techniques were being de-
veloped, the relative CPU and I/O speeds were not
as dramatically different as they are now. The sav-
ings in query execution time (dominated by I/0) that
SQO could provide was not worth the extra CPU time
necessary to optimize a query semantically. (The anal-
ysis presented in [16] shows that the cost of semantic
optimization could become comparable to the query
execution cost.) Last, it has been usually assumed
that many integrity constraints have to be defined for
a given database if SQO is to be useful there. Oth-
erwise, only few queries could be optimized seman-
tically. However, this is not the case in most real life
databases; except for keys, foreign keys, and check con-
straints, very few integrity constraints are ever defined.
Indeed, many of the integrity constraints considered in
early days of SQO are not expressible in most commer-
cial database systems, even today !

We have always believed, however, that many of the
SQO techniques could provide an effective enhance-
ment to the traditional query optimization. We show
in this paper that this is indeed the case. We devel-
oped versions of two SQO techniques: Join Elimina-
tion (JE) and Predicate Introduction (PI). Significant
portions of these technologies have been implemented
in a prototype version of IBM DB2 Universal Database
(UDB). We hope that this work will provide valuable
lessons for future implementations of SQO.

The paper is organized as follows. Section 2 provides
a brief overview of the DB2 UDB optimizer and the
general assumptions for the implementation. The al-
gorithms and performance results for Join Elimination
and Predicate Introduction constitute Sections 3 and 4
respectively. The paper concludes in Section 5.

IThis is not to say that no semantic information is used for
optimization (e.g. the information about keys is routinely used
to remove the DISTINCT operator from queries). However, the
extent to which semantic information is used in that way is far
from what the designers of SQO envisioned.

2 Overview of the Implementation

In traditional database systems, query optimization
typically consists of a single phase of processing in
which an efficient access plan is chosen for executing
a query. In Starburst DBMS [6], on which DB2 UDB
is based, the query optimization phase is divided up
into query rewrite optimization and query plan opti-
mization phases; each concentrates on different aspects
of optimization. The query rewrite phase transforms
queries to other semantically equivalent queries. This
is also commonly known as the query modification
phase, applying rewrite heuristics. The query plan op-
timization phase determines the join order, join meth-
ods, join site in a distributed database, and the method
for accessing each input table.

After an input query is parsed and converted to an in-
termediate form called query graph model (QGM), the
graph is transformed by the Query Rewrite Engine [13,
14] into a logically equivalent but more efficient form
using heuristics. Query rewrite is a rule based sys-
tem. Such a system permits keeping the range of opti-
mization methods open-ended, considerably reducing
the effort it usually takes to extend the optimization
range as user needs evolve. For example, it is im-
portant to be able to add a new query rewrite rule
into the system without having to modify the existing
rules or to have an explanation of how the rule system
arrives at the solution for a given query. The grow-
ing list of rewrite rules implemented in this system in-
cludes predicate pushdown, subquery to join transfor-
mation, magic sets transformation, handling of dupli-
cates, merging of views and decorrelating complex sub-
queries [2, 10, 11, 12, 13]. Rules can be grouped into
rule classes for higher efficiency, better understand-
ability and more extensibility. Such grouping of query
rewrite rules can help the query rewrite system to con-
verge to a fixpoint faster. Furthermore, each rule class
uses a particular control strategy that specifies how
rules in the class are selected to fire. An important
aspect of the implemented rule based system is its ef-
ficiency: experimental results show [14] that less than
1% of the query execution time is spent on the query
rewrite phase.

Some of the optimization techniques already present in
DB2 UDB optimizer use information about integrity
constraints to transform queries, hence implement a
form of “semantic” query optimization. The following
examples illustrate two such techniques.

Example 2. This example illustrates a simple rule
that allows eliminating the DISTINCT keyword.
Let Q be a query in TPCD schema:

Q: select DISTINCT nationkey, name
from tpcd.nation;

Since nationkey is a key for the relation nation,
the DISTINCT keyword can be eliminated, thus
avoiding a potentially expensive sorting.

Q': select nationkey, name
from tpcd.nation;

Example 3. This example illustrates the use of func-
tional dependencies to optimize the order opera-

tion [18].
Q: select shipdate, commitdate
from tpcd.lineitem

order by shipdate, commitdate;

Assume that there is a functional dependency
shipdate — commitdate.? Thus, for a given
value of shipdate, there is only one value of com-
mitdate. Hence, Q can be rewritten into the fol-
lowing query:

Q': select shipdate, commitdate
from tpcd.lineitem
order by shipdate;

Again, after this transformation a potentially ex-
pensive sorting operation is avoided.

The design of the query rewrite engine is ideal for
the implementation of SQO. Each of the SQO tech-
niques represents a transformation of a query that can
be stated as a condition-action rule. This is exactly
how transformation rules are implemented in the query
rewrite engine. The only restriction that was forced on
us as a result of the design of the DB2 optimizer was
as follows. Since only a single query can be passed
from the query rewrite engine to the plan optimiza-
tion phase, we could not assume that the plan opti-
mizer would be able to choose the best query from a
set of several semantically equivalent queries. The dis-
advantage of this is that the single query generated
through SQO had to be guaranteed to be better than
the original query (this assumption need not be made
when there were several candidate queries, since the
original query was among them). The advantage of
this approach is, however, that less time had to be
spent on SQO, so we would not encounter the prob-
lem of spending more time on optimization than query
execution [16].

The decision to implement JE and PI, out of the
choices of SQO techniques, was based on two factors.
Our initial experiments with SQO [5], in which we
tested all known SQO techniques by rewriting queries
by hand, indicated that both JE and PI provided con-
sistent optimization. In addition to this, however, they

2This FD is only assumed for the sake of the example; it does
not hold in TPCD.

689

were also the most practical to implement. The trans-
formations they provided relied only on check con-
straints and referential integrity constraints. Thus, we
did not need to change the support mechanism for in-
tegrity constraints in DB2 UDB. Moreover, since al-
most all database systems support these types of in-
tegrity constraints, JE and PI can be potentially im-
plemented in other DBMSs.

3 Join Elimination
3.1 Implementation

The Join Elimination (JE) technique discussed in SQO
literature was often presented in two different ver-
sions [1]. In the first version, the join under considera-
tion is known to be empty (by reasoning over the set of
integrity constraints), hence any further join with its
result would also be empty. In the second version, if it
could be proved by reasoning over the set of integrity
constraints that the join is redundant (as in query Q;
of Example 1) it can be eliminated from the query.
Although, JE in its first version is likely to provide
very good optimization, we did not think that it was
very practical. First, it is cumbersome to express in
SQL as an integrity constraint the fact that the join
of two tables (possibly with selects) is empty. Second,
it is unlikely that such integrity constraints would be
stored, since their verification would be costly.

Thus, we concentrate only on the second version of
JE and consider the case where redundant joins are
discovered through reasoning over referential integrity
(RI) constraints. The most straightforward applica-
tion of our technique is the elimination of a relation
(hence a join) where the join is over the tables related
through an RI constraint (we refer to such joins as RI
joins) and the primary key table is referenced only in
the join.

Example 4. Assume that the view Supplier_Info has
been defined over TPCD schema and the query Q
has been asked against that view:

create view Supplier_Info (n, a, c) as
select s name, s_address, n_name
from tpcd.supplier, tpcd.nation
where s nationkey = n_nationkey;

Q: select sn, s.a
from Supplier_Info;

Since there is an RI constraint between supplier

tuple in the nation relation. Also, no attributes
are selected or projected from the nation rela-
tion. Hence, the query can be rewritten into an
equivalent form as Q'

Q': select s, s_a
from tpcd.supplier;

’
@ avoids the join computation, so its evaluation
can be more efficient.

Note that even if the user knows that the query Q
can be rewritten as Q', he may not be able to do so,
since he may only have access to the view. Thus, even
such simple optimizations have to be performed within
the DBMS. Redundancy in RI joins is likely to occur
in environments where views are defined with large
number of such joins, for example, in data warehousing
with a star schema. But it can also appear in ordinary
queries if they are not written by a programmer, but
are automatically generated, e.g. by GUIs in query
managers where hand optimization is impossible.

The JE algorithm we implemented handles not only
the removal of explicit RI joins, but also redundant
joins that can be inferred through reasoning over the
joins explicitly stated in the query and the RIs defined
for the database (query Q; of Example 1 was trans-
formed in this way). The algorithm has the following
steps:

1. Column equivalence classes are built via transi-
tivity from all join predicates in the query. That
is, if A = B and B = C are in the query, we can
infer A = C. All three columns, A, B, C' are then
in a single equivalence class.

2. All tables in the from clause of the query that
are related through RI joins are divided into two
groups: R group (removable tables) and N group
(non-removable tables). The necessary condition
for a table to belong to the R group is that it is a
parent table for some RI (such tables need to sat-
isfy other conditions as well, their full description,
however, is beyond the scope of this paper).

3. All tablesin the R group (that is, redundant joins)
are eliminated from the query.

4. Since foreign key columns may be nullable, an
‘IS NOT NULL’ predicate is added to foreign key
columns of all tables whose RI parents have been
removed and which, in fact, permit nulls.

We present a few examples of the types of transforma-
tions that can be performed by the algorithm.

and nation on nationkey, then every tuple from Example 5. For each query specified below we present

the supplier relation necessarily joins with some

690

an optimized query generated by the algorithm

and three graphs describing the join structures.
The nodes in each graph represent attributes and
the edges represent joins between these attributes.
The top graph shows the joins explicitly stated in
the query. The middle graph shows all the joins
that can be inferred from the first graph (that
is, all equivalence classes induced by the explicit
joins). The RI joins are distinguished from other
joins by arrows (from the child to the parent, that
is, N:1). The bottom graph shows the structure
of the joins after the redundant joins have been
eliminated by the algorithm.

e Query 1
Let the query be Q; of Example 1. The graphs

describing the structure of the joins of the query
are shown in Figure 1.

P.P PS.P L.P

S.S

PS.S

J

PP <=— PSSP=—— L.P

S.S =— PSS=<=—— L.S

[\

P.P L.P

S.S L.S

l |

Figure 1: Join graphs for query O;.

Thus, Q; can be optimized into Q’l.

Q’l: select p_name, p_retailprice, s.name, s_address
from tpcd.lineitem, tpcd.part, tped.supplier

where p_partkey = 1 partkey and
s_suppkey = l_suppkey and
l_shipdate between ’1994-01-01" and
’1996-06-30’ and 1_discount > 0.1

group by p_name, p_retailprice, s_name,
s_address

order by p_name, s name;

We tested Q; and Q'1 in TPCD database of size
100MB in the same environment as described in
Section 4. Execution time for the original query
Q; was 58.5s and for the optimized query Q,
38.25s (a saving of 35%). Since the database
was relatively small, the query was CPU bound.
We expect that the optimization would be even
more prominent for a large database since the I/O

691

cost was reduced by 67% (from 4631 to 1498 page
reads).

e Query 2
Consider another query in TPCD.

Q,: select ps_partkey as partkey,

avg(ps_supplycost) as supplycost

from tpcd.supplier, tpcd.partsupp,
tpcd.customer, tpcd.orders

where s_suppkey = ps_suppkey and
s_suppkey = c_custkey
and c_custkey = o_custkey and
o_totalprice > 100

group by ps_partkey

order by 2

fetch first 200 rows only;

The join graph for Q5 is shown in Figure 2 (since
s_suppkey = ps_suppkey and c_custkey = o_custkey
are RI joins, they are marked with arrows in the
middle graph). The query can be simplified to a
single join as indicated in the bottom graph.

S.S PS.S

C.C

0.C

V

S.S=—— PS.S

X

C.C=—— 0.C

|

PS.S

0.C

Figure 2: Join graphs for query Q.
Thus, the query becomes:

Q'Z: select ps_partkey as partkey,

avg(ps_supplycost) as supplycost

from tpcd.partsupp, tpcd.orders

where ps_suppkey = o_custkey and
o_totalprice > 100

group by ps_partkey

order by 2

fetch first 200 rows only;

We tested Q5 and sz in the same environment as
Q. Tl‘he execution time for Q9 was 6331.64s and
for Q,, 79.33s, for a saving of 99%.

e Query 3

Consider the following view defined over a star
schema (for brevity, we use “...” to indicate se-
quences of attributes). CubelFact is a fact table,
each of the CubelDim2-CubelDim6 is a dimen-
sion table, and each of the joins is an RI join (the
schema is described in more detail in Section 3.2):

create view olapmain_starview
(?”Measure”,” Scenario” ,” Channel label”

” Customer”,” Product”, 719967, 71995Q3”,

71995Q47,71996Q17,71996Q2”,71996Q3”,
71996Q4”, 7199606 YTD”, 71995017 ...,
1995127, 7199601”,...,7199612") AS
select T2 Membername, T3.Membername,
T4.Membername, T5.Membername,
T6.Membername, F.AN1,....F.AN32
CubelFact F, CubelDim2 T2,
CubelDim3 T3, CubelDim4 T4,
CubelDim5 T5, CubelDim6 T6
where T2.Relmemberld = F.COL2 AND
T3.Relmemberld = F.COL3 AND
T4.Relmemberld = F.COL4 AND
T5.Relmemberld = F.COL5 AND
T6.Relmemberld = F.COLG6;

from

Let Q3 be a query that uses this view. After the
view is replaced with its definition, Q3 can be
simplified into Qj.

Q3: select 719967, 7199606YTD”
from olapmain_starview;

Qs: select 71996, ”199606YTD”
from CubelFact
where F.COL2 IS NOT NULL and
F.COL3 IS NOT NULL and
F.COL4 IS NOT NULL and
F.COL5 IS NOT NULL and
F.COL6 IS NOT NULL;

3.2 Performance Results

The JE technique described above has been imple-
mented in a prototype DB2 UDB installed as part of
an OLAP Server. The DB2 OLAP Server is an Online
Analytical Processing server that can be used to cre-
ate a wide range of multidimensional planning, anal-
ysis, and reporting applications. DB2 OLAP Server
uses the Essbase OLAP engine developed by Hyperion
Solutions Corporation. However, DB2 OLAP Server
replaces the integrated, multidimensional data storage

692

T3.ID T5.ID

F2T3F4F5F6

T2.IDT4.IDT6.ID

i

T3.ID T5.ID

|1

F2F3F4F5F6

|

T2.IDT4.IDT6.ID

¢

no joins

Figure 3: Join graphs for query Qs.

used by Arbor with a relational storage management,
and stores data in the relational data storage using a
star schema.

We used the APB-1 OLAP Benchmark [3] schema for
the experiments. The benchmark simulates a realis-
tic on-line analytical processing business situation that
exercises server-based software. The logical bench-
mark database structure is made up of six dimensions:
time, scenario, measure, and three aggregation dimen-
sions that define the database size (product, customer,
and channel).

When an APB-1 OLAP Benchmark database is cre-
ated using DB2 OLAP Server, it generates a set of
relational tables represented as a star schema. The
dimension tables (1-6) are: Time, Measure, Scenario,
Channel, Customer, and Product. One of the dimen-
sions, in our case Time, is chosen as the so-called an-
chor dimension and is joined with the fact table (hence
we refer to the result of that join as the fact table).
The attributes of the fact table indicate the sales in a
given period of time: 199502 stores the sales value for
February of 95, 1996Q1 for the first quarter of 96, etc.

In addition, DB2 OLAP Server creates and manages
a number of views that simplify SQL application ac-
cess to the multidimensional data. One of them, olap-
main_starview (defined in Query 3 of Example 5), is
particularly interesting from our point of view since it
joins the fact table with five dimension tables (2-6).
All of the joins in the view are RI joins. The sizes of
the dimension tables (1-6) are respectively: 86, 15, 16,
12, 1001, 10001 rows. The fact table has 2.4 million
rows.

We ran the experiments on DB2 OLAP Server in-

I Queries | A | B | BB T | T | T | B T] Tl
Execution Original 98.2 | 576.2 | 11.3 | 12.5 | 504.3 | 586.4 | 523.5 | 5.6 | 5.2 | 4.7
Time (s) | Optimized | 9.7 239 (109|114 | 167.2 | 231.0 | 2685 | 49 | 5.1 | 4.3

Table 1: Performance Results for Join Elimination

stalled in Windows NT Server 4.0 on a 4-way Pentium
IT Xeon 450 with 4GB of memory. Each of the queries
below was run at least 5 times; execution times are
averages over all runs. We designed the queries to in-
volve other operations than just the joins in the view
to make them more realistic. Queries J; and J> al-
lowed elimination of all five dimension tables, queries
J3 and J; allowed elimination of four dimension ta-
bles, queries J5 and Jg allowed elimination of three
dimension tables, queries J7 and Jg allowed elimina-
tion of two dimension tables, and queries Jy and Jig
allowed elimination of one dimension table. We also
tested queries from which no joins could be eliminated;
no deterioration of performance due to extra optimiza-
tion step was observed.

J1: select count(”1996Q1”)
from olapmain_starview;

Jo: select sum(”199501”) as 71995017,
sum(”199502”) as ”199502”,
sum(”199503”) as ”199503”,
sum(”199601”) as ”199601”,
sum(”199602”) as " 199602”,
sum(”199603”) as ”199603”

from olapmain_starview;
J3: select 71996067, ”199605”
from olapmain_starview
where channellabel = "EQ086DVOCPQS’

and ”7199606” < ”199605”
order by ”7199606” , ?199605”;

Ja: select count(”199604”) as ”199604”
count(”199605”) as 7199605,
count(”199606”) as ”199606”

from olapmain_starview
where measure = ’Dollar Sales’

and ”7199604” > 5000.0
and ”199605” > 5000.0
and ”199606” > 5000.0;

Js: select sum(”1995Q4”) as ?1995Q4”
from olapmain starview
where scenario = ’Actual’
and measure = 'Inventory Units’;

Je: select measure, sum(” 199606) as total
from olapmain_starview
where scenario = ’Actual’

group by measure
order by measure;

Jr: select channel label,
sum(”199606”) as ”199606”,
sum(”199506”) as ”199506”

from olapmain_starview
where scenario = ’Actual’

and measure = 'Dollar Sales’
group by channel label
order by ”7199606”, 71995067 ;

Js: select scenario,
sum(”1996Q2”) - sum(”1996Q1”)
as change
from olapmain_starview
where measure = ’Dollar Sales’
and customer = "VBSNRNCDLNPT’
group by scenario
order by change;

Jo: select sum(”1995Q4”) as ”71995Q4”,
sum(”1996Q1”) as ”1996Q1”,
sum(”1996Q2”) as $

from olapmain starview

where scenario = ’Actual’
and channel label = 'VDWRDK3K574X’
and customer = "YSAJBH5KL5LE’
and measure = 'Dollar Sales’;

J1o: select customer,
avg(71996Q1”) as ”1996Q1”
from olapmain_starview
where scenario = "Actual’

and measure = ’Dollar Sales’

and customer = "'VBSNRNCDLNPT’
group by customer
order by ”71996Q1”;

The amount of savings provided by the optimization
in each of the tested queries is a function of many fac-
tors (the selectivity of the predicates, relative cost of
the eliminated join versus other operations in a query,
the size of the output, etc.). Hence, the optimization
ranges from 2% (query Jo) to 96% (query J2). Nev-
ertheless, for all experiments JE provided consistent
optimization for tested queries and for many of them
the optimization was substantial. Another point we
need to stress here is that for most of the queries the
saving in execution time came from reducing the CPU

693

cost, not the I/O (because the dimension tables were
small and fit in memory). We expect that we can
achieve even more prominent optimization for strictly
I/0 bound queries.

4 Predicate Introduction
4.1 Implementation

The idea of Predicate Introduction (PI) was discussed
in literature as two different techniques: index intro-
duction and scan reduction. The idea behind the in-
dex introduction is to add a new predicate to a query
if there is an index on the attribute named in the pred-
icate [1, 7, 9, 17] (query Py of Example 1 illustrates
this transformation). The assumption here is that re-
trieval of tuples using an index is more efficient than
their sequential processing. In general, this assump-
tion is not always true. Thus, the general rule was
either accompanied by heuristics [9] or several queries
were generated which were then subject to the cost
evaluation by the plan optimizer [1]. As we stated in
Section 2, we did not have a ready option in our de-
sign to get feedback from the plan generator in query
rewrite engine. Hence, we needed to restrict the use
of PI to situations that would guarantee improvement
in the efficiency of query evaluation. Surprisingly, the
range of such restrictions had to be more stringent
than we expected.

The second use of PI is for table scan reduction. The
idea here is to add a predicate to reduce the number
of tuples that qualify for a join. As we show later in
this section, this provides substantial optimization for
all types of join. The problem with scan reduction
is, however, that it is not common: it is unlikely that
there will be any check constraints or predicates with
inequalities about join columns. The example below
illustrates scan reduction.

Example 6. S; is a query asked against the TPCD
database. Given the fact that the check constraint
l_receiptdate > 1 shipdate holds in TPCD,
two new predicates 12.1_receiptdate > date (’1998-
07-01°) and l1.1_commitdate > date (’1998-07-01°)
can be added to the query, thus reducing the num-
ber of tuples of 11 and 12 that qualify for a join.

Si: select sum(l1.1 extendedprice * 11.discount)
as revenue
from

12.1_discount between 0.06 — 0.01 and
0.06 + 0.01 and 12.]_quantity < 24;

tpcd.lineitem as 11, tpcd.lineitem as 12
where 11.]_commitdate = 12.1_receiptdate and
12.1_shipdate > date(’1998-07-01’) and

Our implementation of PI included also another SQO
technique discussed in the literature: detecting an
empty query answer set. The idea behind this tech-
nique is to check whether the set of logical conse-
quences of the set of query predicates and check con-
straints is consistent. Consider the following example.

Example 7. Let £ be a query asked against the TPCD

database:

E: select sum(l_extendedprice * 1_discount)
as revenue
from tpcd.lineitem
where 1 shipdate > date(’1994-01-01") and
l_receiptdate < date(’1994-01-01)

The query itself does not contain a contradiction.
However, given the fact that the check constraint
1_shipdate < 1 receiptdate holds in TPCD, the
query cannot return any answers. Thus, it does
not need to be evaluated.

We should note that DB2 UDB already implements
a version of predicate introduction [4]. The exisiting
theorem prover generates a transitive closure over all
equality predicates. The result of this operation is used
to provide the optimizer with a choice of additional
joins that may be considered to select the best access
plan for the query. In addition, query rewrite will also
derive additional local predicates based on transitivity
implied by equality predicates. This may lead to scan
reduction. The current system does not, however, take
into account check constraints.

The PI algorithm we implemented has two main com-
ponents: a theorem prover and a filter. The input to
the theorem prover is the set of all check constraints
defined for a database and the set of all predicates in
a query. Its output is the set of all non-redundant
formulas derivable from the input set. These formu-
las represent new predicates that can be added to the
query; they are of the form A op B, where A and B
are attribute names or constants and op is one of the
following: >, <, >, <. Clearly, only a few of the
new predicates are useful for optimization. The role of
the filter is to find them. Our goal in designing heuris-
tics rules for the filter was to guarantee that any new
predicate added to the query will allow the optimizer
to find only better access plans than the ones available
for the original query. The sketch of the algorithm is
presented below.

Let N be the set of new predicates computed by the
theorem prover.

1. If NV is inconsistent (as in Example 7) an appro-

3This set does not include ‘=’ since DB2 UDB already han-
dles reasoning over predicates with equality.

694

[Queries | P | P | Ps | Py | Ps |
Estimated Cost | Original | 54031 | 113316 | 108676 | 128342 | 195098
(internal units) | Optimized | 18308 | 11222 | 69623 | 35974 | 133665

Execution Original 13.5 24.9 25.1 46.4 56.5
Time (s) Optimized | 5.4 4.9 58.3 38.6 98.3

Table 2: Performance Results for Index Introduction

priate flag is raised and the query is not evaluated.

2. FElse, for each predicate A op B € N, it is added
to the query if one of the following holds

a. A or B is a join column
b. e Ais a constant, and
e B is a major column of an index, and

e no other index on B’s table can be used
in the plan for the original query

Case 1 of the algorithm handles the discovery of incon-
sistency in the query. Case 2.a allows for scan reduc-
tion. The most important part of the algorithm, Case
2.b introduces an index to the query. Our approach
is conservative: we introduce a new predicate to the
query if this allows the plan optimizer to use an in-
dex (not available before) and this new plan does not
preempt the use of another, potentially better plan.
Thus, we insist that there is no other index available
for the optimizer on the table with the new predicate.
Our experiments show that without appropriate en-
hancements in the query optimizer, even this policy
may not be sufficiently restrictive.

4.2 Performance Results

The PI technique described above has been imple-
mented as a prototype in DB2 UDB installed in AIX
on machine JRS/6000 Model 590H with 512MB of
memory. We used 100MB TPCD Benchmark [19)
database for our experiments. The queries we present
below are a representative sample of many test cases
we considered. As before, each of the queries was run
at least five times and the timing results are averages
over these runs.

e Detecting an Empty Answer Set

The performance results for this technique were, of
course, trivial: query execution time was essentially 0
in each case.

e Index Introduction

Our initial conjecture about when index introduction
is useful was as follows: the attribute of the new pred-

695

icate must be a major column (prefix of the search
key) of a clustered index, and no such index is other-
wise available for the table of that attribute. A sample
set of queries on which we tested this conjecture is pre-
sented below.

P;: select sum(l extendedprice * 1_discount)

as revenue

tpcd.lineitem

1_shipdate > date(’1994-01-01’) and
l_receiptdate < date (’1994-01-01")+1 year
and 1 discount between .06 - 0.01

and .06 + 0.01 and l_quantity < 24;

from
where

100.00 * sum
(case
when p_type like ’PROMO%’
then l_extendedprice * (1 - 1_discount)
else 0
end)
/ sum(l_extendedprice * (1 - 1_discount))
as promo._revenue
tpcd.lineitem, tpcd.part
|_partkey = p_partkey and
I_shipdate > date(’1998-09-01°) and
I_shipdate < date(’1998-09-01°)+1 month;

select

Pz:

from
where

P3: same as Po except for the indicated lines which are

replaced with:

I_shipdate > date(’1995-09-01°) and
I_shipdate < date(’1995-09-01°)+1 month;

Py: select 1 orderkey,
sum(l_extendedprice * (1 - 1_discount))
as revenue, o_orderdate, o_shippriority
from tpcd.customer, tpcd.orders, tpcd.lineitem
where c_mktsegment = 'BUILDING’
and c_custkey = o_custkey
and l_orderkey = o_orderkey and
o_orderdate < date (’1998-03-15’) and
I_shipdate > date (’1998-03-15’)
group by l_orderkey, o_orderdate, o_shippriority
order by revenue desc, o_orderdate
fetch first 10 rows only;
Ps: same as P4 except for the indicated lines which are

replaced with:

Data Reads Index Reads CPU Cost | Estimated Number

Physical | Logical | Physical | Logical (s) of Qualifying Tuples
Original Query 21607 22439 12 26 21.9 20839
“Optimized” Query | 10680 | 286516 2687 288326 55.9 12618

Table 3: Comparison of the Evaluation Costs for P3.

o_orderdate < date (’1995-03-15) and
I_shipdate > date (’1995-03-15’)

We created a clustered index with the search key
<l_receiptdate, discount, quantity, extendedprice> for
the table lineitem. Since the major column of the
index, l_receiptdate, is not used in any of the queries,
this index is not used in query evaluation. However,
since the check constraint |_receiptdate > I_shipdate is
defined in TPCD for the table lineitem and each of
the queries contain a predicate of the form [_shipdate
> DATE, we may add a new predicate [_receiptdate
> DATE to each of the queries. Now, a potentially
better access plan is available for query evaluation.
Indeed, as Table 2 shows, cost estimates generated by
the optimizer indicate that the availability of the new
predicate should uniformly improve query execution
time. Surprisingly, it did not happen: for queries Ps
and Pj execution time grew with the addition of the
new predicate.

In retrospect, there is a simple explanantion for this
deterioration. Consider queries P2 and Ps. The query
plan generated for both of the original queries (that is,
without predicate introduction) used table scan to re-
trieve qualifying tuples from the lineitem table. The
introduction of a new predicate (I_receiptdate > date
(’1998-09-01°) for P, and Lreceiptdate > date (’1995-
09-01°) for P3), allows the optimizer to use the in-
dex. Indeed, the new plan for both queries uses the
index to get directly to the tuples within the speci-
fied range of I_receiptdate. This requires traversing the
index leaves in the range of the predicate and retriev-
ing all tuples pointed to by these leaves. (It is often
stated in database textbooks that for a range search
with a clustered index, it is sufficient to retrieve the
first tuple in the range and then scan the rest of the
table. For this approach to work, however, the table
has to be perfectly sorted at all times. This is often im-
practical, hence not implemented in DB2 UDB.) What
makes the difference between the performance of the
two queries is the size of that range: 2% of the tuples
fall within the range of I_receiptdate > date (’1998-09-
01’) and 48% are within the range of l_receiptdate >
date (’1995-09-01°). The second range is so large that
a simple table scan would be a better plan. Using an
index instead involves a large overhead in locking and
unlocking index pages. Indeed, I/O cost (number of

696

physical page reads) for Ps does go down (see Table 3),
but the CPU cost increases even more.

So far, we identified two possible reasons why the op-
timizer may have chosen a more expensive access plan
for the query. One is that the cost model underesti-
mates the cost of locking and unlocking index pages.
The second, more interesting reason, is the compu-
tation of a filter factor for the query.* Since a new
predicate is added to the query the filter factor of the
predicates of the original query is multiplied by the fil-
ter factor of Lreceiptdate > date (’1995-09-01°). The
estimated number of qualifying tuples goes down (see
Table 3) and the optimizer chooses an index scan as
the best access plan. However, the number of quali-
fying tuples does not decrease in the optimized query,
since the query is semantically equivalent to the orig-
inal one. The problem, of course, is the correlation
between shipdate and [l_receiptdate: the filter factor
of a conjunction of the predicates with these two at-
tributes is not a product of their individual filter fac-
tors. This is an important lesson for any implementa-
tion of query rewrite involving addition or removal of
predicates with correlated attributes.

I Queries | Ps [Ps |
Execution | Original | 21.3 | 52.2
Time (s) | Optimized | 10.9 | 45.6

Table 4: Performance Results for Index Introduction
(modified algorithm)

Once we discovered that our initial conjecture about
the usefullness of predicate introduction was incorrect,
we needed to restrict it further. Thus, we modified the
algorithm so that a new predicate is added to a query
only if it contains a major column of an index and
a scan of that index is sufficient to answer the query
(that is, no table scan is necessary). To verify our hy-
pothesis, we created an index <receiptdate, discount,
quantity, extendedprice, shipdate, partkey, suppkey,
orderkey> and ran the queries P3 and Py again. As
expected, the use of the index-only plan improved the
execution time of the original query. The addition of
a major column of that index to the query improved

4A filter factor of a predicate (also called a reduction factor)
is the proportion of tuples in a relation satisfying the predicate.

that even more. The results are presented in Table 4.
¢ Scan Reduction

Since the only check constraint available to us® was
l_receiptdate > l_shipdate, we had to test queries in-
volving a join with at least one of these attributes.
(The queries are admittedly not very meaningful.) The
only difference between the two queries is the range of
qualifyling tuples (much larger in the second query).

S1: select sum(11.] extendedprice * 11.discount)
as revenue
from tpcd.lineitem as 11, tpcd.lineitem as 12
where 11.1_commitdate = 12.]_receiptdate and
12.1 shipdate > date(’1998-07-01’) and
12.1_discount between 0.06 — 0.01 and
0.06 + 0.01 and 12.]1_quantity < 24;

Sy: select sum(11.1 extendedprice * 11.discount)
as revenue
from tpcd.lineitem as 11, tpcd.lineitem as 12
where 11.]_commitdate = 12.1_receiptdate and
12.1_shipdate > date (’1996-07-01’) and
12.1_discount between 0.06 — 0.01 and
0.06 + 0.01 and 12.]_quantity < 24;

Because of the check constraint, we may add a new
predicate [2.l_receiptdate > date (’1998-07-01°) to Sy
(similarly for Sz) thus limiting the number of tuples
that qualify for the join. As shown in Table 5, this pro-
vides consistent optimization for the four tested types
of join: index nested loops, sort-merge, nested loops,
and hash join.

For INL we defined the index <receiptdate, discount,
quantity, extendedprice, shipdate, partkey, suppkey,
orderkey>. The index was explicitly dropped for all
other joins.

Although the results of our experiments were very
promising, we could not design more meaningful
queries for scan reduction in TPCD. This technique
is applicable only when there exist check constraints
defined over join attributes of a relation or there are
predicates with inequality over join attributes.

5 Conclusions

We developed algorithms for two SQO techniques, Join
Elimination (JE) and Predicate Introduction (PI), and
implemented siginificant portions of these technologies
as a prototype in DB2 UDB. The implementation pro-
cess and performance analysis provided us with several
insights about SQO and query optimization in general.

5DB2 does not yet support check constraints across multiple
tables.

697

The most important outcome of our work is the exper-
imental evidence which shows that SQO can provide
an effective enhancement to the traditional query op-
timization. This is particularly striking in the case
of JE for which our experiments delivered consistent
optimization for all tested queries. Although our im-
plementation of JE was geared towards OLAP envi-
ronment (in which, we believe, JE can be particularly
useful), a few experiments we performed in TPCD
were also very promising. The algorithm for JE that
we developed handles not only the removal of explicit
RI joins, but all redundant joins that can be inferred
through reasoning over the query and the RIs defined
for the database. We showed on several examples that
such inferred joins can be difficult to discover and op-
timize by hand.

What is novel about our implementation of JE is that
it does not depend on the existence of complex in-
tegrity constraints. The use of semantic reasoning
about referential integrity constraints, which are com-
mon in both OLTP as well as OLAP workloads, can
lead to dramatic performance improvements for typi-
cal queries in these workloads. Moreover, our imple-
mentation of JE does not depend on intricate and often
unavailable cost information. This makes JE easy to
implement and efficient to execute.

Our experiments with PI showed that this technique
can be very useful in detecting, by reasoning over in-
tegrity constraints, when a query’s answer set is empty.
The use of PI for index introduction delievered good
performance improvements when it was sufficiently re-
stricted. To guarantee such improvements, however,
these restrictions had to be rather severe, thus limit-
ing the applicability of the technique. Nevertheless,
the implementation of PI was very useful for us as an
experience. The ramifications of adding or removing
a predicate from a query turned out to be more com-
plex than we originally predicted. In particular, the
estimate of a filter factor in the optimized query has
to take into account the fact that semantically related
attributes are likely to be statistically correlated.

There is yet another lesson we learned from this work.
We found the necessity of having to generate a single
query by the rewrite engine constraining. The condi-
tions used to activate rules that produce such a query
are not based on database statistics (this comes into
play only at the access plan generation phase) hence
have to be sufficiently general to work for all databases.
Many rewrites useful for a particular database can be
missed. (The implementation of magic sets [15] as a
cost-based optimization technique proved to be much
more successful than as a heuristic rewrite technique.)
Thus, we advocate establishing a two-way communica-
tion between the two phases of the query optimization,
so that the plan generator can provide query rewrite

Query S Sy
Join Method INL | SM | NL | Hash [INL | SM | NL [Hash
Execution Original 107.2 | 107.5 | 107.8 | 107.6 | 270.8 | 250.0 | 250.0 | 250.3
Time (s) Optimized 374 52.9 54.3 52.9 | 218.5 | 209.3 | 209.4 | 209.3

Table 5: Performance Results for Scan Reduction

engine with a feedback on which transformations are
useful and which are not. This change will increase
the complexity of the design of the optimizer, but we
believe it can dramatically increase the effectiveness of
the rewrites, in particular, those based on SQO.

Acknowledgements

We would like to thank Jennifer Crawford and Cheryl
Greene from IBM Toronto Lab for their help with this
project and Parke Godfrey and Renée Miller for help-
ful comments on the paper.

This research was supported by Center for Advanced
Studies, IBM Toronto and NSERC (Grant 216748-98).

References

[1] U. Chakravarthy, J. Grant, and J. Minker. Logic-
based approach to semantic query optimization.
ACM TODS, 15(2):162-207, June 1990.

[2] S. Chaudhuri and K. Shim. Including group-by
in query optimization. In Proc. of VLDB, pages
354-366, 1994.

[3] OLAP Council. APB-1 OLAP Benchmark Re-
lease II, November 1998. (www.olapcouncil.org).

[4] IBM DB2 Universal Database. Administration
Guide. 1998. Version 5.2 S10J-8157-01.

[5] J. Gryz, L. Liu, and X. Qian. Semantic query op-
timization in DB2: Initial results. Technical Re-
port CS-1999-01, Department of Computer Sci-
ence, York University, Toronto, Canada, 1999.

[6] L.M. Haas et al. Starburst Mid-Flight: As the
Dust Clears. IEEE TKDE, pages 143-160, March
1990.

[7] M.T. Hammer and S.B. Zdonik. Knowledge-based
query processing. Proc. 6th VLDB, pages 137—
147, October 1980.

[8] M. Jarke, J. Clifford, and Y. Vassiliou. An opti-
mizing PROLOG front-end to a relational query
system. In SIGMOD, pages 296-306, 1984.

[9] J.J. King. Quist: A system for semantic query
optimization in relational databases. Proc. 7th
VLDB, pages 510-517, September 1981.

698

[10] A.Y. Levy, I. Mumick, and Y. Sagiv. Query op-
timization by predicate move-around. In Proc. of
VLDB, pages 96-108, 1994.

[11] I. Mumick and H. Pirahesh. Implementation of
magic sets in Starburst. In Proc. SIGMOD, 1994.

[12] G. Paulley and P. Larson. Exploiting uniqueness
in query optimization. In Proceedings of ICDE,
pages 68-79, 1994.

[13] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization
in Starburst. In Proc. SIGMOD, pages 39-48,
1992.

[14] H. Pirahesh, T. Y. C. Leung, and W. Hasan. A
rule engine for query transformation in Starburst
and IBM DB2 C/S DBMS. In Proc. ICDE, pages
391-400, 1997.

[15] S. Seshadri et al.
magic: Algebra and implementation.
MOD, pages 435-446, 1996.

Cost-based optimization for
In SIG-

[16] S. Shekar, J. Srivastava, and S. Dutta. A formal
model of trade-off between optimization and ex-
ecution costs in semantic query optimization. In
Proc. 14" VLDB, pages 457-467, Los Angeles,
CA, 1988.

[17] S.T. Shenoy and Z.M. Ozsoyoglu. Design and
implementation of a semantic query optimizer.
IEEE Transactions on Knowledge and Data En-
gineering, 1(3):344-361, September 1989.

[18] D. Simmen, E. Shekita, and T. Malkems. Fun-
damental techniques for order optimization. In
Proceedings of SIGMOD, pages 57-67, 1996.

[19] Transaction Processing Performance Council, 777
No. First Street, Suite 600, San Jose, CA 95112-
6311, www.tpc.org. TPC Benchmark™™ D, 1.3.1
edition, February 1998.

