1

Smartcards are the most secure portable computing d
today. The first smartcard was developed by Bull for t
French banking system in the 80s to significantly reduc
the losses associated with magnetic stripe credit card frau
Since then, smartcards have been used successfully arOL}
the world

PicoDBMS: Scaling down Database Techniques
for the Smartcard

Christophe BobineauLuc Bouganim Philippe Pucheral Patrick Valduriez

"PRiSM Laboratory
78035 — Versitles
France
{Firstname.Lastname}@prism.uvsq.fr

Abstract

Smartcards are the most secure portable
computing device today. They have been used
successfully in applications involving money,
proprietary and personal data (such as banking,
healthcare, insurance, etc.). As smartcards get
more powerful (with 32 bit CPU and more than
1 MB of stable memory in the next versions) and
become multi-application, the need for database
management arises. However, smartcards have
severe hardware limitations (very slow write, very
little RAM, constrained stable memory, no
autonomy, etc.) which make traditional database
technology irrelevant. The major problem is
scaling down database techniques so they perform
well under these limitations. In this paper, we
give an in-depth analysis of this problem and
propose a PicoDBMS solution based on highly
compact data structures and query execution
without RAM. We show the effectiveness of our
techniques through performance evaluation.

Introduction

in various applications involving money,

proprietary data and personal data (such as banking, p

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed f

[0)

INRIA Rocquencourt

78153 — Le Chesnay
France

Patrick.Valduriez@inria.fr

TV or GSM subscriber identifation, loyalty, healthcare,
insurance, etc.). While today's smartcards handle a single
issuer-dependent application, the trend is toward multi-
application smartcards. Standards for multi-application
support, like the JavaCard [21] and Microsoft's SmartCard
for Windows [16], ensure that the card be universally
accepted and be able to interact with several service
providers. According to DataQuest [8], 990 million
smartcards will be shipped in the year 2K and smartcards
could become one of the world’s highest-volume markets
for semiconductors.

As smartcards become more and more versatile, multi-
applications and powerful (32 bit processor, more than
1MB of stable storage), the need for database techniques
arises. Let us consider a health card storing a complete
medical folder including the holder’s doctors, blood type,
allergies, prescriptions, etc. The volume of data can be
important and the queries fairly complex (select, join,
aggregate). Sophisticated access rights management using
views and aggregate functions are required to preserve the
holder’s data privacy. Transaction atomicity and durability
are also needed to enforce data consistency. More
generally, database management helps to separate data
management code from application code, thereby

eviggnplifying and making application code smaller. Finally,
hd1EW applications can be envisioned, like computing

gtatistics on a large number of cards, in an asynchronous
nd distributed way. Supporting database management on
'8 card itself rather than on an external device is the only
way to achieve very high security, high availability
inywhere, anytime, on any terminal) andceptable
erformance.
However, smartcards have severe hardware limitations
which stem from the obvious constraints ofadl size (to

direct commercial advantage, the VLDB copyright notice and thét on a flexible plastic card and to Increase hardware
title of thepublication and its date appear, and notice is givenS€CUrity) and low cost (to be sold in large volumes).

that copying is by permission of the Very Large Data Basd 0day's microcontrollers contain a CPU, memory
Endowment. To copy otherwise, or to republish, requires a fdé@cluding about 96 KB of ROM, 4 KB of RAM and up to

and/or special permission from the Endowment. 128 KB of stable storage like EEPROM, and security
Proceedings of the 26th International Conference on Very modules [23]. EEPROM is used to store persistent
Large Databases, Cairo, Egypt, 2000 information; it has very fast read time (60-100 ns)

11

comparable to RAM but very slow write time (10 « We propose a new pointer-based storage model that
ms/word). Following Moore’s law for processor and integrates data and indices in a unique compact data
memory capacities, smartcards will get rapidly more structure.

powerful. Existing prototypes, like Gemplus's Pinocchio. We propose query execution techniques which handle
card [10], bypass the current memory bottleneck by complex query plans (including joins and aggregates)
connecting an additional chip of 2MB of Flash memory to with no RAM consumption.

the microcontroller. Although a significant improvement. \We show the effectiveness of each technique through
over today’s cards, this is still very restricted compared to performance evaluation.

other portable, less secure, devices such as Personal _
Digital Assistants (PDA). Furthermore, smartcards are not 1 NS Paper is organized as follows. Section 2 illustrates
autonomous,i.e., have no independent power supply,t e use of take-away databases in various classes of

thereby precluding asynchronous and disconnecteg@rtcard applications and presents in more details the
processing. requirements of the health card application. Section 3

These limitations (tiny RAM, little stable storage, Veryanalyzes the smartcard hardware constraints and gives the

costly write and lack of autonomy) make traditional problem definition. Sections 4 - 5 present and assess the

database techniques irrelevant. Typically, traditionaPICOPBMS’ storage model and query execution model,
DBMS exploit significant amounts of RAM and use "€SPectively. Section 6 concludes.

caching and asynchronous I/Os to reduce disk access .
overhead as much as possible. With the extremz Smartcard Applications

constraints of the sma_rtcard, the_major problem is scaling, this section, we discuss the major classes of emerging

down database techniques. While there has been mugharicard applications and their database requirements.

excellent work on scaling up to deal with very largéThen we illustrate these requirements in further details

databasesg.g., using parallelism, scaling down has notyith the health card application, which we will use as

received much attention by the database researchgference example in the rest of the paper.

community. However, scaling down in general is getting)

very important for commodity computing and is quite2-1 Database Management Requirements

difficult [12]. _ Table 1 summarizes the database management
Some DBMS designs have addressed the problem géquirements of the following typical classes of smartcard

scaling down. Light versions of popular DBMS like gpplications.

Sybase Adaptive Server Anywhere [22], Oracle 8i Lite

[18] or DB2 Everywhere [13] have been primarily g é 8

designed for portable computers and PDA. They have ja o S =Y - = 2 8
small footprint which they obtain by simplifying and Applications Volume | — | 5| 2| 2 5| E| §| 2
componentizing the DBMS code. However, they use % o g > 2 3l &
relatively much RAM and stable memory and do nof o g <

address the more severe limitations of smartcards. ISOL§yoney & identification| tiny 5]
SQLJava Machine DBMS [7] is the first attempt towards § pownioadable DB high | O |O| O

smartcard DBMS and SCQL [15], the standard for oo environment | mediuth O o 100
smartcard database language, emerges. While both designs 5. <. = 5oder hoh | O (0| 0| O 0|00
are limited to single select, they exemplify the stron

interest for dedicated smartcard DBMS. Table 1: Typical application’s profiles

In this paper, we address the problem Of. scaling down Money and identificationexamples of such applications
databas_e technlques_and propose th_e design of what wg o crejt cards, e-purse, SIM for GSM, phone cards,
call a P'.CODBME'BTTI'SSWOW '(S: dgne In dtr_;_e co_ntelxt 9|fha transportation cards. They are representative of today’s
geW. prﬂJeCth't ud mﬁ” ards Zn l_erm_lnas_. € applications, with very few data (typically the holder’s

esign has been made with smartcard applications In MiNGiyenifier and some status information). Querying is not a
bUt.'tS scope extends as well to any L_Jltra-l_|ght COMPUET concern and access rights are useless since cards are
device based on a secu_red_monollthlc chip. This PAPEThrotected by PIN-codes. Their unique requirement is
makes the following contributions: update atomicity.

- We a_nalyze the requirements for a P'.COD.BMS ba_ls_ed %0 pownloadable databaseshey are predefined packages
a typ_lcal healthcare application and justify its minimal of data €.g.,list of restaurants, hotels and tourist sites,
funct|o_naI|ty. . , catalogs...) that can be downloaded on the card — for
*We give an in-depth analysis of the problem by gyample before traveling — and be accessed from any
considering the smartcard hardware trends and deriveiermingal. Data availability is the major concern here. The
design principles for a PicoDBMS. volume of data can be important and the queries
complex. The data are typically read-only and public.

12

 User environmentthe objective is to store in a smartcard ~ One may wonder whether the holder’s health data must
an extended profile of the card’s holder including, amondpe stored in a smartcard or in a centralized database. The
others, data regarding the computing environment (PC’senefit of distributing the healthcare database on
configuration, passwords, cookigmokmarks, software smartcards is threefold. First, health data must be made
licenses...), an address book as well as an agendaighly available (anywhere, anytime, on any terminal and
Queries remain simple, as data are not related. Howevewjthout requiring a network connection). Second, storing
the data are highly private and must be protected bsensitive data on a centralized server may hurt privacy.
sophisticated access righes.d., the card’s holder may Third, maintaining a centralized database is fairly complex
want to share a subset of her address book or bookmaglke to the variety of data sourcéssuming the hadth

list with a subset of persons). Transaction atomicity andata is stored in the smartcard, the next question is why the
durability are also required. aforementioned database capabilities need be hosted in the
Personal folders:personal folders may be of different Smartcard rather than the terminals. The answer is again
nature: scholastic, healthcare, car maintenance historgyvailability (the data must be exploited on any terminal)
loyalty. They roughly share the same requirementsand privacy. Regarding privacy, since the data must be
which we illustrate next with the healthcare exampleconfined in the chip, so must be the query engine and the
Note that queries involving data issued from differentview manager. The smartcard being the unique trusted part
folders can make sense. For instance, one may I8 the system, access rights and transaction management
interested in discovering associations between songannot be delegated to an untrusted terminal.

disease and the scholastic level of the card holder. This

raises the interesting issue of maintaining statistics on3@ Problem Formulation

population of cards or mining their content
asynchronously.

In this section, we make clear the smartcard constraints in
o order to derive design rules for the PicoDBMS and state
2.2 The Health Card Application the problem. Our analysis is based on the characteristics of

The health card is very representative of personal folddtoth existing smartcard products and current prototypes
applications and has strong database requirements. Sevedst: 101, and thus, should be valid for a while. We also
countries (France, Germany, USA, Russia, Korea...) ardiscuss how the main constraints of the smartcard will
developing healthcare applications on smartcards [5]. Th@volve in a near future.

initial idea was to give to each citizen a smartcard3 1 SmartCard constraints

containing her identification and insurance data. As

smartcard storage capacity increases, the informatiourrent smartcards include in a monolithic chip, a 32 bits

stored in the card can be extended to the holder's doctof!SC processor at about 30 MIPS, memory modules (of

emergency data (blood type, allergies, vaccination...)220ut 96 KB of ROM, 4 KB of static RAM and 128 KB of

surgical operations, prescriptions, insurance data and evgrEPROM)' security components and_ take their electrical
links to heavier datae(g., X-ray examination, scanner €N€rgy from the terminal [23]. ROM is used to store the
images...) stored on hospital servers. Different users ma}Perating system, fixed data and standard routines. RAM
query, modify and create data in the holder’s folder: thé>_used as working memory for calculating results.
doctors who consult the patient's past records anGEPROM is used to store persistent information.
prescribe drugs, the surgeons who perform exams arfgFPROM has very fast read time (60-100 ns/word)
operations, the pharmacists who deliver drugs, theomparable to RAM, but a dramatically slow write time

insurance agents who refund the patient, publi¢l0 ms/word). .

organizations which maintain statistics or study the impact 1N€ mMmain constraints of current smartcards are

of drugs correlation in population samples and finally théherefore: (i) the very limited storage capacity, (i) the very

holder herself. slow write time in EEPROM,; (iii) the extremely reduced
We can easily observe that: (i) the amount of data iSi2€ Of the RAM; (iv) the lack of autonomy and (v) a high

significant (more in terms of cardinality than in terms ofS€CUrity level that must be preserved in all situations.
volume because most data can be encoded), (i) queriggese constrglnts str_onglydlstln_gws_h smartcards from any
can be rather complexeg., a doctor asks for the last (_)ther computing devices, including lightweight computers
antibiotics prescribed to the patient), (i) sophisticatedk€ PDA.

access rights management using views and aggregate Let us now consider how hardware advances can
functions are highly required e{g., a statistical impact these constraints, in particular memory size.
organization may@ess aggregate values only but not theCurrent smartcards rely on a well established and slightly
raw data), (iv) atomicity must be preservedy(,when the out-of-date hardware technology (Ou88) in order to
pharmacist delivers drugs) and (v) durability is mandatoryminimize the production cost (less than five dollars) and
without compromising data privacy (logged data storedncrease security [20]. Furthermore, up to now, there was
outside the card must be protected). not a real need for large memories in smartcard

applications like holder’'s identification. According to

13

major smartcard providers, the market pressure generategthniques, are irrelevant. The smartcard’s properties and
by emerging large storage demanding applications wiltheir impact are:

lead to a rapid increase of the smartcard storage capacityHighly secure:smartcard’s hardware security makes it
This evolution is however constrained by the smartcard the ideal storage support for private data. The
tiny die size fixed to 25 mm? in the ISO standard [14], PicoDBMS must contribute to the data security by
which pushes for more integration. This limited size is due providing access right management and a view
to security considerations (to minimize the risk of physical mechanism that allows complex view definition® (
attack [2]) and practical constraints.q.,the chip should supporting data composition and aggregation). The
not break when the smartcard is flexed). Another solution PicoDBMS code must not present security holes due to
to relax the storage limit is to extend the smartcard storagethe use of sophisticated algoritiims

capacity with external memory modules. This is being Highly portable:the smartcard is undoubtedly the most
experienced by Gemplus which recently announced portable personal computer (the wallet computer). The
Pinocchio [10], a smartcard equipped with 2 MB of Flash data located on the smartcard are thus highly available.
memory linked to the microcontroller by a bus. Since They are also highly vulnerable since the smartcard can
hardware security can no longer be provided on this be lost, stolen or accidentally destroyed. The main
memory, its content must be either non-sensitive or consequence is that durability cannot be enforced locally.

encrypted. * Limited storage resourcestespite the foreseen increase
Memory type EEPROM FLASH FeRAM in storage c_apacity, the smartcard will remain the Iightest
Read time (/word)| 60 to 150 n$ 70 to 200 ps 1500200 ns representative of personal computers for a long time.
Write time (/word) 10 ms 5t010us 150 to 200 ns This means that specific storage models and execution
Erase time (/bank None | 500t0800ms ___ None techniques must be devised to minimize the volume of
Litetime ™ 10" write 10erase | 1070 10 ersistent datai.€., the database) and the memor
cycles per cell cycles write cycles P v Yy

consumption during execution. In addition, the
functionalities of the PicoDBMS must be carefully
selected and their implementation must be as light as

Another important issue is the performance of stable possible. The lightest the PicoDBMS, the biggest the
memory. Possible alternatives to the EEPROM are Flashonboard database.
memory and Ferroelectric RAM (FERAM) [9] (see Table 2. Stable storage is main memonsmartcard stable
for performance comparisons). Flash is more compact thanmemory provides the read speed and direct access
EEPROM and then represents a good candidate for highgranularity of a main memory. Thus, a PicoDBMS can
capacity smartcards [10]. However, flash banks need bebe considered as main memory DBMSMMDBMS.
erased before writing, which is extremely slow. This However the dramatic cost of writes distinguishes a
makes Flash memory appropriated for applications with a PicoDBMS from a traditionaMMDBMS. This impacts
high read/write ratio €.9., address books). FERAM is the storage and access methods of the PicoDBMS as well
undoubtedly an interesting option for smartcard as readas the way transaction atomicity is achieved.
and write times are both fast. Although its theoreticab Non autonomouscompared to other computers, the
foundation was set in the early 50s, FERAM is just smartcard has no independent power supply, thereby
emerging as an industrial solution. Therefore, FERAM is precluding disconnected and asynchronous processing.
expensive, less secure than EEPROM or Flash, and itsThus, all transactions must be completed while the card
integration with traditional technologies (such as CPUSs) is inserted in a terminal (unlike PDA, write optons
remains an issue. Thus FERAM could be considered acannot be cached in RAM and reported on stable storage
serious alternative only in the very long term [9]. asynchronously).

Given these considerations, we assume in this paper g,
smartcard with a reasonable stable storage area (few l\/%3 Problem Statement
of EEPROM) and a small RAM area (some KB). Indeed, To summarize, our goal is to design a PicoDBMS
there is no clear interest to have a large RAM area, giveincluding the following components:
that the smartcard is not autonomous, thus precludingStorage manager: manages the storage of the database
asynchronous write operations. Moreover, more RAM and the associated indices.
means less EEPROM as the chip size is limited. * Query manager: processes query plans composed of

select, project, join and aggregates.

» Transaction manager: enforces the ACID properties and
We now analyze the impact of the smartcard constraints onparticipates in distributed transactions.

the PicoDBMS ar-ChiteCture, thus JUSt|fy|ng Why traditional . Access r|ght manager: provides access r|ghts on base
database techniques, and even lightweight DBMS gata and on complex user-defined views.

* A - memory cell can be ovenitten a finite number of times.

Table 2: Performance of stable memories for the smartcard

3.2 Impact on the PicoDBMS architecture

1 Considering Flash instead of EEPROM will not change

our conclusions. It will just eacerbate them. 2 Most security holes are the results of software bugs [20].

14

Thus, the PicoDBMS hosted in the chip provides the Adding index structures to FS may solve the second
minimal subset of functionality that is strictly needed toproblem while worsening the first one. Thus, FS alone is
manage in a secure way the data shared by all onboandt appropriate for a PicoDBMS.
applications. Other component_e.g(., the GUI_, a sort 4.2 Domain Storage
operator...) can be hosted in the terminal or be
dynamically downloaded when needed, withoutBased on the critique of FS, it follows that a PicoDBMS
threatening security. In the rest of this paper, westorage model should guarantee both data and index
concentrate on the storage manager and the query managempactness. Let us first deal with data compactness.
which are the most impacted by the smarcard constraint§ince locality is no longer an issue in our context, pointer-
Smartcard-specific transaction manager description can b@sed storage models inspired by MMDBMS [1, 17, 19]
found in [4], while traditional techniques can be used forcan help reducing the data storage cost. The basic idea is to
access right manager. preclude any duplicate value to occur. This can be

When designing the PicoDBMS’s components, weachieved by grouping values in domains (sets of unique
must follow several design rules derived from thevalues). We call this moddDomain Storage (DS)As
smartcard’s properties: shown in Figure 1, tuples reference their attribute values
« Compactness ruleminimize the size of data structures by means of pointers. Furthermore, a domain can be shared

and the PicoDBMS code to cope with the limited stabléimong several attributes. This is particularly efficient for

memory area (a few MB). enumerated types, which vary on a small and determined
« RAM rule:minimize the RAM usage given its extremely set of values _
limited size (some KB). Relation R Relation S

* Write rule: minimize write operations given their

dramatic cost10 ms/word). \kg value 1 :% =

* Read rule:take advantage of the fast read operations

Value 2
(=100 ns/word).
» Access ruletake advantage of the low granularity and

direct access capability of the stable memory for both Valuen p————
read and write operations.
» Security rule: never externalize private data from the

chip and minimizethe algorithms’ complexity to avoid One may wonder about the cost of tuple creation,
security holes. update and deletion since they may generate insertion and

deletion of values in domains. While these actions are
. more complex than their FS counterpart, their

4 PicoDBMS storage model implementation remains more efficient in the smartcard
In this section, following the design rules for a PicoDBMS,context, simply because the amount of data to be written is
we discuss the storage issues and propose a very companich smaller. To amortize the slight overhead of domain
model based on a combination of flat storage, domaistorage, we only store by domain all large attribuites, (
storage and ring storage. We also evaluate the storage cgstater than a pointer size) containing duplicates.
of our storage model. Obviously, attributes with no duplicates need not be stored
4.1 Flat Storage by domain but vv_ith FS. Variable-size attributes — generally_

larger than a pointer — can also be advantageously stored in
The simplest way to organize dataFkt Storage (FS) domains even if they do not contain duplicates. The benefit

where tuples are stored sequentially and attribute valugs not storage savings but memory management simplicity
are embedded in the tuples. Although it does not impose iall tuples of all relations become fixed-size).

the SCQL standard [15] considers FS as the reference .

storage model for smartcards. The main advantage of FS4s> RINg Storage

access locality. However, in our context, FS has two mailVe now address index compactness along with data

drawbacks: compactness. Unlike disk-based DBMS that favor indices

» Space consumingwhile normalization rules preclude which preserve access locality, smartcards should make
attributes conjunction redundancy to occur, they do nantensive use of secondarye(, pointer-based) indices.
avoid attribute value duplicatese.§., the attribute The issue here is to make these indices as compact as
Doctor.Specialtynay contain many duplicates). possible. Let us first consider select indices. A select index

« Inefficient: in the absence of index structures, allis typically made of two parts: a collection of values and a
operations are computed sequentially. While this igollection of pointers linking each value to all tuples
convenient for old fashion cards (some KB of storageharing it. Assuming the indexeattribute varies on a
and a mono-relation select operator), this is no longelomain, the index’s collection of values can be saved since
acceptable for future cards where storage capacity is

likely to exceed 1MB and queries can be rather complex. 3 Compression techniques can be advantageously used in
conjunction with DS to increase compactness [11{

Figure 1 : Domain Storage

15

it exactly corresponds to the domain extension. The extré4 Storage cost evaluation

cost incurred by the index is then reduced to the pointerg,, storage model combines FS, DS and RS. Thus, the

linking index values to tuples. _ issue is to determine the best storage for each attribute. If
Let us go one step further and get these pointers almQgfe 4ttributes need not be indexed, the choiabviusly

for free. The idea is to store thesdue-to-tuplepointersin |,orveen FS and DS. Otherwise, the choice is between RS

place of theuple-to-valuepointers within the tuples.€., 5nq FS with a traditional index. Thus, we compare the

pointers stored in the tuples to reference their attributgtc.rage cost for a single attribute, indexed or not, for each

values in the domains). This yields to an index structurgiarnative. We introduce the following parameters:
which makes a ring from the domain values to the tuples.

Hence, we call itRing indexsee Figure 2(a)). But the ring CardRel: cardinality of the relation holding the attribute
index can also be used to access the domain values frétaverage length of the attribute (expressed in bytes)
the tuples and thus serve as data storage model. Thus RigPointer size (3 bytes will be required to address “large”
call Ring Storage (RS}he storage of a domain-based memory of future cards)
attribute indexed by a ring. The index storage cost i§: selectivity factor of the attribut&=CardDom/CardRel
reduced to its lowest bound, that is, one pointer per domainwhere CardDom is the cardinality of the attribute
value, whatever be the cardinality of the indexed relation. domain extensionS measures the redundancy of the
This important storage saving is obtained at the price of attribute {.e., the same value appearsifStuples).
extra Worl_< for pr_oje_cting a tuple to t_he corresponglingbost(ps): CardRel*a
attribute since retrieving the value of a ring stored attributg ys(ps) = Cardrelp + S*CardRel*a
means traversing in average half of the ring.(up to cost(Indexed FS) = Cost(FS) + S*CardRel*a + CardRelp

(

reach_ th_e d_omain value). _ o ~Cost(RS) = Cost(DS) + S*CardRel*p
Join indices [24] can be treated in a similar way. A join

predicate of the formR.a=S.h) assumes th&R.aandS.b
vary on the same domain. Storing bda and S.b by
means of rings leads to define a join index. In this way,s’:a/p

each domain value is linked by two separate rings to all Figure 3(a) shows the different valuesSénda for
tuples fromR andS sharing the same join attribute value. which FS and DS are equivalent. Thus, each curve divides
However, most joins are performed on key attribuRes, the plan into a gain area for FS (above the curve) and a
being a primary key and.b being the foreign key gain area for DS (under the curve). For values tfss
referencingR.a In our model, key attributes are not storedthan 3 {.e., the size of a pointer), FS is obviously always
by domain but with FS. Nevertheless, sirRe is the more compact than DS. For higher valuesapfDS
primary key ofR, its extension forms precisely a domain, becomes rapidly more compact than FS except for high
even if not stored outside &. Since attribute$.btake values ofS For instance, considering=0.5 that is the
their values irR.ds domain, they referendg.avalues by same value is shared by only two tuples, DS outperforms
means of pointers. Thus, the domain-based storage modes$ for alla larger than 6 bytes. The higheand the lower
naturally implements for free anidirectional join index S the better DS. The benefit of DS is thus particularly
from S.bto R.a(i.e., eachStuple is linked by a pointer to important for enumerated type attributes. Figure 3(b)
eachR tuple matching with it). If traversals froRlatoS.b compares Indexed_FS with RS. The superiority of RS is
need be optimized too, hi-directional join indexis obvious, except for one and two byte long kdyibutes.
required. This can be simply achieved by defining a ringrhus, Figures 3(a) and 3(b) are guidelines for the database
index onS.h Figure 2(b) shows the resulting situation designer to decide how to store each attribute, by
where eachR tuple is linked by a ring to alb tuples considering its size and selectivity.

The cost equality between FS and DS gives: S=(a—p)/a.
The cost equality between Indexed FS and RS gives:

matching with it and vice-versa. The cost of a bi- s 4
directional join index is restricted to a single pointer Rer .o
. . - 0,8
tuple, whatever be the cardinality 8 Note that this oo s
situation resembles the well-known Codasyl model. 04 y R ——
. . . 0,2
RelatlonSS_a oo Relation S Ra Relation R 00 L / - ienann
0 2 4 6 810 13 16 19 22 25 28 31 inbytes
Domain v s (a) Without index
w | Valug A
Value Lo i
L 0.8 FS:.-
0,6 y
|| Value oati RS more compact
(@) Ring index on a regular attribute (b) Ring index on a foreign_key attribute 0,2 i
. . 0’0':H’HHHHHHHHHHHHH’>Lenglh
Figure 2: Ring Storage 0 2 4 6 810 13 16 19 22 25 28 31 Inbytes
(b) With index

Figure 3: Storage models tradeoff

16

5 Query Processing each operator is aiterator that supports three procedure

.. calls: opento prepare an operator for producing an item,
Traditional query processing strives to exploit large main,qyiiq produce an item, armoseto perform final clean-

memory for storing temporary data structuregg(hash |, A QEPis activated starting at the root of the operator
tables) and intermediate results. When main memory is nglag 54 progressing towards the leaves. The dataflow in
large enough to hold some data, state-of-the-art algorithmge odel is demand-driven: a child operator passes a tuple

resort to materialization on disk to avoid memoryy, iis parent node in response toaxtcall from the parent.
overflow. These algorithms cannot be used for a

PicoDBMS because:

» Given the write rule and the lifetime of stable memory, O X Materialization
writes in stable memory are proscribed, even for // \ — Pipelining
temporary materialization; ¥ doc v

* Dedicating a specific RAM area does not help since we \ @
cannot estimate its size a-priori. Choosing it small / 0\ / \

increases the risk of memory overflow, thereby leading /M e X
to writes in stable memory. Choosing it large reduces the / \ o'/ é/
stable memory area, already limited in a smartcard /0 presc. / /
(RAM rule). Moreover, even a Iarge RAM area cannot rug visit doc drug presc.
guarantee that query execution will not produce memory
overflow [3]; OLeft deep tree @Bushy tree
» State-of-the-art algorithms are quite sophisticated, which
X

visit

precludes their implementation in a PicoDBMS whose ©) X
code must be simple, compact and secure (compactness / \
[

and security rules). doc doc 0\
To solve this problem, we propose query processing J X
techniques that do not use any working RAM area nor /0 B
incur any writes in stable memory. In the following, we visit B visit pq
describe these techniques for simple and complex queries, Vi AN
including aggregation and remove duplicates. We show the o presc o
i i / "\
effectlv_eness of our solution through a performance drug presc. drug
analysis.
5.1 Basic Query Execution without RAM ®Right deep tree @Extreme right deep tree
Healthcare Database schema: Doct_at_)(cld, name, specialty,)..
We consider the execution 8PJ(Select-Project-Join | (sample) PrescriptiorMsld, Drugd, gty ..)
. . . 2 K R Visit (Visld, Docld, date, diagnostic,)..
queries. Query_ processing is classically done_ln two steps. Drug @rugid, name, type,).
The query optimizer first generates an “optimgliery Query Q1 : ‘Who prescribes antibiotics in 1999’

execution planQEP). The QEP is then executed by the
qguery engine which implements axecution modeand
uses a library of relational operators [11]. The optimizer | ot ys now detail how select, project and join are
can consider different shapes of Qit-deepright-deep performed. These operators can be executed either
or bushy treegsee Figure 4). In a left-deep tree, operatorgeqyentially or with a ring index. Given theeass rule, the
are executed sequentially and each intermediate result|ige of indices seems always to be the right choice.
materialized. On the contrary, right-deep trees executfgyever, extreme right-deep trees allow to speed-up a
operators m_a_plp_ellne fashion, thus avow!mg |nter_rne_d_|at§ing|e select on the first base relatieng(, Drug.typein
_result materialization. However, they require materializingy,, example) but using a ring index on the other selected
in memory all left relations. Bushy trees offer aeripytes ¢.g.,Visit.datd may slow down execution as the
opportunities to deal with the size of intermediate result§ing need be traversed to retrieve their value. Project
and memory consumption. operatorsare pushed up to the treiace no materialization

In a PicoDBMS, the query optimizer should notoccurs. Note that the final project incurs an additional cost
consider any of these execution trees as they incuf case of ring attributes. Without indices, joinirgations
materialization. The solution is to only use pipelining withis done by a nested-loop algorithm since no other join
extreme right-deep treeghere all the operators (including technique can be applied without ad-hoc structuses. (
select) are pipelined. As left operands are always badesh tables) and/or working aread(,sorting). The cost of
relations, they are already materialized in stable memoryhdexed joins depends on the way indices are traversed.
thus allowing to execute a plan with no RAM Consider the indexed join betweBwctor (n tuples) and
consumption. Pipeline execution can be easily achievedisit (m tuples) on their key attributeAssuming a
using the well knowriterator Model[11]. In this model, unidirectional index, the join cost is proportionalrtan

Figure 4: Several execution trees for query Q1

17

starting withDoctor and tomstarting withVisit. Assuming expressing the distinct clause as an aggregate without
now a bi-directional index, the join cost becomesfunction {.e.,the query $elect distinct g.., & from ..” is
proportional ton+m starting with Doctor and tom?/2n equivalent to 8elect a, .. , g from ... group by a.., &").
starting withVisit (retrieving the doctor associated to eachThe unique difference is that the computation for a given
visit incurs traversing half of a ring in average). In thegroup {.e., distinct result tuplecan stop as soon as one
latter case, a naive nested loop join can be more efficienttifiple has been produced.

the ring cardinality is greater than the target relation
cardinality (.e., when m>n?. In that case, the database
designer must clearly choose a unidirectional index

between the two relations. \0
5.2 Complex Query Execution without RAM \

. _ [
We now consider the execution of aggregate, sort and / \ \
duplicate removal operators. At a first look, pipeline drug M X
execution is not compatible with these operators which are // \0 /

classically performed on materialized intermediate results presc 4
Such materialization cannot occur either in the smartcard X J
due to the RAM rule or in the terminal due to the security / \ drug
rule. Note that sorting can be done in the terminal since th @ visit doc drug.type
output order of the result tuples is not significaire,,
depends on the DBMS algorithms. Q2: Number of antibiotics Q3: Number of prescription

We propose a solution to the above problem by Prescribed per doctor in 1999 per type of drug
exploiting two properties: (i) aggregate and duplicate

presc \

(1]

removal can be done in pipeline if the incoming tuples are distincd
yet grouped by distinct values and (ii) pipeline operatorg \M \M
are order-preserving since they consume (and produce) / \ / \
tuples in the arrival order. Thus, enforcing an adequate B v
consumption order at the leaf of the execution tree allows 99 J\ drug J\
pipelined aggregation and duplicate removal. For instance, presc M presc M
the extreme right deep tree of Figure 4 delivers the tuples J\ 7\
naturally grouped bPrug.id, thus allowing group queries visit X visit X
on that attribute. doc/ /

Let us consider now query Q2 of Figure 5. As pictured, @ drug.type @ docdrug,type
executing Q2 in pipeline requires rearranging the
execution tree so that relatiddoctor is explored first. Q4: Number of prescriptions Q5: Distinct doctors

SinceDoctor contains distinct doctors, the tuples arriving | per doctor and type of drug and type of drug
to thecountoperator are naturally grouped by doctors.
The case of Q3 is harder. As the data must be grouped]
by type of druggather than byrug.id, an additional join Figure 5: Four ‘complex’ query execution plans
is required between relatiddrug and domaindrug.type .
Domain values being unique, this join produces the tuplex3 Performance Evaluation
in the adequate order. If domebnug.typedoes not exist, Our proposed query engine can handle fairly complex
an operator must be introduced to sort relaibng in gueries, taking advantage of the read and accesst rules
pipeline This can be done by performingasses obrug while satisfying the compactness, write, RAM and security
wheren is the number of distinct values Dfug.type rules. We now evaluate whether the PicoDBMS
The case of Q4 is even trickier. The result must b@erformance matches the smartcard application’s
grouped on two attributesDéctor.id and Drug.typg, requirements, that is any query issued by the application
introducing the need to start the tree with both relationstan pe performed in reasonable time.(may not exceed
The solution is to insert a Cartesiaroduct operator at the the yser patience). Since the PicoDBMS code’s simplicity
leaf of the tree in order to produce tuples ordered b)s an important consideration to conform to the
Doctor.idandDrug.type In this particular case, the query compactness and security rules, we must also evaluate
response time should be approximatelftimes greater \which acceleation techniquesi.., ring indices, query
than the same query without the ‘group by’ clause, where gptimization) are really mandatory. For instance, an

is the number of distin¢ypes of drugs accelerator reducing the respotigee from 10 ms to 1 ms
Q5 retrieves the distinct couplesdictor andtype of

prescribed drugsThis query can be made similar to Q4 by

4 With traditional DBMS, such techniques wiliduce so
many disk accesses that the system would thrash!

18

is useless in the smartcard con®exfThus, unlike We generated three instances of a simplified healthcare
traditional performance evaluation, our major concern iglatabase: thesmall, medium and largedatabases
on absolute rather than relative performance. containing respectively (10, 30, 50) doctors, (100, 500,
Evaluating absolute response time is complex in thd000) visits, (300, 2000, 5000) prescriptions and (40, 120,
smartcard environment because all platform paramete®)0) drugs. Although we tested several queries, we
(e.g., processor speed, caching strategy, RAM andlescribe below only the two most significant. Query Q1,
EEPROM speed) strongly impact the measurerfientsWhich contains 3 joins and 2 selects ‘isit and Drug
Measuring the performance of our PicoDBMS on Bull's(With selectivities of 20% and 5%) is representative of
smartcard technology is attractive but introduces twdnedium-complexity queries. Query Q4, which performs an
problems. First, Bull's smartcards compatible with@ggregate on two attributes and requires the introduction of
database applications are still prototypes [23]. Second, w& Cartesian product, is representative of complex queries.
are interested in providing the most general conclusionsor €ach query, we measure the performance for all
(i.,e., as independent as possible of smartcardpossible query execution plans, varying the storage choices
architectures). Therefore, we prefer to measure our quefyith and without select and join ring indices). Figures 6
engine on two old-fashion computers (a PC 486/25Mh2nd 7 show the results for both best and worst plans on
and a Sun SparcStation 1+) which we felt roughly similaglatabases built with or without join indices.
to forthcoming smartcard architectures. For each Considering SPJ queries, the PicoDBMS performance
computer, we vary the system parameters (c|0c|@|early matches the application’s requirements as soon as
frequency, cache) and perform the experimentation testi®in rings are used. Indeed, the performance with join rings
The performance ratios between all configurations weré at most 146 ms for the largest database and with the
roughly constant, the slowest configuration (Intel 486 withworst execution plan. With small databases, all the
no cache) performing 8 times worse than the fastest (RIS&cceleation techniques can be discarded, while with larger
with cache). In the following, we present response time8Nes, join rings remainegessary to obtain good response
for the slowest architecture to check the viability of ourtime. In that case, the absolute gain (110 ms) between the

solutions in the worst environment. best and the worst plan does not justify the use of a query
1.0 11 52 3 optimizer.
- B no ring - worst The performance of aggregate queries is clearly worst
EO g] Tnoring - best because they introduce a Cartesian product at the leaf of
= | f@ring - worst the execution tree. Join rings are useful for medium and
s 0] Clring - best large databases. With large databases, the optimizer turns
e out to be necessary since the worst execution plan with
i join rings achieves a rather long response time (20,6 s).
04 The influence of ring indices for selects (not shown) is
insignificant. Depending on the selectivity, it can bring
0.2 slight improvement or overhead on the results. Although it
%ﬁ may achieve an important relative speed-up for the select
0,0+ T Mediu:ﬁ; ™ Large DB itself, _the absolute gain is not significant consider!ng the
) small influence of select on the global query execution cost
Figure 6: Performance results for query Q1 (which is not the case in disk-based DBMS). Select ring
5 32 205 25301610 indices are however useful for queries with aggregates or
W no ring - worst duplicate removal, that can result in a join between a
o0 EInoring - best 7 relation and the domain attribute. In that case, the select
7 ring - worst index plays the role of a join index, thereby generating a
| Cring- best significant gain on large relations and large domains.

Thus, this performance evaluation shows that our
approach is feasible and that join indices are mandatory in
all cases while query optimization turns out to be useful
only with large databases and complex queries.

Oﬂ | % 6 Conclusion

Snall DB Medium DB Large DB As smartcards become more and more versatile, multi-
Figure 7: Performance results for query Q4 applications and powerful, the need for database
techniques arises. However, smartcards have severe
hardware limitations which make traditional database

Execution time (s)
&

5

5 with traditional DBMS, suchcceleration can improve the technology irrelevant. The major problem is scaling down
Gcaizszztt'ﬁ?jr:;ﬁ'rggﬂ'guter <low dichccess allows o database techniques so they perform well under these
ignore finer parameters. y limitations. In this paper, we addressed this problem and

19

proposed the design of a PicoDBMS, concentrating on the the SmartcardPRiSM Technical Report®2000/05,
components which require non traditional techniques. 2000.

This paper makes several contributions. First, wg5] F. A. van Bommel, J. Sembritzki, H.-G. Buettner.
analyzed the requirements for a PicoDBMS based on a Overview on Healthcard Projects and Standards.
healthcare application which is representative of personal Health Cards Int. Conf.1999.
folder applications and has strong database requiremen{§] Bull S.A. Bull unveils iSimplify! the personal
We showed that the minimal functionality should include portable portalwww.bull.com/bull_news/
select/project/join/aggregate, access right management aff]f L. C. Carrasco. RDBMS'’s for Java Cards ? What a
views as well as transaction’s atomicity and durability. Senseless ldea ! wwwisgachine.com, 1999.

Second, we gave an in-depth analysis of the problelf8] DataQuest. Chip Card Market and Technology
by considering the smartcard hardware trends. Based on Charge AheadMSAM-WW-DP-9808, 1998.
this analysis, we assumed a smartcard with a reasonalp§ B. Dipert. FRAM: Ready to ditch niche EDN
stable memory of a few MB and a small RAM of some Access MagazineCahners Publishing Company,
KB, and we derived design rules for a PicoDBMS 1997.
architecture. [10] Gemplus. SIM Cards: From Kilobytes to Megabytes.

Third, we proposed a new highly compact storage www.gemplus.fr/about/pressroonif99.
model that combines Flat Storage (FS), Domain Storagdl] G. Graefe. Query Evaluation Techniques for Large
(DS) and Ring Storage (RS). Ring Storage reduces the DatabasesACM Computing Surveys25(2), 1993.
indexing cost to its lowest bound. Based on storage coft?] G. Graefe. The New Database Imperaties.Conf.
evaluation, we derived guidelines to decide the best way to on Data Engineering (ICDE)L998.
store an attribute. [13] IBM Corporation.DB2 Everywhere — Administration

Finally, we proposed query processing techniques and Application Programming GuidéBM Software
which handle complex query plans with no RAM Documentation, SC26-9675-00, 1999.
consumption. This is achieved by considering extrem§l4] International Standardization Organization (I1SO).
right-deep trees which can pipeline all operators of the Integrated Circuit(s) Cards with Contacts — Part 1:
plan including aggregates. We measured the performance Physical CharacteristicdSO/IEC 7816-1, 1998.
of our execution model with an implementation of our[15] International Standardization Organization (ISO),
query engine on two old-fashion computers which we Integrated Circuit(s) Cards with Contacts — Part 7:

configured to be similar to forthcoming smartcard Interindustry Commands for Structured Card Query
architectures. We showed that the resulting performance Language (SCQL)SO/IEC 7816-7, 1999.
matches the smartcard application’s requirements. [16] Microsoft Corporation. Windows for SmartCards

This work is done in the context of a new project with Toolkit for Visual Basic 6.0. www.microsoft.com/
Bull Smart Cards and Terminals. The next step is to windowsce/smartcard/, 2000.
implement our PicoDBMS on Bull’'s smartcard new[17] M. Missikov, M. Scholl. Relational Queries in a

technology, called OverSoft [6], and to assess its Domain Based DBMSACM SIGMOD Int. Conf. On
functionality and performance on real world applications. Management of Datel 983.

To this end, we are building an experimentation platform[18] Oracle CorporationOracle 8i Lite - Oracle Lite SQL
called Virtual Campus to deal with advanced student ReferenceOracle Documentation, A73270-01, 1999.

folders at the University of Versailles. We also plan tg[19] P. Pucheral, J. M. Thévenin, P. Valduriez. Efficient
address open issues such as protected logging for Main Memory Data Management Using the
durability, query execution on encrypted data and statistics DBGraph Storage Modelnt. Conf. on Very Large

maintenance on a population of cards. Data Bases (VLDB)Y1990.
[20] B. Schneier, A. Shostack. Breaking up is hard to do:
References Modeling Security Threats for Smart Card&$SENIX

. Symposium on Smart Card999.
[1] A. Ammann, M. Hanrahan, and R. Krishnamurthy. ;517 gun" Microsystems. JavaCard 2.1 Application
Design of a Memory Resident DBMSIEEE Programming Interface Specification JavaSoft
COMPCON 1985. documentation, 1999.

[2] R. Anderson, M. Kuhn. Tamper Resistanceé — ;51 gyhase Inc. Sybase Adaptive Server Anywhere

Cautionary NoteUSENIX Workshop on Electronic ReferenceCT75KNA. 1999,

Commerce1996. _ [23] J.-P. Tual. MASSC: A Generic Architecture for
[3] L. Bouganim, O. Kapitskaia, P. Valduriez. Memory- Multiapplication Smart Card$EEE Micro Journa)

Adaptive Scheduling for Large Query Executibnt. N° 0272-1739/99. 1999.

Conf. on Information and Knowledge Managemenios) p. valduriez. Join Indice®yCM Trans. on Database

(CIKM), 1998. Systems12(2), 1987.

[4] C.Bobineau, L. Bouganim, P. Pucheral, P. Valduriez.
PicoDBMS: Scaling down Database Techniques for

20

	Am241.pdf
	eur240v2.pdf
	asia157.pdf
	Eur136V2.pdf

