
PicoDBMS: Scaling down Database Techniques
for the Smartcard

Christophe Bobineau*, Luc Bouganim*, Philippe Pucheral*, Patrick Valduriez**

*
PRiSM Laboratory

**
INRIA Rocquencourt

78035 – Versailles 78153 – Le Chesnay
France France

{Firstname.Lastname}@prism.uvsq.fr Patrick.Valduriez@inria.fr

Abstract
Smartcards are the most secure portable
computing device today. They have been used
successfully in applications involving money,
proprietary and personal data (such as banking,
healthcare, insurance, etc.). As smartcards get
more powerful (with 32 bit CPU and more than
1 MB of stable memory in the next versions) and
become multi-application, the need for database
management arises. However, smartcards have
severe hardware limitations (very slow write, very
little RAM, constrained stable memory, no
autonomy, etc.) which make traditional database
technology irrelevant. The major problem is
scaling down database techniques so they perform
well under these limitations. In this paper, we
give an in-depth analysis of this problem and
propose a PicoDBMS solution based on highly
compact data structures and query execution
without RAM. We show the effectiveness of our
techniques through performance evaluation.

1 Introduction

Smartcards are the most secure portable computing device
today. The first smartcard was developed by Bull for the
French banking system in the 80s to significantly reduce
the losses associated with magnetic stripe credit card fraud.
Since then, smartcards have been used successfully around
the world in various applications involving money,
proprietary data and personal data (such as banking, pay-

TV or GSM subscriber identification, loyalty, healthcare,
insurance, etc.). While today’s smartcards handle a single
issuer-dependent application, the trend is toward multi-
application smartcards. Standards for multi-application
support, like the JavaCard [21] and Microsoft’s SmartCard
for Windows [16], ensure that the card be universally
accepted and be able to interact with several service
providers. According to DataQuest [8], 990 million
smartcards will be shipped in the year 2K and smartcards
could become one of the world’s highest-volume markets
for semiconductors.

As smartcards become more and more versatile, multi-
applications and powerful (32 bit processor, more than
1MB of stable storage), the need for database techniques
arises. Let us consider a health card storing a complete
medical folder including the holder’s doctors, blood type,
allergies, prescriptions, etc. The volume of data can be
important and the queries fairly complex (select, join,
aggregate). Sophisticated access rights management using
views and aggregate functions are required to preserve the
holder’s data privacy. Transaction atomicity and durability
are also needed to enforce data consistency. More
generally, database management helps to separate data
management code from application code, thereby
simplifying and making application code smaller. Finally,
new applications can be envisioned, like computing
statistics on a large number of cards, in an asynchronous
and distributed way. Supporting database management on
the card itself rather than on an external device is the only
way to achieve very high security, high availability
(anywhere, anytime, on any terminal) and acceptable
performance.

However, smartcards have severe hardware limitations
which stem from the obvious constraints of small size (to
fit on a flexible plastic card and to increase hardware
security) and low cost (to be sold in large volumes).
Today’s microcontrollers contain a CPU, memory
including about 96 KB of ROM, 4 KB of RAM and up to
128 KB of stable storage like EEPROM, and security
modules [23]. EEPROM is used to store persistent
information; it has very fast read time (60-100 ns)

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

11

comparable to RAM but very slow write time (10
ms/word). Following Moore’s law for processor and
memory capacities, smartcards will get rapidly more
powerful. Existing prototypes, like Gemplus’s Pinocchio
card [10], bypass the current memory bottleneck by
connecting an additional chip of 2MB of Flash memory to
the microcontroller. Although a significant improvement
over today’s cards, this is still very restricted compared to
other portable, less secure, devices such as Personal
Digital Assistants (PDA). Furthermore, smartcards are not
autonomous, i.e., have no independent power supply,
thereby precluding asynchronous and disconnected
processing.

These limitations (tiny RAM, little stable storage, very
costly write and lack of autonomy) make traditional
database techniques irrelevant. Typically, traditional
DBMS exploit significant amounts of RAM and use
caching and asynchronous I/Os to reduce disk access
overhead as much as possible. With the extreme
constraints of the smartcard, the major problem is scaling
down database techniques. While there has been much
excellent work on scaling up to deal with very large
databases, e.g., using parallelism, scaling down has not
received much attention by the database research
community. However, scaling down in general is getting
very important for commodity computing and is quite
difficult [12].

Some DBMS designs have addressed the problem of
scaling down. Light versions of popular DBMS like
Sybase Adaptive Server Anywhere [22], Oracle 8i Lite
[18] or DB2 Everywhere [13] have been primarily
designed for portable computers and PDA. They have a
small footprint which they obtain by simplifying and
componentizing the DBMS code. However, they use
relatively much RAM and stable memory and do not
address the more severe limitations of smartcards. ISOL’s
SQLJava Machine DBMS [7] is the first attempt towards a
smartcard DBMS and SCQL [15], the standard for
smartcard database language, emerges. While both designs
are limited to single select, they exemplify the strong
interest for dedicated smartcard DBMS.

In this paper, we address the problem of scaling down
database techniques and propose the design of what we
call a PicoDBMS. This work is done in the context of a
new project with Bull Smart Cards and Terminals. The
design has been made with smartcard applications in mind
but its scope extends as well to any ultra-light computer
device based on a secured monolithic chip. This paper
makes the following contributions:
• We analyze the requirements for a PicoDBMS based on

a typical healthcare application and justify its minimal
functionality.

• We give an in-depth analysis of the problem by
considering the smartcard hardware trends and derive
design principles for a PicoDBMS.

• We propose a new pointer-based storage model that
integrates data and indices in a unique compact data
structure.

• We propose query execution techniques which handle
complex query plans (including joins and aggregates)
with no RAM consumption.

• We show the effectiveness of each technique through
performance evaluation.

This paper is organized as follows. Section 2 illustrates
the use of take-away databases in various classes of
smartcard applications and presents in more details the
requirements of the health card application. Section 3
analyzes the smartcard hardware constraints and gives the
problem definition. Sections 4 - 5 present and assess the
PicoDBMS’ storage model and query execution model,
respectively. Section 6 concludes.

2 Smartcard Applications

In this section, we discuss the major classes of emerging
smartcard applications and their database requirements.
Then, we illustrate these requirements in further details
with the health card application, which we will use as
reference example in the rest of the paper.

2.1 Database Management Requirements

Table 1 summarizes the database management
requirements of the following typical classes of smartcard
applications.

Applications

Volume

S
el

ec
t /

 P
ro

je
ct

Jo
in

G
ro

u
p

by
 /

D
is

tin
ct

A
cc

es
s

rig
ht

s

vi
ew

s

A
to

m
ic

ity

D
u

ra
bi

lit
y

S
ta

tis
tic

s

Money & identification tiny ✔

Downloadable DB high ✔ ✔ ✔

User environment medium ✔ ✔ ✔ ✔

Personal folder high ✔ ✔ ✔ ✔ ✔ ✔ ✔

Table 1: Typical application’s profiles

• Money and identification: examples of such applications
are credit cards, e-purse, SIM for GSM, phone cards,
transportation cards. They are representative of today’s
applications, with very few data (typically the holder’s
identifier and some status information). Querying is not a
concern and access rights are useless since cards are
protected by PIN-codes. Their unique requirement is
update atomicity.

• Downloadable databases: they are predefined packages
of data (e.g., list of restaurants, hotels and tourist sites,
catalogs…) that can be downloaded on the card – for
example, before traveling – and be accessed from any
terminal. Data availability is the major concern here. The
volume of data can be important and the queries
complex. The data are typically read-only and public.

12

• User environment: the objective is to store in a smartcard
an extended profile of the card’s holder including, among
others, data regarding the computing environment (PC’s
configuration, passwords, cookies, bookmarks, software
licenses…), an address book as well as an agenda.
Queries remain simple, as data are not related. However,
the data are highly private and must be protected by
sophisticated access rights (e.g., the card’s holder may
want to share a subset of her address book or bookmark
list with a subset of persons). Transaction atomicity and
durability are also required.

• Personal folders: personal folders may be of different
nature: scholastic, healthcare, car maintenance history,
loyalty. They roughly share the same requirements,
which we illustrate next with the healthcare example.
Note that queries involving data issued from different
folders can make sense. For instance, one may be
interested in discovering associations between some
disease and the scholastic level of the card holder. This
raises the interesting issue of maintaining statistics on a
population of cards or mining their content
asynchronously.

2.2 The Health Card Application

The health card is very representative of personal folder
applications and has strong database requirements. Several
countries (France, Germany, USA, Russia, Korea…) are
developing healthcare applications on smartcards [5]. The
initial idea was to give to each citizen a smartcard
containing her identification and insurance data. As
smartcard storage capacity increases, the information
stored in the card can be extended to the holder’s doctors,
emergency data (blood type, allergies, vaccination…),
surgical operations, prescriptions, insurance data and even
links to heavier data (e.g., X-ray examination, scanner
images…) stored on hospital servers. Different users may
query, modify and create data in the holder’s folder: the
doctors who consult the patient’s past records and
prescribe drugs, the surgeons who perform exams and
operations, the pharmacists who deliver drugs, the
insurance agents who refund the patient, public
organizations which maintain statistics or study the impact
of drugs correlation in population samples and finally the
holder herself.

We can easily observe that: (i) the amount of data is
significant (more in terms of cardinality than in terms of
volume because most data can be encoded), (ii) queries
can be rather complex (e.g., a doctor asks for the last
antibiotics prescribed to the patient), (iii) sophisticated
access rights management using views and aggregate
functions are highly required (e.g., a statistical
organization may access aggregate values only but not the
raw data), (iv) atomicity must be preserved (e.g., when the
pharmacist delivers drugs) and (v) durability is mandatory,
without compromising data privacy (logged data stored
outside the card must be protected).

One may wonder whether the holder’s health data must
be stored in a smartcard or in a centralized database. The
benefit of distributing the healthcare database on
smartcards is threefold. First, health data must be made
highly available (anywhere, anytime, on any terminal and
without requiring a network connection). Second, storing
sensitive data on a centralized server may hurt privacy.
Third, maintaining a centralized database is fairly complex
due to the variety of data sources. Assuming the health
data is stored in the smartcard, the next question is why the
aforementioned database capabilities need be hosted in the
smartcard rather than the terminals. The answer is again
availability (the data must be exploited on any terminal)
and privacy. Regarding privacy, since the data must be
confined in the chip, so must be the query engine and the
view manager. The smartcard being the unique trusted part
of the system, access rights and transaction management
cannot be delegated to an untrusted terminal.

3 Problem Formulation

In this section, we make clear the smartcard constraints in
order to derive design rules for the PicoDBMS and state
the problem. Our analysis is based on the characteristics of
both existing smartcard products and current prototypes
[23, 10], and thus, should be valid for a while. We also
discuss how the main constraints of the smartcard will
evolve in a near future.

3.1 SmartCard constraints

Current smartcards include in a monolithic chip, a 32 bits
RISC processor at about 30 MIPS, memory modules (of
about 96 KB of ROM, 4 KB of static RAM and 128 KB of
EEPROM), security components and take their electrical
energy from the terminal [23]. ROM is used to store the
operating system, fixed data and standard routines. RAM
is used as working memory for calculating results.
EEPROM is used to store persistent information.
EEPROM has very fast read time (60-100 ns/word)
comparable to RAM, but a dramatically slow write time
(10 ms/word).

The main constraints of current smartcards are
therefore: (i) the very limited storage capacity; (ii) the very
slow write time in EEPROM; (iii) the extremely reduced
size of the RAM; (iv) the lack of autonomy and (v) a high
security level that must be preserved in all situations.
These constraints strongly distinguish smartcards from any
other computing devices, including lightweight computers
like PDA.

Let us now consider how hardware advances can
impact these constraints, in particular memory size.
Current smartcards rely on a well established and slightly
out-of-date hardware technology (0.35µm) in order to
minimize the production cost (less than five dollars) and
increase security [20]. Furthermore, up to now, there was
not a real need for large memories in smartcard
applications like holder’s identification. According to

13

major smartcard providers, the market pressure generated
by emerging large storage demanding applications will
lead to a rapid increase of the smartcard storage capacity.
This evolution is however constrained by the smartcard
tiny die size fixed to 25 mm² in the ISO standard [14],
which pushes for more integration. This limited size is due
to security considerations (to minimize the risk of physical
attack [2]) and practical constraints (e.g., the chip should
not break when the smartcard is flexed). Another solution
to relax the storage limit is to extend the smartcard storage
capacity with external memory modules. This is being
experienced by Gemplus which recently announced
Pinocchio [10], a smartcard equipped with 2 MB of Flash
memory linked to the microcontroller by a bus. Since
hardware security can no longer be provided on this
memory, its content must be either non-sensitive or
encrypted.

Memory type EEPROM FLASH FeRAM
Read time (/word) 60 to 150 ns 70 to 200 ns 150 to 200 ns
Write time (/word) 10 ms 5 to 10 µs 150 to 200 ns
Erase time (/bank) None 500 to 800 ms None

Lifetime (*) 105 write
cycles per cell

105 erase
cycles

1010 to 1012
write cycles

* A memory cell can be overwritten a finite number of times.

Table 2: Performance of stable memories for the smartcard

Another important issue is the performance of stable
memory. Possible alternatives to the EEPROM are Flash
memory and Ferroelectric RAM (FeRAM) [9] (see Table 2
for performance comparisons). Flash is more compact than
EEPROM and then represents a good candidate for high
capacity smartcards [10]. However, flash banks need be
erased before writing, which is extremely slow. This
makes Flash memory appropriated for applications with a
high read/write ratio (e.g., address books). FeRAM is
undoubtedly an interesting option for smartcard as read
and write times are both fast. Although its theoretical
foundation was set in the early 50s, FeRAM is just
emerging as an industrial solution. Therefore, FeRAM is
expensive, less secure than EEPROM or Flash, and its
integration with traditional technologies (such as CPUs)
remains an issue. Thus FeRAM could be considered a
serious alternative only in the very long term [9].

Given these considerations, we assume in this paper a
smartcard with a reasonable stable storage area (few MB
of EEPROM1) and a small RAM area (some KB). Indeed,
there is no clear interest to have a large RAM area, given
that the smartcard is not autonomous, thus precluding
asynchronous write operations. Moreover, more RAM
means less EEPROM as the chip size is limited.

3.2 Impact on the PicoDBMS architecture

We now analyze the impact of the smartcard constraints on
the PicoDBMS architecture, thus justifying why traditional
database techniques, and even lightweight DBMS

1 Considering Flash instead of EEPROM will not change

our conclusions. It will just exacerbate them.

techniques, are irrelevant. The smartcard’s properties and
their impact are:
• Highly secure: smartcard’s hardware security makes it

the ideal storage support for private data. The
PicoDBMS must contribute to the data security by
providing access right management and a view
mechanism that allows complex view definitions (i.e.,
supporting data composition and aggregation). The
PicoDBMS code must not present security holes due to
the use of sophisticated algorithms2.

• Highly portable: the smartcard is undoubtedly the most
portable personal computer (the wallet computer). The
data located on the smartcard are thus highly available.
They are also highly vulnerable since the smartcard can
be lost, stolen or accidentally destroyed. The main
consequence is that durability cannot be enforced locally.

• Limited storage resources: despite the foreseen increase
in storage capacity, the smartcard will remain the lightest
representative of personal computers for a long time.
This means that specific storage models and execution
techniques must be devised to minimize the volume of
persistent data (i.e., the database) and the memory
consumption during execution. In addition, the
functionalities of the PicoDBMS must be carefully
selected and their implementation must be as light as
possible. The lightest the PicoDBMS, the biggest the
onboard database.

• Stable storage is main memory: smartcard stable
memory provides the read speed and direct access
granularity of a main memory. Thus, a PicoDBMS can
be considered as a main memory DBMS (MMDBMS).
However the dramatic cost of writes distinguishes a
PicoDBMS from a traditional MMDBMS. This impacts
the storage and access methods of the PicoDBMS as well
as the way transaction atomicity is achieved.

• Non autonomous: compared to other computers, the
smartcard has no independent power supply, thereby
precluding disconnected and asynchronous processing.
Thus, all transactions must be completed while the card
is inserted in a terminal (unlike PDA, write operations
cannot be cached in RAM and reported on stable storage
asynchronously).

3.3 Problem Statement

To summarize, our goal is to design a PicoDBMS
including the following components:
• Storage manager: manages the storage of the database

and the associated indices.
• Query manager: processes query plans composed of

select, project, join and aggregates.
• Transaction manager: enforces the ACID properties and

participates in distributed transactions.
• Access right manager: provides access rights on base

data and on complex user-defined views.

 2 Most security holes are the results of software bugs [20].

14

Thus, the PicoDBMS hosted in the chip provides the
minimal subset of functionality that is strictly needed to
manage in a secure way the data shared by all onboard
applications. Other components (e.g., the GUI, a sort
operator…) can be hosted in the terminal or be
dynamically downloaded when needed, without
threatening security. In the rest of this paper, we
concentrate on the storage manager and the query manager
which are the most impacted by the smarcard constraints.
Smartcard-specific transaction manager description can be
found in [4], while traditional techniques can be used for
access right manager.

When designing the PicoDBMS’s components, we
must follow several design rules derived from the
smartcard’s properties:
• Compactness rule: minimize the size of data structures

and the PicoDBMS code to cope with the limited stable
memory area (a few MB).

• RAM rule: minimize the RAM usage given its extremely
limited size (some KB).

• Write rule: minimize write operations given their
dramatic cost (≈10 ms/word).

• Read rule: take advantage of the fast read operations
(≈100 ns/word).

• Access rule: take advantage of the low granularity and
direct access capability of the stable memory for both
read and write operations.

• Security rule: never externalize private data from the
chip and minimize the algorithms’ complexity to avoid
security holes.

4 PicoDBMS storage model
In this section, following the design rules for a PicoDBMS,
we discuss the storage issues and propose a very compact
model based on a combination of flat storage, domain
storage and ring storage. We also evaluate the storage cost
of our storage model.

4.1 Flat Storage

The simplest way to organize data is Flat Storage (FS),
where tuples are stored sequentially and attribute values
are embedded in the tuples. Although it does not impose it,
the SCQL standard [15] considers FS as the reference
storage model for smartcards. The main advantage of FS is
access locality. However, in our context, FS has two main
drawbacks:
• Space consuming: while normalization rules preclude

attributes conjunction redundancy to occur, they do not
avoid attribute value duplicates (e.g., the attribute
Doctor.Specialty may contain many duplicates).

• Inefficient: in the absence of index structures, all
operations are computed sequentially. While this is
convenient for old fashion cards (some KB of storage
and a mono-relation select operator), this is no longer
acceptable for future cards where storage capacity is
likely to exceed 1MB and queries can be rather complex.

Adding index structures to FS may solve the second
problem while worsening the first one. Thus, FS alone is
not appropriate for a PicoDBMS.

4.2 Domain Storage

Based on the critique of FS, it follows that a PicoDBMS
storage model should guarantee both data and index
compactness. Let us first deal with data compactness.
Since locality is no longer an issue in our context, pointer-
based storage models inspired by MMDBMS [1, 17, 19]
can help reducing the data storage cost. The basic idea is to
preclude any duplicate value to occur. This can be
achieved by grouping values in domains (sets of unique
values). We call this model Domain Storage (DS). As
shown in Figure 1, tuples reference their attribute values
by means of pointers. Furthermore, a domain can be shared
among several attributes. This is particularly efficient for
enumerated types, which vary on a small and determined
set of values3.

Value 1

Relation R Relation S

Value 2

Value n

Figure 1 : Domain Storage
One may wonder about the cost of tuple creation,

update and deletion since they may generate insertion and
deletion of values in domains. While these actions are
more complex than their FS counterpart, their
implementation remains more efficient in the smartcard
context, simply because the amount of data to be written is
much smaller. To amortize the slight overhead of domain
storage, we only store by domain all large attributes (i.e.,
greater than a pointer size) containing duplicates.
Obviously, attributes with no duplicates need not be stored
by domain but with FS. Variable-size attributes – generally
larger than a pointer – can also be advantageously stored in
domains even if they do not contain duplicates. The benefit
is not storage savings but memory management simplicity
(all tuples of all relations become fixed-size).

4.3 Ring Storage

We now address index compactness along with data
compactness. Unlike disk-based DBMS that favor indices
which preserve access locality, smartcards should make
intensive use of secondary (i.e., pointer-based) indices.
The issue here is to make these indices as compact as
possible. Let us first consider select indices. A select index
is typically made of two parts: a collection of values and a
collection of pointers linking each value to all tuples
sharing it. Assuming the indexed attribute varies on a
domain, the index’s collection of values can be saved since

3 Compression techniques can be advantageously used in
conjunction with DS to increase compactness [11].

15

it exactly corresponds to the domain extension. The extra
cost incurred by the index is then reduced to the pointers
linking index values to tuples.

Let us go one step further and get these pointers almost
for free. The idea is to store these value-to-tuple pointers in
place of the tuple-to-value pointers within the tuples (i.e.,
pointers stored in the tuples to reference their attribute
values in the domains). This yields to an index structure
which makes a ring from the domain values to the tuples.
Hence, we call it Ring index (see Figure 2(a)). But the ring
index can also be used to access the domain values from
the tuples and thus serve as data storage model. Thus we
call Ring Storage (RS) the storage of a domain-based
attribute indexed by a ring. The index storage cost is
reduced to its lowest bound, that is, one pointer per domain
value, whatever be the cardinality of the indexed relation.
This important storage saving is obtained at the price of
extra work for projecting a tuple to the corresponding
attribute since retrieving the value of a ring stored attribute
means traversing in average half of the ring (i.e., up to
reach the domain value).

Join indices [24] can be treated in a similar way. A join
predicate of the form (R.a=S.b) assumes that R.a and S.b
vary on the same domain. Storing both R.a and S.b by
means of rings leads to define a join index. In this way,
each domain value is linked by two separate rings to all
tuples from R and S sharing the same join attribute value.
However, most joins are performed on key attributes, R.a
being a primary key and S.b being the foreign key
referencing R.a. In our model, key attributes are not stored
by domain but with FS. Nevertheless, since R.a is the
primary key of R, its extension forms precisely a domain,
even if not stored outside of R. Since attributes S.b take
their values in R.a’s domain, they reference R.a values by
means of pointers. Thus, the domain-based storage model
naturally implements for free a unidirectional join index
from S.b to R.a (i.e., each S tuple is linked by a pointer to
each R tuple matching with it). If traversals from R.a to S.b
need be optimized too, a bi-directional join index is
required. This can be simply achieved by defining a ring
index on S.b. Figure 2(b) shows the resulting situation
where each R tuple is linked by a ring to all S tuples
matching with it and vice-versa. The cost of a bi-
directional join index is restricted to a single pointer per R
tuple, whatever be the cardinality of S. Note that this
situation resembles the well-known Codasyl model.

S.a
Relation S

Value 1

Value 2

Value n

Domain

Value1

Value2

Valuen

Domain

Index on
S.a

(a) Ring index on a regular attribute

Relation S Relation R
S.b R.a

(b) Ring index on a foreign_key attribute

Figure 2: Ring Storage

4.4 Storage cost evaluation

Our storage model combines FS, DS and RS. Thus, the
issue is to determine the best storage for each attribute. If
the attributes need not be indexed, the choice is obviously
between FS and DS. Otherwise, the choice is between RS
and FS with a traditional index. Thus, we compare the
storage cost for a single attribute, indexed or not, for each
alternative. We introduce the following parameters:

CardRel: cardinality of the relation holding the attribute
a: average length of the attribute (expressed in bytes)
p: pointer size (3 bytes will be required to address “large”

memory of future cards)
S: selectivity factor of the attribute. S=CardDom/CardRel,

where CardDom is the cardinality of the attribute
domain extension. S measures the redundancy of the
attribute (i.e., the same value appears in 1/S tuples).

C ost(FS) = C ardR el* a
C ost(D S) = C ardR el* p + S* C ardR el* a
C ost(In dexed_ FS) = C ost(FS) + S* C ardR el* a + C ardR el* p
C ost(R S) = C ost(D S) + S* C ardR el* p

The cost equality between FS and DS gives: S=(a–p)/a.
The cost equality between Indexed_FS and RS gives:
S=a/p

Figure 3(a) shows the different values of S and a for
which FS and DS are equivalent. Thus, each curve divides
the plan into a gain area for FS (above the curve) and a
gain area for DS (under the curve). For values of a less
than 3 (i.e., the size of a pointer), FS is obviously always
more compact than DS. For higher values of a, DS
becomes rapidly more compact than FS except for high
values of S. For instance, considering S=0.5, that is the
same value is shared by only two tuples, DS outperforms
FS for all a larger than 6 bytes. The higher a and the lower
S, the better DS. The benefit of DS is thus particularly
important for enumerated type attributes. Figure 3(b)
compares Indexed_FS with RS. The superiority of RS is
obvious, except for one and two byte long key attributes.
Thus, Figures 3(a) and 3(b) are guidelines for the database
designer to decide how to store each attribute, by
considering its size and selectivity.

L ength
in b ytes

0 ,0

0 ,2
0 ,4

0 ,6

0 ,8
1 ,0
S

0 4 6 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 2 8

FS

(a) W ith ou t in d ex

D S m ore c om p a ct

0 ,0

0 ,2
0 ,4

0 ,6

0 ,8
1 ,0
S

L ength
in b ytes 0 4 6 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 2 8

FS

(b) W ith in d ex

R S m ore c om p ac t

Figure 3: Storage models tradeoff

16

5 Query Processing
Traditional query processing strives to exploit large main
memory for storing temporary data structures (e.g., hash
tables) and intermediate results. When main memory is not
large enough to hold some data, state-of-the-art algorithms
resort to materialization on disk to avoid memory
overflow. These algorithms cannot be used for a
PicoDBMS because:
• Given the write rule and the lifetime of stable memory,

writes in stable memory are proscribed, even for
temporary materialization;

• Dedicating a specific RAM area does not help since we
cannot estimate its size a-priori. Choosing it small
increases the risk of memory overflow, thereby leading
to writes in stable memory. Choosing it large reduces the
stable memory area, already limited in a smartcard
(RAM rule). Moreover, even a large RAM area cannot
guarantee that query execution will not produce memory
overflow [3];

• State-of-the-art algorithms are quite sophisticated, which
precludes their implementation in a PicoDBMS whose
code must be simple, compact and secure (compactness
and security rules).

To solve this problem, we propose query processing
techniques that do not use any working RAM area nor
incur any writes in stable memory. In the following, we
describe these techniques for simple and complex queries,
including aggregation and remove duplicates. We show the
effectiveness of our solution through a performance
analysis.

5.1 Basic Query Execution without RAM

We consider the execution of SPJ (Select-Project-Join)
queries. Query processing is classically done in two steps.
The query optimizer first generates an “optimal” query
execution plan (QEP). The QEP is then executed by the
query engine which implements an execution model and
uses a library of relational operators [11]. The optimizer
can consider different shapes of QEP: left-deep, right-deep
or bushy trees (see Figure 4). In a left-deep tree, operators
are executed sequentially and each intermediate result is
materialized. On the contrary, right-deep trees execute
operators in a pipeline fashion, thus avoiding intermediate
result materialization. However, they require materializing
in memory all left relations. Bushy trees offer
opportunities to deal with the size of intermediate results
and memory consumption.

In a PicoDBMS, the query optimizer should not
consider any of these execution trees as they incur
materialization. The solution is to only use pipelining with
extreme right-deep trees where all the operators (including
select) are pipelined. As left operands are always base
relations, they are already materialized in stable memory,
thus allowing to execute a plan with no RAM
consumption. Pipeline execution can be easily achieved
using the well known Iterator Model [11]. In this model,

each operator is an iterator that supports three procedure
calls: open to prepare an operator for producing an item,
next to produce an item, and close to perform final clean-
up. A QEP is activated starting at the root of the operator
tree and progressing towards the leaves. The dataflow in
the model is demand-driven: a child operator passes a tuple
to its parent node in response to a next call from the parent.

drug

visit

σ

σ

doc

presc.

visit

σ

doc drug presc.

σ

Materialization
Pipelining c

d

cc Left deep tree dd Bushy tree

drug

presc.

doc

visit

σ

σ

drug presc.

doc

visit

σ

σ

e f

ee Right deep tree ff Extreme right deep tree
Healthcare Database schema: Doctor (DocId, name, specialty, …)
(sample) Prescription (VisId, DrugId, qty, …)
 Visit (VisId, DocId, date, diagnostic, …)
 Drug (DrugId, name, type, …)
Query Q1 : ‘Who prescribes antibiotics in 1999’

Figure 4: Several execution trees for query Q1

Let us now detail how select, project and join are
performed. These operators can be executed either
sequentially or with a ring index. Given the access rule, the
use of indices seems always to be the right choice.
However, extreme right-deep trees allow to speed-up a
single select on the first base relation (e.g., Drug.type in
our example) but using a ring index on the other selected
attributes (e.g., Visit.date) may slow down execution as the
ring need be traversed to retrieve their value. Project
operators are pushed up to the tree since no materialization
occurs. Note that the final project incurs an additional cost
in case of ring attributes. Without indices, joining relations
is done by a nested-loop algorithm since no other join
technique can be applied without ad-hoc structures (e.g.,
hash tables) and/or working area (e.g., sorting). The cost of
indexed joins depends on the way indices are traversed.
Consider the indexed join between Doctor (n tuples) and
Visit (m tuples) on their key attribute. Assuming a
unidirectional index, the join cost is proportional to n*m

17

starting with Doctor and to m starting with Visit. Assuming
now a bi-directional index, the join cost becomes
proportional to n+m starting with Doctor and to m²/2n
starting with Visit (retrieving the doctor associated to each
visit incurs traversing half of a ring in average). In the
latter case, a naïve nested loop join can be more efficient if
the ring cardinality is greater than the target relation
cardinality (i.e., when m>n²). In that case, the database
designer must clearly choose a unidirectional index
between the two relations.

5.2 Complex Query Execution without RAM

We now consider the execution of aggregate, sort and
duplicate removal operators. At a first look, pipeline
execution is not compatible with these operators which are
classically performed on materialized intermediate results.
Such materialization cannot occur either in the smartcard
due to the RAM rule or in the terminal due to the security
rule. Note that sorting can be done in the terminal since the
output order of the result tuples is not significant, i.e.,
depends on the DBMS algorithms.

We propose a solution to the above problem by
exploiting two properties: (i) aggregate and duplicate
removal can be done in pipeline if the incoming tuples are
yet grouped by distinct values and (ii) pipeline operators
are order-preserving since they consume (and produce)
tuples in the arrival order. Thus, enforcing an adequate
consumption order at the leaf of the execution tree allows
pipelined aggregation and duplicate removal. For instance,
the extreme right deep tree of Figure 4 delivers the tuples
naturally grouped by Drug.id, thus allowing group queries
on that attribute.

Let us consider now query Q2 of Figure 5. As pictured,
executing Q2 in pipeline requires rearranging the
execution tree so that relation Doctor is explored first.
Since Doctor contains distinct doctors, the tuples arriving
to the count operator are naturally grouped by doctors.

The case of Q3 is harder. As the data must be grouped
by type of drugs rather than by Drug.id, an additional join
is required between relation Drug and domain drug.type.
Domain values being unique, this join produces the tuples
in the adequate order. If domain Drug.type does not exist,
an operator must be introduced to sort relation Drug in
pipeline. This can be done by performing n passes on Drug
where n is the number of distinct values of Drug.type.

The case of Q4 is even trickier. The result must be
grouped on two attributes (Doctor.id and Drug.type),
introducing the need to start the tree with both relations!
The solution is to insert a Cartesian product operator at the
leaf of the tree in order to produce tuples ordered by
Doctor.id and Drug.type. In this particular case, the query
response time should be approximately n times greater
than the same query without the ‘group by’ clause, where n
is the number of distinct types of drugs.

Q5 retrieves the distinct couples of doctor and type of
prescribed drugs. This query can be made similar to Q4 by

expressing the distinct clause as an aggregate without
function (i.e., the query “select distinct a1,.., an from …” is
equivalent to “select a1, .. , an from … group by a1,.., an”).
The unique difference is that the computation for a given
group (i.e., distinct result tuple) can stop as soon as one
tuple has been produced.

Q4: Number of prescriptions
per doctor and type of drug

Q5: D istinct doctors
and type of drug

e

drug

presc

visit

count

Q4

drug

presc

doc

visit

drug.type

distinct

Q5
doc

drug.type

Q2: Number of antibiotics
prescribed per doctor in 1999

Q3: Number of prescription
per type of drug

drug

presc

doc visit

σ

σ

count

Q2 drug.type

presc

count

Q3

drug

Figure 5: Four ‘complex’ query execution plans

5.3 Performance Evaluation

Our proposed query engine can handle fairly complex
queries, taking advantage of the read and access rules4
while satisfying the compactness, write, RAM and security
rules. We now evaluate whether the PicoDBMS
performance matches the smartcard application’s
requirements, that is any query issued by the application
can be performed in reasonable time (i.e., may not exceed
the user patience). Since the PicoDBMS code’s simplicity
is an important consideration to conform to the
compactness and security rules, we must also evaluate
which acceleration techniques (i.e., ring indices, query
optimization) are really mandatory. For instance, an
accelerator reducing the response time from 10 ms to 1 ms

4 With traditional DBMS, such techniques will induce so
many disk accesses that the system would thrash!

18

is useless in the smartcard context5. Thus, unlike
traditional performance evaluation, our major concern is
on absolute rather than relative performance.

Evaluating absolute response time is complex in the
smartcard environment because all platform parameters
(e.g., processor speed, caching strategy, RAM and
EEPROM speed) strongly impact the measurements6.
Measuring the performance of our PicoDBMS on Bull’s
smartcard technology is attractive but introduces two
problems. First, Bull’s smartcards compatible with
database applications are still prototypes [23]. Second, we
are interested in providing the most general conclusions
(i.e., as independent as possible of smartcard
architectures). Therefore, we prefer to measure our query
engine on two old-fashion computers (a PC 486/25Mhz
and a Sun SparcStation 1+) which we felt roughly similar
to forthcoming smartcard architectures. For each
computer, we vary the system parameters (clock
frequency, cache) and perform the experimentation tests.
The performance ratios between all configurations were
roughly constant, the slowest configuration (Intel 486 with
no cache) performing 8 times worse than the fastest (RISC
with cache). In the following, we present response times
for the slowest architecture to check the viability of our
solutions in the worst environment.

0,0

0,2

0,4

0,6

0,8

1,0

Small DB Medium DB Large DB

no ring - worst

no ring - best

ring - worst

ring - best

11 52 3

E
xe

cu
tio

n
 ti

m
e

 (
s)

Figure 6: Performance results for query Q1

0

5

10

15

20

25

Small DB Medium DB Large DB

no ring - worst

no ring - best

ring - worst

ring - best

312 2530 1610205

E
xe

cu
tio

n
tim

e
(s

)

Figure 7: Performance results for query Q4

5 With traditional DBMS, such acceleration can improve the

transactional throughput.
6 With traditional DBMS, very slow disk access allows to

ignore finer parameters.

We generated three instances of a simplified healthcare
database: the small, medium and large databases
containing respectively (10, 30, 50) doctors, (100, 500,
1000) visits, (300, 2000, 5000) prescriptions and (40, 120,
200) drugs. Although we tested several queries, we
describe below only the two most significant. Query Q1,
which contains 3 joins and 2 selects on Visit and Drug
(with selectivities of 20% and 5%) is representative of
medium-complexity queries. Query Q4, which performs an
aggregate on two attributes and requires the introduction of
a Cartesian product, is representative of complex queries.
For each query, we measure the performance for all
possible query execution plans, varying the storage choices
(with and without select and join ring indices). Figures 6
and 7 show the results for both best and worst plans on
databases built with or without join indices.

Considering SPJ queries, the PicoDBMS performance
clearly matches the application’s requirements as soon as
join rings are used. Indeed, the performance with join rings
is at most 146 ms for the largest database and with the
worst execution plan. With small databases, all the
acceleration techniques can be discarded, while with larger
ones, join rings remain necessary to obtain good response
time. In that case, the absolute gain (110 ms) between the
best and the worst plan does not justify the use of a query
optimizer.

The performance of aggregate queries is clearly worst
because they introduce a Cartesian product at the leaf of
the execution tree. Join rings are useful for medium and
large databases. With large databases, the optimizer turns
out to be necessary since the worst execution plan with
join rings achieves a rather long response time (20,6 s).

The influence of ring indices for selects (not shown) is
insignificant. Depending on the selectivity, it can bring
slight improvement or overhead on the results. Although it
may achieve an important relative speed-up for the select
itself, the absolute gain is not significant considering the
small influence of select on the global query execution cost
(which is not the case in disk-based DBMS). Select ring
indices are however useful for queries with aggregates or
duplicate removal, that can result in a join between a
relation and the domain attribute. In that case, the select
index plays the role of a join index, thereby generating a
significant gain on large relations and large domains.

Thus, this performance evaluation shows that our
approach is feasible and that join indices are mandatory in
all cases while query optimization turns out to be useful
only with large databases and complex queries.

6 Conclusion
As smartcards become more and more versatile, multi-
applications and powerful, the need for database
techniques arises. However, smartcards have severe
hardware limitations which make traditional database
technology irrelevant. The major problem is scaling down
database techniques so they perform well under these
limitations. In this paper, we addressed this problem and

19

proposed the design of a PicoDBMS, concentrating on the
components which require non traditional techniques.

This paper makes several contributions. First, we
analyzed the requirements for a PicoDBMS based on a
healthcare application which is representative of personal
folder applications and has strong database requirements.
We showed that the minimal functionality should include
select/project/join/aggregate, access right management and
views as well as transaction’s atomicity and durability.

Second, we gave an in-depth analysis of the problem
by considering the smartcard hardware trends. Based on
this analysis, we assumed a smartcard with a reasonable
stable memory of a few MB and a small RAM of some
KB, and we derived design rules for a PicoDBMS
architecture.

Third, we proposed a new highly compact storage
model that combines Flat Storage (FS), Domain Storage
(DS) and Ring Storage (RS). Ring Storage reduces the
indexing cost to its lowest bound. Based on storage cost
evaluation, we derived guidelines to decide the best way to
store an attribute.

Finally, we proposed query processing techniques
which handle complex query plans with no RAM
consumption. This is achieved by considering extreme
right-deep trees which can pipeline all operators of the
plan including aggregates. We measured the performance
of our execution model with an implementation of our
query engine on two old-fashion computers which we
configured to be similar to forthcoming smartcard
architectures. We showed that the resulting performance
matches the smartcard application’s requirements.

This work is done in the context of a new project with
Bull Smart Cards and Terminals. The next step is to
implement our PicoDBMS on Bull’s smartcard new
technology, called OverSoft [6], and to assess its
functionality and performance on real world applications.
To this end, we are building an experimentation platform,
called Virtual Campus, to deal with advanced student
folders at the University of Versailles. We also plan to
address open issues such as protected logging for
durability, query execution on encrypted data and statistics
maintenance on a population of cards.

References
[1] A. Ammann, M. Hanrahan, and R. Krishnamurthy.

Design of a Memory Resident DBMS. IEEE
COMPCON, 1985.

[2] R. Anderson, M. Kuhn. Tamper Resistance – a
Cautionary Note. USENIX Workshop on Electronic
Commerce, 1996.

[3] L. Bouganim, O. Kapitskaia, P. Valduriez. Memory-
Adaptive Scheduling for Large Query Execution. Int.
Conf. on Information and Knowledge Management
(CIKM), 1998.

[4] C. Bobineau, L. Bouganim, P. Pucheral, P. Valduriez.
PicoDBMS: Scaling down Database Techniques for

the Smartcard. PRiSM Technical Report n°2000/05,
2000.

[5] F. A. van Bommel, J. Sembritzki, H.-G. Buettner.
Overview on Healthcard Projects and Standards.
Health Cards Int. Conf., 1999.

[6] Bull S.A. Bull unveils iSimplify! the personal
portable portal. www.bull.com/bull_news/

[7] L. C. Carrasco. RDBMS’s for Java Cards ? What a
Senseless Idea ! www.sqlmachine.com, 1999.

[8] DataQuest. Chip Card Market and Technology
Charge Ahead. MSAM-WW-DP-9808, 1998.

[9] B. Dipert. FRAM: Ready to ditch niche ? EDN
Access Magazine, Cahners Publishing Company,
1997.

[10] Gemplus. SIM Cards: From Kilobytes to Megabytes.
www.gemplus.fr/about/pressroom/, 1999.

[11] G. Graefe. Query Evaluation Techniques for Large
Databases. ACM Computing Surveys, 25(2), 1993.

[12] G. Graefe. The New Database Imperatives. Int. Conf.
on Data Engineering (ICDE), 1998.

[13] IBM Corporation. DB2 Everywhere – Administration
and Application Programming Guide. IBM Software
Documentation, SC26-9675-00, 1999.

[14] International Standardization Organization (ISO).
Integrated Circuit(s) Cards with Contacts – Part 1:
Physical Characteristics. ISO/IEC 7816-1, 1998.

[15] International Standardization Organization (ISO),
Integrated Circuit(s) Cards with Contacts – Part 7:
Interindustry Commands for Structured Card Query
Language (SCQL). ISO/IEC 7816-7, 1999.

[16] Microsoft Corporation. Windows for SmartCards
Toolkit for Visual Basic 6.0. www.microsoft.com/
windowsce/smartcard/, 2000.

[17] M. Missikov, M. Scholl. Relational Queries in a
Domain Based DBMS, ACM SIGMOD Int. Conf. On
Management of Data, 1983.

[18] Oracle Corporation. Oracle 8i Lite - Oracle Lite SQL
Reference. Oracle Documentation, A73270-01, 1999.

[19] P. Pucheral, J. M. Thévenin, P. Valduriez. Efficient
Main Memory Data Management Using the
DBGraph Storage Model, Int. Conf. on Very Large
Data Bases (VLDB), 1990.

[20] B. Schneier, A. Shostack. Breaking up is hard to do:
Modeling Security Threats for Smart Cards. USENIX
Symposium on Smart Cards, 1999.

[21] Sun Microsystems. JavaCard 2.1 Application
Programming Interface Specification. JavaSoft
documentation, 1999.

[22] Sybase Inc. Sybase Adaptive Server Anywhere
Reference. CT75KNA, 1999.

[23] J.-P. Tual. MASSC: A Generic Architecture for
Multiapplication Smart Cards. IEEE Micro Journal,
N° 0272-1739/99, 1999.

[24] P. Valduriez. Join Indices, ACM Trans. on Database
Systems, 12(2), 1987.

20

	Am241.pdf
	eur240v2.pdf
	asia157.pdf
	Eur136V2.pdf

