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Abstract 
Smartcards are the most secure portable 
computing device today. They have been used 
successfully in applications involving money, 
proprietary and personal data (such as banking, 
healthcare, insurance, etc.). As smartcards get 
more powerful (with 32 bit CPU and more than 
1 MB of stable memory in the next versions) and 
become multi-application, the need for database 
management arises. However, smartcards have 
severe hardware limitations (very slow write, very 
little RAM, constrained stable memory, no 
autonomy, etc.) which make traditional database 
technology irrelevant. The major problem is 
scaling down database techniques so they perform 
well under these limitations. In this paper, we 
give an in-depth analysis of this problem and 
propose a PicoDBMS solution based on highly 
compact data structures and query execution 
without RAM. We show the effectiveness of our 
techniques through performance evaluation. 
 

1 Introduction 

Smartcards are the most secure portable computing device 
today. The first smartcard was developed by Bull for the 
French banking system in the 80s to significantly reduce 
the losses associated with magnetic stripe credit card fraud. 
Since then, smartcards have been used successfully around 
the world in various applications involving money, 
proprietary data and personal data (such as banking, pay-

TV or GSM subscriber identification, loyalty, healthcare, 
insurance, etc.). While today’s smartcards handle a single 
issuer-dependent application, the trend is toward multi-
application smartcards. Standards for multi-application 
support, like the JavaCard [21] and Microsoft’s SmartCard 
for Windows [16], ensure that the card be universally 
accepted and be able to interact with several service 
providers. According to DataQuest [8], 990 million 
smartcards will be shipped in the year 2K and smartcards 
could become one of the world’s highest-volume markets 
for semiconductors. 

As smartcards become more and more versatile, multi-
applications and powerful (32 bit processor, more than 
1MB of stable storage), the need for database techniques 
arises. Let us consider a health card storing a complete 
medical folder including the holder’s doctors, blood type, 
allergies, prescriptions, etc. The volume of data can be 
important and the queries fairly complex (select, join, 
aggregate). Sophisticated access rights management using 
views and aggregate functions are required to preserve the 
holder’s data privacy. Transaction atomicity and durability 
are also needed to enforce data consistency. More 
generally, database management helps to separate data 
management code from application code, thereby 
simplifying and making application code smaller. Finally, 
new applications can be envisioned, like computing 
statistics on a large number of cards, in an asynchronous 
and distributed way. Supporting database management on 
the card itself rather than on an external device is the only 
way to achieve very high security, high availability 
(anywhere, anytime, on any terminal) and acceptable 
performance. 

However, smartcards have severe hardware limitations 
which stem from the obvious constraints of small size (to 
fit on a flexible plastic card and to increase hardware 
security) and low cost (to be sold in large volumes). 
Today’s microcontrollers contain a CPU, memory 
including about 96 KB of ROM, 4 KB of RAM and up to 
128 KB of stable storage like EEPROM, and security 
modules [23]. EEPROM is used to store persistent 
information; it has very fast read time (60-100 ns) 
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comparable to RAM but very slow write time (10 
ms/word). Following Moore’s law for processor and 
memory capacities, smartcards will get rapidly more 
powerful. Existing prototypes, like Gemplus’s Pinocchio 
card [10], bypass the current memory bottleneck by 
connecting an additional chip of 2MB of Flash memory to 
the microcontroller. Although a significant improvement 
over today’s cards, this is still very restricted compared to 
other portable, less secure, devices such as Personal 
Digital Assistants (PDA). Furthermore, smartcards are not 
autonomous, i.e., have no independent power supply, 
thereby precluding asynchronous and disconnected 
processing. 

These limitations (tiny RAM, little stable storage, very 
costly write and lack of autonomy) make traditional 
database techniques irrelevant. Typically, traditional 
DBMS exploit significant amounts of RAM and use 
caching and asynchronous I/Os to reduce disk access 
overhead as much as possible. With the extreme 
constraints of the smartcard, the major problem is scaling 
down database techniques. While there has been much 
excellent work on scaling up to deal with very large 
databases, e.g., using parallelism, scaling down has not 
received much attention by the database research 
community. However, scaling down in general is getting 
very important for commodity computing and is quite 
difficult [12]. 

Some DBMS designs have addressed the problem of 
scaling down. Light versions of popular DBMS like 
Sybase Adaptive Server Anywhere [22], Oracle 8i Lite 
[18] or DB2 Everywhere [13] have been primarily 
designed for portable computers and PDA. They have a 
small footprint which they obtain by simplifying and 
componentizing the DBMS code. However, they use 
relatively much RAM and stable memory and do not 
address the more severe limitations of smartcards. ISOL’s 
SQLJava Machine DBMS [7] is the first attempt towards a 
smartcard DBMS and SCQL [15], the standard for 
smartcard database language, emerges. While both designs 
are limited to single select, they exemplify the strong 
interest for dedicated smartcard DBMS.  

In this paper, we address the problem of scaling down 
database techniques and propose the design of what we 
call a PicoDBMS. This work is done in the context of a 
new project with Bull Smart Cards and Terminals. The 
design has been made with smartcard applications in mind 
but its scope extends as well to any ultra-light computer 
device based on a secured monolithic chip. This paper 
makes the following contributions: 
• We analyze the requirements for a PicoDBMS based on 

a typical healthcare application and justify its minimal 
functionality.  

• We give an in-depth analysis of the problem by 
considering the smartcard hardware trends and derive 
design principles for a PicoDBMS. 

• We propose a new pointer-based storage model that 
integrates data and indices in a unique compact data 
structure. 

• We propose query execution techniques which handle 
complex query plans (including joins and aggregates) 
with no RAM consumption. 

• We show the effectiveness of each technique through 
performance evaluation. 

This paper is organized as follows. Section 2 illustrates 
the use of take-away databases in various classes of 
smartcard applications and presents in more details the 
requirements of the health card application. Section 3 
analyzes the smartcard hardware constraints and gives the 
problem definition. Sections 4 - 5 present and assess the 
PicoDBMS’ storage model and query execution model, 
respectively. Section 6 concludes. 

2 Smartcard Applications 

In this section, we discuss the major classes of emerging 
smartcard applications and their database requirements. 
Then, we illustrate these requirements in further details 
with the health card application, which we will use as 
reference example in the rest of the paper. 

2.1 Database Management Requirements 

Table 1 summarizes the database management 
requirements of the following typical classes of smartcard 
applications. 
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Money & identification  tiny     ✔   

Downloadable DB high ✔ ✔ ✔     

User environment medium ✔   ✔ ✔ ✔  

Personal folder high ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Table 1: Typical application’s profiles 

• Money and identification: examples of such applications 
are credit cards, e-purse, SIM for GSM, phone cards, 
transportation cards. They are representative of today’s 
applications, with very few data (typically the holder’s 
identifier and some status information). Querying is not a 
concern and access rights are useless since cards are 
protected by PIN-codes. Their unique requirement is 
update atomicity. 

• Downloadable databases: they are predefined packages 
of data (e.g., list of restaurants, hotels and tourist sites, 
catalogs…) that can be downloaded on the card – for 
example, before traveling – and be accessed from any 
terminal. Data availability is the major concern here. The 
volume of data can be important and the queries 
complex. The data are typically read-only and public. 
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• User environment: the objective is to store in a smartcard 
an extended profile of the card’s holder including, among 
others, data regarding the computing environment (PC’s 
configuration, passwords, cookies, bookmarks, software 
licenses…), an address book as well as an agenda. 
Queries remain simple, as data are not related. However, 
the data are highly private and must be protected by 
sophisticated access rights (e.g., the card’s holder may 
want to share a subset of her address book or bookmark 
list with a subset of persons). Transaction atomicity and 
durability are also required. 

• Personal folders: personal folders may be of different 
nature: scholastic, healthcare, car maintenance history, 
loyalty. They roughly share the same requirements, 
which we illustrate next with the healthcare example. 
Note that queries involving data issued from different 
folders can make sense. For instance, one may be 
interested in discovering associations between some 
disease and the scholastic level of the card holder. This 
raises the interesting issue of maintaining statistics on a 
population of cards or mining their content 
asynchronously.  

2.2 The Health Card Application 

The health card is very representative of personal folder 
applications and has strong database requirements. Several 
countries (France, Germany, USA, Russia, Korea…) are 
developing healthcare applications on smartcards [5]. The 
initial idea was to give to each citizen a smartcard 
containing her identification and insurance data. As 
smartcard storage capacity increases, the information 
stored in the card can be extended to the holder’s doctors, 
emergency data (blood type, allergies, vaccination…), 
surgical operations, prescriptions, insurance data and even 
links to heavier data (e.g., X-ray examination, scanner 
images…) stored on hospital servers. Different users may 
query, modify and create data in the holder’s folder: the 
doctors who consult the patient’s past records and 
prescribe drugs, the surgeons who perform exams and 
operations, the pharmacists who deliver drugs, the 
insurance agents who refund the patient, public 
organizations which maintain statistics or study the impact 
of drugs correlation in population samples and finally the 
holder herself.  

We can easily observe that: (i) the amount of data is 
significant (more in terms of cardinality than in terms of 
volume because most data can be encoded), (ii) queries 
can be rather complex (e.g., a doctor asks for the last 
antibiotics prescribed to the patient), (iii) sophisticated 
access rights management using views and aggregate 
functions are highly required (e.g., a statistical 
organization may access aggregate values only but not the 
raw data), (iv) atomicity must be preserved (e.g., when the 
pharmacist delivers drugs) and (v) durability is mandatory, 
without compromising data privacy (logged data stored 
outside the card must be protected).  

One may wonder whether the holder’s health data must 
be stored in a smartcard or in a centralized database. The 
benefit of distributing the healthcare database on 
smartcards is threefold. First, health data must be made 
highly available (anywhere, anytime, on any terminal and 
without requiring a network connection). Second, storing 
sensitive data on a centralized server may hurt privacy. 
Third, maintaining a centralized database is fairly complex 
due to the variety of data sources. Assuming the health 
data is stored in the smartcard, the next question is why the 
aforementioned database capabilities need be hosted in the 
smartcard rather than the terminals. The answer is again 
availability (the data must be exploited on any terminal) 
and privacy. Regarding privacy, since the data must be 
confined in the chip, so must be the query engine and the 
view manager. The smartcard being the unique trusted part 
of the system, access rights and transaction management 
cannot be delegated to an untrusted terminal. 

 
3 Problem Formulation 

In this section, we make clear the smartcard constraints in 
order to derive design rules for the PicoDBMS and state 
the problem. Our analysis is based on the characteristics of 
both existing smartcard products and current prototypes 
[23, 10], and thus, should be valid for a while. We also 
discuss how the main constraints of the smartcard will 
evolve in a near future. 

3.1 SmartCard constraints 

Current smartcards include in a monolithic chip, a 32 bits 
RISC processor at about 30 MIPS, memory modules (of 
about 96 KB of ROM, 4 KB of static RAM and 128 KB of 
EEPROM),  security components and take their electrical 
energy from the terminal [23]. ROM is used to store the 
operating system, fixed data and standard routines. RAM 
is used as working memory for calculating results. 
EEPROM is used to store persistent information. 
EEPROM has very fast read time (60-100 ns/word) 
comparable to RAM, but a dramatically slow write time 
(10 ms/word).  

The main constraints of current smartcards are 
therefore: (i) the very limited storage capacity; (ii) the very 
slow write time in EEPROM; (iii) the extremely reduced 
size of the RAM; (iv) the lack of autonomy and (v) a high 
security level that must be preserved in all situations. 
These constraints strongly distinguish smartcards from any 
other computing devices, including lightweight computers 
like PDA. 

Let us now consider how hardware advances can 
impact these constraints, in particular memory size. 
Current smartcards rely on a well established and slightly 
out-of-date hardware technology (0.35µm) in order to 
minimize the production cost (less than five dollars) and 
increase security [20].  Furthermore, up to now, there was 
not a real need for large memories in smartcard 
applications like holder’s identification. According to 
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major smartcard providers,  the market pressure generated 
by emerging large storage demanding applications will 
lead to a rapid increase of the smartcard storage capacity. 
This evolution is however constrained by the smartcard 
tiny die size fixed to 25 mm² in the ISO standard [14], 
which pushes for more integration. This limited size is due 
to security considerations (to minimize the risk of physical 
attack [2]) and practical constraints (e.g., the chip should 
not break when the smartcard is flexed). Another solution 
to relax the storage limit is to extend the smartcard storage 
capacity with external memory modules. This is being 
experienced by Gemplus which recently announced 
Pinocchio [10], a smartcard equipped with 2 MB of Flash 
memory linked to the microcontroller by a bus. Since 
hardware security can no longer be provided on this 
memory, its content must be either non-sensitive or 
encrypted.  

Memory type EEPROM FLASH FeRAM 
Read time (/word) 60 to 150 ns 70 to 200 ns 150 to 200 ns 
Write time (/word) 10 ms 5 to 10 µs 150 to 200 ns 
Erase time (/bank) None 500 to 800 ms None 

Lifetime (*) 105 write 
cycles per cell 

105 erase 
cycles 

1010 to 1012 
write cycles 

* A memory cell can be overwritten a finite number of times. 

Table 2: Performance of stable memories for the smartcard 

Another important issue is the performance of stable 
memory. Possible alternatives to the EEPROM are Flash 
memory and Ferroelectric RAM (FeRAM) [9] (see Table 2 
for performance comparisons). Flash is more compact than 
EEPROM and then represents a good candidate for high 
capacity smartcards [10]. However, flash banks need be 
erased before writing, which is extremely slow. This 
makes Flash memory appropriated for applications with a 
high read/write ratio (e.g., address books). FeRAM is 
undoubtedly an interesting option for smartcard as read 
and write times are both fast. Although its theoretical 
foundation was set in the early 50s, FeRAM is just 
emerging as an industrial solution. Therefore, FeRAM is 
expensive, less secure than EEPROM or Flash, and its 
integration with traditional technologies (such as CPUs) 
remains an issue. Thus FeRAM could be considered a 
serious alternative only in the very long term [9]. 

Given these considerations, we assume in this paper a 
smartcard with a reasonable stable storage area (few MB 
of EEPROM1) and a small RAM area (some KB). Indeed, 
there is no clear interest to have a large RAM area, given 
that the smartcard is not autonomous, thus precluding 
asynchronous write operations. Moreover, more RAM 
means less EEPROM as the chip size is limited. 

3.2 Impact on the PicoDBMS architecture 

We now analyze the impact of the smartcard constraints on 
the PicoDBMS architecture, thus justifying why traditional 
database techniques, and even lightweight DBMS 

                                                        
1 Considering Flash instead of EEPROM will not change 

our conclusions. It will just exacerbate them. 

techniques, are irrelevant. The smartcard’s properties and 
their impact are: 
• Highly secure: smartcard’s hardware security makes it 

the ideal storage support for private data. The 
PicoDBMS must contribute to the data security by 
providing access right management and a view 
mechanism that allows complex view definitions (i.e., 
supporting data composition and aggregation). The 
PicoDBMS code must not present security holes due to 
the use of sophisticated algorithms2. 

• Highly portable: the smartcard is undoubtedly the most 
portable personal computer (the wallet computer). The 
data located on the smartcard are thus highly available. 
They are also highly vulnerable since the smartcard can 
be lost, stolen or accidentally destroyed. The main 
consequence is that durability cannot be enforced locally.  

• Limited storage resources: despite the foreseen increase 
in storage capacity, the smartcard will remain the lightest 
representative of personal computers for a long time. 
This means that specific storage models and execution 
techniques must be devised to minimize the volume of 
persistent data (i.e., the database) and the memory 
consumption during execution. In addition, the 
functionalities of the PicoDBMS must be carefully 
selected and their implementation must be as light as 
possible. The lightest the PicoDBMS, the biggest the 
onboard database. 

• Stable storage is main memory: smartcard stable 
memory provides the read speed and direct access 
granularity of a main memory.  Thus, a PicoDBMS can 
be considered as a main memory DBMS (MMDBMS). 
However the dramatic cost of writes distinguishes a 
PicoDBMS from a traditional MMDBMS. This impacts 
the storage and access methods of the PicoDBMS as well 
as the way transaction atomicity is achieved.  

• Non autonomous: compared to other computers, the 
smartcard has no independent power supply, thereby 
precluding disconnected and asynchronous processing. 
Thus, all transactions must be completed while the card 
is inserted in a terminal (unlike PDA, write operations 
cannot be cached in RAM and reported on stable storage 
asynchronously). 

3.3 Problem Statement 

To summarize, our goal is to design a PicoDBMS 
including the following components: 
• Storage manager: manages the storage of the database 

and the associated indices. 
• Query manager: processes query plans composed of 

select, project, join and aggregates. 
• Transaction manager: enforces the ACID properties and 

participates in distributed transactions.  
• Access right manager: provides access rights on base 

data and on complex user-defined views. 

                                                        
 2 Most security holes are the results of software bugs  [20]. 

14



Thus, the PicoDBMS hosted in the chip provides the 
minimal subset of functionality that is strictly needed to 
manage in a secure way the data shared by all onboard 
applications. Other components (e.g., the GUI, a sort 
operator…) can be hosted in the terminal or be 
dynamically downloaded when needed, without 
threatening security. In the rest of this paper, we 
concentrate on the storage manager and the query manager 
which are the most impacted by the smarcard constraints. 
Smartcard-specific  transaction manager description can be 
found in [4], while traditional techniques can be used for 
access right manager. 

When designing the PicoDBMS’s components, we 
must follow several design rules derived from the 
smartcard’s properties: 
• Compactness rule: minimize the size of data structures 

and the PicoDBMS code to cope with the limited stable 
memory area (a few MB). 

• RAM rule: minimize the RAM usage given its extremely 
limited size (some KB). 

• Write rule: minimize write operations given their 
dramatic cost (≈10 ms/word). 

• Read rule: take advantage of the fast read operations 
(≈100 ns/word). 

• Access rule: take advantage of the low granularity and 
direct access capability of the stable memory for both 
read and write operations.  

• Security rule:  never externalize private data from the 
chip and minimize the algorithms’ complexity to avoid 
security holes. 

 
4 PicoDBMS storage model 
In this section, following the design rules for a PicoDBMS, 
we discuss the storage issues and propose a very compact 
model based on a combination of flat storage, domain 
storage and ring storage. We also evaluate the storage cost 
of our storage model. 

4.1 Flat Storage 

The simplest way to organize data is Flat Storage (FS), 
where tuples are stored sequentially and attribute values 
are embedded in the tuples. Although it does not impose it,  
the SCQL standard [15] considers FS as the reference 
storage model for smartcards. The main advantage of FS is 
access locality. However, in our context, FS has two main 
drawbacks: 
• Space consuming: while normalization rules preclude 

attributes conjunction redundancy to occur, they do not 
avoid attribute value duplicates (e.g., the attribute 
Doctor.Specialty may contain many duplicates). 

• Inefficient: in the absence of index structures, all 
operations are computed sequentially. While this is 
convenient for old fashion cards (some KB of storage 
and a mono-relation select operator), this is no longer 
acceptable for future cards where storage capacity is 
likely to exceed 1MB and queries can be rather complex. 

Adding index structures to FS may solve the second 
problem while worsening the first one. Thus, FS alone is 
not appropriate for a PicoDBMS. 

4.2 Domain Storage 

Based on the critique of FS, it follows that a PicoDBMS 
storage model should guarantee both data and index 
compactness. Let us first deal with data compactness. 
Since locality is no longer an issue in our context, pointer-
based storage models inspired by MMDBMS [1, 17, 19] 
can help reducing the data storage cost. The basic idea is to 
preclude any duplicate value to occur. This can be 
achieved by grouping values in domains (sets of unique 
values). We call this model Domain Storage (DS). As 
shown in Figure 1, tuples reference their attribute values 
by means of pointers. Furthermore, a domain can be shared 
among several attributes. This is particularly efficient for 
enumerated types, which vary on a small and determined 
set of values3.  
 

Value 1 

Relation R Relation S 

Value 2 

Value n 

Figure 1 : Domain Storage  
One may wonder about the cost of tuple creation, 

update and deletion since they may generate insertion and 
deletion of values in domains. While these actions are 
more complex than their FS counterpart, their 
implementation remains more efficient in the smartcard 
context, simply because the amount of data to be written is 
much smaller. To amortize the slight overhead of domain 
storage, we only store by domain all large attributes (i.e., 
greater than a pointer size) containing duplicates. 
Obviously, attributes with no duplicates need not be stored 
by domain but with FS. Variable-size attributes – generally 
larger than a pointer – can also be advantageously stored in 
domains even if they do not contain duplicates. The benefit 
is not storage savings but memory management simplicity 
(all tuples of all relations become fixed-size). 

4.3 Ring Storage  

We now address index compactness along with data 
compactness. Unlike disk-based DBMS that favor indices 
which preserve access locality, smartcards should make 
intensive use of secondary (i.e., pointer-based) indices. 
The issue here is to make these indices as compact as 
possible. Let us first consider select indices. A select index 
is typically made of two parts: a collection of values and a 
collection of pointers linking each value to all tuples 
sharing it. Assuming the indexed attribute varies on a 
domain, the index’s collection of values can be saved since 
                                                        

3 Compression techniques can be advantageously used in 
conjunction with DS to increase compactness [11]. 
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it exactly corresponds to the domain extension. The extra 
cost incurred by the index is then reduced to the pointers 
linking index values to tuples. 

Let us go one step further and get these pointers almost 
for free. The idea is to store these value-to-tuple pointers in 
place of the tuple-to-value pointers within the tuples (i.e., 
pointers stored in the tuples to reference their attribute 
values in the domains). This yields to an index structure 
which makes a ring from the domain values to the tuples. 
Hence, we call it  Ring index (see Figure 2(a)). But the ring 
index can also be used to access the domain values from 
the tuples and thus serve as data storage model. Thus we 
call Ring Storage (RS) the storage of a domain-based 
attribute indexed by a ring. The index storage cost is 
reduced to its lowest bound, that is, one pointer per domain 
value, whatever be the cardinality of the indexed relation. 
This important storage saving is obtained at the price of 
extra work for projecting a tuple to the corresponding 
attribute since retrieving the value of a ring stored attribute 
means traversing in average half of the ring (i.e., up to 
reach the domain value). 

Join indices [24] can be treated in a similar way. A join 
predicate of the form (R.a=S.b) assumes that R.a and S.b 
vary on the same domain. Storing both R.a and S.b by 
means of rings leads to define a join index. In this way, 
each domain value is linked by two separate rings to all 
tuples from R and S sharing the same join attribute value. 
However, most joins are performed on key attributes, R.a 
being a primary key and S.b being the foreign key 
referencing R.a. In our model, key attributes are not stored 
by domain but with FS. Nevertheless, since R.a is the 
primary key of R, its extension forms precisely a domain, 
even if not stored outside of R. Since attributes S.b take 
their values in R.a’s domain, they reference R.a values by 
means of pointers. Thus, the domain-based storage model 
naturally implements for free a unidirectional join index 
from S.b to R.a (i.e., each S tuple is linked by a pointer to 
each R tuple matching with it). If traversals from R.a to S.b 
need be optimized too, a bi-directional join index is 
required. This can be simply achieved by defining a ring 
index on S.b. Figure 2(b) shows the resulting situation 
where each R tuple is linked by a ring to all S tuples 
matching with it and vice-versa. The cost of a bi-
directional join index is restricted to a single pointer per R 
tuple, whatever be the cardinality of S. Note that this 
situation resembles the well-known Codasyl model. 

 

S.a
Relation S

Value 1

Value 2

Value n

Domain

Value1

Value2

Valuen

Domain

Index on
S.a

(a) Ring index on a regular attribute

Relation S Relation R
S.b R.a

(b) Ring index on a foreign_key attribute
 

Figure 2: Ring Storage 
 
 

4.4 Storage cost evaluation 

Our storage model combines FS, DS and RS. Thus, the 
issue is to determine the best storage for each attribute. If 
the attributes need not be indexed, the choice is obviously 
between FS and DS. Otherwise, the choice is between RS 
and FS with a traditional index. Thus, we compare the 
storage cost for a single attribute, indexed or not, for each 
alternative. We introduce the following parameters: 

CardRel: cardinality of the relation holding the attribute 
a: average length of the attribute (expressed in bytes) 
p: pointer size (3 bytes will be required to address “large” 

memory of future cards) 
S: selectivity factor of the attribute. S=CardDom/CardRel, 

where CardDom is the cardinality of the attribute 
domain extension. S measures the redundancy of the 
attribute (i.e., the same value appears in 1/S tuples).  

C ost(FS) =  C ardR el* a  
C ost(D S) =  C ardR el* p  +  S* C ardR el* a 
C ost(In dexed_ FS) =  C ost(FS) +  S* C ardR el* a +  C ardR el* p  
C ost(R S) =  C ost(D S) +  S* C ardR el* p  

The cost equality between FS and DS gives: S=(a–p)/a. 
The cost equality between Indexed_FS and RS gives: 
S=a/p 

Figure 3(a) shows the different values of S and a for 
which FS and DS are equivalent. Thus, each curve divides 
the plan into a gain area for FS (above the curve) and a 
gain area for DS (under the curve). For values of a less 
than 3 (i.e., the size of a pointer), FS is obviously always 
more compact than DS. For higher values of a, DS 
becomes rapidly more compact than FS except for high 
values of S. For instance, considering S=0.5, that is the 
same value is shared by only two tuples, DS outperforms 
FS for all a larger than 6 bytes. The higher a and the lower 
S, the better DS. The benefit of DS is thus particularly 
important for enumerated type attributes. Figure 3(b) 
compares Indexed_FS with RS. The superiority of RS is 
obvious, except for one and two byte long key attributes. 
Thus, Figures 3(a) and 3(b) are guidelines for the database 
designer to decide how to store each attribute, by 
considering its size and selectivity. 
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Figure 3: Storage models tradeoff 
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5 Query Processing 
Traditional query processing strives to exploit large main 
memory for storing temporary data structures (e.g., hash 
tables) and intermediate results. When main memory is not 
large enough to hold some data, state-of-the-art algorithms  
resort to materialization on disk to avoid memory 
overflow. These algorithms cannot be used for a 
PicoDBMS because: 
• Given the write rule and the lifetime of stable memory, 

writes in stable memory are proscribed, even for 
temporary materialization; 

• Dedicating a specific RAM area does not help since we 
cannot estimate its size a-priori. Choosing it small 
increases the risk of memory overflow, thereby leading 
to writes in stable memory. Choosing it large reduces the 
stable memory area, already limited in a smartcard 
(RAM rule). Moreover, even a large RAM area cannot 
guarantee that query execution will not produce memory 
overflow [3]; 

• State-of-the-art algorithms are quite sophisticated, which 
precludes their implementation in a PicoDBMS whose 
code must be simple, compact and secure (compactness 
and security rules). 

To solve this problem, we propose query processing 
techniques that do not use any working RAM area  nor 
incur any writes in stable memory. In the following, we 
describe these techniques for simple and complex queries, 
including aggregation and remove duplicates. We show the 
effectiveness of our solution through a performance 
analysis. 

5.1 Basic Query Execution without RAM 

We consider the execution of SPJ (Select-Project-Join) 
queries. Query processing is classically done in two steps. 
The query optimizer first generates an “optimal” query 
execution plan (QEP). The QEP is then executed by the 
query engine which implements an execution model and 
uses a library of relational operators [11]. The optimizer 
can consider different shapes of QEP: left-deep, right-deep 
or bushy trees (see Figure 4). In a left-deep tree, operators 
are executed sequentially and each intermediate result is 
materialized. On the contrary, right-deep trees execute 
operators in a pipeline fashion, thus avoiding intermediate 
result materialization. However, they require materializing 
in memory all left relations. Bushy trees offer 
opportunities to deal with the size of intermediate results 
and memory consumption.  

In a PicoDBMS, the query optimizer should not 
consider any of these execution trees as they incur 
materialization. The solution is to only use pipelining with 
extreme right-deep trees where all the operators (including 
select) are pipelined. As left operands are always base 
relations, they are already materialized in stable memory, 
thus allowing to execute a plan with no RAM 
consumption. Pipeline execution can be easily achieved 
using the well known Iterator Model [11]. In this model, 

each operator is an iterator that supports three procedure 
calls: open to prepare an operator for producing an item, 
next to produce an item, and close to perform final clean-
up. A QEP is activated starting at the root of the operator 
tree and progressing towards the leaves. The dataflow in 
the model is demand-driven: a child operator passes a tuple 
to its parent node in response to a next call from the parent.  
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Figure 4: Several execution trees for query Q1 
 

Let us now detail how select, project and join are 
performed. These operators can be executed either 
sequentially or with a ring index. Given the access rule, the 
use of indices seems always to be the right choice. 
However, extreme right-deep trees allow to speed-up a 
single select on the first base relation (e.g., Drug.type in 
our example) but using a ring index on the other selected 
attributes (e.g., Visit.date) may slow down execution as the 
ring need be traversed to retrieve their value. Project 
operators are pushed up to the tree since no materialization 
occurs. Note that the final project incurs an additional cost 
in case of ring attributes. Without indices, joining relations 
is done by a nested-loop algorithm since no other join 
technique can be applied without ad-hoc structures (e.g., 
hash tables) and/or working area (e.g., sorting). The cost of 
indexed joins depends on the way indices are traversed. 
Consider the indexed join between Doctor (n tuples) and 
Visit (m tuples) on their key attribute. Assuming a 
unidirectional index, the join cost is proportional to n*m 
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starting with Doctor and to m starting with Visit. Assuming 
now a bi-directional index, the join cost becomes 
proportional to n+m starting with Doctor and to m²/2n 
starting with Visit (retrieving the doctor associated to each 
visit incurs traversing half of a ring in average). In the 
latter case, a naïve nested loop join can be more efficient if 
the ring cardinality is greater than the target relation 
cardinality (i.e., when m>n²). In that case, the database 
designer must clearly choose a unidirectional index 
between the two relations.  

5.2 Complex Query Execution without RAM 

We now consider the execution of aggregate, sort and 
duplicate removal operators. At a first look, pipeline 
execution is not compatible with these operators which are 
classically performed on materialized intermediate results. 
Such materialization cannot occur either in the smartcard 
due to the RAM rule or in the terminal due to the security 
rule. Note that sorting can be done in the terminal since the 
output order of the result tuples is not significant, i.e., 
depends on the DBMS algorithms. 

We propose a solution to the above problem by 
exploiting two properties: (i) aggregate and duplicate 
removal can be done in pipeline if the incoming tuples are 
yet grouped by distinct values and (ii) pipeline operators 
are order-preserving since they consume (and produce) 
tuples in the arrival order. Thus, enforcing an adequate 
consumption order at the leaf of the execution tree allows 
pipelined aggregation and duplicate removal. For instance, 
the extreme right deep tree of Figure 4 delivers the tuples 
naturally grouped by Drug.id, thus allowing group queries 
on that attribute.  

Let us consider now query Q2 of Figure 5. As pictured, 
executing Q2 in pipeline requires rearranging the 
execution tree so that relation Doctor is explored first. 
Since Doctor contains distinct doctors, the tuples arriving 
to the count operator are naturally grouped by doctors.  

The case of Q3 is harder. As the data must be grouped 
by type of drugs rather than by Drug.id, an additional join 
is required between relation Drug and domain drug.type. 
Domain values being unique, this join produces the tuples 
in the adequate order. If domain Drug.type does not exist, 
an operator must be introduced to sort relation Drug in 
pipeline. This can be done by performing n passes on Drug 
where n is the number of distinct values of Drug.type. 

The case of Q4 is even trickier. The result must be 
grouped on two attributes (Doctor.id and Drug.type), 
introducing the need to start the tree with both relations! 
The solution is to insert a Cartesian product operator at the 
leaf of the tree in order to produce tuples ordered by 
Doctor.id and Drug.type. In this particular case, the query 
response time should be approximately n times greater 
than the same query without the ‘group by’ clause, where n 
is the number of distinct types of drugs.  

Q5 retrieves the distinct couples of doctor and type of 
prescribed drugs. This query can be made similar to Q4 by 

expressing the distinct clause as an aggregate without 
function (i.e., the query “select distinct a1,.., an from …”   is 
equivalent to “select a1, .. , an from … group by a1,.., an”). 
The unique difference is that the computation for a given 
group (i.e., distinct result tuple) can stop as soon as one 
tuple has been produced.  
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Figure 5: Four ‘complex’ query execution plans 

5.3 Performance Evaluation 

Our proposed query engine can handle fairly complex 
queries, taking advantage of the read and access rules4 
while satisfying the compactness, write, RAM and security 
rules. We now evaluate whether the PicoDBMS 
performance matches the smartcard application’s 
requirements, that is any query issued by the application 
can be performed in reasonable time (i.e., may not exceed 
the user patience). Since the PicoDBMS code’s simplicity 
is an important consideration to conform to the 
compactness and security rules, we must also evaluate 
which acceleration techniques (i.e., ring indices, query 
optimization) are really mandatory. For instance, an 
accelerator reducing the response time from 10 ms to 1 ms 
                                                        

4 With traditional DBMS, such techniques will induce so 
many disk accesses that the system would thrash! 
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is useless in the smartcard context5. Thus, unlike 
traditional performance evaluation, our major concern is 
on absolute rather than relative performance.  

Evaluating absolute response time is complex in the 
smartcard environment because all platform parameters 
(e.g., processor speed, caching strategy, RAM and 
EEPROM speed) strongly impact the measurements6. 
Measuring the performance of our PicoDBMS on Bull’s 
smartcard technology is attractive but introduces two 
problems. First, Bull’s smartcards compatible with 
database applications are still prototypes [23]. Second, we 
are interested in providing the most general conclusions 
(i.e., as independent as possible of smartcard 
architectures). Therefore, we prefer to measure our query 
engine on two old-fashion computers (a PC 486/25Mhz 
and a Sun SparcStation 1+) which we felt roughly similar 
to forthcoming smartcard architectures. For each 
computer, we vary the system parameters (clock 
frequency, cache) and perform the experimentation tests. 
The performance ratios between all configurations were 
roughly constant, the slowest configuration (Intel 486 with 
no cache) performing 8 times worse than the fastest (RISC 
with cache). In the following, we present response times 
for the slowest architecture to check the viability of our 
solutions in the worst environment.  
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Figure 7:  Performance results for query Q4 

                                                        
5 With traditional DBMS, such acceleration can improve the 

transactional throughput. 
6 With traditional DBMS, very slow disk access allows to 

ignore finer  parameters. 

We generated three instances of a simplified healthcare 
database: the small, medium and large databases 
containing respectively  (10, 30, 50) doctors, (100, 500, 
1000) visits, (300, 2000, 5000) prescriptions and (40, 120, 
200) drugs. Although we tested several queries, we 
describe below only the two most significant. Query Q1, 
which contains 3 joins and 2 selects on Visit and Drug 
(with selectivities of 20% and 5%) is representative of 
medium-complexity queries. Query Q4, which performs an 
aggregate on two attributes and requires the introduction of 
a Cartesian product, is representative of complex queries. 
For each query, we measure the performance for all 
possible query execution plans, varying the storage choices 
(with and without select and join ring indices). Figures 6 
and 7 show the results for both best and worst plans on 
databases built with or without  join indices. 

Considering SPJ queries, the PicoDBMS performance 
clearly matches the application’s requirements as soon as 
join rings are used. Indeed, the performance with join rings 
is at most 146 ms for the largest database and with the 
worst execution plan. With small databases, all the 
acceleration techniques can be discarded, while with larger 
ones, join rings remain necessary to obtain good response 
time. In that case, the absolute gain (110 ms) between the 
best and the worst plan does not justify the use of a query 
optimizer. 

The performance of aggregate queries is clearly worst 
because they introduce a Cartesian product at the leaf of 
the execution tree. Join rings are useful for medium and 
large databases. With large databases, the optimizer turns 
out to be necessary since the worst execution plan with 
join rings achieves a rather long response time (20,6 s). 

The influence of ring indices for selects (not shown) is 
insignificant. Depending on the selectivity, it can bring 
slight improvement or overhead on the results. Although it 
may achieve an important relative speed-up for the select 
itself, the absolute gain is not significant considering the 
small influence of select on the global query execution cost 
(which is not the case in disk-based DBMS). Select ring 
indices are however useful for queries with aggregates or 
duplicate removal, that can result in a join between a 
relation and the domain attribute. In that case, the select 
index plays the role of a join index, thereby generating a 
significant gain on large relations and large domains. 

Thus, this performance evaluation shows that our 
approach is feasible and that join indices are mandatory in 
all cases while query optimization turns out to be useful 
only with large databases and complex queries. 

 
6 Conclusion 
As smartcards become more and more versatile, multi-
applications and powerful, the need for database 
techniques arises. However, smartcards have severe 
hardware limitations which make traditional database 
technology irrelevant. The major problem is scaling down 
database techniques so they perform well under these 
limitations. In this paper, we addressed this problem and 
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proposed the design of a PicoDBMS, concentrating on the 
components which require non traditional techniques. 

This paper makes several contributions. First, we 
analyzed the requirements for a PicoDBMS based on a 
healthcare application which is representative of personal 
folder applications and has strong database requirements. 
We showed that the minimal functionality should include 
select/project/join/aggregate, access right management and 
views as well as transaction’s atomicity and durability.  

Second, we gave an in-depth analysis of the problem 
by considering the smartcard hardware trends. Based on 
this analysis, we assumed a smartcard with a reasonable 
stable memory of a few MB and a small RAM of some 
KB, and we derived design rules for a PicoDBMS 
architecture. 

Third, we proposed a new highly compact storage 
model that combines Flat Storage (FS), Domain Storage 
(DS) and Ring Storage (RS). Ring Storage reduces the 
indexing cost to its lowest bound. Based on storage cost 
evaluation, we derived guidelines to decide the best way to 
store an attribute. 

Finally, we proposed query processing techniques 
which handle complex query plans with no RAM 
consumption. This is achieved by considering extreme 
right-deep trees which can pipeline all operators of the 
plan including aggregates. We measured the performance 
of our execution model with an implementation of our 
query engine on two old-fashion computers which we 
configured to be similar to forthcoming smartcard 
architectures. We showed that the resulting performance 
matches the smartcard application’s requirements. 

This work is done in the context of a new project with 
Bull Smart Cards and Terminals. The next step is to 
implement our PicoDBMS on Bull’s smartcard new 
technology, called OverSoft [6], and to assess its 
functionality and performance on real world applications. 
To this end, we are building an experimentation platform, 
called Virtual Campus, to deal with advanced student 
folders at the University of Versailles. We also plan to 
address open issues such as protected logging for 
durability, query execution on encrypted data and statistics 
maintenance on a population of cards. 
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