Using SQL to Build New Aggregates and Extenders
for Object-Relational Systems

Haixun Wang Carlo Zaniolo

Computer Science Department
University of California at Los Angeles’

Abstract

User-defined Aggregates (UDAs) provide a
versatile mechanism for extending the pow-
er and applicability of Object-Relational
Databases (O-R DBs). In this paper, we de-
scribe the AXL system that supports an SQL-
based language for introducing new UDAs.
AXL is easy to learn and use for database pro-
grammers because it preserves the construct-
s, programming paradigm and data type-
s of SQL (whereas there is an ‘impedance
mismatch’ between SQL and the procedural
languages of user-defined functions currently
used in O-R DBs). AXL will also inherit the
benefits of database query languages, such as
scalability, data independence and paralleliz-
ability. In this paper, we show that, while
adding only minimal extensions to SQL, AXL
is very powerful and capable of expressing
complex algorithms efficiently. We demon-
strate this by coding data mining function-
s and other advanced applications that, pre-
viously, had been a major problem for SQL
databases.

Due to its flexibility, SQL-compatibility and
ease of use, the AXL approach offers a better
extensibility mechanism, in several applica-
tion domains, than the function libraries now
offered by commercial O-R DBs under names
such as Datablades or DB-Extenders.
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1 Introduction

The explosive growth of new database application-
s has, in several cases, outpaced the albeit dramatic
progress made by database technology. In fact, the
great success of new application areas often serves as
a grim reminder of the limitations from which DBMSs
still suffer in terms of power and extensibility. For in-
stance, the newly introduced Object-Relational (O-R)
systems offer great improvements in generality, exten-
sibility, and query power; yet O-R systems do not sup-
port well data mining applications—a leading growth
area for data-intensive applications. Problems also oc-
cur in many other application areas, where datablades
and similar function libraries need better flexibility
and integration with SQL. In this paper, we show that
many of these problems can be solved, or ameliorated,
by user-defined aggregates (UDAs), which often pro-
vide a more flexible and powerful mechanism for ex-
tending DBMSs than user-defined functions (UDFs)
used today in this role. For instance, an aggregate can
take as argument the whole SQL relation rather than
fields in individual tuples, as UDFs do. Unfortunate-
ly, UDAs are less understood and developed from a
technological viewpoint than UDFs, which have great-
ly benefitted from the ADT advances made in pro-
gramming languages, while UDAs are primarily a DB-
centric concept and have received less attention. In
fact, while UDAs were part of Postgres [18] and ear-
ly SQL3 [11, 10] proposals, and also supported in In-
formix [12], they have been left out from the recently
released SQL-99 specifications.

Therefore, as today, UDAs remain a topic rich with
research challenges and opportunities, since they find
many important application areas, such as DB-centric
data mining. At UCLA, we developed the SQL-AG
system that supports UDAs on top of DB2; besides
implementing the original SQL3 specifications for U-
DAs, SQL-AG extends them to support new forms
of aggregation, such as online aggregation, through a
mechanism called early returns [23]. Aggregates only
producing early returns are monotonic with respect to
set-containment, and can, therefore, be used in recur-



sive SQL queries with no restriction or modification to
the current systems [23]. Monotonic aggregates sup-
port efficiently Bill of Materials applications, transitive
closures with greedy optimization, and other complex
queries that had been a problem for relational query
languages since their introduction [23].

In the original SQL3 proposal, new UDAs are ac-
tually encoded through three UDF's that, respective-
ly, define the computation to be performed (i) for the
first value in the stream, (ii) for each successive val-
ue, and (iii) at the end of the stream. Unfortunately,
programming UDF's for O-R systems using procedural
languages can be exceedingly difficult even for knowl-
edgeable programmers [15]. The difficulty of writing
and debugging UDF's is compounded by the fact that,
to achieve reasonable performance, these UDFs will
normally execute ‘unfenced’ [2] in the same address
space as the database system—thus the use of efficien-
t procedural languages, such as C, could compromise
the safety of the system. Clearly, UDAs defined via
multiple procedural language UDFs, as suggested in
the original SQL3 proposal, will suffer from similar
usability problems.

Our approach to solve these problems consists in
providing a high-level language for defining new aggre-
gates. Since all users are already familiar with SQL,
we will strive to design a language as close as possi-
ble to SQL; this will make the new language easier
to learn and use, avoid the many problems connected
with the introduction of a new language, and eliminate
the risk of ‘impedance mismatch’ in data types and
programming styles that is bound to occur if UDAs
are written in any other language. In addition, this
approach inherits the many advantages of databases
and their query languages, including scalability, data
independence, and parallelizability.

The main challenge facing this approach was the
limited expressive power of SQL, which made us won-
der if our objective was achievable at all. Our Simple
Aggregate Definition Language (SADL) project [22]
represented an important experiment to test the lim-
its and feasibility of our SQL-centric approach. SADL
is a ‘barebone’ language, which only supports basic S-
ELECT statements. Even so, SADL was sufficient to
express some aggregates, boosting our confidence that
our ultimate goal was achievable. On the other hand,
as we explored the issues of performance, scalability,
and expressive power required for advanced applica-
tions, SADL showed many problems. One is the fact
that SADL kept the UDA structure proposed in the
original SQL3 specifications, where the definition of a
new aggregate is broken down into several function-
s. This structure leads to poorly structured programs
and inefficiency. Another problem with SADL is that
it does not support the definition and use of auxil-
iary tables, nor does it support updates on tables.
Therefore, a new language called AXL (for Aggregate
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Extension Language) was designed to solve all these
problems; the AXL system also uses an architecture
very different from SADL. For instance, while SADL
implementation uses query interpretation, and relies
on in-memory tables, AXL relies on compilation and
makes full use of secondary memory tables.

This paper is organized as follows. In the next sec-
tion, we describe our systems SQL-AG and SADL pre-
viously developed at UCLA to deal with UDAs and
their limitations. Then in Sections 3, 4, 5 and 6 we
describe AXL in various application domains. In sec-
tion 7 we describe its implementation. In section 8 we
discuss opportunities for future research.

2 The SQL-AG System and SADL

At UCLA, we have developed the SQL-AG [20] system
that supports and extends the UDA specifications o-
riginally proposed for SQL3 [11]. For instance, we can
define the standard avg aggregate as shown in Exam-
ple 1.

Example 1 Defining the standard avg aggregate

AGGREGATE myavg(INT)
RETURNS REAL

STATE state_type
INITIALIZE avg_single
ITERATE avg_multi
TERMINATE avg_terminate

typedef struct state_s {
long sum; long cnt;
} state_type;
void avg_single(long *value, state_type *s)
{ s—sum = *value;
s—cnt = 1;
}
void avg-multi(long *value, state_type *s)
{ s—sum += xvalue;
s—cnt++;

}

void avg_terminate(state s, float xresult)
{ #result = s—sum/s— cnt;

}

Basically, the user must define the three external
procedures, under the labels of INITIALIZE, ITER-
ATE and TERMINATE, which, respectively, specify the
computation to be performed for the first value in the
stream, for each successive value, and when the end
of stream is detected and the final value of the aggre-
gate must be returned. Thus, in our example, the C
procedure avg_single initializes the current sum to the
first value and the current count to 1, avg_multi adds
the new value to sum and increases count by 1, and
avg_terminate returns the final average from state.

It is important to observe that while traditional
SQL2 aggregates are (dependent on repetitions, but)
independent, of the order in which the computation



streams through data, UDAs as defined in the original
SQL3 specifications and implemented in SQL-AG can
depend on such order. Recent SQL extension for ag-
gregates, supporting partition and windows for OLAP
applications [25], also relies on the the order of data.
Indeed in many applications, such as cumulative ag-
gregates and moving-windows aggregates used in time-
series [14], the fact that the data is sorted by their time
stamps is part of the application logic. On the other
hand, a direct application of online aggregates on s-
tored data, normally relies on the fact that the data is
not skewed [8]. Thus, aggregates that are most useful
in advanced applications are often designed to take full
advantage on the particular properties of the data.

Two versions of SQL-AG were implemented, the
first on Oracle, using PL/SQL, and the second for IB-
M DB2. Here we describe this second version, which is
significantly more powerful and efficient than the oth-
er. DB2 supports user-defined functions (UDFs) but
not user-defined aggregates. The SQL-AG system sup-
ports SQL queries with UDAs by transforming them
into DB2 queries that use scratch-pad UDF's to emu-
late the functionality of the corresponding UDAs [2].
For instance, moving average of stock price in the fol-
lowing query:

SELECT company, myavg(price)
FROM stock-closing
GROUP BY company

is translated by SQL-AG into the query which can be
executed by DB2:

SELECT company, myavg-out(company)
FROM stock-closing

WHERE myavg_groupby(company,price)=1
GROUP BY company

Each UDA, named say agg, is implemented with
two automatically generated DB2 UDFs, namely, ag-
ggroupby and aggout. The UDF agg groupby per-
forms the actual computation and it is applied to ev-
ery record for aggregation. It uses a hash table to
keep the aggregate value of each group. The UDF
agg_out(group) retrieves from the hash table the last
value computed by agg_groupby for group. A detailed
description of SQL rewriting can be found in [20].

A key improvement made by the SQL-AG system
developed at UCLA [20] with respect to the original
proposal of SQL3 is the support for early returns. Ear-
ly returns are basically results returned during the
computation of the aggregate, as needed to support
online aggregation [8] and other advanced forms of ag-
gregation discussed later in this paper.

Early returns can be supported by allowing the us-
er to add to the aggregate specification a PRODUCE
procedure to generate early returns, whereas the TER-
MINATE procedure generates final returns. For in-
stance, avg_multi in the example below can be used to
evaluate the rate of convergence for the computation
of average and return values at regular interval.
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Example 2 A UDA with Farly Returns

AGGREGATE myavg(INT)
RETURNS REAL

STATE state_type
INITIALIZE avg_single
ITERATE avg_multi
PRODUCE avg_produce
TERMINATE avg_terminate

int avg_produce(state *s, float xresult)
{if (s—ent % 100 == 0) {
xresult = s—sum | s—cnt;
return 1;
} else
return 0;

This version of myavg contains both early returns
and final returns. The rules required to map UDAs
with both early returns and final returns into equiv-
alent SQL queries with scratchpad UDFs are more
complex, as described in [20].

MONOTONIC AGGREGATION. An interesting special
case is when the aggregate only contains early returns,
i.e., the TERMINATE function avg_terminate is either
missing or it has been replaced by NOP. Then, it can
be shown that the aggregate is monotonic with respect
to set containment and can therefore be used without
restrictions in recursive SQL queries to code optimized
graph traversal and BoM applications that had been a
problem for databases since their introduction [23, 22].

PERFORMANCE. We compared the performance of
native DB2 builtins against SQL-AG UDAs on a Ultra
SPARC 2 with 128 megabytes memory and reimple-
mented the SQL built-ins as UDAs. As discussed in
[22], when aggregation contains no group-by columns,
there is a slight performance penalty resulted from
calling UDFs. There are actually situations where the
fact that a hash-based aggregation is used instead of a
sort-based one yielding better performance than built
in aggregates. Thus UDAs can be implemented with
nearly the same performance as the standard built-ins.

SADL. UDAs defined using a procedural languages
such as C suffer from the same problems as the C-
defined user defined functions[15]; these problems in-
clude the difficulty of developing and debugging appli-
cations, and a loss of optimizability and parallelizabil-
ity. An obvious solution to these problems consists in
providing a high-level language for the definition of ag-
gregates. In [22] we presented a simple aggregate def-
inition language (SADL), which was designed to have
SQL-like syntax, data types, and semantics, for ease
of learning and use. In SADL, the user codes the INI-
TTALIZE function and the other functions required to
introduce a new aggregate using SELECT statements.



While simple aggregates can be expressed easily, more
complex ones could not be expressed in SADL, which
lacks the ability of introducing temporary tables and
calling UDAs recursively. This led to the design of a
new language, named AXL, where new tables and ag-
gregates can be defined as part of the definition of an
aggregate, and updates on tables are supported along
with the recursive invocation of aggregates.

3 AXL

We now introduce AXL by examples; a more complete
discussion can be found in [21]. Example 3 defines an
online version of myavg which returns results for every
100 new values. The first line of this aggregate func-
tion declares a local table, state, to keep (in memo-
ry) the sum and count of the values processed so far.
While, for this particular example, state contains on-
ly one tuple, it is in fact a table that can be queried
and updated using SQL statements. These SQL s-
tatements are grouped into the three blocks labelled
respectively INITIALIZE and ITERATE and TERMI-
NATE. Thus, INITIALIZE inserts the value taken from
the input stream and sets the count to 1. The ITER-
ATE statements update the table by adding the new
input value to the sum and 1 to the count. The TER-
MINATE statements return the final result of computa-
tion by appending it to RETURN; for conformity with
SQL, RETURN is viewed as a table, and thus an IN-
SERT INTO construct is used. We also add interme-
diate results from the computation to RETURN tables
as part of the ITERATE statements; this eliminates
the need for the special PRODUCE construct used in
SADL.

Example 3 Return current average for every 100
records

AGGREGATE myavg(Next INT) : REAL

TABLE state(sum INT, cnt INT);
INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {
UPDATE state SET sum=sum-+Next,
cnt=cnt+1;
INSERT INTO RETURN
SELECT sum/cnt FROM state
WHERE cnt % 100 = 0;

}
TERMINATE : {
INSERT INTO RETURN
SELECT sum/cnt FROM state ;
}
}

We now define a minpoint aggregate that returns
the point where a minimum occurs rather than the
value of the minimum.
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Example 4 Define minpoint in AXL
AGGREGATE minpoint(iPoint INT, iValue INT) : INT

TABLE state(point INT, value INT);
INITIALIZE: {
INSERT INTO state VALUES(iPoint, iValue);

}

ITERATE: {
UPDATE state
SET point=iPoint, value=iValue
WHERE value > iValue;

}
TERMINATE: {
INSERT INTO RETURN
SELECT point FROM state;
}

}

MoONOTONIC COUNT. Another interesting aggregate
is the monotonic count mcount that returns the run-
ning count for each new input value. This aggregate is
monotonic with respect set containment. Indeed for a
set of cardinality 3 it returns {1, 2,3}, and once a new
element is added to this set it returns {1,2,3,4}. Ob-
serve that this second set is a superset of the first; the
traditional count would instead return singleton sets
{3} and {4}, where the second is not a superset of the
first. The monotonic aggregate mcount can be used
freely in recursive SQL queries to express many com-
putations that would be hard or inefficient to express
otherwise; several examples are given in [22]. Here we
will later use it to assign a sequence number to the
tuples of a relation.

Example 5 Monotonic Count
AGGREGATE mcount(Next INT) : INT

{
TABLE state(cnt INT);
INITIALIZE : {
INSERT INTO state VALUES(1);
INSERT INTO RETURN VALUES (1);
}
ITERATE : {
UPDATE state SET cnt=cnt+1;
INSERT INTO RETURN
SELECT cnt FROM state;
}
}

RECURSIVE AGGREGATES. In AXL, aggregates can
call other aggregates. Particularly, an aggregate
can call itself recursively. Say we have a relation
children(Parent, Child), Example 6 defines a re-
cursive aggregate alldesc to find all the descendants
of a given person.



Example 6 Offspring
AGGREGATE alldesc(P CHAR(10)) : CHAR(10)

{
INITIALIZE: ITERATE: {

INSERT INTO RETURN VALUES(P);
INSERT INTO RETURN

SELECT alldesc(Child)

FROM children

WHERE Parent=P;

}

Now, we can use the following query to find all the
descendents of Tom.

SELECT alldesc(Child) FROM children
WHERE Parent="Tom’;

AXL also supports a redefinition construct, and
SQLCODE construct which are described in the next
sections. But, basically, the examples given so far il-
lustrate the complete AXL language. Therefore, AXL
manages to be quite powerful using a very small reper-
toire of new constructs beyond SQL. In the next sec-
tion, we show how AXL can be used to support OLAPs
and other powerful new forms of aggregation; in the
section that follows we use AXL to support some data
mining functions.

4 Data Mining in AXL

As a first example of the many uses of AXL, consider
the data mining methods used for classification. Say
for instance, that we want to classify the value of Play
as a ‘Yes’ or a ‘No’ given a training set such as that
shown in Table 1.

Outlook | Temp | Humidity | Wind | Play
Sunny Hot High Weak No
Sunny Hot High Strong No
Overcast Hot High Weak Yes
Rain Mild High ‘Weak Yes
Rain Cool Normal Weak Yes
Rain Cool Normal Strong Yes
Overcast Cool Normal Strong No
Sunny Mild High Weak No
Sunny Cool Normal Weak Yes
Rain Mild Normal Weak Yes
Sunny Mild Normal Strong Yes
Overcast Mild High Strong Yes
Overcast Hot Normal Weak Yes
Rain Mild High Strong No

Table 1: The relation PlayTennis

We now describe the implementation in AXL of cat-
egorical decision tree classifiers. Bayesian classifiers
will be discussed in the next section.

DEcisiON TREE CLASSIFIER. The first step for most
decision tree classifiers is to convert the training set
into column/value pairs. This conversion, although
conceptually simple, is hard to express succinctly in
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SQL. Consider the PlayTennis relation as shown in
Table 1. We want to convert it into a new stream of 4
columns (Recld, Col, Value, YorN), meaning that
the Col-th column of the RecId-th tuple in relation
PlayTennis has value Value and its Play column has
value YorN.

In AXL, we can define a new aggregate dissemble
to solve the problem.

Example 7 Dissemble a relation into column/value
Ppairs.
AGGREGATE dissemble(v1l INT, v2 INT, v3 INT,

v4 INT, yorn INT):

(col INT, val INT, YorN INT)

INITIALIZE: ITERATE: {
INSERT INTO RETURN
VALUES(1,v1,yorn), (2,v2,yorn),
(3,v3,yorn), (4,v4,yorn);

Following is the query to dissemble the PlayTennis
table (the mcount aggregate is used here to generate a
record id for each tuple in the tennis table):

SELECT mcount(1),
dissemble(Outlook, Temp, Humidity, Wind, Play)
FROM PlayTennis;

The complete classifier algorithm is shown in Ex-
ample 8. The INITIALIZE and ITERATE steps share
the same block of code. First, we insert the current
record into the treenodes table. Then we update the
class histogram kept in the summary table for each col-
umn/value pair. If we have not met the column/value
pair before, we will insert it on line 17. SQLCODE is
a reserved word of AXL, and it keeps the return sta-
tus of the previous SQL statement. If SQLCODE is 0,
then the previous UPDATE statement is unsuccessful
and a new record is to be inserted.

The TERMINATE step will first compute the gi-
ni index for each column using the histogram we ac-
cumulated during the INITIALIZE/ITERATE step-
s. Then, on line 23, we select the splitting column
which has the minimal gini index. A new sub-branch
is generated for each value in the column. The UDA
used here, minpointvalue, is the same aggregate as
the minpoint defined in Example 4 except that it also
returns the minimum value, which will be used as the
stop condition for the recursion on line 37. (If gini e-
quals 0, then all the records in the current node has the
same class label and no further classification is neces-
sary.) After recording the current split into the result
table, we call the classifier recursively to further clas-
sify the sub nodes. The GROUP-BY clause on line 40
partitions the records in treenodes into MAXVALUE
subnodes, where MAXVALUE is the largest number of
different values in any of the table columns (three for
Table 1).



Using the classify aggregate, classification on the
tennis table can be solved using the following query:

SELECT classify(t.Recld, 0, t.Col, t.Val, t.YorN)
FROM (
SELECT mcount() Recld,

dissemble(Outlook,Temp,Humidity, Wind,Play)

AS (Col, Val, YorN)
FROM PlayTennis) AS t;

Example 8 Using Recursive Aggregates to Implement
a Classifier in AXL

[ 1]AGGREGATE classify (Recld INT, iNode INT, iCol INT,
[ 2] iValue INT, iYorN INT)

[3]{

[ 4] TABLE treenodes(RecId INT, Node INT,

[ 5] Col INT, Value INT, YorN INT);
[ 6] TABLE mincol(Col INT);

[ 7]

[ 8] KEY {Col,Value});

[ 9] TABLE ginitable(Col INT, Gini INT);

(10

[11] INITIALIZE : ITERATE : {

12 INSERT INTO treenodes

13 VALUES(Recld, iNode, iCol, iValue, iYorN);
14 UPDATE summary

[15 SET Yc=Yc+iYorN, Nc=Nc+1-iYorN

(16 WHERE Col = iCol AND Value = iValue;
17 INSERT INTO summary

GROUP BY m.Value;

|

]

]

]

|

|

|
[18] SELECT iCol, iValue, iYorN, 1-iYorN
[19] WHERE SQLCODE=0;
20] }
[21] TERMINATE : {
[22] INSERT INTO ginitable
[23] SELECT Col,
[24] sum((Yc*Nc)/(Yc+Nc))/sum(Yc+Nc)
[25] FROM summary GROUP BY Col;
[26] INSERT INTO mincol
[27] SELECT minpointvalue(Col, Gini)
(28] FROM ginitable;
[29] INSERT INTO result
[30] SELECT iNode, Col FROM mincol;
[31] SELECT classify(t.Recld,
[32] t.Node*MAXVALUE+m.Value+1,
[33] t.Col, t.Value, t.YorN)
[34] FROM treenodes AS t,
[35] ( SELECT tt.Recld Recld, tt.Value Value
[36] FROM treenodes AS tt, mincol AS m
[37] WHERE tt.Col=m.Col AND m.MiniGini > 0
(38] ) AS m
[39] WHERE t.Recld = m.Recld

|

]

]

5 Group-By Modifiers

Powerful aggregate extensions based on modification-
s and generalizations of group-by constructs have re-
cently been proposed by researchers, OLAP vendors,
and standard committees [5, 25]. Here, we show how
these aggregate extensions can also be expressed in
AXL, as an alternative and more flexible mechanism
to achieve their advanced functionality.

Consider the following query to an employee rela-
tion:
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Figure 1: Performance Comparison of AXL and C
For each division, show the average salary of senior
managers who make 3 times more than the average

TABLE summary(Col INT, Value INT, Yc INT, Nc INT, employees, and the average salary of senior engineers

who make 2 times more than the average employees
(in the same output record).

All aggregates in this query are grouped by the
same attribute (i.e., division). To express this query
in SQL2, we need to use joins and subqueries, and
then three passes through the employee relation will
be needed to produce the answer. To solve these prob-
lems, a new construct called SUCH THAT was pro-
posed in [5]. Example 9 shows the use of this con-
struct to express our query. Therefore, this extension
uses variables, such as X and Y, that range over groups
and are qualified by the SUCH THAT conditions.

]/Eb/cample 9 SQL extension SUCH THAT proposed in
5

SELECT division, avg(X.salary), avg(Y.salary)

FROM employee

GROUP BY division : X, Y

SUCH THAT X.title= ’senior manager’ AND
X.salary > 3 * avg(salary) AND
Y.title= ’senior engineer’ AND
Y.salary > 2 * avg(salary))

Queries with SUCH THAT constructs can be imple-
mented in AXL by mapping the queries into UDAs
according to simple transformation rules.

Example 10 Rewriting the SUCH THAT construct
using a UDA

AGGREGATE mscan2(title CHAR(20), salary INT,

{

querytitle CHAR(20), INT ratio) :

TABLE allstate(sum INT, cnt INT) AS VALUES(0,0);

TABLE finalstate(fsalary INT);
INITIALIZE: ITERATE: {
UPDATE allstate SET sum=sum-salary,
cnt=cnt+1;
INSERT INTO finalstate VALUES(salary)
WHERE title = querytitle;

}
TERMINATE: {
SELECT avg(fsalary) FROM finalstate

INT



WHERE fsalary >
(SELECT ratio*sum/cnt FROM allstate);
}
}

Then, using aggregate mscan2 defined above, we
rewrite Example 11 into the following query:

SELECT division,
mscan2(title, salary, ’senior manager’, 3),
mscan2(title, salary, ’senior engineer’, 2)
FROM employee
GROUP BY division;

We next discuss the implementation of a naive
Bayesian classifier, to illustrate both the power
and the limitations of OLAP extensions recently
introduced in SQL.

BAYESIAN CLASSIFIERS. The Boosted Bayesian Clas-
sifier [7] was the winner of the KDD’97 data mining
competition. Its derivation algorithm consists of a
main phase that produces a Naive Bayesian classifier-
s and of a boosting phase, that normally produces a
(modest) performance improvement.

The Naive Bayesian classifier makes probability-
based predictions as follows. Let Ay, Ag, ..., A be
attributes, with discrete values, used to predict a dis-
crete class C. (For the example at hand, we have four
prediction attributes, k = 4, and C' = 'Play’.) For at-
tribute values a; through ay, the optimal prediction is
the value ¢ for which Pr(C = ¢|A; = a1 A.. .NAj, = ay)
is maximal. By Bayes’ rule, and assuming indepen-
dence of the attributes, this means to classify a new
tuple to the value of ¢ that maximize the product of
Pr(C = ¢) with:

H Pr(A; =a;|C =¢)
J=1n K

But these probabilities can be estimated from the
training set as follows:

count(A; = a; N C =c)
count(C' = c)

Pr(Aj=a|C=c) =

To compute the numerators and denominators in
the above formula, we can use the GROUPING SET
construct as shown in Example 11. It’s AXL UDA
equivalent is shown in Example 12.

Example 11 Using DB2’s GROUPING SET

SELECT Outlook, Temp, Humidity, Wind,
Play, count(*)
FROM PlayTennis
GROUP BY GROUPING SETS ((Outlook, Play),
(Temp, Play), (Humidity, Play),
(Wind,Play), (Play))§
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Example 12 Using a UDA defined in AXL

AGGREGATE assemble(A1 INT, A2 INT, A3 INT,
A4 INT, C INT) :
(col CHAR(20), class INT)

INITIALIZE: ITERATE: {
INSERT INTO RETURN VALUES
(A1, C), (A2, C), (A3, C),
(A4, C), (>-all-’, C);

SELECT t.col, t.class, count(*)
FROM (SELECT assemble(Outlook, Temp,
Humidity, Wind, Play)
FROM PlayTennis) AS t
GROUP BY t.col, t.class;

160

140 ke B

DB2
UDA of AXL —8—
120 ]

100 |- x p

80 E

Time (in seconds)

60 * i

20 -

| | |
0 200 400 600 800 1000 1200
Number of Records (in thousands)

Figure 2: Bayesian Classifiers: grouping sets vs. UDAs

All counts needed in Example 12 are computed
in one pass through the data using the hash-based
method that is AXL’s default approach, while in com-
mercial systems, GROUPING SETS are often imple-
mented as a cascade of sorting operations. As illustrat-
ed by Figure 2, AXL’s specialized UDA yields a sub-
stantial speed-up, and improved scalability (DB2 on
our workstation refused to handle more than 800,000
records generated as a synthetic data set).

Therefore, while OLAP extensions recently added
to SQL extend its expressive power, their implemen-
tation cannot be expected to be optimal for all possi-
ble situations. There are many situations, where algo-
rithms other than those used by the database vendor
are better for the particular dataset at hand. In the
case of categorical classifiers, for instance, the number
of possible values is normally such that a hash-based
aggregation is applicable and produces the best result-
S.

More powerful OLAP functions are now being
added to SQL [25]. But since their implementation
can only be optimized for ‘typical’ situations, there
will remain a need for UDAs to serve special situa-



tions, and for a high-level language to facilitate their
implementation.

6 Datablades and Time Series

Databases are now pulled in different directions by
the need to keep the SQL standards while support-
ing new data types and advanced applications. This
has given birth to a proliferation of vendors’ packages
for new data types and application areas, such as, tex-
t, images, video, audio, time-series, spatial data, and
others. These packages include IBM’s DB2 Extender-
s, Informix’ Data Blades, Oracle’s Data Cartridges,
and Sybase’s Snap-Ins, which are basically libraries
of functions that can be called from an SQL query
on attribute values and blobs. While this approach
is adequate for certain applications, it suffers from
several limitations. For instance, the functions take
as operands individual tuples rather than tables, and
the canned operators provided by a datablade package
cannot be extended easily. The first limitation is par-
ticularly obvious in data mining applications, which
are devoted to finding interesting statistical correla-
tions in the relation. We believe that aggregate-based
extenders provide a better basis for data-mining dat-
ablades; in fact, AXL provides a powerful facility for
writing new data mining functions, or for combining
and extending existing ones to match the needs of the
application at hand.

An area where the limitations of datablades have
long been recognized is that of time-series for which
researchers have proposed extensions that are more
flexible and better integrated with SQL [17] than com-
mercial time-series datablades. Indeed, a sequence of
time-value pairs can naturally be viewed as a relation
with ordered tuples, and time-series queries can be
formulated via SQL-like query languages [3, 17].
Moreover, it is hard to imagine a more natural model
for sequences and ordered relations than the stream
model already used by our UDAs. The following
examples illustrate the use of temporal UDAs on
data that is stored and processed according to their
time stamps. Also, we have made much use of UDAs
in TEnORs (Temporally Enhanced OR System), to
support a valid time extension of SQL [9].

TEMPORAL EXTENDERS. We have a sequence of
events, each of which is active during a certain in-
terval (from, to). Find out at which point of time we
have the largest number of active events.

Example 13 Active Intervals

AGGREGATE density(from TIME, to TIME)
: (time TIME, count INT)
{ TABLE state(time TIME, count INT) AS (0,0);
TABLE active(endpoint TIME);
INITIALIZE: ITERATE: {

DELETE FROM active WHERE endpoint < from;

INSERT INTO active VALUES(to);
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UPDATE state
SET time=from, count=count+1

WHERE count < (SELECT count(*) FROM active);

}
TERMINATE: {
INSERT INTO RETURN
SELECT time, count FROM state;

Under the assumption that events are sorted by in-
creasing time, we can use the following query to find
the point of time that has the largest number of active
events.

Example 14 Coalescing
SELECT density(from,to) FROM events;

When events are not sorted by time, we can cre-
ate a new aggregate sortdensity that wraps around
the aggregate defined in Example 13. In aggregate
sortdensity, we specify the ordering of the input
stream. Then, in Example 14, we use sortdensity
instead of density to find the point of time that
has largest number of active events on an unordered
stream.

Example 15 Ordering

AGGREGATE sortdensity(from TIME, to TIME)
: (time TIME, count INT)

ORDER BY from ASC;
INSERT INTO RETURN
SELECT density(from, to);

This example, illustrates AXL’s redefinition facility
which takes an input stream and transforms it using
previously defined aggregates and sorting.

Let us consider now the well-known problem of coa-
lescing after projection in a temporal table. We define
the aggregate coalesce, which takes two parameter-
s: from is the start time, to is the end time. Under
the assumption that tuples are sorted by increasing s-
tart time, then we can perform the task in one scan of
the data. In the ITERATE routine, when the new in-
terval overlaps the current interval kept in the state
table, we coalesce the two intervals into one interval
that ends with the larger of the end time. Otherwise,
the current interval is returned while the new interval
becomes the current one.

Example 16 Coalescing

AGGREGATE coalesce(from TIME, to TIME)
: (start TIME, end TIME)
{ TABLE state(cFrom TIME, cTo TIME);
INITIALIZE: {
INSERT INTO state VALUES(from,to);

}



ITERATE : {

UPDATE state SET cTo = to
WHERE cTo >= from AND cTo < to;

INSERT INTO RETURN
SELECT cFrom, cTo FROM state
WHERE cTo < from;

UPDATE state
SET cFrom = from, cTo = to
WHERE cTo < from;

}
TERMINATE: {
INSERT INTO RETURN
SELECT cFrom, cTo FROM state;

7 Implementation of AXL

The AXL compiler translates AXL programs into
C++ code. The classifier algorithm in Example 8,
for instance, is compiled into more than 2100 C++
code. AXL adopts an open interface for its physical
data model, so that the system can link with a variety
of physical database implementations. Currently, we
use the Berkeley DB library[26] as our main storage
manager.

AXL supports both persistent tables and temporary
tables. Temporary tables are declared as local vari-
ables in the program and are memory based. Aggre-
gates in AXL are hash-based by default. However, we
also allow the use of predicates like SORT BY column
or SORT BY GROUPBY in a UDA to force sort-based
aggregation.

The runtime model of AXL is based on data pipelin-
ing. In particular, all UDAs, including recursive U-
DAs that call themselves, are pipelined, which mean-
s tuples inserted into the RETURN relation dur-
ing the INITIALIZE /ITERATE steps are returned to
their caller immediately. In order to do this, all lo-
cal variables (temporary tables) declared inside the
body of a UDA are assembled into a state struc-
ture which is passed into the UDA for each INITTAL-
IZE/ITERATE/TERMINATE calls

All the constructs described in this paper, but redef-
inition facility described in Example 15, are functional
in the current AXL prototype that contains more than
33,000 lines of C++ code. We are now adding more
SQL data types, O-R database extensions and a rich-
er set of supporting indexes and storage structures.
We expect the complete and more robust system will
eventually have 90,000 lines of code.

AXL UDAs can either be used as stand-alone pro-
grams or, imported into DB2 using the SQL-AG ap-
proach (with limitations due to the fact that we use
UDFs that return a single value for each call).
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8 Conclusions

The goal of extending database systems to support
new applications has been the focus of much interest
and activity for database researchers and commercial
vendors. While the previous efforts have concentrated
on UDFs and ADTs, we have shown here that UDAs
can play a major role in supporting new applications—
including datamining applications which have proved
a real challenge for O-R DBs [15]. Since aggregates
can be viewed as query operators on tables, they can
be defined using SQL (while UDFs are basically oper-
ators on tuples). The SQL statements defining a UDA
can in turn call other UDAs (often using recursion) to
yield great expressive power and flexibility. The AXL
prototype has turned this simple ideas into an efficient
implementation that builds on the lessons learned from
our two previous UDA prototypes i.e., the SQL-AG
system [23] and SADL [22].

Using AXL, the database programmer can extend
the functionality of the database system using the
familiar programming style and data types of SQL.
While ease of use is not a small advantage (particular-
ly given the difficulty of extending the database system
through UDFs), many other gains are to be expected.
Indeed, the traditional benefits of SQL, such as data
independence, query optimization and parallelization,
can be inherited by AXL programs. Therefore, in the
same way in which a database query can now be off-
loaded to a remote DB server, it will one day be pos-
sible to offload complex AXL programs to remote DB
servers.

The parallelization of AXL programs provides an-
other interesting direction for further work. While
parallelization of aggregates along their group-by par-
tition is easy to achieve, parallelization within the ag-
gregate itself can be difficult achieve for complex aggre-
gate functions [13]. The SQL statements used in AXL
provide more opportunities for compiler analysis and
automatic parallelization than procedural language s-
tatements, and this will provide a direction for future
research.

Another interesting issue to be investigated is the
relationship of AXL with procedural extensions for
SQL, which are now being considered for standards
with the aim of adding the power of procedural lan-
guages while retaining some of the benefits of SQL.
These procedural extensions can be added to AXL in
the future to overcome performance or expressiveness
limitations encountered in actual applications. So far
however, AXL proved sufficiently flexible and efficient
for most database applications. In fact, AXL might
also play a role in some data-intensive applications by
replacing languages such as PL/SQL and JDBC used
today.

We are currently working on several fronts. We
are developing a test suite of data mining functions
and database extenders written in AXL to validate



the functionality and performance of our system. At
the same time, we are completing and improving the
AXL compiler, e.g., by adding more complete support
for SQL data types, O-R extensions such as path
notation, and a richer set of supporting indexes and
storage structures. Issues such as better optimization
and parallelization techniques for AXL aggregates
provide other important topics for future research.
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