Optimizing Queries On Compressed Bitmaps

Sihem Amer-Yahia
AT&T Labs—Research
sihem@research.att.com

Abstract

Bitmap indices are used by DBMS’s to ac-
celerate decision support queries. A signifi-
cant advantage of bitmap indices is that com-
plex logical selection operations can be per-
formed very quickly, by performing bit-wise
AND, OR, and NOT operators. Although they
can be space inefficient for high cardinality at-
tributes, the space use of compressed bitmaps
compares well to other indexing methods. Or-
acle and Sybase IQ are two commercial prod-
ucts that make extensive use of compressed
bitmap indices.

Our recent research showed that there are sev-
eral fast algorithms for evaluating Boolean op-
erators on compressed bitmaps. Depending
on the nature of the operand bitmaps (their
format, density and clusterdness) and the op-
eration to be performed (AND, OR, NOT, ...),
these algorithms can have different execution
times. We present a linear time dynamic pro-
gramming search strategy based on a cost
model to optimize query expression evaluation
plans. We also present rewriting heuristics
that encourage better algorithms assignments.
Our performance results show that the opti-
mizer requires a negligible amount of time to
execute, and that optimized complex queries
can execute up to three times faster than un-
optimized queries on real data.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000.

329

Theodore Johnson
AT&T Labs—Research
johnsont@research.att.com

1 Introduction

A bitmap inder is a bit string in which each bit is
mapped to a record ID (RID) of a relation. A bit
in the bitmap index is set (to 1) if the correspond-
ing RID has property P (i.e., the RID represents a
customer that lives in New York), and is reset (to 0)
otherwise. In typical usage, the predicate P is true for
a record if it has the value a for attribute A. One such
predicate is associated to one bitmap index for each
unique value of the attribute A. The predicates can
be more complex, for example bitslice indices [18] and
precomputed complex selection predicates [21].

One advantage of bitmap indices is that complex
selection predicates can be computed very quickly, by
performing bit-wise AND, OR, and NOT operations on
the bitmap indices. Furthermore, the indexable selec-
tion predicates can involve many attributes. Let’s con-
sider some examples, using a customer database with
schema Customer(Name, Lives_in, Works_in, Car,
Number_of-children, Has_cable, Has_cellular)

e Suppose that we want to select all customers
who live in the New York city tri-state area and
who drive a car that is frequently purchased in the
state in which they live. Then the selection condi-
tion is, e.g. (Lives_in=“NJ” AND (Car=“Ford Ezpedi-
tion” OR Car=“GMC Suburban”)) OR (Lives_in=“NY"”
AND (Car=“Honda Accord” OR Car=“Ford Taurus”))
OR (Lives-in=“CT” AND (Car=“Mercedes 500SL” OR
Car=“Cadillac Seville”)).

e Suppose that we want to select all customers who
work in a state different than the one in which they
live, have one or more children, subscribe to a ca-
ble service, but do not have a cellular phone. Then
the selection condition is ((Lives_in=“AL” AND NOT
Works_in=“AL”) OR - -- OR (Lives_in=“WY” AND NOT
Works_in=“WY”)) AND (NOT Number_of-children = 0)
AND Has_cable=“Y” AND Has_cellular = “N”

While conventional indices in general cannot han-
dle these types of selections easily, bitmap indices can.
These properties of bitmap indices have led to consid-
erable interest in their use in Decision Support Sys-
tems (DSS). O'Neil and Quass [18] provide an excel-

lent discussion of the architecture and use of bitmap
indices. O’Neil and Graefe [16] show that bitmap in-
dices can be used as join indices for evaluating complex
DSS queries on star schemas. O’Neil and Quass [18]
point out that bitmap indices not only accelerate the
evaluation of complex Boolean query expressions, but
can also be used to answer some aggregate queries di-
rectly. Several database management system vendors
have incorporated bitmap index technology into their
products [24, 19]. See [11] for a discussion of the uses
of bitmap indexing in Oracle.

A problem with using uncompressed (Verbatim)
bitmap indices is their high storage costs and poten-
tially high expression evaluation costs when the in-
dexed attribute has a high cardinality. One method for
dealing with the problem of using bitmap indices on
high-cardinality attributes is to compress the bitmaps.
For example, in a secondary index B-tree each unique
key value might be shared by many records in a re-
lation. Oracle uses compressed bitmaps to represent
these sets of records [19]. A considerable body of work
has been devoted to the study of bitmap index com-
pression (see [15]). The use of bitmap compression
has many potential performance advantages: less disk
space is required to store the indices, the indices can
be read from disk into memory faster, and more in-
dices can be cached in memory. Some Boolean op-
eration evaluation algorithms which operate on com-
pressed bitmaps, without having to decompress them,
might be faster than same operations on the Verbatim
bitmaps. However, the use of bitmap compression can
introduce some problems. The data-dependent nature
of bitmap compression makes it difficult to apply the
existing optimal (uncompressed) bitmap design the-
ory [25, 26, 3, 4]. If the bitmap must be decompressed
before performing Boolean operations, the decompres-
sion overhead might outweigh any savings in disk space
or bitmap loading time.

In a recent research paper [13], we have made a de-
tailed study of the performance of algorithms for com-
pressed bitmap indices. In particular, we analyzed sev-
eral algorithms for performing Boolean operations be-
tween (possibly compressed) bitmaps. We found that
the performance of these algorithms varied widely de-
pending on the Boolean operation to be performed and
on the properties of the operand bitmaps. No single
algorithm was always the best one, and in many occa-
sions there were orders of magnitude difference in the
operation execution times.

Bitmap compression presents a number of bitmap
index design issues, including 1) optimal bitmap de-
composition [3, 4], 2) choosing optimal compression
algorithms for storage [13] and 3) optimal evaluation
of query expressions (composed of several Boolean op-
erators) over compressed bitmaps.

In this paper, we solve the third problem, of op-
timizing Boolean query expression evaluation. This

330

problem is the most pressing, because the first two
problems can be partially solved with heuristics [4, 13].
Furthermore, choosing an optimal storage method re-
quires an understanding of the Boolean predicate eval-
uation workload. If we know how to better evaluate
a query expression involving several bitmaps, it can
help making better decisions about the formats un-
der which these bitmaps should be stored. There-
fore, understanding how to optimally evaluate com-
plex Boolean predicates is a necessary prerequisite for
solving the other two problems.

Because the bitmaps are used as indices, any query
expression optimizer must execute very quickly. We
make the following three contributions:

(i) We present an O(n) algorithm to make a globally
optimal assignment of operation evaluation algorithms
to a fixed query expression parse tree, where n is the
number of operations in the tree.

(ii) We create an empirical cost model of Boolean op-
eration evaluation and bitmap format conversion.

(iii) We present fast query expression parse tree rewrit-
ing heuristics that work with the global optimizer to
further reduce the expression evaluation time.

We implemented a compressed bitmap index and
incorporated the expression optimizer. We ran a suite
of experiments to show the value of having an opti-
mizer. For example, in the case of one experiment with
real data using BBC encoded bitmaps [2, 1], optimiz-
ing the evaluation plan results in a two- to five-fold
speed improvement, and the improvement increases
with increasing attribute cardinality. Our optimizer
achieves comparable speedups on complex expressions
through the use of multiple operation evaluation algo-
rithms and some query rewrite rules.

The paper is organized as follows. We present in
Section 2 previous results about a performance study
of compressed bitmaps and explain what influences
the evaluation of query expressions in this context.
We then present our optimization strategy and cost
model (Section 3). We also describe new rewriting
rules that we incorporated as heuristics in our opti-
mizer to speed up query expression evaluation. Sec-
tion 4 briefly presents the main implementation mod-
ules. Finally, we give our performance results (Sec-
tion 5).

2 Bitmap Operation Performance

In a previous paper [13], we measured and analyzed
the performance of compressed bitmaps used for data
warehousing. In this section, we review these measure-
ments, with a particular focus on factors that affect the
performance of evaluating a query expression.

A bitmap is a representation of a set, where each
bit represents an element of some common domain. If
the bit is set (to one), the element is a member of the
set; else the bit is reset (to zero). When used as a
bitmap index, the bits represent records in a relation

and a bitmap is created for each distinct value of the
indexed attributes in the relation. In an index where
the bitmap can be compressed and operators can use
compressed bitmaps as input, a bitmap (i.e., a set)
may have several possible representations or formats.
It is always possible to translate a bitmap from one
representation to another without loss of information.

Boolean operations on bitmaps can be performed
using several algorithms. Each of the algorithms re-
quires the inputs to be in a certain format and pro-
duces an output in a given format. The costs of an al-
gorithm depend on the properties of the input bitmaps
and the Boolean operation (AND, NOT, ...) to be per-
formed.

The set represented by a bitmap can therefore be
stored and manipulated while it is in one of several dif-
ferent formats, some of which bear little resemblance
to bitstrings. We might be more precise to say that
we work with special set representations rather than
bitmaps. However “bitmap” is the established term
and we continue to use it.

We first present the different bitmap formats and
the Boolean operation evaluation algorithms we are us-
ing in this paper. We finish this section by introducing
the problem of evaluating a Boolean query expression
on bitmaps.

Verbatim: The bitmap is represented as bit string.
Run Length Encoding (RLE): The bitmap is rep-
resented as a list of differences in bit positions of suc-
cessive set bits. These differences are stored as four
byte integers (by restricting the size of the bitmap,
they can also be stored in two byte integers). In this
paper, we use only one-sided RLE codes (i.e., we rep-
resent only runs of zeros, not runs of ones).

Gzip: A Verbatim bitmap that has been compressed
using zlib [5].

ExpGol: A RLE bitmap that has been compressed
using the variable bit length encoding described in [15].
We use only the one-sided ExpGol encoding.

BBC: A Verbatim bitmap that has been compressed
using the variable byte length encoding described in [2,
1]. We use only the one-sided BBC encoding.

A wide variety of other bitmap representations have
been proposed. For example, one could use two-sided
codes, list of set bit positions instead of run length
encodings, or variable byte length representations of
the run lengths [17]. However, this collection of for-
mats is representative of the best bitmap formats and
is sufficient for our optimization study.

There are several algorithms for evaluating a
Boolean operation between two operands, each using
specific formats for their inputs and having a differ-
ent cost. The algorithms we use in this paper are the
following(for more details, see [13]).

Basic: The two input operands are in the Verbatim
format, and the output is also in the Verbatim for-
mat. The output is computed by taking the word-

331

size Boolean_op between the two inputs. The follow-
ing code fragment implements the Basic algorithm to
compute the OR of bitmaps rbm and Ibm, and store
the result in Ibm (which should be arrays of the largest
possible integer type):

BitmapLength=MaxLength(lbm, rmb);
for (i=0;i<BitmapLength;i++) 1lbm[i] [= rmb[i];

Inplace: One of the operands is in the Verbatim for-
mat, the other can be in RLE, ExpGol or BBC. The
second bitmap is applied to Verbatim bitmap in an
operation-specific manner. In the case of an OR oper-
ation the bits indicated by the second bitmap are set
in the Verbatim bitmap. The output is a Verbatim
bitmap. The following code fragment implements the
OR operation, where Ibm is a character array and rbm
is an integer array:

currpos = -1;

for (i=0;i<NumBitsRhs;i++)
currpos+=rbm[i] ;
bytepos=currpos/8; bitpos=currposi8;
1bm[bytepos] |=1 << bitpos;

Merge: This algorithm takes input operands in the
RLE format and produces an RLE bitmap. The out-
put is created by merging the inputs, and producing
an output bit as required by the operation being eval-
uated. The following code fragment implements the
AND operation, where Ibm and rbm are the operands,
stored as integer arrays, and obm is an integer array
that is large enough to store the result:

obit = -1; opos = 0; lbit = 1bm[0]-1;
lpos = 0; rbit = rbm[0]-1; rpos = 0;
while ((1pos<NumBitsLhs)&& (rpos<NumBitsRhs))
if (1bit == rbit)
obm[opos++]=1bit-obit; obit=1bit;
1bit+=1bm[++1lpos]; rbit+=rbm[++rpos];
else if (1bit<rbit) 1bit+=1bm[++1lpos];

else rbit+=rbm[++rpos];

Direct: The input and output bitmaps are in a com-
pressed format, and the operation is specialized to
execute directly on the compressed bitmaps. An-
toshenkov [2, 1] presents algorithms for Direct BBC
operations (which we use in this paper), and Shoshani
et al. [22] present Direct operations for their hybrid
bitmap encoding. Because these algorithms are very
complex and depend on the format that is used, we
refer the reader to [2, 1] and [22] for more details.
Note that in order to use a particular evaluation
algorithm, the input bitmaps must be provided in the

required format. If the inputs are not in the necessary
format, they must be converted before the algorithm
can be applied.

It is possible to develop variants of these four eval-
uation algorithms that use as input or produce as out-
put different formats. For example, the hybrid nature
of the BBC encoding allows an especially fast version
of the Inplace algorithm that uses as input a Verba-
tim and a BBC bitmap (which we will refer to as In-
place . BBC). We also developed an Inplace algorithm
that uses a bitmap in the ExpGol format instead of the
RLE format (which we refer to as Inplace_ExpGol), to
save on a transformation step (from ExpGol to RLE).

Boolean Operation Evaluation

Depending on the properties of the operand
bitmaps, Boolean operation evaluation algorithms can
have orders of magnitude differences in performance.
There are two bitmap properties that can have a sig-
nificant effect on format conversion and algorithm per-
formance : their density and their clusteredness. The
density of a bitmap is defined as the fraction of bits set
in the bitmap. The clusteredness, or non-uniformity,
or bias, of a bitmap is a measure of the departure from
independence of the value of a neighboring bit. Highly
clustered bitmaps tend to have all of their set bits in
a few small regions of the bitmap. Due to space con-
straints, all of the experiments in this paper use non-
clustered bitmaps (each bit is independent). See [13]
for a detailed discussion of the performance effect of
bitmap properties on Boolean operation evaluation.

If the output of an operation evaluated with, for
e.g., Merge is used as input to an operation evaluated
with Basic, the RLE output of the Merge algorithm
must be converted to a Verbatim format suitable as in-
put to the Basic algorithm. Similarly, a bitmap stored
in BBC format must be converted to RLE format for
use in a Merge algorithm and so on. The cost of con-
verting bitmaps can be a significant and determining
factor in choosing which algorithms to use to evaluate
each operation in a query expression. See [13] for the
effect of format conversion.

3 Optimizing Query Expressions

Given the wide variety of bitmap formats and evalu-
ation algorithms, we cannot pick any single format or
evaluation algorithm which is always the best one. In-
stead, we can optimize the evaluation plan and make
use of the best bitmap format and evaluation algo-
rithm for every operation. This optimization cannot
be performed locally for each operation because the
output of one operation (usually) becomes the input
of another. If the format of the output is not what
the next operation expects as its input, a potentially
expensive format conversion is required. Therefore,
optimal algorithm assignment (physical optimization)
must be global. We present a fast O(n) dynamic pro-

332

gramming physical optimization algorithm.

We observed that it is possible to rewrite query ex-
pressions to obtain a faster equivalent expression. A
wide variety of expression rewritings are possible. For
example, one can try to combine common subexpres-
sions. Another option is to use algebraic transforma-
tions to reduce the number of operations [25]. One can
even use semantic information to obtain more efficient
expressions [26]. Because we are optimizing an index
structure, a very limited optimization time is available
to us. The approach that we choose is to use a small
collection of simple heuristic query rewritings that are
robust to incorrect assumptions about the properties
of the bitmaps involved in the rewritten expressions.
These rewritings are inspired from our previous per-
formance evaluation [13] and are designed to let the
physical optimizer assign a better collection of algo-
rithms to a portion of a query expression. We present
the physical optimization and the cost model first, and
the rewrite rules second.

Inplace_ExpGol, Verbatim

Basic, Verbatim OR
OR cost=1.3073 _ cost = 0.1573
- =
A=115 \O éxp(l;ﬁ.S })R Merge, RLE
Bocol T cos-ogest azposy \O% 700058
A=2051 OR RLE Merge, RLE
RLE e \oost =0.7077 A=2727 cost = 0.00339
— RLE R
=212t OR \ Merge, RLE
" S N\ ot=0429 a—p716 Actgle o
QL:EZHO A=1619 RLE

Figure 1 : A simple example

We consider a very simple example where we use
a range query on a single attribute A in which each
attribute value has a bitmap with density 1/3000.
The query expression is the following: (A=115) OR
(A=2051) OR (A=2727) OR (A=2710) OR (A=1619).
This expression is as a parse tree where leaf nodes
are bitmaps and interior nodes are Boolean operations.
Each interior node is connected to one (case of NOT)
or two subtrees (case of AND or OR). At each leaf,
we know the format, density and clusteredness of the
corresponding disk-resident bitmap for each value of
attribute A. We can propagate this information up to
the root node by computing an estimate of these prop-
erties at each interior node. For each interior node, we
must assign an evaluation algorithm, and make any
required format conversions.

Figure 1 shows two different algorithms assignments
for the example. In one case, all the nodes are as-
signed the Basic algorithm and the estimated cost of
the query expression is 1.3 seconds and the one. In the
other case, the cost is 0.15 seconds. As can be readily
seen, the optimization can have a significant effect on
performance.

Optimization Algorithm

We have developed an optimization algorithm that is
a variant of the well-known dynamic programming al-
gorithm, first presented in [20]. This algorithm uses
an enumerative search strategy but avoids enumerat-
ing all query plans by dynamically pruning suboptimal
parts of the space as partial plans are generated.

Given a Boolean operation, an evaluation algorithm
and the properties of the operands (format, bit den-
sity and clusteredness), we can estimate the time to
perform the operation, and make any necessary for-
mat conversions (e.g., convert an RLE output to the
desired Verbatim output). Therefore, the time to eval-
uate the whole query expression is the time to evaluate
the right subtree (if any) plus the time to evaluate the
left subtree (if any), plus evaluation and transforma-
tion costs at the root node. Computing the time to
evaluate the subtrees is a procedure identical to that
for computing the time to evaluate the whole tree. If
the subtree is a leaf, the only cost is to transform the
bitmap representation into the format expected by the
algorithm that will be applied at its parent. Because
the only interaction between the evaluation of the root
and the evaluation of the subtrees is through the con-
version costs, we can develop an efficient dynamic pro-
gramming algorithm.

Our optimization algorithm decides, in two traver-
sals of the parse tree, which is the best evaluation al-
gorithm at each operation node. The algorithm starts
by computing, at each operation node, the lowest cost
to evaluate the expression represented by the subtree
rooted at the node, for each possible output format.
The optimal evaluation algorithm for each output for-
mat is also stored. By making a second pass through
the tree, we make the algorithm assignments to each
node.

In order to give a detailed description of the un-
derlying dynamic programming algorithm, we need to
make the following definitions:

n: A node in the query expression tree.

p(n): A number in [0,1] indicating the fraction of bits
set (bit density) in the bitmap output by n.

¢(n): A number in [.5,1] indicating the clusteredness
of the bitmap output by n.

op(n): Operation that node n performs. If n is a leaf,
the operation is to fetch a bitmap (we set this cost to
zero, as it can not be optimized). If n is an interior
node, the operation is a Boolean operation.

le(n): left child of node n. re(n): right child of node
n.

A: Algorithms used to evaluate the Boolean opera-
tions. A(op) a subset of A, contains the set of algo-
rithms that can be used to evaluate op.

F: Collection of bitmap formats.

F,(A): Output format of algorithm A € A.

F;(A): Input format of the left operand of algorithm
Ae A

333

F.(A): Input format of the right operand of algorithm
Aec A
F;(n): Format in which leaf node n is stored.
conv(F1, F3,p,c): Time to convert a bitmap with bit
density p and clusteredness ¢ from format Fj to format
F.
ev(op, A, py, c1,pr,) is the time to evaluate operation
op using algorithm A, where the left operand has bit
density p; and clusteredness ¢;, and the right operand
has bit density p, and clusteredness c,.
cost(n, F'): The optimal total time to evaluate the
query expression represented by the tree rooted at n
and producing output in format F.

We can derive the following equations for cost(n, F')
as follows:
ecost(n, F) = conv(F;(n), F(n),p(n),c(n)) if n is a leaf
ecost(n, F') = minac a(op(n)){conv(Fo(A), F,p(n), c(n))+
ev(op(n), A, p(lc(n)), c(le(n))) + cost(Fi(A),lc(n))}
if n is unary
ecost(n, F') = minac a(op(n)){conv(Fo(A), F,p(n), c(n))+
ev(op(n), A, p(ic(n)), c(le(n)), p(re(n)), c(re(n)))+
cost(Fi(A),le(n)) + cost(F,(A),rc(n))}
if n is binary .

If we precompute cost(lc(n), F) and cost(re(n), F') for
each F € F, we can evaluate cost(n,F') in O(|A|)
time. We need to evaluate this function for every node
n in the expression tree T', and for every format F' € F.
Therefore, computing the minimum time to evaluate
a query expression requires O(|T| * |A| x| F|) = O(|T)
time.

Cost Model
Our optimization algorithm requires a cost model for
each Boolean operation evaluation

ev(op, A, pi, ¢, pr,cr), a cost model for the transfor-
mation costs conv(Fy, Fs,p,c), and a way to estimate
the properties of the bitmap produced by each node in
the tree.

The execution times of the algorithms are difficult
to model analytically. In addition, analytical mod-
els can be fragile. Instead, we developed an em-
pirical performance model. We measured the time
to perform each operation using each applicable al-
gorithm for a range of the bitmap operand param-
eters (see [13] for a discussion of the relevant per-
formance parameters). Given a particular function
ev(op, A, pi, ¢, pr, ¢r) to evaluate, we use linear inter-
polation through the closest measured data points. In
a similar manner, we create an empirical cost model to
estimate conv(Fy, F»,p,c). While constructing these
models is expensive (several hours of execution time),
it only needs to be constructed once per installation
site, and is robust to changes in implementation and
local conditions.

The cost model needs an estimate of the density
and clusteredness of each operand bitmap. The den-

sity and clusterdness of the leaf node bitmaps can be
computed at compression time. The bitmaps output
by the interior nodes are computed dynamically, so
we need to estimate their density and clusteredness.
One estimator is to assume that bitmaps are uncor-
related, except for bitmaps of values of the same at-
tribute. Let p; and p, be the density of the right and
left operand bitmaps, and let p, be the density of the
output bitmap. Similarly, let ¢; and ¢, be the clus-
teredness of the right and left operand bitmaps, and
let ¢, be the clusteredness of the output bitmap. Then:
Po =p1 + pr — p1 *pr, OR, different attribute

Po = p1 + pr, OR, same attribute

Po = pi * pr, AND, different attribute

po = 0, AND, same attribute

co=(c1+ecr)/2

For a NOT operation, ¢, = ¢; and p, = 1 — p;.
The bit density and clusteredness can be computed
for every node in the expression tree using a simple re-
cursive procedure. In our case, we do it when building
the tree.

Rewriting NOT-Free Expressions

Suppose that we have an expression involving only OR
operations. If the operands are sparse, then Inplace is
a fast evaluation algorithm. The left operand must be
Verbatim, the right RLE (or BBC, or ExpGol), and
the output is Verbatim. We can minimize the number
of conversions into Verbatim by reorganizing the query
expression to ensure that the result of an OR (that is
in Verbatim) is given as the left operand of the next
OR operation. To encourage the physical optimizer to
use the Inplace algorithm, we need to convert the tree
of OR operations from a bushy tree to a left-deep tree
(to minimize the number of conversions to Verbatim),
and put the densest bitmap at the leftmost leaf, since
making this operand a right operand gives the least
performance improvement when using Inplace. This
transformation, illustrated in Figure 2, can always be
applied because of the commutativity and associativity
properties of the OR operation.

® @
(o) (=)

to densest

—
o) %1 fanp
A BC D B

(densest)
\A

1
1
1
1
1
1
1
1
1
:
1
: (densest)
1

1

1

c
(densest) sparses

Figure 2 : Transformation of ANDs and ORs

Let us now suppose that we have a query expression
involving only AND operations. We know, from our
previous experiments, that the Merge and Direct al-

334

gorithms are the fastest ways to perform the AND op-
eration when the operands are sparse. Merge requires
both input operands to be in a RLE format and Di-
rect requires them to be in a BBC format. To encour-
age the use of these algorithms, we convert a bushy
tree of AND operations into a left-deep tree, with the
operands sorted from the sparsest on the bottom to the
densest at the top. The sparse operands are clustered
together and are likely to be evaluated with Merge or
Direct. When the density reaches a certain limit, we
expect the optimizer to assign a Reverse Inplace al-
gorithm (an Inplace algorithm where the left operand
has to be in RLE/BBC/ExpGol and the right one in
Verbatim). The format of the result is then Verbatim
and the optimizer assigns to the remaining operations
an Inplace algorithm. This transformation is also il-
lustrated in Figure 2.

A significant advantage of these transformations is
that they tend to be resilient to mistakes in the as-
sumed formats of the operands. Let’s consider the case
of an OR operation. The Inplace algorithm can take
RLE, ExpGol, or BBC as the right operand format.
If the right operand is instead supplied as Verbatim,
then the reasonably efficient Basic algorithm can be
used. With the AND operation, we expect that the
format of sparse operands deep in the tree to be in
RLE or BBC format. If one or more is instead Verba-
tim, then the evaluation algorithm switches to Inplace
and/or Basic.

Suppose that we have a two level expression, e.g.
an AND of OR clauses, or an OR of AND clauses. The
OR and AND transformations presented above can still
be applied within their own subtrees. These transfor-
mations can be applied iteratively because the trans-
formations are not likely to change the format of the
output. The output format of an OR subtree that has
a sparse result is likely to be RLE or BBC (because
the Merge and Direct algorithms are fast for sparse
bitmaps), which is what our AND subtree rewriting
expects. The output of a sparse AND might be in a
Verbatim format, but this does not affect the validity
of the OR subtree rewriting.

For three or more levels, the assumptions behind
the transformations becomes questionable. However,
there will be relatively few operations so far from the
leaf level, so most of the expression will benefit from
the rewrite.

Creating AND_NOT and OR_NOT

These rewritings aim to reduce the number of oper-
ations in a query expression by absorbing the NOT
operation into an AND or an OR when it is possible.
a AND NOT b is equivalent to a AND NOT b.

a OR NOT b is equivalent to a OR.NOT b.

ANDNOT and ORNOT are two new operations for
which we have fast algorithms to evaluate (Oracle uses
the AND_NOT operation, calling it MINUS [11]). The

benefit of using these operators is not only to reduce
the number of operations in the expression, but to al-
low the use of faster evaluation algorithms that use
and accept a wider variety of bitmap formats.

The AND_NOT operator can be evaluated by In-
place, having performance similar to that of the OR
operation evaluated by Inplace. The AND NOT oper-
ator can also be evaluated by Merge and Direct, with
performance between that of AND and OR evaluated
by Merge and Direct. The ORNOT operator can be
evaluated by Inplace, with performance similar to that
of the AND operation evaluated by Inplace. However,
there is no good implementation of OR_NOT using the
Merge or Direct algorithm (assuming one-sided codes).

The AND NOT and OR.NOT transformations can
be integrated with the local AND and OR subtree
rewritings. After creating the (AND/OR) left-deep
subtree and performing reordering, the NOT opera-
tions are absorbed into the parent operations (except
for any NOT operation which is the left child of the left-
most leaf). There are some considerations for operand
reordering when NOT operations are absorbed — the
density of a negated operand should be computed as
though the NOT operation is not applied (as it will be
absorbed). After rewriting the expression, the proper-
ties of the nodes in the subtree might have to be re-
computed (because they depend upon the properties
of their children, which might have changed).

4 TImplementation

We built a prototype implementation of a compressed
bitmap index that incorporates expression optimiza-
tion. The index has three major components: a com-
pressed bitmap object, a storage manager, and the op-
timized plan generator. The compressed bitmap ob-
ject is a convenient abstraction for handling a bitmap
and performing the necessary actions, such as format
conversions and operation evaluation. Each bitmap
object represents a bitmap of a particular length. Mul-
tiple bitmap objects can exist simultaneously.

The storage manager permits the convenient re-
trieval of bitmaps (i.e., in their disk-resident format),
given the attribute name and the attribute value. Be-
cause we have assumed that only low to moderate car-
dinality attributes are indexed, the attribute-value-to-
bitmap index is very simple (Oracle uses a more so-
phisticated index, see [19, 11]). The storage manager
also records bitmap density and clusteredness statis-
tics for use by the optimizer. We store all bitmap
indices for all attributes in a single file for convenient
access during the optimization and evaluation stage.
The layout of the index is determined at index cre-
ation time. However we have not addressed optimal
bitmap layout.

The storage manager breaks each bitmap into fixed
size verbatim bitmap blocks before compression and

335

disk storage. This horizontal partitioning significantly
reduces operation evaluation time by increasing the
likelyhood that a bitmap is in the CPU cache when
it is used as an operand (e.g., an operand is usually
the result of a recent operation, or was recently loaded
from disk). For example, we found that performing
an operation between two 8 Mbyte verbatim operands
takes .91 seconds when an 8Mbyte block size is used,
but .088 seconds when a 64 Kbyte block size is used.

The optimizer uses the algorithms we have de-
scribed to rewrite an expression tree and make an eval-
uation algorithm assignment at each interior node. We
walk this tree inorder traversing the left branch first
to generate an evaluation plan. Finally, a simple pro-
gram uses the bitmap objects and the storage manager
to execute the plan.

5 Experiments

To test the beneficial effect of our optimizer, we built
bitmap indices on a synthetic data set and a real data
set using the Gzip, BBC, and ExpGol compression al-
gorithms and with varying bitmap block sizes. As was
suggested in [13], we compressed bitmaps that had a
bit density of .05 or less, and stored the denser bitmaps
Verbatim.

Data Sets: The synthetic data set has seven at-
tributes, with attribute cardinalities 3, 10, 30, 100,
300, 1000, 3000. Each attribute value is an integer
chosen independently and uniformly randomly from
the attribute range. This data set is intended to aid
in exploring performance trends rather than to model
a real data set. Therefore, in addition, we extracted
data from an actual data set, which contains informa-
tion about subscribers to an AT&T service. The real
data has seventeen attributes with cardinalities 3, 3, 3,
4,7, 50, 53, 59, 209, 241, 251, 383, 792, 793, 856, 995,
1079. The attribute values are strings, and the distri-
bution of attribute values of each attribute is highly
skewed. Every attribute is indexed in both data sets.

The compressed bitmap indices are fairly space ef-
ficient. Their size is not much larger than the size
of the data set when compressed. In the case of the
synthetic data (16 million tuples, total size of 356 MB,
compressed size of 144 MB), the size of the BBC index
is 182 MB, the size of the ExpGol index is 144 MB and
the size of the Gzip index is 226 MB. For the real data
(6 million tuples, total size of 427 MB, compressed size
of 86 MB), the size of the BBC index is 110 MB, the
size of the ExpGol index is 94 MB and the size of the
Gzip index is 127 MB. In the case of the real data, all
17 attributes are indexed with 7.3 bits per tuple per
attribute (using the ExpGol compressed index).

We built indices with bitmap block sizes ranging
from 8 Kbytes to 64 Kbytes to determine the effect of
block size on performance. We found that performance
improved as the block size increases (faster queries and
smaller indices), but that the improvement is minor

after a block size of 32 Kbytes.

Queries: A significant advantage of bitmap indices is
their ability to handle complex ad-hoc queries. How-
ever, one cannot show trends with ad-hoc queries. In-
stead, we used the following types of parameterizable
queries:

Range: Parameterized by attribute A and range k, a
range query is (A = v1) OR --- OR (A = vg) where
v;’s are randomly chosen in the range of A.
Inequality: Parameterized by attributes A, B and
range k,an inequality query is (A = v; AND NOT B =
w1) OR --- OR (A = v, AND NOT B = wy) where
v;’s and w;’s are randomly chosen

Although both of these query types are essentially

ranges, the inequality queries are complex conditions
difficult to evaluate using conventional indices and dif-
ficult to optimize using ad-hoc techniques. Inequality
queries will also show the benefit of the NOT rewriting
strategy.
Measured Times: In our experiments, we measure
only the CPU time to evaluate the Boolean expres-
sion, not the time to fetch the compressed bitmaps
from disk. This measurement strategy greatly sim-
plified the experiments as we did not need to flush
the disk cache between trials. Furthermore, the index
loading time depends on the disk-resident bitmap for-
mat and the index layout, neither of which we optimize
in this paper. Each data point represents the average
of 11 trials. To ensure consistent measurements, for
each data point we make a first evaluation and throw
away the measurement, to ensure that the cache is
warm for the remaining trials.

One component of the query evaluation time is the

optimization time. However, even for very complex
queries (i.e., inequality queries over 200 values) the op-
timization time was negligible (1/10 of the total time
for some complex queries). In the rest of the discus-
sion, we focus on the query evaluation time.
Range Queries: In Figure 3, we show the time to
perform a range query over 20 values of an attribute
of the synthetic data as the attribute cardinality is
varied. For the BBC and the ExpGol compressed
bitmaps, we show the two extreme evaluation plans:
Basic, which performs no rewriting and assigns the
Basic evaluation algorithm at each operator node (the
default evaluation plan), and All_opt, which uses all of
the optimization techniques that we have discussed. In
the case of Gzip bitmaps, Basic and All_opt are equiva-
lent: the optimizer always assigns the Basic algorithm.
The bitmap block size is 64 Kbytes.

We note that Figure 3 is a log-log chart to better
show performance trends over a wide range of attribute
cardinalities. The optimizer significantly reduces ex-
pression evaluation time for the BBC encoded bitmap
indices, and for the ExpGol bitmap indices when the
attribute cardinality is moderately large. This differ-
ence is due to the availability or unavailability of fast

336

evaluation algorithms. Note also that Gzip encoded
bitmaps can evaluate ranges faster than ExpGol en-
coded bitmaps for attributes with small to moderate
cardinalities, indicating that using multiple compres-
sion schemes at index creation time can improve per-
formance.

Range query time (20), synthetic

—a—gzip all opt

10 —e— BBC basic

- - BBCallopt
—X— ExpGol basic
- X- ExpGol all opt
n
©°
5 1
3 1o 10000
n
N N
X~
‘e, .
%
0.1 <
attribute cardinality
Figure 3 : Time to evaluate a range query over 20

values vs. attribute cardinality (synthetic data)

cost for a 10% range query

N
o

y = 0.4593x* 181

+ BBC
// X ExpGol
"
— Power
(ExpGol)
. y =0.0002x + 0.4962 —Linear

o (BBC)

N

=
o

seconds

.

=
o

0

0 500 1000 1500 2000 2500 3000
attribute cardinality

Figure 4 : Range expression evaluation time trends
(synthetic data)

We find that the time to evaluate a range query
expression is very well fit by a linear regression on the
size of the range. By interpolating, we created Figure 4
which shows the time to evaluate a range query over
10% of the attribute values as the attribute cardinality
increases. This chart shows that by optimizing the
evaluation of the range query, evaluating a range over
300 values of an attribute with cardinality 3000 takes
only twice as long as evaluating a range over 3 values
of 30. In Figure 4 we fit trend lines to the points, a

Time for an inequality range (50), synthetic

15 —e—BBC basic
—e—BBC phys opt

- ®- BBC all opt
—*— ExpGol basic
—x—ExpGol phys opt
- X- ExpGol all opt |

12 4

seconds

attribute cardinality

Figure 5 : Time to evaluate an inequality range over
50 values vs. attribute cardinality (synthetic data)

power regression for the ExpGol encoded bitmap, and
a linear regression for the BBC encoded bitmaps.
Inequality Queries: Figure 5 shows the time to eval-
uate an inequality query over the synthetic data. In
addition to showing the time to evaluate the Basic
plan and the All_opt plan, we show the time to eval-
uate the plan generated using the physical optimizer
but with no rewriting (Phys_only). The performance
improvement is due to absorbing the NOT operators
into AND_NOT operators.
Time Ratio for Queries on Real Data: In Fig-
ure 6, we show the time to evaluate a range query using
the all opt plan divided by the evaluation time using
the basic plan (we change our presentation method to
unclutter the charts). Note that the degree of improve-
ment varies considerably as the attribute cardinality
increases. The performance of the evaluation algo-
rithms, and thus the optimizer, depends on the char-
acteristics of the bitmaps. The data for these experi-
ments is real data, and thus we cannot precisely tune
the bitmap characteristics. However two trends are
clear: For the BBC encoded bitmaps, optimizing the
evaluation plan results in a two- to five-fold speed im-
provement. Furthermore, the improvement increases
with increasing attribute cardinality. Figure 7 shows
similar results for inequality queries over the real data.
On the synthetic data, the NOT-free rewriting has
little effect because every attribute value has the same
density. In Figure 8, we isolate the performance im-
provement due to NOT-free rewriting, comparing the
performance obtained by the phys opt plan with a plan
obtained by both rewriting and physical optimization.
While not as dramatic as the benefit of the physical
optimizer, rewriting does account for a further 4% to
10% performance improvement.

337

Performance improvement for a range query (50)

--BBC
- ExpGol

0.8

j77

Fraction of time

0 200 400 600 800 1000

attribute cardinality

Figure 6 : Time to execute an optimized range query
relative to the unoptimized query (50 values, real data)

Performance improvement for an inequality query (50),
real data
1
0.8 o
o K\\‘\.
-
g e ——— —e—BBC
Z 06 T = == physical
o T e —e—BECall
c S~ opt
o ~
= 04 = —%— ExpGol
I3} ~~ physical
IS ~e
= |[—X—ExpGol all
0.2
0 T T T T
0 200 400 600 800 1000
cardinality

Figure 7 : Time to execute an optimized inequality
query relative to the unoptimized query (50 values,
real data)

Performance improvement due to rewriting, real
data

--BBC ‘
- ExpGol

T
] W
0 ‘ ‘ ‘
200) %o 600 800 1000
3 Vg

attribute cardinality

i
o

LY

AN

i
~

©

o

percent improvement

Figure 8 : Performance improvement due to NOT-free
rewriting of a range query (50 values, real data)

6 Conclusion

In this paper, we have presented fast and efficient op-
timization techniques for the evaluation of Boolean
query expressions on compressed bitmap indices. We
have shown that our optimization algorithm, combined
with some simple heuristics, significantly decreases the
evaluation time of complex query expressions. We are
currently integrating our prototype with the Daytona
database system [6] to improve its performance in an
OLAP environment. Our optimization algorithm is
extensible and can support other Boolean operation
evaluation and bitmap compression algorithms. Fi-
nally, we are working on extending our techniques to
the evaluation of OLAP queries.

References

[1] G. Antoshenkov. Byte-aligned data compression.
U.S. Patent number 5,363,098.

[2] G. Antoshenkov. Byte-aligned bitmap compres-
sion. Technical report, Oracle Corp., 1994.

[3] C-Y. Chan and Y.E. Ioannidis. Bitmap index de-
sign and evaluation. In SIGMOD ’98.

[4] C-Y. Chan and Y.E. Ioannidis. An efficient
bitmap encoding scheme for selection queries. In
Proc. 1999 ACM SIGMOD Conf.

[5] J-L. Gailly and M. Adler.
http://quest.jpl.nasa.gov/zlib/.

Zlib home page.

[6] R. Greer. Daytona and the fourth-generation lan-
guage Cymbal. In Proc. 1999 ACM SIGMOD
Conf.

[7] T.Ibaraki and T. Kameda. Optimal Nesting for
Computing N-relational joins. In ACM Transac-
tions on Database Systems, volume 9, September
1984.

[8] Y. E. Ioannidis and Y. Kang. Randomized al-
gorithms for Optimizing Large Join Queries. In
Proc. ACM SIGMOD Conf., Atlantic city, NJ,
1990.

9] Y.E.Ioannidis. Query Optimization. In Encyclo-
pedia of Computer Science, 1997.

[10] Y. Ioannidis and E. Wong. Query optimization
by simulated annealing. In Proc. ACM SIGMOD
Conf., 1987.

[11] H. Jacobsson. Bitmap indexing in Oracle data
warehousing. http://WWW-
DB.Stanford. EDU/dbseminar/Archive/
http://FallY97 /slides/oracle.

338

Query Optimization
ACM Comp. Surveys,

[12] M. Jarke and J. Koch.
in Database Systems.
16(2):111-152, June 1984.

[13] T. Johnson. Performance measurements of com-
pressed bitmap indice. In Proc. Conf. Very Large
Data Bases, 1999.

[14] M.V. Mannino, P. Chu, and T. Sager. Statisti-
cal Profile Estimation in Databse Systems. ACM
Comp. Surveys, 20(3):192-221, September 1984.

[15] A. Moffat and J. Zobel. Parameterized compres-
sion of sparse bitmaps. In Proc. SIGIR Conf. on
Information Retrieval, 1992.

[16] P. O'Neil and G. Graefe. Multi-table joins
through bitmapped join indices. ACM SIGMOD
Record, 24:8-11, 1995.

[17] P. O’Neil, 1998. Personal communication.

[18] P. O’Neil and D. Quass. Improved query per-
formance with variant indices. In SIGMOD ’97,
1997.

[19] Rdb7:
Performance enhancements for 32 and 64 bit sys-
tems. http://www.oracle.com/products/servers/
rdb/html/fs_vlm.html.

[20] P.G. Selinger and al. Access path selection in a
rdbms. In Proc. ACM SIGMOD Conf., Boston,
May 1979.

[21] M. Schaller. Reclustering of high energy physics
data. In Proc. Scientific and Statistical Database
Management Conf., 1999.

[22] Shoshani and et al. Multidimensional index-
ing and query coordination for tertiary storage
management. In Proc. Scientific and Statistical
Database Management Conf., 1999.

[23] A. Swami and A. Gupta. Optimization of large
join queries. In Proc. ACM SIGMOD Conf., 1988.

[24] Sybase iq indexes. In Sybase IQ Administra-
tion Guide, Sybase IQ Release 11.2 Collection,
Chapter 5., 1997. http://sybooks.sybase.com /cgi-
bin/nph-dynaweb/siq11201 /iq-admin/1.toc.

[25] M-C. Wu and A.P. Buchmann. Encoded bitmap
indexing for data warehouses. In Int. Conf. on
Data Engineering, 1998.

[26] M-C. Wu. Query optimization for selections using
bitmaps. In Proc. 1999 ACM SIGMOD Conf.,
1999.

