
Novel Approaches to the Indexing of
Moving Object Trajectories*

Dieter Pfoser Christian S. Jensen Yannis Theodoridis

Dept. of Computer Science
Aalborg University

Denmark
pfoser@cs.auc.dk

Dept. of Computer Science
Aalborg University

Denmark
csj@cs.auc.dk

Computer Technology Institute
Patras, Greece

ytheod@cti.gr

Abstract
The domain of spatiotemporal applications is a treasure trove
of new types of data and queries. However, work in this area
is guided by related research from the spatial and temporal
domains, so far, with little attention towards the true nature
of spatiotemporal phenomena. In this work, the focus is on a
spatiotemporal sub-domain, namely the trajectories of
moving point objects. We present new types of
spatiotemporal queries, as well as algorithms to process
those. Further, we introduce two access methods this kind of
data, namely the Spatio-Temporal R-tree (STR-tree) and the
Trajectory-Bundle tree (TB-tree). The former is an R-tree
based access method that considers the trajectory identity in
the index as well, while the latter is a hybrid structure, which
preserves trajectories as well as allows for R-tree typical
range search in the data. We present performance studies that
compare the two indices with the R-tree (appropriately
modified, for a fair comparison) under a varying set of
spatiotemporal queries, and we provide guidelines for a
successful choice among them.

1 Introduction
Space and time are two properties inherent to any object in
the real world. If modeled in a database (Spaccapietra et
al. 1998, Tryfona and Jensen, 1999), efficient ways to
query these kinds of data have to be provided. Research
efforts in the fields of spatial and temporal databases to
index the respective data are numerous, and as we shall
see later on in this work, serve as the basis for a more far-
reaching effort into spatiotemporal data. It is sometimes

not enough to take the “best” of both worlds to obtain a
satisfying solution to a given spatiotemporal problem. In
our context the problem is the indexing and querying of
spatiotemporal information. More specifically, in this
work we focus on data stemming from the movement of
spatial point objects. We consider point objects, since in
many applications, the size and shape of an object is of no
importance—only its position matters. Examples include
navigational systems, but also the thriving developments
in mobile computing (Barbará 1999).
 The data obtained from moving point objects is
similar to a “string,” arbitrary oriented in 3D space, where
two dimensions correspond to space and one dimension
corresponds to time. By sampling the movement of a point
object, we obtain a polyline, instead of a “string,”
representing the trajectory of the moving point object. In
pure geometrical terms, this object movement is termed a
trajectory (cf. Figure 1). In the sequel, we will use
“movement” and “trajectory” interchangeably.
 When designing an access method, we not only have
to be aware of the nature of the data, but must also know
the types of queries, the method is to be used for. Typical
queries in spatial and temporal databases are range
(window/interval) queries. Queries for spatiotemporal data
are often more demanding due to the extra semantics
involved. An object’s trajectory can be treated as spatial
(3D) data itself, and thus may besupported by a spatial
access method.
 In the literature, the following taxonomy exists: (a)
work on indexing the present positions of objects and
asking future queries (Kollios et al. 1999, Saltenis et al.
2000) and (b) work on indexing the past positions of
objects and asking historical queries. Within the latter
category, into which the present work also belongs, most
approaches deal with spatial data changing discretely over
time and do not take continuous changes into account.
Examples include R-trees for multimedia data
(Theodoridis et al. 1996), overlapping Quadtrees
(Tzouramanis et al. 1998) and R-tree variations for spatial
data (Nascimento et al. 1999).
 A problem not addressed by using any of the above
access methods is the preservation of trajectories. Related

* Research partially supported by the CHOROCHRONOS project, funded by
the European Commission DG XII, contract no. ERBFMRX-CT96-0056.
The first and the second author were additionally supported by the
Nykredit Corporation.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.
Proceedings of the 26th International Conference on Very
Large Databases, Cairo, Egypt, 2000

395

work treats data merely as a set of line segments,
regardless of whether some belong to the same trajectory.
Line segments are grouped together merely according to
spatial properties such as proximity. This is not optimal,
since certain types of queries require access to parts of the
whole trajectory. Further, the presented spatiotemporal
data has another particularity; it is considered to be
append-only with respect to time, i.e., data grows mainly
in the temporal dimension (Theodoridis et al. 1998).
 To capture the particularities of spatiotemporal data
and queries, we propose two access methods. The first, the
Spatio-Temporal R-tree (hereafter called STR-tree),
organizes line segments not only according to spatial
properties, but also by attempting to group the segments
according to the trajectories they belong to. We term this
property trajectory preservation. The second, the
Trajectory-Bundle tree (hereafter called TB-tree), aims
only for trajectory preservation and leaves other spatial
properties aside.
 The outline of the paper is as follows. Section 2
describes the nature of the data as well as the type of
queries encountered in applications with moving point
objects. Section 3 presents the algorithms comprising the
proposed access methods. Section 4 presents query-
processing algorithms. Section 5 gives performance
studies that compare both methods with the “classic” R-
tree, appropriately modified to take gain of the knowledge
that the entries to be indexed are line segments. Finally,
Section 6 gives conclusions and directions for future
research1.

2 Moving Objects: Data and Queries
In this section, we discuss spatiotemporal data by giving a
motivating example. We further introduce sampling as a
method to measure positions over time. Also, we introduce
a set of queries that are of importance in the given
application context.

1 Although in the sequel we consider objects moving on a 2D plane,
extending to 3D space (e.g. movement of planes) is straightforward.

2.1 Trajectories
The optimization of transportation, especially in highly
populated areas, is a very challenging task that may be
supported by an information system. A core application in
this context is fleet management. Vehicles equipped with
GPS devices transmit their positions to a central computer
using either radio communication links or mobile phones.
At the central site, the data is processed and utilized. In
order to record the movement of an object, we would have
to know the position at all times, i.e., on a continuous
basis. However, GPS and telecommunications tech-
nologies only allow us to sample an object's position, i.e.,
to obtain the position at discrete instances of time, such as
every few seconds.
 A first approach to represent the movements of
objects would be to simply store the position samples.
This would mean that we could not answer queries about
the objects' movements at times in-between those of the
sampled positions. Rather, to obtain the entire movement,
we have to interpolate. The simplest approach is to use
linear interpolation, as opposed to other methods such as
polynomial splines (Bartels et al. 1987). The sampled
positions then become the endpoints of line segments of
polylines, and the movement of an object is represented by
an entire polyline in 3D space. The solid line in Figure 1
represents the movement of a point object. Space and time
coordinates are combined to form a single coordinate
system. The dashed line shows the projection of the
movement on the 2D plane (Pfoser and Jensen 1999).
Figure 2 illustrates the spatiotemporal workspace (the
cube in solid lines) and several trajectories (the solid
polylines). Time moves in the upward direction, and the
top of the cube is the time of the most recent position
sample. The wavy-dotted lines at the top symbolize the
growth of the cube with time.

Figure 2: Trajectories of moving point objects in
spatiotemporal workspace

Semantically, the temporal dimension is different from the
two spatial dimensions. In classical spatial databases, only
positional information is available. In our case, however,
we have also derived information, e.g., speed,
acceleration, traveled distance, etc. Consequently,
information is derived from the combination of spatial and
temporal data. Further, we do not only store a number of

Figure 1: The movement of a spatial object and the

corresponding trajectory

396

spatial objects in the index, i.e., line segments, but rather
have entries that are parts of larger objects, the
trajectories. As we will see in the next section, these
differences create interesting new and inherently spatio-
temporal types of queries.

2.2 Queries
A typical search on sets of objects’ trajectories includes a
selection with respect to a given range, a search inherited
from spatial and temporal databases. Queries of the form
“find all objects within a given area (or at a given point)
some time during a given time interval (or at a given time
instant)” or “find the k-closest objects with respect to a
given point at a given time instant” (Theodoridis et al.
1998) remain very important. A query type important in
temporal databases is the time-slice query, i.e., in the
spatiotemporal context, to determine the positions of (all)
moving objects at a given time point in the past
(Theodoridis et al. 1996). Using the 3D representation
presented in Section 2.1, the time-slice query constitutes a
special case of a range query with a query window of zero
extent in the temporal dimension.
 In addition, novel queries become important due to
the specific nature of spatiotemporal data. The so-called
trajectory-based queries are classified in “topological”
queries, which involve the whole information of the
movement of an object, and “navigational” queries, which
involve derived information, such as speed and heading.
 As such, we distinguish between two types of
spatiotemporal queries:
• coordinate-based queries, such as point, range, and

nearest-neighbor queries in the resulting 3D space,
and

• trajectory-based queries, involving the topology of
trajectories (topological queries) and derived infor-
mation, such as speed and heading of objects (naviga-
tional queries).

 Both types of queries will be involved in our
performance study in Section 5 while in the sequel we
discuss the latter ones in more detail.

2.2.1 Topological Queries
Topological queries involve the whole or a part of the
trajectory of an object. They are deemed very important,
but also rather expensive. Unfortunately, a definition of a
well established set of predicates, such as the 9-
intersection model (Egenhofer and Franzosa 1991) for
spatial data and the 13 relations between intervals (Allen
1983) for temporal data is not yet available for
spatiotemporal data. In one of the first approaches, Erwig
and Schneider (1999) discuss extending SQL with the
spatiotemporal versions of the basic spatial predicates,
disjoint, meet, overlap, equal, covers, contains, covered-
by, and inside, defined by the 9-intersection model as well
as composite predicates based on the basic ones, namely
enter (and its reverse, leave), cross, and bypass.

Whether an object enters, crosses, or bypasses a given
area can be determined only by examining more than one
segment of its trajectory. For instance, an object entered
into an area with respect to a given time horizon, if the
start point of its least recent segment (respectively, the
endpoint of its most recent segment) was outside
(respectively, inside) the given area. “Recent” here refers
to time, e.g., a point is less recent, if its time stamp is older
in time. Similar definitions hold for the leave, cross, and
bypass predicates, which are also illustrated in Figure 3(a).

2.2.2 Dynamic Information and Navigational Queries
Dynamic information is not explicitly stored, but has to be
derived from the trajectory information. The average or
top speed of an object is determined by the fraction of
traveled distance over time. The heading of an object is
computed by determining a vector between two specified
positions. Also, the area an object covers is computed by
considering the convex hull of its trajectory. From these
definitions, it is evident that each property is unique, but
depends on the time interval considered. For example, the
heading of an object in the last ten minutes may have been
strictly East, but considering the last hour, it may have
been Northeast. The same is true for speed; at the moment,
the speed of an object might be 100 mph, but during the
last hour, it might average out to 30 mph.
 Queries involving speed or heading are expected to
be very important in real-life applications. Let us discuss
the following examples: “At what speed does this plane
move? What is its top speed?” (Güting et al. 2000). The
former considers the now instance as the time horizon,
whereas the second one is an aggregation over a longer
time period. But again, to compute the result, we have to
examine a set of line segments that belong to the same
trajectory, as opposed to lie within a spatiotemporal range.
 Table 1 summarizes the spatiotemporal query types.
We adopt a signature-like notation as presented in (Güting
et al. 2000). The “operation” column lists the operations
used for several query types and the “signature” column
presents the involved types, e.g., a coordinate-based query
uses the inside operation to determine the segments within
the specified range. The notation {segments} simply refers
to a set, it does not capture that this set constitutes one or
more trajectories.

(a) (b)

Figure 3: (a) Topological and (b) combined queries

397

Query Type Operation Signature

Coordinate-based
Queries

overlap, inside,
etc.

range × {segments}
� {segments}

Topological
Queries

enter, leave,
cross, bypass

range × {segments}
� {segments}

Trajectory
-based
Queries

Naviga-
tional
Queries

traveled distance,
covered area
(top or average),
speed, heading,
parked

{segments} � int
{segments} � real
{segments} � bool

Table 1: Types of spatiotemporal queries

2.2.3 Combined Queries
An important issue in dealing with spatiotemporal queries
is to extract information related to (partial) trajectories,
i.e., we have to (a) select the trajectories and (b) select the
parts of each trajectory we want to return. Selection of
trajectories can occur (i) by querying the trajectory
identifier, (ii) by selecting a segment of the trajectory
using a spatiotemporal range, (iii) by using a topological
query, and/or (iv) by using derived information. In the
previous examples, we left the identity of the taxi
unspecified; it can either be selected by an identifier, e.g.,
“taxi no. 120,” or by spatiotemporal selection, e.g., “a taxi
at the corner of 5th Avenue and Central Park South
between 7 a.m. and 7:15 a.m. today.”
 In the following we show a more complicated
example of combined search: “What were the trajectories
of objects after they left Tucson between 7 a.m. and 8 a.m.
today, in the next hour?” This query uses the range,
“Tucson between 7 a.m. and 8 a.m. today” to identify the
trajectories while, “in the next hour” gives a (temporal)
range to delimit the parts of the trajectories that we want
to retrieve. Figure 3(b) illustrates this principle. The dotted
cube represents the spatiotemporal range used when
selecting the trajectories, and the polyline stands for a
selected trajectory of a moving object. The bold part of the
polyline represents the part of the trajectory that is
returned (e.g., in the next hour).
 Along these lines, one can construct various query
combinations that are plausible in the spatiotemporal
application context.

3 The Access Methods
Having described the types of data and queries, the
following section defines the two access methods
proposed for those types of data and queries. Before that,
we will give a short overview of the R-tree (Guttman
1984). The R-tree is a height-balanced tree with the index
records in its leaf nodes containing pointers to actual data
objects. Leaf node entries are of the form (id, MBB),
where id is an identifier that points to the actual object and
MBB (Minimum Bounding Box) is an n-dimensional
interval. Non-leaf node entries are of the form (ptr, MBB),
where ptr is the pointer to a child node and MBB is the

covering n-dimensional interval. A node in the tree
corresponds to a disk page. Every node contains between
m and M entries.
 The insertion of a new entry into the R-tree is done
by traversing a single path from the root to the leaf level.
The path is chosen with respect to the least enlargement
criterion (ChooseLeaf algorithm by Guttman (1984)) and
covering MBBs are adjusted accordingly. In case an
insertion causes splitting of a node, its entries are
reassigned to the old node and a newly created one
(according to one of the three alternative algorithms,
Exhaustive, QuadraticSplit or LinearSplit, proposed by
Guttman (1984)). To delete an entry from the R-tree, a
reverse insertion procedure applies, i.e., covering MBBs
are adjusted accordingly. In case the deletion causes an
underflow in a node, i.e., node occupancy falls below m,
the node is deleted and its entries are re-inserted. When
searching an R-tree, we check whether a given node entry
overlaps the search window (assuming a range query). If
so, we visit the child node and thus recursively traverse
the tree. Since overlapping MBBs are permitted, at each
level of the index there may be several entries that overlap
the search window.
 In the context of spatiotemporal data this technique
proves to be inefficient. Figure 4(a) shows that in
approximating the line segments with MBBs, we introduce
large amounts of “dead space.” It is evident that the
corresponding MBB covers a large portion of the space,
whereas the actual space occupied by the trajectory is
small. This leads to high overlap and consequently to a
small discrimination capability of the index structure.

x

y

t

(x , y , t)1 1 1

(x , y , t)2 2 2

(x , y , t)3 3 3

(x , y , t)4 4 4

1
4 3

2

(a) (b)
Figure 4: (a) approximating trajectories using MBBs, and

(b) mapping of line segments in a MBB

Another aspect not captured in R-trees is the knowledge
about the specific trajectory a line segment belongs to. To
smoothen these inefficiencies (and provide an as fair as
possible performance comparison later in Section 5), we
modify the R-tree as follows: As can be seen in Figure
4(b), a line segment can only be contained in four different
ways in an MBB. This extra information is stored at the
leaf level by simply modifying the entry format to (id,
MBB, orientation), where the orientation’s domain is
{1,2,3,4}. Assuming we number the trajectories from 0 to
n, a leaf node entry is then of the form (id, trajectory#,
MBB, orientation).

398

Although these suggestions are simple to implement and
improve the efficiency of the R-tree to index line segments
as parts of trajectories of moving points, we argue that this
is not enough and query processing is still problematic.
Therefore, we propose two novel approaches in indexing
trajectories, the STR-tree and the TB-tree.

3.1 The STR-tree
The STR-tree is an extension of the (appropriately
modified, as discussed previously) R-tree to support
efficient query processing of trajectories of moving points.
The two access methods differ in their insertion/split
strategy.

3.1.1 Insertion Algorithm
The insertion process is considerably different from the
procedure known from the R-tree. As already mentioned,
the insertion strategy of the R-tree is based on the (purely
spatial) least enlargement criterion. On the other hand,
insertion in the STR-tree not only considers spatial
closeness, but also partial trajectory preservation, i.e., we
try to keep line segments belonging to the same trajectory
together. As a consequence, when inserting a new line
segment, the goal should be to insert it as close as possible
to its predecessor in the trajectory. Thus, insertion in the

STR-tree involves a new algorithm, FindNode, which
returns the node that contains the predecessor. As for the
insertion, if there is room in this node, the new segment is
inserted there. Otherwise, we have to apply a node split
strategy. In Figure 5, we show a sample index in which the
node returned by FindNode is marked with an arrow.
 The ideal characteristics for an index suitable for
object trajectories would be to decompose the overall
space according to time, the dominant dimension in which
“growth” occurs, while simultaneously preserving
trajectories. In the following, we describe the Insert
algorithm shown in Figure 6, which includes an additional
parameter, called the preservation parameter, p, that
indicates the number of levels we “reserve” for the
preservation of trajectories. When a leaf node returned by
FindNode is full, the algorithm checks whether the p-1
parent nodes are full (in Figure 5, for p = 2, we only have
to check the node drawn in bold at non-leaf level 1). In
case one of them is not full, the leaf node is split. In case
all of the p-1 parent nodes are full, Insert invokes
ChooseLeaf on the subtree including all the nodes further
to the right of the current insertion path (the gray shaded
tree in Figure 5). In the sequel, the so-called ChooseLeaf
and QuadraticSplit algorithms will be used without further
details, since they are identical to Guttman’s original
algorithms.
 The extended version of this paper (Pfoser et al.
2000) experimentally established that the best choice of a
preservation parameter is p = 2. A smaller p decreases the
trajectory preservation and increases the spatial
discrimination capabilities of the index. The converse is
true for a larger p.

3.1.2 Split Algorithm
Since the goal is to preserve trajectories in the index,
splitting a leaf node requires an analysis of what kinds of
segments are contained in a node. Any two segments in a
leaf node may belong to the same trajectory or not, and,
suppose they belong to the same trajectory, may have
common endpoints or not. Thus a node can contain four
different types of segments:
• disconnected segments, i.e., segments not connected

to any other segment in the node,
• forward- (respectively, backward-) connected

segments, i.e., the top (respectively, bottom) endpoint,
in other words, the more (respectively, less) recent
endpoint, of such a segment is connected to the
bottom (respectively, top) endpoint of another
segment belonging to the same trajectory,

• bi-connected segments, i.e., both (top and bottom)
endpoints of such a segment are connected to the
(bottom and top, respectively) endpoint of two other
segments belonging to the same trajectory.

 With this, we can distinguish the three split scenarios
of Figure 7. In case (a), where all segments are
disconnected, the QuadraticSplit algorithm is invoked to
determine the split. In case (b), where not all but at least

Figure 5: Insertion into the STR-tree

Algorithm Insert(N,E)
INS1 Invoke FindNode(N,E)
INS2 IF node N’ found,

IF N’ has space,
insert E

ELSE
IF the p-1 parent nodes are full,

invoke ChooseLeaf(N’’,E) on a tree, pointed to by
N’’, which excludes the current branch.

ELSE invoke Split(N’).
ELSE ChooseLeaf(N,E).

Algorithm FindNode(N,E)
FN1 IF N is NOT a leaf,

FOR EACH entry E’ of N whose MBB intersects with the
MBB of E,

invoke FindNode(N’,E), where N’ is the childnode of
N pointed to by E’.

ELSE
IF N contains an entry that is connected to E,
 RETURN N.

Figure 6: STR-tree insert algorithm

399

one segment is disconnected, the disconnected segments
are placed into the newly created node. Finally, in case (c)
where no disconnected segments exist, the most recent
(i.e., with respect to time) backward-connected segment is
placed in the newly created node.
 Figure 8 summarizes the split algorithm. The general
idea is to put newer and thus more recent segments into
new nodes. Consequently, new segments are much likelier
inserted into these nodes, i.e., these nodes have a higher
“insertion potential” than the ones containing older nodes.
This potential allows us also to relax the constraint of
minimum node capacity m, known from the R-tree, when
splitting a node. Finally, splitting non-leaf nodes is simple,
in that we only create a new node for a new entry. Using
this insertion and split strategy, we obtain an index that
preserves trajectories and considers time as the dominant
dimension when decomposing the occupied space.

3.2 The TB-Tree
The TB-tree is fundamentally different from the
previously presented access methods. The STR-tree
introduces a new insertion/split strategy to achieve
trajectory orientation, while not compromising the space
discrimination capabilities of the index too much. Apart
from this, the STR-tree is an R-tree based access method.
The TB-tree takes a more radical step. An underlying
assumption when using the R-tree is that all inserted
geometries are independent. In our context this translates

to all line segments being independent. However, line
segments are parts of trajectories and this knowledge is
only implicitly maintained in the R-tree and the STR-tree
structures. With the TB-tree, we aim for an access method
that strictly preserves trajectories such that a leaf node
only contains segments belonging to the same trajectory,
thus the index is best understood as a trajectory bundle.
This approach is only possible when making some
concessions to the most important R-tree property, node
overlap or spatial discrimination. As a drawback, line
segments independent from trajectories that lie spatially
close will be stored in different nodes. As the overlap
increases, the space discrimination decreases, and, thus,
the classical range query cost increases. However, by
giving up on space discrimination, we gain on trajectory
preservation. As we shall see later, this property is
important for answering “pure spatiotemporal” queries2.

3.2.1 Insertion Algorithm
The goal is to “cut” the whole trajectory of a moving
object into pieces, where each piece contains M line
segments, with M being the fanout, i.e., a leaf node
contains M segments of the trajectory. Figure 9 illustrates
the insertion procedure. Important stages throughout the
procedure are marked with black, circled numbers 1-6.
 The insertion algorithm is formally shown in Figure
10. To insert a new entry, we simply have to find the leaf
node that contains its predecessor in the trajectory. We
start by traversing the tree from the root and step into
every child node that overlaps with the MBB of the new
line segment. We choose the leaf node containing a

2 Both the (modified) R-tree and the STR-tree store entries of the format
(id, trajectory#, MBB, orientation) at the leaf level. Since the TB-tree
does not allow segments from different trajectories to be stored in the
same leaf node, the trajectory# is assigned to the node rather than to each
entry. Thus, the format of a leaf node entry is (id, MBB, orientation)
while trajectory# can be stored once in the header of the leaf node

 (a) (b) (c)

 Figure 7: Different split scenarios

Algorithm Split(N)
S1 IF node is a non-leaf node,

invoke SplitNon-leafNode(N).
ELSE invoke SplitLeafNode(N).

Algorithm SplitNon-leafNode(N)
SNN1 Put the new entry into a new node and keep the old one

as it is

Algorithm SplitLeafNode(N)
SLN1 IF entries in node are all disconnected segments,

invoke QuadraticSplit(N).
ELSE IF node contains disconnected, and other types of
segments,

put all disconnected segments in a new node.
ELSE IF node contains single and disconnected
segments,

put the newest single connected segment in new node

Figure 8: STR-tree split algorithm

Figure 9: Insertion into the TB-tree

Algorithm Insert(N,E)
INS1 Invoke FindNode(N,E)
INS2 IF node N’ is found,
 IF N’ has space,
 insert new segment.
 ELSE
 create new leaf node for new segment
 ELSE
 create new leaf node for new segment

Figure 10: TB-tree insert algorithm

400

segment connected to the new entry (stage 1 in Figure 9).
The finding of a segment is summarized in the FindNode
algorithm, which is identical to that of the STR-tree. In
case the leaf node is full, a split strategy is needed.
Splitting a leaf node would violate our principle of total
trajectory preservation. Thus, we instead create a new leaf
node. In our example, we step up the tree until we find a
non-full parent node (stages 2 through 4). We choose the
right-most path (stage 5) to insert the new node. If there is
room in the parent node (stage 6), we insert the new leaf
node as shown in Figure 9. In case it is full, we split it by
creating a new node at (non-leaf) level 1 that has the new
leaf node as its only descendant. If necessary, the split is
propagated upwards. Illustratively, the TB-tree is growing
from left to right, i.e., the left-most leaf node was the first
and the right-most was the last, we inserted.

3.2.2 Trajectory Preservation
At this point one might argue that this strategy leads to an
index with a high degree of overlap. This would certainly
be the case if it were arbitrary 3D data that was indexed.
However, in our case, we only “neglect” two out of three
dimensions, the spatial dimensions, with respect to space
discrimination. The temporal dimension offers a given
space discrimination, in that data is inserted in an append-
only fashion (Theodoridis et al. 1998).
 As such, the structure of the TB-tree is actually a set
of leaf nodes, each containing a partial trajectory,
organized in a tree hierarchy. In other words, a trajectory
is distributed over a set of disconnected leaf nodes. As we
shall see later on when discussing about query processing,
it is necessary to be able to retrieve segments based on
their trajectory identifier. A simple solution we have
implemented is to connect leaf nodes by a superimposed
data structure. We choose a doubly linked list that
connects leaf nodes including parts of the same trajectory
in a way that preserves trajectory evolution. Figure 11
gives a part of a TB-tree structure and a trajectory
illustrating this approach. For clarity, the trajectory is
drawn as a band rather than a line. The trajectory
symbolized by the gray band is fragmented across six
nodes, c1, c3, etc. In the TB-tree these leaf nodes are
connected through a linked list.
 By visiting an arbitrary leaf node, these links allow us
to retrieve the (partial) trajectory at minimal cost:
Considering a fanout f at a leaf node, the size of the partial
trajectory contained in the leaf node is f. Among the
segments stored and assuming that f ≥ 3, it is by definition
that f-2 segments are bi-connected, one is forward-
connected and one is backward-connected. To find the
remaining segments of the same trajectory, one has just to
follow the pointers of the linked list to the next and
previous leaf nodes.

4 Query Processing
Section 2 described various types of queries as they occur
in spatiotemporal applications. In this section, we present

the algorithms for processing those queries using the three
access methods. The queries and algorithms can be
classified as coordinate-based, trajectory-based, or
combined (cf. Section 2).
 The processing of coordinate-based queries is a
straightforward extension of the classical range query
processing using the R-tree; the idea is to descend the tree
with respect to coordinate constraints until the entries are
found in the leaf nodes. Trajectory-based queries comprise
topological and navigational queries. Due to space
limitations, we omit the presentation of topological query
processing (and the corresponding discussion in the
performance section); for details, please refer to Pfoser et
al. (2000).
 Algorithms for combined queries are different in that
not only a spatial, but also a combined search, is
performed, i.e., we not only retrieve all entries contained
in a given sub-space (range query), but retrieve entries
belonging to the same trajectory.
 We will devise separate algorithms, on one hand, for
the R-tree and the STR-tree and, on the other hand, for the
TB-tree. The algorithm for the TB-tree is different because
this method provides the data structure of a linked list to
retrieve partial trajectories.

4.1 Combined Search in the R-Tree and the STR-Tree
The first step in processing combined queries is to retrieve
an initial set of segments based on a spatiotemporal range.
We apply the range-search algorithm used in the R-tree.
The idea is to descend the tree with respect to intersection
properties until the entries are found in the leaf nodes. In
Figure 12, we search the tree using the cube c1 and retrieve
two segments of trajectory t2 (labeled 1 and 2), and four
segments of trajectory t1 (labeled 3 to 6). The six segments
are shown in darker gray contained in cube c1. This
completes the first stage of the combined search.
 In the second stage, we extract partial trajectories. We
now take each of the found segments and try to find its
connecting segment, first, in the same leaf node, and,
second, in other leaf nodes. Consider segment 1 of
trajectory t2. We find two segments, one connected to the
top endpoint (forward connected) and one connected to the
bottom endpoint (backward connected).

Figure 11: The TB-tree structure

401

Figure 12: Stages in combined search

We may find those segments in the same leaf node, or we
may have to search in other leaf nodes. Searching in other
leaf nodes is conducted as a range search, with the
endpoint of the segment in question as a predicate.
Arriving at the leaf level, the algorithm checks whether a
segment is connected to the segment in question in the
specified way. Using this recursive approach, we retrieve
more and more segments of the trajectory. The algorithm
continues until a newly found segment is outside cube c2.
The last segments returned for segment 1 are segments 7
and 8.
 Figure 13 outlines the combined search algorithm.
One problem remains, namely that of not retrieving the
same trajectory twice. The initial range search retrieves
two segments, 1 and 2, of trajectory t2. By using both
segments as a starting point, we will retrieve the same
trajectory twice. To avoid this, we store the trajectory#
once it is retrieved and check before querying a new
trajectory whether it was retrieved already. In our
example, if we use segment 1 first to retrieve a partial
trajectory t1 and store this information, we omit retrieving
it again for segment 2.

4.2 Combined Search in the TB -Tree
The combined search algorithm of the TB-tree is similar to
the one presented above. The difference lies in how the
partial trajectories are retrieved. The R-tree and the STR-
tree structures provide little help in retrieving trajectories,
i.e., connected segments, but offer only a modified range
search algorithm. The linked lists of the TB-tree allow us
to retrieve connected segments without searching.
 The first stage in combined searching is the same as
before. Here, for the seed segments—in our example
segments 1 and 2 for t2 and segments 3 to 6 for t1—we
have to retrieve a partial trajectory contained in the outer
range c2. Again, we have two possibilities: a connected
segment can be in the same leaf node or in another node.
If it is in the same, finding it is trivial. If it is in another

node, we have to follow the next (previous) pointer to the
next (previous) leaf node (cf. Section 3.2.2).
 Although the approach to retrieve partial trajectories
is different, we have to take care not to retrieve the same
trajectory more than once (cf. Section 4.2). Once a partial
trajectory is retrieved, we store its id, and, before
retrieving another trajectory, we check whether it was
retrieved already.
Figure 14 contains the updates to the combined search
algorithm as presented in Figure 13.

5 Performance Comparison
In this section, we aim at comparing the three access
methods and establishing conditions, which are optimal
for each one. This allows us to delimit the situations in
which each access method is useful. Thus, we compare the
access methods under varying sets of data and queries.
The performance studies were conducted using C
implementations of the three access methods. For the
parameters in the experiments, we have chosen the page
size for the leaf and non-leaf nodes to be 1024 bytes. With
this page size, the R-tree and the STR-tree fanout is 28 and
36 for leaf and non-leaf nodes, respectively. Since the leaf
node structure of the TB-tree is different, the fanout is 31
and 36 for leaf and non-leaf nodes, respectively.

5.1 Datasets
Unlike spatial data, where there exist several popular real
datasets for experimentation purposes (e.g., the TIGER-
Line files of geographic features, such as roads, rivers,
lakes, boundaries covering the entire United States), well-
known and widely accepted spatiotemporal datasets for
experimental purposes are missing. Due to the lack of real
data, our performance study consists of experiments on
synthetic datasets. We utilize the GSTD generator of
spatiotemporal datasets (Theodoridis et al. 1999) to create
trajectories of moving objects under various distributions.
GSTD allows the user to generate a set of line segments
stemming from a specified number of moving objects.

402

Probability functions are used to describe the movement of
the objects as a combination of several parameters. More
precisely, the user can specify the initial positional
distribution of the objects in the unit workspace [0, 1)2 as
well as the stepping in time and space for each movement
using either uniform, Gaussian, or skewed probability
functions.
 The parameters of the generator are given the
following values: The initial distribution of points is
Gaussian, i.e., all points are distributed around the center
of the workspace. The movement of points is always ruled
by a random distribution of the form random(-x,x), thus
achieving an unbiased spread of the points in the
workspace. The number of different possible snapshots
(i.e., the temporal resolution) is held constant at 100K.
Finally, the number of moving objects (i.e., trajectories)
varies between 10 and 1000, resulting in datasets
consisting of between 15K and 1500K entries (i.e., line
segments).

5.2 Space Utilization and Index Size
An aspect often neglected when comparing access
methods is the size of the created index structures. Table 2

lists the sizes of the three different indices and the
corresponding space utilization.
 The average space utilization for the R-tree is
between 55% and 60%, whereas it approaches 100% in
case of the STR-tree and the TB-tree. The reason is that
the R-tree construction strategy does not take the unilateral
growth of the data in the temporal dimension into account.
 The R-tree is roughly twice as big as the other two
indices. For example, for datasets of 1000 objects (i.e.,
consisting of 1500K line segments), the R-tree size is
about 95 MB, while the other two indices size about 57
MB. This difference is mainly due to the R-tree’s smaller
space utilization. The TB-tree is smaller than the STR-
tree. The two indices have similar space utilization, but the
TB-tree’s fanout is larger. For a ten times larger dataset,
the index size increases by the same factor for the STR-
tree and the TB-tree. The increase is only approximate in
the case of the R-tree, since its space utilization can
fluctuate.

 R-tree STR-tree TB-tree

Index size ~ 95 KB per
object

~ 57 KB per
object

~ 51 KB per
object

Space
utilization 55%-60% ~100% ~100%

Table 2: Index sizes and space utilization

5.3 Range Queries
Range queries are important for spatial data as well as
spatiotemporal data. In this section, we compare the three
access methods for processing range queries. As already
mentioned, we use datasets stemming from 10 to 1000
moving objects. We use three sets of query windows with
a range of 1%, 10%, and 20% of the total range with
respect to each dimension, i.e., 0.0001%, 0.1%, and 0.8%
of the total space. Each query set includes 1000 query
windows.
 Figure 15 shows the number of total node accesses
for various range queries and datasets. Do note that both
axes are of logarithmic scale, the x-axis is to the base of 2,
and the y-axis is to the base of 10. We observe the
following trends. For a small number of moving objects,
the STR-tree and the TB-tree show superior range query
performance over the R-tree. The break-even point at
which this trend is reversed depends on the query size. In
case of a 1% range per dimension, the break-even point
with respect to the R-tree for the STR-tree is at 30 moving
objects, and for the TB-tree at 60 moving objects (cf.
Figure 15(a)). For a larger, 10% range size per dimension,
the break-even point for the STR-tree is at 25 moving
objects and for the TB-tree at 200 moving objects (cf.
Figure 15(b)). In case of an even larger range, e.g., 20%
per dimension, the break-even points increase to 50 and
over 1000 moving objects for the STR-tree and the TB-
tree, respectively (cf. Figure 15(c)). Both, the TB-tree and
the STR-tree, are trajectory oriented. For a smaller number

Algorithm CombinedSearch(N,range1,range2)
CS1 IF N is NOT a leaf,

FOR EACH entry E’ of N whose MBB intersects with
range1,

invoke CombinedSearch(N’,E), where N’ is the
childnode of N pointed to by E’.

ELSE
for all entries E that satisfy range1 AND whose trajectory
was not yet retrieved,

invoke DetermineTrajectory(N,E)

Algorithm DetermineTrajectory(N,E,range2)
DT1 Loop through N and find segment E’ that is fwd connected to

E
DT2 WHILE found AND E’ is within range2

Add E’ to set of solutions,
Loop through N and find segment E’ that is connected to
the new E

DT3 IF not found (but within range)
invoke FindConnSegment(root,E,forward)
repeat from DT1

DT4 the same as above for bwd connected

Algorithm FindConnSegment(N,E,direction)
FCS1 IF N is NOT a leaf,

FOR EACH entry E’ of N whose MBB intersects with the
MBB of E,

invoke FindConnSegment(N’,E,direction), where N’
is the childnode of N pointed to by E’.

ELSE
IF N contains an entry that is direction connected to E,

RETURN N.
Figure 13: R-tree and STR-tree: CombinedSearch

algorithm for trajectory-based queries

Algorithm FindConnSegment(E,N,direction)
FCS1 Set N to be the node pointed to be the direction pointer

Figure 14: TB-tree: CombinedSearch algorithm update

403

of trajectories the total dataset (line segments) is more
oriented along time than it is with respect to space. We
term this property the temporal discrimination, as the
dataset grows only with respect to the temporal dimension.
Thus, for such a dataset, the spatial discrimination
capabilities of the index are of no importance. However, if
the number of trajectories increases, more segments exist
at a given point in time. Thus, the spatial discrimination
becomes important. Otherwise, the overlap between the
nodes increases.
 The R-tree does not “know” about the natural
discrimination of the data. Its sole purpose is to group
objects according to spatial characteristics, i.e., spatial
proximity. For a small number of trajectories, this
ambition turns out to be a “boomerang.” In this case, the
spatial discrimination is of minor importance. The TB-tree
puts connected segments in the same node and does not
consider spatial discrimination. It thus exploits the
temporal discrimination of the data. As the results show,
this approach is better up to a certain number of segments.
The STR-tree adopts an approach in-between the two
extremes. However, although this index performs better
than the R-tree for a small number of trajectories, it is
always worse than the TB-tree. The STR-tree, too, is
heavily dedicated to trajectory preservation. This explains
its performance with respect to the R-tree. However,
because of its R-tree properties, it is worse than the TB-
tree for a small number of trajectories.

5.4 Time Slice Queries
In several applications it is useful to determine the
positions of (all) moving objects at a given time point in
the past (Theodoridis et al. 1996). This query type
constitutes a special case of a range query with a query
window of zero extent at the temporal dimension. The size
of the query window in the spatial dimensions can be
arbitrary. In the performance studies we choose 1%, 10%,
and 100% of the respective range in each spatial
dimension. This corresponds to three sets, each
comprising of 1000 individual queries.
 The results shown in Figure 16 are similar to what
could be seen in the previous section. For each set of
queries (Figure 16(a)-(c)), there exists a break-even point
in terms of number of moving point objects when the
number of node accesses for the R-tree is smaller than for
the STR-tree and the TB-tree, respectively. The break-
even point moves from 60 moving objects (1% range) to
500 moving objects (100% range). This trend can also be
observed in the case of range queries. However, there the
TB-tree always outperforms the STR-tree. In Figure 16(a)-
(c), we observe that the gap between the two indices
decreases with an increasing range until the STR-tree
outperforms the TB-tree (Figure 16(c)).
 The nature of a time slice query is to retrieve all
positions of moving objects at a given instance in time. In
other words, this query favors particularly an index that
organizes its content based on its spatial aspects (R-tree

and STR-tree) rather than relying on the temporal
discrimination capabilities of the data (TB-tree). For
smaller ranges (Figure 16(a)), this phenomenon is not as
apparent as for larger ranges.

5.5 Combined Queries
What follows is a performance study related to the
algorithms for combined searching as presented in Section
2.2.3. We use datasets stemming from a varying number
of moving objects. As for the queries, the size of the inner
and the outer range is 1% (0.0001%) and 10% (0.1%), and
1% (0.0001%) and 20% (0.8%) in each dimension (of total
space). Each set of queries consists of 1000 individual
queries.
 The results in Figure 17 show that the TB-tree is in
all cases superior to the STR-tree and the R-tree, up to one
order of magnitude with the gap increasing in proportion
to the number of objects. Apart from the (partial)
trajectory preservation in each node, it is also the
additional data structure (a linked list) for retrieving
neighbor nodes that contribute to this result. Thus, the
numbers of node accesses in case of the TB-tree are only
slightly larger than the numbers from the range query
experiments in Figure 15(a). Comparing the STR-tree with
the R-tree, they only differ in the index structure itself, but
have the same combined search algorithms. Just as we
have observed a break-even point between those two
methods for range queries, it also exists here. For the first
experiment, shown in Figure 17(a), the break-even point is
at about 300 moving objects. For the second experiment,
involving a larger secondary range, the break-even point is
at 500 moving objects.

5.6 Summary
The TB-tree supports trajectory-based queries much more
efficiently than the R-tree does. At the same time, it is
worth to be mentioned that its performance on typical
range queries is competitive to the R-tree. As shown in the
experiments, for combined queries, the TB-tree’s perfor-
mance is closely connected to the “number of moving
objects” of the dataset. The relative gap between the R-
tree and the TB-tree increases with an increasing number
of moving objects. As for the STR-tree, although designed
to combine the benefits of the TB-tree and the R-tree, it
usually performs worse than the TB-tree, with the only
exception being time slice queries.

6 Conclusions and Future Work
Work in spatiotemporal query processing has dealt with
range queries. However, spatiotemporal data, in the
context of trajectories of n-dimensional moving objects, is
somewhat different from (n+1)-dimensional spatial data
due to the peculiarity of the temporal dimension
(Theodoridis et al. 1998). This paper presents a set of pure
spatiotemporal queries, the so called trajectory-based
(topological and navigational) queries, as well as
combined (coordinate- and trajectory- based) queries.

404

Efficient processing of those queries requires indices and
access methods for spatiotemporal data; a simple modi-
fication to the R-tree as well as two new access methods,
namely the STR-tree and the TB-tree, are proposed for
indexing the trajectories of moving point objects.
 First, trajectory data and a set of queries are defined
to derive requirements. Trajectory data is obtained by
discretely sampling the movement of point objects in time.
Linear interpolation is considered in-between the samples.
The set of queries is then presented. Subsequently, the
paper discusses the R-tree to determine the shortcomings
of this method with respect to spatiotemporal data and

queries, and introduces modifications to overcome these
limitations. Then the STR-tree and the TB-tree, both
tailored to the requirements of trajectory data and
spatiotemporal queries, are proposed. They can also easily
be implemented on top of the R-tree, which is already
adopted in commercial extensible database systems.
 The performance study presents results from
experiments involving spatial range queries, as well as
experiments related to navigational and combined queries.
The TB-tree proves to be an access method well suited for
trajectory-based queries, and also has a good spatial search
performance. The STR-tree performance stays behind the

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

10000

100000

1000000

10000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)
Figure 15: Range queries: varying range, (a) 1%, (b) 10% and (c) 20% in each dimension

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

(a) (b) (c)
Figure 16: Time slice queries: varying spatial range, (a) 1%, (b) 10% and (c) 100% in each dimension

1000

10000

100000

1000000

10000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

1000

10000

100000

1000000

10000000

10 25 50 100 250 500 1000
moving objects

no
de

 a
cc

es
s

R - tree
STR - tree
TB - tree

 (a) (b)

Figure 17: Combined queries: (a) 1% inner- 10% outer range and (b) 1% inner- 20% outer range, in each dimension

405

TB-tree. Although designed to combine the “best of both
worlds,” it seems that the STR-tree is rather a weak
compromise. The “pure” concepts of the R-tree and the
TB-tree seem to be far superior in their respective
domains.
 Although recent literature includes related work on
indexing trajectories of moving objects by maintaining the
complete history of object movement (Theodoridis et al.
1996, Tzouramanis et al. 1998, Nascimento et al. 1999),
the work presented in this paper is the first to
• propose an access method (namely, the TB-tree)

clearly addressing the requirements and peculiarities
of this context by considering trajectory preservation,

• propose and implement specific modifications to the
“classic” R-tree in order to overcome (some of) its
inefficiencies with respect to trajectories, and

• present novel algorithms for “pure” spatiotemporal
searching apart from the typical range querying.

 This work points to several future research directions.
The present work only presents first algorithms to process
navigational and topological queries. Derived from the
requirements from real spatiotemporal applications, e.g.,
fleet management, these algorithms can be refined in more
detail. Furthermore, not only novel queries, such as the
previous ones, but also known though expensive spatial
queries deserve more attention in the spatiotemporal
domain; examples include neighbor searching
(Roussopoulos et al. 1995) and joins (Mamoulis and
Papadias 1999). Finally, investigating geometric shapes
other than MBBs as approximations for moving objects’
trajectories deserves further research; for instance,
extending related work on indexing line segments (Bertino
et al. 1998).

References
Allen, J.F.: Maintaining Knowledge About Temporal

Intervals. Communications of the ACM, 26(11), pp. 832-
843, 1983.

Barbará, D.: Mobile Computing and Databases – a Survey.
IEEE Transactions of Knowledge and Data Engineering,
11(1), pp. 108-117, 1999.

Bartels, R., Beatty, J., and Barsky, B.: An Introduction to
Splines for Use in Computer Graphics & Geometric
Modeling. Morgan Kaufmann Publishers, Inc., 1987.

Bertino, E., Catania, B., and Shidlovsky, B.: Towards optimal
indexing for segment databases. In Proc. of Int’l
Conference on Extending Database Technology, pp. 39-53,
1998.

Egenhofer, M. and Franzosa, R.: Point-Set Topological
Spatial Relations. Int’l Journal of Geographic Information
Systems, 5(2), pp. 161-174, 1991.

Erwig, M. and Schneider, M.: Developments in Spatio-
Temporal Query Languages, In Proc. of DEXA Workshop
on Spatio-Temporal Data Models and Languages, 1999

Güting, R., Böhlen, M., Erwig, M., Jensen, C. S., Lorentzos,
N., Schneider, M., and Vazirgiannis, M.: A Foundation for
Representing and Querying Moving Objects. ACM
Transactions on Database Systems, to appear, 2000.

Guttman, A.: R-trees: a Dynamic Index Structure for Spatial
Searching. In Proc. of ACM-SIGMOD Conference on the
Management of Data, pp. 47-57, 1984.

Kollios, G., Gunopulos, D., and Tsotras, V.: On Indexing
Mobile Objects. In Proc. of the 18th ACM Symposium on
Principles of Database Systems, pp. 261-272, 1999.

Mamoulis, N. and Papadias, D.: Integration of Spatial Join
Algorithms for Processing Multiple Inputs. In Proc. of
ACM-SIGMOD Conference on Management of Data, pp. 1-
12, 1999.

Nascimento, M., Silva, J., and Theodoridis, Y.: Evaluation of
Access Structures For Discretely Moving Points. In Proc.
of Int’l Workshop on Spatio-Temporal Database
Management, pp. 171-188, 1999.

Papadias, D., Theodoridis, Y., Sellis, T., and Egenhofer, M.:
Topological Relations in the World of Minimum Bounding
Rectangles: A Study with R-trees. In Proc. of ACM-
SIGMOD Conference on Management of Data, pp. 92-103,
1995.

Pfoser, D. and Jensen, C.: Capturing the Uncertainty of
Moving-Object Representations, In Proc. of the 6th Int’l
Symposium on Spatial Databases, pp. 111-132, 1999.

Pfoser, D., Jensen, C. S., and Theodoridis, Y.: Novel
Approaches In Query Processing For Moving Objects.
CHOROCHRONOS Technical Report, CH-00-3, 2000.

Roussopoulos, N., Kelley, S., and Vincent, F.: Nearest
Neighbor Queries. In Proc. of ACM-SIGMOD Conference
on Management of Data, pp. 71-79, 1995.

Saltenis, S., Jensen, C. S., Leutenegger, S., and Lopez, M.:
Indexing the Positions of Continuously Moving Objects. In
Proc. of ACM-SIGMOD Conference on Management of
Data, pp. 331-342, 2000.

Spaccapietra, S., Parent, C., and Zimanyi, E.: Modeling Time
from a Conceptual Perspective. In Proc. of Int’l Conference
on Information and Knowledge Management, pp. 432-440,
1998.

Theodoridis, Y., Sellis, T., Papadopoulos, A., and
Manolopoulos, Y.: Specifications for Efficient Indexing in
Spatiotemporal Databases, In Proc. of the 10th Int’l
Conference on Scientific and Statistical Database
Management, pp. 123-132, 1998.

Theodoridis, Y., Silva, R., and Nascimento, M.: On the
Generation of Spatiotemporal Datasets. In Proc. of the 6th
Int’l Symposium on Spatial Databases, pp.147-164, 1999.

Theodoridis, Y., Vazirgiannis, M., and Sellis, T.: Spatio-
Temporal Indexing for Large Multimedia Applications. In
Proc. of the 3rd IEEE Int’l Conference on Multimedia
Computing and Systems, pp. 441-448, 1996.

Tryfona, N. and Jensen, C. S.: Conceptual Data Modeling for
Spatiotemporal Applications, Geoinformatica, 3(3), pp.
245-268, 1999.

Tzouramanis, T., Vassilakopoulos, M., and Manolopoulos,
Y.: Overlapping Linear Quadtrees: A Spatio-Temporal
Access Method. In Proc. of the 6th Int’l Symposium on
Advances in Geographic Information Systems, pp. 1-7,
1998.

406

