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Abstract

Information integration is the problem of tak-
ing information from distributed, heteroge-
neous, and often dynamic sources and making
them work together as a whole. A number
of ideas concerning information integration
are based on the notion of rewriting queries.
In this paper we propose a distributed case-
based approach to the problem of rewriting
queries. According to this approach we use a
case memory instead of static views, i.e. views
that are defined a priori. As a consequence,
the mediated schema is dynamically updated,
strongly influenced by the queries submitted
by a consumer. This approach allows a me-
diator to face systems where consumers may
change their customization needs and infor-
mation sources may become unavailable, may
be added, or may modify their schemas.

1 Introduction

Nowadays, information systems can be thought as
collections of information producers (i.e., informa-
tion sources) and information consumers (i.e., users
that perform transactions) that are often distributed
in world-wide networks. This means that producers
and consumers can be autonomous and, as a conse-
quence, are often heterogenous and dynamic. Infor-
mation sources are heterogenous due to discrepancies
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at the physical level (different DBMSs, legacy applica-
tions, software and hardware platforms), logical level
(different data models), and conceptual level (differ-
ent schemas, concept and relation names). Moreover
autonomous information sources are dynamic. Basi-
cally this is due to the fact that they may be added
to the system, or become (temporarily or definitively)
unavailable. Sometimes, they may also vary their con-
ceptual schemas. Information consumers are hetero-
geneous and dynamic as well. Indeed new consumers
can be inserted or removed. Furthermore, each con-
sumer may have different customization needs due to
distinct business objectives and these needs can change
very often. In this work, we focus on information inte-
gration in distributed, heterogeneous, and dynamic in-
formation systems, i.e., constructing answers to query
from consumers. The problem consists on rewriting a
consumer’s query into queries to specific information
sources. In this paper we present a distributed case-
based approach to the problem of rewriting queries.
According to this approach we have a dynamic medi-
ated schema instead of a static one, i.e., a schema that
is defined a priori.

2 Related Work

Up to now, several approaches have been proposed for
information integration in distributed, heterogeneous,
and dynamic information systems.

Classic Approach [30, 32, 1, 23]. This approach re-
lies on building a single global schema to encompass
the differences among multiple local source schemas.
The mapping from the global schema to each local
schema is often expressed in a common SQL-like lan-
guage (e.g., HOSQL [1] and SQL/M [23]). The en-
forcement of a single global schema through data in-
tegration yields full transparency for uniform access
to distributed and heterogeneous information sources.
Nevertheless this approach does not fit well in the case
of dynamic producers since the global schema is stat-
ically built a priori. Moreover, a single global schema
does not support different needs of heterogeneous and



dynamic consumers.

Federated Approach [33]. This approach improves
the previous approach dealing with consumer het-
erogeneity. Indeed it relies on multiple integrated
schemas. However, the heterogeneity problems are re-
solved at the schema integration stage and integrated
schemas are static. This approach cannot scale well
when new sources or consumers need to be added or
removed. Moreover, source schemas or consumer re-
quirements cannot be upgraded without a revision of
the integrated schemas.

Distributed Object Management Approach [27,
28, 8]. This approach generalizes the federated ap-
proach by modeling distributed and heterogeneous
databases as collections of objects in a distributed ob-
ject space. It is based on a common object model and a
common object query language (e.g., the ODMG stan-
dard [8]). Nevertheless, this approach does not yield
full transparency for uniform access to sources that are
heterogeneous at the conceptual level.

Intelligent Information Integration (I°) Ap-
proach [35, 19]. This approach relies on the so called
mediator architecture: a three-layers system architec-
ture for information integration. A layer is devoted
to information consumers, another layer is devoted to
information producers, the middle layer deals with me-
diation, i.e., the original query is reformulated in a set
of queries, each targeted at a selected source. There
are two basic approaches to intelligent information in-
tegration: the procedural approach and the declarative
approach. In the procedural approach (e.g., TSIMMIS
[19], Squirrel [37], and WHIPS [21]), mediators inte-
grate information from sources through ad-hoc proce-
dures defined with respect to a set of predefined in-
formation needs. When such needs or sources change
(i.e., we have a dynamic information system), a new
mediator must be generated. In the declarative ap-
proach (e.g., Carnot [11], SIMS [2], Information Mani-
fold [24], Infomaster [16], and CDLNR [7]), mediators
use suitable mechanisms to rewrite queries according
to source descriptions. Intuitively, a rewritten query
would be equivalent to the original query (i.e., denote
the same set of instances). Nevertheless, often this
is not possible. As a consequence, “in information-
integration applications, [query] containment appears
to be more fundamental than equivalence” [34]. Query
containment has been related to information integra-
tion via an approach called synthesizing queries from
views [36, 9, 34, 3, 17]. According to this approach,
a query reformulation problem becomes the problem
of finding a solution (in terms of views) that must be
contained in the original query.

Related to the declarative approach is the use of
description logics [5, 4, 6] (see Appendix A) as a data
modeling language and as a query language. This is
the approach followed by several authors, see for ex-
ample [2, 3, 7, 24, 34]. Indeed, description logics offer
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an interesting tradeoff between complexity and expres-
sive power. In this perspective, 1t is worth to notice
that the problem of query containment corresponds to
the subsumption problem. Subsumption is a tractable
problem for most of the description logics [6, 4] while
query containment without any restriction is undecid-
able [3].

Among declarative based I? projects, only a few

have dealt with dynamic information producers and
consumers. For example Information Manifold [24],
SIMS [2], and Infomaster [16] do not allow automatic
adaptation of source descriptions even if the authors
claim that a new (view of a) source can be easily added
by writing its description without redefining the medi-
ator. For example, this is the case when a consumer’s
need change and thus it cannot be satisfied by the
given views.
Case-Based Approach. Case-based reasoning is a
problem solving methodology which is based on pre-
viously experienced, concrete problem situations [26].
According to this approach, a system learns by experi-
ence how problems can be solved, therefore it is appro-
priate for dynamic application domains, when it is im-
possible to have predefined solution. Nevertheless, as
far as we know, its application to information integra-
tion is a novel approach. The closest applications are
in information retrieval [13, 31] (i.e., the extraction of
information from non-structured data) and associative
query answering [18, 10] (i.e., associating relevant ad-
ditional information to a query answer). Even if these
systems deal with queries, usually they do not deal
with distributed information sources. A noteworthy
example of distributed computing by means of case-
based reasoning is the so called distributed case-based
reasoning (DCBR). In DCBR there are several agents;
each agent has its own case memory since it could have
acquired 1ts own independent problem-solving experi-
ences. A new problem is solved through agent coop-
eration. Indeed each agent reuses the local past case
that best contributes to the overall case. For exam-
ple, CBR-TEAM [29] has a negotiation-driven case
retrieval algorithm applied to distributed mechanical
design problems.

Description logic is applied to case-based reasoning
as well [25, 22, 12, 20]. Indeed, in case-based reason-
ing, subsumption becomes a powerful tool to automat-
ically derive case hierarchies that can be used in case
retrieval and case retention.

3 Work Overview

Our goal is to build an information system capable of
interconnecting information consumers and producers.
Previous approaches solve several problems concerned
with distributed, heterogeneous information systems.
Their main limitation is related to the capability of
evolving according to dynamic information systems.
We propose a system (see also [15]) which is based on



a mediator architecture in order to support customiz-
able information integration across distributed, het-
erogeneous, and dynamic information sources. Source
heterogeneity at the physical level is removed by suit-
able wrappers. Indeed each information source has
its own management system and query language, it
can use a very recent technology or be a legacy sys-
tem. As a consequence, it is needed a sort of interface
(a wrapper) between a source and the rest of the sys-
tem. Wrappers translate queries in the local format
and answers from the local format in the common lan-
guage. Source heterogeneity at logical and conceptual
levels is removed by mediators and their mediated
schemas. Consumer heterogeneity is removed by the
presence of several mediators since each of them is re-
lated to a consumer (or a class of consumers). Finally,
the effects of dynamic sources and consumers are re-
moved by mediators since they are able to dynami-
cally update their schemas. Indeed when a mediator
does not have enough local knowledge to reformulate
a query, it can cooperate with sources (to access their
original schemas) and other mediators (to access their
mediated schemas).

Mediators capability to face heterogeneous and dy-
namic systems relies on a thesaurus and a distributed
case-based reasoning. Each mediator has its own the-
saurus in order to solve name heterogeneity. A the-
saurus 1s composed by a set of classes of synonyms.
Each element of a class has the reference to the in-
formation sources that use it as term. Every time a
new query arrives, its terms are translated in standard
terms by means of the thesaurus. The reverse process
occurs when the rewritten query must be sent to infor-
mation sources. The thesaurus must be dynamically
updated when a change in the system occurs. The
classes of the thesaurus are modified by means of clus-
tering. The explanation of this technique is out of the
scope of the paper, for more details we remind to [14].
Each mediator has also its own case-based reasoner in
order to solve heterogeneity of schemas and consumer’s
needs. Each case contains a query and its reformula-
tion, and it 1s stored in the mediator’s case memory.
When a new query from the consumer arrives, the me-
diator looks for a past query similar to the new one and
adapts the corresponding solution in order to obtain a
reformulation of the new query. This means that the
mediated schema of a mediator is strongly influenced
by the queries submitted by consumers (mediator’s ex-
perience). When this experience does not help, the
mediator interacts with other mediators and/or infor-
mation sources. This approach allows the mediator to
update its schemas and therefore to take into account
changes in information sources and consumer’s needs.
This is called distributed case-based reasoning.

The rest of the paper is organized as follows. A
running example is introduced in Section 4. Section
5 describes how cases are represented. Local and dis-
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tributed query rewriting are discussed in sections 6 and
7, respectively. Finally, some conclusions are given in
Section 8.

4 A Running Example

We consider an information system which contains
computer science bibliography data, namely informa-
tion about articles and their authors. This infor-
mation system is composed by several sources, con-
sumers, and mediators. Figure 1 depicts three in-
formation sources of the system. Since the descrip-
tion of the thesaurus is out of scope of this paper, we
consider that all the (concept and role) names have
been already translated and thus no name heterogene-
ity occurs. Nevertheless, their conceptual schemas
are different. The source wy (Figure 1.a) contains a
set of authors and a set of articles classified accord-
ing their publication type, i.e., journal, conference,
etc. The source ws (Figure 1.b) contains a set of
authors and a set of articles on database classified
according their topic, i.e., object_oriented databases,
active databases, federated databases, etc. Finally,
the source wz (Figure 1.c) contains a set of authors and
a set of articles on artificial intelligence classified ac-
cording their topic as well, 1.e., planning, cbr, agents,
ete.

5 Query Representation

Generally speaking, a case is an arbitrary set of fea-
tures (attribute-value pairs). Some features are de-
voted to represent a problem (in our application the
query to be reformulated) in order to make easier the
retrieval of a past problem similar to the current situa-
tion. The rest of features are devoted to represent the
problem solution (the reformulated query and infor-
mation sources where the reformulated query has been
sent) to reuse it in the current problem. Furthermore,
the problem of rewriting queries has a fundamental
condition that must be satisfied: the rewritten query
must be contained in the original query [3, 34]. We
use a description logic as a language for representing
queries and thus cases. The subsumption relation 1is
used as query containment and thus for case retrieval.
According to above considerations we define a case as
follows:

Definition 5.1 (Case) Let wy,...,w, be informa-
tion sources. Let @Qq,...,Q, be queries to
wi, ..., w, respectively. Let Sol(Q) be a query ob-
tained by an arbitrary combination of Q1,...,Qn. Let
Q@ be a query such that

Sol(@) EQ (1)

Then Sol(Q) is a rewriting of the query @ and
(Q, S0l (@), {(Q1,w1),...(Qn,wy))) is a case.
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Figure 1: An example of information sources.

A collection of cases is called case memory. A ter-
minology (i.e., a set of concept definitions and their
relations) is always associated to a case memory. T, L
represent the boundaries of the terminology w.r.t. the
subsumption relation.

Example 5.1 In the example presented in Section 4
let us consider a mediator that has the following cases:

{H, (Ypub.con ference M Ypub.db) U Vpub.cbr,
{(Vpub.con ference, w1), (Vpub.db, ws), (Ypub.cbr, ws)) )
{I, VYpub.acm_transl|
Vpub.(ai M Vj_name.Stringr
Vpublisher {“ACM”})
{(Vpub.acm_trans, wy),
(Vpub.(ai MVYj_name.Stringr

Vpublisher {“ACM”}), ws)) )
{J, ¥pub.journal UVpub.at,
{(Vpub.journal, wy), (Ypub.ai, ws)) )

(K, Vpub.3keyword.{“Agents”} U Vpub.agents,
((Vpub.3keyword.{“Agents”}, w1), (Vpub.agents, ws)) )

and the corresponding terminology:

{... journal<T , acm_trans<journal
acm_trans = Vpublisher {“ACM”} ,
ai<T , agents<ai , cbr<ai, db<T ,
A = —journaldb, H = Vpub.(AUcbr),
I =Vpub.acm_trans , J = Vpub.(journal U ai) ,
K = Vpub.agents ...

A pictorial view of the terminology is given in
Figure 2. For example the evaluation of Sol(H)
consists on querying sources wi, wsy, and ws with
Vpub.con ference, Vpub.db, and Vpub.chr respectively,
and integrating the related answers. The seman-
tics of concepts helps us on integrating the an-
swers. Let I, (Ypub.conference), I, (Vpub.db), and
Iy, (Vpub.cbr) be answers from wi, wy, and ws re-
spectively, then the answer to Ypub.(A U cbr) is:
(I, (Ypub.con ference)N 1y, (Vpub.db))U1,, (Vpub.cbr).
Notice that this is just one possible answer, another
mediator with a different case memory may rewrite
the query in a different way and thus return a differ-
ent answer.

6 Local Query Retrieval and Reuse

Every time a new query arrives, it is inserted in the
terminology and classified by means of subsumption.
If there exists a past problem equal to the new query,
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then its solution can be used as solution for the new
query. Otherwise, the solutions of the past problems
that are subsumed by the new query can be used
as solution for the new problem. The closest to the
new query the retrieved cases are, the best the so-
lutions are. This drives us to the notion of prob-
lems maximally contained in the new query [3, 34].
This notion allows the definition of the retrieval func-
tion M;,¢(Q,P) as a set of conjunctions of concepts
(M;>1X;) of the given terminology (P). For each con-
junction of concepts there does not exist another con-
junction of concepts of the same terminology (M;>1Y;)
such that |_|i21Xi C |_|j21}/j CQ.

Example 6.1 Let us suppose to have QQ = Vpub.az as
input query in Example 5.1. Applying the retrieval
function we obtain: M;,;(Q,P)=4{K,HNJ}

Now, we can obtain two different reuse methods de-
pending on whether or not the original query is de-
composed before the application of the retrieval meth-
ods. In the first approach, the system retrieves a solu-
tion if and only if the new query subsumes some past
problems, if so past solutions are simply replied. The
algorithm is reported below.

I—ll‘IiX,EMmf(Qy'p) M; Sol (X;)
if Ming(Q,P)#0
if Min(Q,P)=10

L

Example 6.2 Applying the basic reuse algorithms to
case memory and input case of Example 6.1 we obtain:

Sint(Q,P) = Sol(K) U (Sol(H) M Sol(J))

The second approach is based on the combination of
past solutions according to the new query structure.
It is based on a decomposition algorithm that exploits
the algorithm 2. The resulting algorithm is described
in Figure 3. Notice that Dual_D is the dual algorithm
of D. It retrieves concepts that minimally contain the
given query. Moreover, when an unsuccessful termi-
nation occurs, the algorithm backtracks and stops the
query decomposition to a higher level.

Example 6.3 Let us suppose to have Q' = Vpub.ail
Vpub.acm_trans as input query in Example 5.1. Ap-
plying the algorithm of Figure 3 we obtain:

P)

D(Q,
Sins (Vpub.ai, P) N S;p ¢ (Vpub.acm_trans, P)
= ( Sol(K) U (Sol(H) M Sol(J)) ) M Sol(I)



| db | |joumo\‘ ‘ ai ‘ |H;V pub -(Aquf)| ‘Jév puky .Qoumuluci)|

|Aé 7 joumnal ndb| ‘ocm_‘rrons‘ |ogen‘rs| | chr | “Vpub .gi|| |v pub .qcm_frcms|

@ Nil=sv pul (AN apu cbD K2y pub .agents

Figure 2: An example of terminology.

Function D(Q : concept; P : terminology) : concept;
begin
if Q is a primitive condition or Q € P then return S;,;(Q,P)
elseif Q=CUuD then if D(C,P)# L and D(D,P)# L
then return D(C,P)uD(D,P)
else return S;,((Q,P)
elseif Q=CnD then if D(C,P)# L and D(D,P)# L
then return D(C,P)ND(D,P)
else return S;,((Q,P)
elseif Q =-C then if D(C,P)# L
then return —Dual D(C,P)
else return S;,((Q,P)
elseif Q =VR.C then if D(C,P)# L
then return VR.D(C,P)
else return S;,((Q,P)
elseif Q =3R.C then if D(C,P)# L
then return IR.D(C,P)
else return S;,((Q,P)
elseif Q =< nR then return (VR.S;,;(T,P))N(< nR)
elseif Q => nR then return (VR.S;,;(T,P))N(> nR)
elseif Q = (R; = Ry) then return (VR1.8;,¢(T,P)) N (VR2.8;f(T,P)) M (R1 = Ra)
else return L
end;
Figure 3: The decomposition algorithm.
Notice that Condition (1) is preserved by above reuse the consumer formulates such a query, i.e., the con-
methods since it is easy to prove (by induction) that sumer has a new information need.

the following theorem holds. Example 7.1 Let us consider the case memory

1" = y
Theorem 6.1 Let Q) be a query. Let P be the termi- of E’?a,ml?le 5.1 and the query @ L ,VPUb'aZ M
< Jaf filiation.{“Stanford”}. The mediator is not able
nology of a given case memory. Then .
to rewrite the query. Indeed, we have

Sinf(Q,P)CQ D(Q,P)EQ D(Q",P) = ( Sol(K)U (Sol(H) M Sol(J)) ) M L =1
Notice that in general Sin¢(Q,P) # D(Q,P). As Furthermore a local failure in query evaluation occurs
a consequence, we can combine the above methods when a mediator send a rewritten query to related
in order to obtain a wider solution, i.e., Sol(Q) = sources and receives at least an empty answer. This
Sint (Q,P)UD(Q,P) means that the case memory of the mediator is not

updated. Typically, an information source has been

7 Distributed Query Retrieval and removed from the system or changed its schema.

Reuse Example 7.2 Let us suppose that source w; has

4 ' ) ) been (perhaps temporarily) removed, then the

A local failure in query reuse occurs when a mediator 1s evaluation of the reformulated query in Exam-
not able to rewrite a given query @, i.e., Sol(Q) = L. ple 6.3 fails. Indeed 1, (Vpub.conference) =
This means that the mediator’s case memory contains Iy, (Ypub.acmtrans) = I, (Vpubjournal) =

no past cases that can be used to reformulate ). Usu- Iy, (Vpub 3keyword {“Agents”}) = 0

ally this is due to the fact that it is the first time that ) ) ] )
Even if a local failure (in query reuse or evaluation)

! Notice that (L) = 0. occurs, the system has still a possibility of solving the
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problem by means of distributed query retrieval and
reuse. Notice that this provides the system the most
important way of learning. Indeed, if the query is re-
formulated, the new rewritten query and/or the new
sources can be stored as a new case. In such a way the
mediator can support dynamic information systems.
Furthermore, it does not need to maintain consistent
its case memory every time something changes, but
only when a consumer sends a query that fails. This
allows us to avoid of overloading the distributed in-
formation system with consistency maintenance oper-
ations, that usually are time consuming. Distributed
query retrieval and reuse is based on cooperation with
other mediators and sources. Cooperation strategies
can be classified according to three parameters: part-
ners, queries, and answers.

e Partners. When a mediator (say M) fails, it can
cooperate with other mediators asking them to
rewrite a query according to their own case mem-
ories. If they succeed, M can store the result as
a new case 1n its case memory. The mediators
involved in this strategy can be all the mediators
of the system or just mediators that have never
been in touch with M. The mediator M can di-
rectly cooperate with information sources as well.
Tt can involve all the sources (it is very expen-
sive), sources responsible of the local failure (this
strategy takes into account changes of schemas),
or recently added sources (this strategy takes into
account new sources). Each source processes the
query with an algorithm based on maximally con-
tained rewriting (it is the Algorithm 2, but the
schema is static instead of dynamic) and returns
the answer.

e Queries. Cooperation strategies can also be clas-
sified according to the query. Indeed M can send
the original query or the reformulated query (if
any). In the latter case the “approximation of
the solution grows”. For example, let us suppose
that @ is the original query and @' = Soly (Q)
is the query rewritten by M. Let N be the medi-
ator or source that cooperates with M and thus
receives (' as input query. Let us suppose that
Q" = Soln (Q') is the query rewritten by N. The
Theorem 6.1 states that Q" T Q' C Q. As a
consequence, (' is more distant from ) than @’

Cooperation strategies can also be classified de-
pending on the fact that the query can be sent as
it is or be decomposed in basic components.

e Answers. Finally, cooperation strategies can be
classified according to the answer. M can ask for
rewriting the query. Its goal is to update its case
memory with a rewritten query obtained from its
collaborators. M can also ask for data that an-
swer the query. In such a situation, it stores
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in the case memory the addresses of the media-
tors/sources that answered.

Let us focus on two of the possible strategies.

As a first strategy, let us consider a mediator M
that cooperates with the others mediators, sends them
the original query, and asks for receiving the rewritten
query. A possible disadvantage of such a strategy is
that asymptotically all the mediators may have the
same case memory. This result is a consequence of the
following theorem.

Theorem 7.1 Let M, N be two mediators such that
M interacts with N when M fails. Let C,(M) be the
case memory of M after n interactions with N. Let
C(N) be the case memory of N such that it does not
change while N interacts with M. Then

card(C,(M)NC(N)) .
card(C(N)) =1 3)

lim
n— 00
The above theorem is quite straightforward to prove
and states that the case memory of M converges to
the case memory of N when M cooperates with N.
As a second strategy, let us consider a mediator
M that directly cooperates with information sources,
sends them the original query, and receives both the
rewritten query and the data. This strategy guaran-
tees a given consumer that the mediator M converges
to the consumer’s information need (i.e., the recall ra-
tio converges to 1). Indeed it is possible to prove the
following theorem.

Theorem 7.2 Let Sy,...,S, be n information
sources. Let V be a view of S1,...,S,. V is repre-
sented as a case memory that does not change. Let M
be a mediator such that M nteracts with Sy,...,S,
when it fails. Let C, (M) be the case memory of M
after n interactions with Sy, ...,S,. Then

card(Ch,(M)NY)
card(V)

nh_)rrgo =1 (4)
The theorem above states that if the information need
of a consumer is represented by V, then the mediator
will asymptotically satisfy such a need. Let us demon-

strate the utility of this strategy with an example.

Example 7.3 In the situation of Example 7.2, let us
suppose that the mediator chooses to look for new
sources and cooperate with them. Let us suppose that
w4 1s a new information source which contains ACM
publications and has the following schema:

acm_tods =Yj_name. {“TODS"} NV¥publisher.{“ACM”}
acm_tocl =VYj_name. {“TOCL"} M VYpublisher {“ACM”}
acm_tois =Yj_name {“TOIS"} N Vpublisher.{“ACM”}



The mediator decomposes the query @’ and sends
each component to wy. For example, when wy re-
ceives Vpub.acm_trans, it
looks for maximally contained concepts and obtains
M;n ¢ (Ypub.acm_trans, P) =
{Vpub.acm_tods,Vpub.acm_tocl, Vpub.acm tois}.
When the mediator receives the answer, retains as new
case:

{ Ypub.acm_trans , Vpub.acm_tods U Vpub.acm_tocl
U Vpub.acm_tois ,
{ (Ypub.acm_tods, ws) ,
(Vpub.acm_tocl, w,) ,
(Vpub.acm_tois, wq) ) )

8 Conclusions

We considered the problem of rewriting queries by
means of distributed case-based reasoning. As far as
we know, this is a novel approach. We showed that the
notion of maximally contained rewriting of a query can
be also applied to a case memory (what we call local
query retrieval). This allows us to have dynamic me-
diated schemas instead of static ones. We also showed
that a real dynamic mediator is obtained by means
of distributed query retrieval and reuse, i.e., cooper-
ation with other mediators and sources. Thanks to
this approach, the mediator is able to be updated
when sources and consumers are added/removed or
change their schemas/needs. This operation is per-
formed only when a consumer sends a query that fails
and not every time something changes. This allows
us to avoid of overloading the distributed information
system with consistency maintenance operations, that
usually are time consuming. In distributed case-based
reasoning, the choice of the right cooperation strategy
is crucial. We hinted several possible strategies and
sketched a discussion about their advantages. We also
demonstrated by examples the utility of this approach.
Finally, notice that the choice of an appropriate de-
scription logic can reduce the algorithm complexity
for query retrieval and reuse. For example, if we
choose core-CLASsSIC [3], we have that the maximally-
contained rewriting can be computed in polynomial
time.
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A Description Logic

A description logic is composed by symbols taken from
the alphabet of Concept Names, the alphabet of Role
Names, and the alphabet of Individual Names (or In-
dividuals). Tt also includes a set of constructors that
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permit the formation of Concepts and Roles (see Ta-
ble 1). Tts formal semantics (e.g., [6]) is the structure
Z = (A,I()). Tt consists of a nonempty set A (the
domain of Z) and a function () (the interpretation
function of Z) that maps every individual to an ele-
ment of A, every concept to a subset of A, and every
role to a subset of A x A (see Table 1). We say that C
is subsumed by D iff I(C) C I(D) for every interpreta-
tion Z. A terminology has statements about concepts
(see Table 1) and intuitively describes the conceptual
schema of a database.
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