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Abstract

Traditional statistical methods deal with cor-
roborating given hypotheses on a given body
of data. However, generating the hypothesis
itself is a matter of intuition and ingenuity. It
is clearly impossible to test all hypotheses on
a database with millions of records and hun-

dreds of fields.

There have been attempts to bridge this gap
through data mining. Association genera-
tion is a method of creating such statisti-
cal hypotheses for binary data. For quan-
titative databases the situation is still not
good. There are a number of known meth-
ods. One is a reduction to binary data by
creating intervals and then generating associ-
ations. This method is computationally ex-
pensive. Another suggested method was by
generating associations that are statistically
interesting. This method also was tried only
on small databases and is applicable only for
binary relations, e.g., in certain ranges of field
X, field Y lies significantly outside its average.

We suggest a method that answers some of the
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problems with the current techniques. Our
idea is based on using visualization techniques
and image processing ideas to rank subsets of
fields according to the relation between them
in the database. This ranking suggests the
hypotheses to be statistically investigated.

Our method has the following advantages:

1. It is scalable. Our algorithm is mainly
based on analyzing histograms of the
data set, thus is more efficient. It is also
naturally suitable for sampling,.

2. It is generalizable in the size of the set of
fields. No current method handles more
than a binary relation.

3. It affords comparability between fields
over different base sets. This allows a
uniform scale for different sets of fields
in different databases.

In this paper we present an algorithmic
methodology and the results of its application
to the census bureau data bases, cpsm93p and
nhis93ac.

1 Introduction and Background

Recent years witnessed the mushrooming and evolv-
ing of the field of Knowledge Discovery in Databases
(KDD), also known as Data Mining. The main goals of
data mining are an automatic hypotheses generation
about the data and recognizing subsets of the data in
which the hypothesis holds and is considered useful for
the user, in the appropriate context.

There has been extensive work towards answer-
ing the major problem of identifying what should be
considered as “interesting” patterns and information
within vast amounts of data. Many metrics to measure
interestingness in specific contexts where suggested.
Notable examples are measuring the most interesting
rules [13], and visual feedback measuring the relevance
of answers to queries [17]. A major issue is whether
such patterns can be defined independently of the data
set domain. It is also essential to test the validity of
the patterns being discovered by the proposed meth-
ods.



Another important issue is the type of attributes
in the relation that we investigate. Attributes can be
categorical or numeric, which affects the type of infor-
mation one is interested in, the measurement of good-
ness of the extracted information, and the computa-
tional complexity of the mining process. Categorical
attributes, also referred to as binary or boolean, are
attributes whose domain in the relational data set is a
single value which either exists within the attribute’s
field in a data record or does not.

In contrast, numeric attributes are attributes whose
domain is a numeric value within the possible range of
values for an attribute in question, e.g. age, income,
weight, etc. This kind of attributes in a relation has a
strong effect on the way of information extraction, as
well as, on the type of patterns revealed by the mining
process, e.g., performing regression tests on numeric
attributes or on nominal ones.

Finding an interrelation between paired numeric at-
tributes is a major research area in statistics. Statis-
tical theory deals with hypothesis testing, rather than
automatic hypothesis generation, and has developed
various tests for many kinds of hypotheses.

Some of the weaknesses of these statistical tools are
as follows:

1. They are capable of recognizing interrelations in
the entire dataset, but cannot extract subsets of data
in which a strong interrelation occurs.

2. The attributes to be explored must be specified.
Hence, one cannot check automatically all hypotheses
on all combinations of attributes and obtain the most
important set of attributes for which a strong interre-
lation holds.

Some heuristics for extracting local interrelations
use geometric clustering techniques, but they may not
be capable of finding the appropriate semantics of an
interrelation between the attributes. In addition, they
are time consuming, especially when handling large
datasets.

Data mining techniques based on hypothesis gener-
ation, rather then hypothesis verification, would con-
tribute significantly to the ability of discovering truly
unknown interesting information. On the one hand, it
is difficult to formalize the users and their notion of
interestingness. On the other hand, if a data mining
tool can reveal a subset of data, among huge amount of
possibilities, which the user may find interesting and
useful, and can help the user to define hypotheses on
this data subset, then it may not be necessary to have
the hypotheses formally pre-specified.

1.1 Rules

There have been vigorous efforts in trying to quantify
and formulate the concept of an interesting data set.
This has led to the notion of association rules [1, 2]
and their variants, e.g., generalized association rules
[24, 12], correlation rules [4] and causal structures [23],
ratio rules [18], quantitative association rules [25, 3],
and optimized association rules [6, 7, 21].

Association rules define a specific type of hypothesis
and the goal of the proposed algorithms is to find in-

stantiations for attributes to derive rules that make the
hypothesis more specific and allow the user to confirm
or reject them. In its most basic definition a rule is an
expression of the form X = Y, where X,Y are (sub-
sets of) attributes from the relation and X NY = 0.
The rule is aimed at defining and revealing a specific
type of hypothesis regarding the interrelation or corre-
lation between these sets of attributes. The interest-
ingness or usefulness of the rule is usually measured
by some predefined metric function.

Several proposals for mining different types of rules
according to different types of pre-specified interest
metrics have been suggested in the literature. The
suggested techniques are fully automatic but need to
have predefined tasks. The ground work of formaliz-
ing the concept of a rule, namely association rules, on
the categorical attributes of a relation, was introduced
in [2].

Most real world databases contain some, if not pri-
marily, numerical data. The real need for analyz-
ing numeric data resulted in applying the framework
of categorical association rules to the case where at-
tributes are numeric. There are several suggested rule
types that use different interest measures to generate
rules and optimized rules with numeric attributes.

Srikant et al. [25] followed their basic definition of
associations and defined quantitative association rules
to include sets of categorical attributes and intervals
of numerical attributes.

Another approach for mining quantitative associa-
tion rules is introduced in [3]. Aumann and Lindell
developed a different definition for quantitative asso-
ciation rules based on statistical distribution of the nu-
merical values of a quantitative attribute. Their idea
is to define an interesting behavior by comparing (e.g.,
the mean and variance) distributions of the numerical
attributes using statistical tests for the mean and vari-
ance. This approach is sufficient for generating rules
with only one numerical value on each side of the rule,
and it is well founded within their definition. Their
technique does not generalize, however, to higher di-
mensions.

The methods described above are part of a
constraint-based approach which generates all rules
that mitigate the user’s predefined minimum support
and minimum confidence thresholds. Such methods
are likely to run into difficulties, as far as identify-
ing interesting and useful attributes out of the vast
amounts of reported rules. This operation is time con-
suming and does not scale to large data sets. In addi-
tion, it poses the need for additional tools for extract-
ing the most interesting patterns. To alleviate some
of the problems that arise when generating all possi-
ble rules that satisfy a certain threshold, the class of
optimization-based rule miner [7] was proposed.

In [21] the framework of optimized association rules,
described in [6, 7], was extended in several ways. How-
ever, the rules obtained suffer from two problems.
They pre-specify the variable in the hypothesis, and
their consequence is a categorical variable, rather than
numeric.



1.2 Data Visualization

Visualization of data is a known concept. Many vi-
sualization techniques have been developed over the
years. In addition, existing techniques have been ex-
tended to work for larger data sets and make the dis-
plays interactive. Visual data mining and informa-
tion visualization techniques are aimed at supporting
the exploration and analysis of very large amounts of
data, so that users can browse large datasets and find
patterns, correlations, clusters, gaps, and outliers that
reveal opportunities for action.

The common perception is to treat relational
databases as multidimensional data sets with the at-
tributes of the database corresponding to the dimen-
sions. Since a human is included in the visual data
mining process, it is important to provide techniques
that give a good overview of the data, so that the user
can navigate the data effectively. Therefore, several
techniques for viewing (or visualizing) effectively mul-
tidimensional (i.e., multivariate) data were suggested.
These include: scatter-plot matrices and coplots, pro-
Jjection matrices, parallel coordinates, geometric pro-
jection techniques, icon-based techniques, hierarchi-
cal techniques, dynamic techniques, graph-based tech-
niques, pixel-oriented techniques, and combinations
thereof. A complete comprehensive survey of these
techniques appears in [14, 15], and in [16] a detailed
evaluation and comparison of several visual data min-
ing techniques including pixel-oriented, geometric and
icon-based techniques is made.

It is important to note that while visualization tech-
niques have the advantage of suggesting hitherto un-
known hypotheses, they are slow, imprecise, and con-
fusing in the case of high dimensional data. For exam-
ple, if a record consists of 30 fields, then just viewing
all relationships between triples involves 24,360 visu-
alizations. This is clearly not feasible for a human
user.

1.3 Desiderata

A truly effective tool for generating hypotheses in a
data set should have the following characteristics:

1. Integrate categorical and numeric variables.

2. Generalize in the dimensions.

3. Be scalable to large data sets.

4. Generate hypotheses for various statistical tests.

We know of no method that can answer all of the
above needs. In this paper we present a novel idea
for generating quantitative hypotheses. Our method-
ology is based on data visualization. Specifically, it
uses image processing techniques to automate the de-
cision process. It decides which hypotheses are invalid,
and ranks the valid ones in order of “interest”. This
allows statistical verification of the highest ranking hy-
potheses, thereby meeting all of the above needs.

2 Main Idea and Proposed Approach

Our method is not restricted in the number of dimen-
sions. However, for ease of exposition and to better

convey our idea we will henceforth consider three di-
mensions. In other words, we will try to find all triples
of variables (X,Y,Z), where the X and Y variables
have an influence over the Z variable. We restrict
ourselves to three dimensions since this case best il-
lustrates the intuition behind our idea. (In Section 5
we will point out how the method generalizes to higher
dimensions.) At any rate, the three-dimensional illus-
tration is already meaningful since, to our knowledge,
there is no currently known algorithm that suggests
such a relation.

It should be noted that the main goal of this paper
is to suggest the method’s viability. We have yet to
speed up process. However, we point to the directions
that can be exploited for scalability.

2.1 The Ideal Case

Assume that our data set is composed of records with
numerical (quantitative) fields (variables). Fix vari-
ables X,Y, and Z. Assume that for every instantiation
of X and Y there is a single instantiation of Z.

Example: Suppose X is social security number,
Y is age, and Z is weight. For a given social security
number 123-45-6789 and age 15, there is a single possi-
ble weight. On the other hand if X is weight, Y is age,
and Z is social security number, there may be many
possible values for a fixed pair (X,Y). For example,
there may be many 40 year old people whose weight is
180 1bs.

We will discuss in Subsection 2.2 how to handle
the latter case. For the moment assume a single Z
value per pair (X,Y). To provide a more complete
description of our ideal environment, we further as-
sume that there is a data set record for every pair
(X,Y), X =1,..,d;, Y = 1,...,d2. The unique-
ness assumption above implies that we can construct
a dy X dy matrix whose value at location [i, 7] is the
value of the Z field in the record whose X and Y fields
are 7 and 7, respectively.

Continue our wishful thinking, and assume even fur-
ther that the values of variable Z range between 0 and
255. We may then view the value of variable Z in
terms of a picture’s gray level. In other words, our
matrix above will now be a d; X dy gray level image.

The intuition behind our idea is that, viewing the
gray level image above, we can express an opinion on
the relatedness of Z to X and Y. If the image is
“noisy”, as in Figure la, then it is unlikely that there
is a relation between X,Y, and Z. However, if the
image exhibits relative continuity in the level of gray-
ness, as in Figure 1b, then it is likely that the values
of X and Y are related to the value of Z. Our idea
is to utilize image processing techniques to automat-
ically assess the continuity of a given image. Thus,
our system will point out to the investigator “interest-
ing” subsets of variables from a given database to be
further explored.

We use the contrast [9] measure for texture to rank
the continuity of an image. In Subsection 3.3 we dis-
cuss in detail the formulation used and the motivation
for selecting it.
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Figure 1:
Unfortunately, life is not a rose garden. The ideal
situation described above is never encountered. We
need to contend with the following pitfalls:

1. Extremely large ranges of X and Y, such that
the image processing algorithms become unfeasi-
ble due to the huge image size.

2. “Holes” in the image, i.e., a large number of pairs
[7,7] for which there is no record in the data set
with the values X =1, Y = j.

3. A large range of values for the Z variable.

4. Pairs [i, 7] for which the records with values X =
i, Y = 7 have varying different values in the Z
variable.

2.2 Creating an Image from “Dirty” Data
2.2.1 Limiting Ranges of X and Y

Theoretically, we can use the raw elements of X and
Y. However, the range of X and Y may be huge (e.g.,
salaries). Constructing and analyzing an image of size
200,000 x 200,000, for example, is not computation-
ally feasible. In addition, very large ranges will mean
extremely sparse matrices, which also contradicts our
intuition of having as contiguous an image as possible.
It seems practical to limit the image size to 500 x 500.

There are two commonly used ways of limiting large
variable ranges. One is a linear mapping of subranges
to the desired ranges, and the other is a mapping of
equal sized subranges to the desired ranges (similar to
equi-width).

Examples:

1. Let X range from —10,000 to +10,000 and as-
sume that the desired range is from 1 to 500.
The 20,000 integer values of X'’s range are lin-
early mapped to 1..500 with each 40 values of
X being mapped to a single value. For ex-
ample, —10,000,...,—9,961 are mapped to 1,
—9,960, ...,—9,921 are mapped to 2, etc.

2. Again, let X range from —10,000 to 410,000
and assume that the desired range is from 1
to 500. However, suppose that the data set
only has 1000 records. Suppose further that

for these records the values of X range as fol-
lows: —10,000,...,—9,501 and 9,951, ...,10,000.
We will map every 2 elements of X to a single
value, with —10,000 and —9,999 mapped to 1,
—9,998 and —9,997 mapped to 2, and so on until
—9,502 and —9,501 mapped to 250, 9,951 and
9,952 mapped to 251 etc., until 9,999 and 10,000
are mapped to 500.

We chose the first option because it is natural, when
dealing with large numerical values, to consider sub-
ranges (e.g., salaries). Using equal sized buckets may
distort the meaning of the data by lumping together
elements that are far from each other and separat-
ing close elements. We experimented with different
granularities of the division and realized that it made
negligible difference in the final ranking of the triples
(presented later).

2.2.2 Bridging Gaps in the Image

The texture formulas from image processing assume,
of course, that image pixels are contiguous. This is
not necessarily the case in our data set of generated
gray level images. However, by ignoring missing data
and using the closest pixel with existing data in the di-
rection of the missing pixel, we managed to overcome
this problem. The exact details of choosing neighbor-
hoods for calculating contrast are described in Subsec-
tion 3.3.

2.2.3 Handling the Z Variable Range

A linear handling of the Z variable range may cause a
granularity that is too rough.

Example: Consider the case where variable Z is
the number of doctor’s visits a person undergoes a
year. This number may range from 0 to 700 (in case
the person is in a hospital and is seen by a doctor twice
a day). However, it is clear that the vast majority of
people visit a doctor between 0 and 2 times a year.
Thus, a linear mapping of the Z values to 256 gray
levels would produce an almost uniform picture, which
is not very interesting.

What is necessary is a way to trim the values of the
Z variable in a manner that considers only the Z values
of the majority of records. We present a new method
of histogram trimming to achieve this end. Histogram
trimming is described in detail in Subsection 3.1.

2.2.4 Multiple Z Value

Perhaps the greatest challenge in trying to construct
a gray level image from data is determining the gray
level of an element [4, j], where there are many different
Z values for records with X =4, Y = j. If the values of
Z for such an element range over a large set of values,
then it is pointless to consider the continuity of Z over
X,Y. Even a single element is not coherent.
Example: Assume we are considering the correla-
tion between pulse, blood pressure, and weight. If we
find in our data set 50 records of people whose pulse
is 75 and whose blood pressure is 110/80, and if the



weights of these individuals range from 70 lbs to 400
lbs, then it does not seem likely that there is any cor-
relation between pulse, blood pressure, and weight.

We need to devise a measure for pixel “validity”.
In addition, it is necessary to be able to discount iso-
lated invalid pixels, or concentrated areas of invalid
pixels. We define the notion of a walid pizel as one
where a large portion of its subpopulation is congre-
gated within a small distance from the median of that
subpopulation.

The notion is complicated by the fact that a “small
distance” is not a uniform value throughout the data
set. There may be subsets of the range of Z, where a
large population is densely congregated, versus large
sparse range subsets. (One’s closest neighbor in the
Australian Outback may be 60 miles away, whereas in
NYC it is a foot away.) We use the histogram trim-
ming to define the relative closeness to the median.
The details of this idea are discussed in Subsection 3.1.

Having identified the valid pixels, we use texture
formulas to automatically reject images with predom-
inantly invalid pixels. For the remaining images, the
Z value of a valid pixel is taken as the median of the
values that the pixel takes on. These images are then
ranked by the contrast measure.

3 Data Representation and Processing
3.1 Data Validity
3.1.1 Valid Pixel

The presentation of a data set in terms of an image
as described in the previous section may often provide
an image containing pixels with missing data. The
gray level value assigned to such pixels is 255, i.e., pix-
els lacking data will appear in white. Also, we would
like to exclude from further consideration pixels which
contain data that do not seem significant. Such pixels
were referred to as invalid pizels and they are assigned
a gray level of 0, i.e., invalid pixels will appear in black.
The rest of the image pixels will be mapped, eventu-
ally, onto some gray level value between 0 and 255 as
described in Subsection 3.2. Let us treat, for now, all
valid pixels as having the same gray level value.

We turn our focus to determining whether or not
a pixel containing data is considered valid. As was
stated in Subsection 2.2.4, a pixel will be considered
valid, provided that a large portion of its subpopula-
tion is congregated within a small distance from the
median (of the Z-values) of that subpopulation. Let
us elaborate, in more detail, on the various aspects
contained in this definition. We choose to consider the
median value (as opposed to the mean, for example),
because the median is known to be robust, i.e., it pro-
vides an estimate that is immune to noisy data and/or
outliers. (See, e.g., [22] on the concept of robust esti-
mation.) In the spirit of Rousseeuw’s (1-D) least me-
dian of squares (LMS) estimator (ibid. [22]) — this is
the midpoint of the narrowest interval containing (at
least) 50% of the data — we will look at a small in-
terval surrounding the median and check whether (at

least) 50% of the pixel’s data reside in this interval. If
so, then the pixel is valid (in the sense that the me-
dian was, indeed, representative of the majority of the
pixel’s data). Otherwise, it is invalid.

As was pointed out in Subsection 2.2.4, we make use
of the trimmed histogram to determine relative close-
ness to the median. We considered some possibilities of
specialized histograms (e.g. [20, 19]) but they did not
answer all our needs. Assume, for example, that the
range of the trimmed histogram (with respect to the
Z-values) is 7. Then, we could define the surrounding
interval as p - r, where p is some small fraction (e.g.,
0.1). While this may be applicable to, e.g., unimodal
histograms, where relatively little information is con-
tained in the tails and trimming is bound to yield a
(much) smaller range in the Z-value, in general it is
likely to encounter difficulties. For example, consider
the case where the distribution of the Z-value is bi-
modal. Clearly, trimming the “usual” way is likely to
have no effect on the range. Thus, the resulting sur-
rounding interval, p -7, will be too large, and the pixel
in question will be determined valid even though is
contains data over a (relatively) large range and should
have been considered invalid.

To remedy this phenomenon, we propose a gener-
alized histogram trimming procedure where instead of
trimming, say, the bottom and top 5% of the Z-values,
we trim the least frequent 10% of these values. Sup-
pose that such trimming results in ¢ Z-levels that con-
stitute the remaining 90% of the data. Instead of defin-
ing the surrounding interval (around the median of a
pixel’s subpopulation) as before, we locate the median
with respect to the above set of ¢ Z-values and find
the narrowest interval around the median that con-
tains, say, 10% of the ¢ values assumed by the trimmed
histogram. Having picked an interval in the above de-
scribed manner, we proceed to determine whether (at
least) 50% of the pixel’s data reside within the interval,
in which case the pixel is valid.

3.1.2 Valid Field Subset

Having designated pixels as invalid does not necessar-
ily mean that the image is not interesting, or that the
hypothesis should not be statistically verified. It is
possible that there is a very small number of invalid
pixels. Alternately, even if there is a larger number
of invalid pixel, if they are all congregated together in
contiguous areas, it may still be the case that the rest
of the image actually has a continuous Z surface.

In Subsection 3.3 we introduce the tezture measure,
adopted for our purposes. The main use we make of
it is for ranking the valid images relative to their vari-
ance. Incidentally, the same measure was used ini-
tially to rank images for validity. We create a tri-color
co-occurrence matriz (to be defined later), consisting
of valid (gray), invalid (black), and non-existing-value
(white) pixels. The variance measure described in Sub-
section 3.3 was used to identify tri-color images having
a large number of invalid pixels. Such images were im-
mediately rejected.

An additional validity test is low entropy of the gray



level image. This suggests an uninteresting image and
causes its rejection. Examples are shown in Subsec-
tion 4.

3.2 Mapping Z-Values to Gray Levels

In this subsection we discuss how to map Z-values onto
image gray levels. Suppose that the original range of
Z-values is smaller than the number of gray levels.
(We will assume 256 gray levels as is customary in
digital image processing.) Let the range be defined by
Zmin and Zmax, and let glv_; . glv  denote, respec-
tively, the smallest and largest gray level value. (In
general, glv_ . > 0 and glv .. < 255, as black and
white are reserved for pixels missing data and invalid
pixels, respectively.) A value z (zmin < 2 < Zyax) 18
mapped to gray level glv, such that,

Z — Zmin
) : (glvmax - glvmin) + glvmin'
Zmax — Zmin

In general, however, the range might be very large
and we may need to apply generalized histogram trim-
ming, as explained in Subsection 3.1.1. Let ¢ denote
the number of Z-values that constitute, say, 90% of
the generalized trimmed histogram. Also, let b denote
the remaining number of Z values, and let nc denote
the number of colors (i.e., gray level values) that are
allocated for the above t values. (Typically, if we trim
the least frequent 10% of the data, then nc is set to
230, i.e., roughly 90% of the gray level range.) We
distinguish between the following two cases:

1. t > nc. In this case, we simply assign t/nc Z-
values to each color, where smaller values are as-
signed to smaller gray level values. The distance
between gray levels assigned to the ¢ values is
computed relative to the b values, i.e., we assign
b/Z — nc values per pixel.

2. t < nc. In this case every one of the ¢ values is
assigned a distinct gray level. The distance be-
tween gray levels assigned to the ¢ values is com-
puted relative to the b values, precisely as before.
Namely, we assign b/Z — nc values per pixel.

3.3 Data Ranking

At this stage we have a gray level image of valid pixels.
The next step is to quantitatively assess the degree to
which the image is continuous. The tool we use for
this is texture analysis.

Texture characteristics have proven very important
and have been used widely in the analysis/processing
of many types of images. In a nutshell, texture can be
characterized by the spatial distribution of gray lev-
els in a neighborhood of a given image. Following the
definitions in [11], texture can be defined as having
one or more of the properties of uniformity, fineness,
smoothness, density, coarseness, roughness, regularity,
intensity, and directionality of the gray level primitives
and the spatial relationships between them within an
image. Numerous definitions for texture, designed for
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Figure 2:

particular applications, have been proposed in the lit-
erature.

Haralick defined texture as being specified by the
statistical distribution of the properties of the differ-
ent textural primitives occurring at different spatial
relationships (see [9]).

A pixel, with its gray level as its property, com-
prises the simplest primitive of a digital image. Con-
sequently, the gray level distribution of a pixel can
be described in terms of first-order statistics, such as
the mean, standard variation, or validity as defined in
Subsection 3.1. The gray level distribution can also
be described by second-order statistics, such as the
probability of two pixels having particular gray levels
occurring at particular spatial relationships. This in-
formation can be captured in a two-dimensional co-
occurrence matriz, computed for different distances
and orientations. The two-dimensional continuity we
seek relies on the above kind of information and can be
derived from the corresponding co-occurrence matrix.

Gray level co-occurrence can be specified as a two-
dimensional matrix of relative frequencies, Pq¢)[7, 7],
where each entry is equal to the frequency with which
two pixels separated by distance d at orientation 6
occur in the image, one with gray level 7 and the other
with gray level 7.

Example: Consider the following 4 x 4 gray level
image in Figure 2a, with gray levels ranging over
{0,1,2,3,4}. Its co-occurrence matrix Py go) is in Fig-
ure 2b. (Note that by definition, a co-occurrence ma-
trix is symmetric.)

For a full local view, one needs the relationship be-
tween all neighbors, not just a single fixed angle. Thus,
it is customary to consider the following as the co-
occurrence matrix: P = E::o P,in/a)-

In order to extract useful information from a co-
occurrence matrix, Haralick et al. [10] defined 14 sta-
tistical measures that measure textural properties like
homogeneity, contrast, organized structure, and na-
ture of gray levels transition, as mentioned above. The
specific distance and orientation depend on the nature
of the examined scene.

In our context, where each pixel represents a lot of
information, we need to extract micro-texture features
that use second-order statistics (i.e., co-occurrence) of
gray levels of pixels in appropriate spatial relation-
ships. We have compared several relevant measures
for our purpose and found the variance to be the most
adequate and satisfactory with our results. This bodes
well with Gotlieb and Kreyszig [8] who claimed that in
heuristic tests they had carried out, overall the vari-
ance (or contrast) performed best in finding similar



textures.

Definition: Given a co-occurrence matrix P, the
variance of gray level spatial dependencies, which is
the difference moment of P is given by 3, . i — 71%pij,
where p;; is the probability that gray level 7 appears
next to gray level j (horizontally, vertically or diago-

nally). In other words, p;; = _Plidl

Therefore, the above variance measures contrast in
the image. This parameter will have a large value for
images that have a large amount of local spatial vari-
ation in gray levels and a smaller value for an image
with spatially uniform gray level distributions. This
observation also explains the reason that the variance
is a good measure for the continuity of a gray level
image. The smaller the variance, the more continuous
the image.

The Number of Colors

There is an additional factor that should be taken into
account — the number of “colors” (i.e., gray levels)
in the image. Since we seek “interesting” hypotheses,
it is not sufficient for the variance to be small. In
fact, the variance is 0 when the entire image is com-
posed of a single color, but that is hardly an exciting
case. Therefore, we modified the variance measure to
be biased toward a larger amount of different colors.
In particular, we used the expression below (where ¢

denotes the number of different colors in the picture):

CLZ ij li = j1?pij-

3.3.1

3.3.2 Disconnected Image

It was mentioned in the overview (Subsection 2.2) that
our gray level image is unlikely to be contiguous. Thus,
the co-occurrence matrix P may have too few entries.
To handle this effect it is possible to fill the image by
interpolating into it the missing values. Such inter-
polation would increase the complexity, and possibly
“smooth over” areas that are really not smooth.

We chose, therefore, to divide the neighborhood sur-
rounding each pixel into eight zones (see Figure 3). As
far as the co-occurrence computation — our implemen-
tation finds, for every pixel, its nearest neighbor pixel
in every zone. In the case of a contiguous image, this
reduces exactly to the variance.

|
T

Figure 3: The zones surrounding a pixel

4 Experimental Results

We tested our algorithm on two Census datasets. The
experiments were performed on UltraSparc-1I 248MHZ
running Solaris 2.6, and all algorithms were written in

C. In these data sets it is often likely to find known
correlations between attributes.

Assuming that the data are sorted on each triple,
building the images and performing the ranking by our
image processing ideas were highly efficient and took
only a few seconds. The output is a set of triple at-
tributes, (X,Y, Z) for each data set, that were found to
be the most interrelated by examining the continuity
of its spatial arrangements of Z-values.

4.1 First Census Data

The first data set, cpsm93p (Current Population Sur-
vey of 1993 of personal records), has 3 types of file
groups of the March Questionnaire Supplement. We
selected the Person Data Files group. The data set
is available from the Data Extraction System (DES)
on http://www.census.gov/. It consists of 413 at-
tributes, both numeric and nominal. Out of these, we
selected 6 numeric attributes that we considered to be
interesting. These attributes are described in Table 1.

We took only non-empty personal records which
had actual values for our selected attributes. The total
number of records was 155,198.

From these six attributes there is a total of 60 rele-
vant triples (X, Y, Z). For each triple (X,Y, Z) we par-
titioned the X and Y attributes to subranges accord-
ing to their value ranges. For example, AGE ranges
between 0 and 90, so we handled it as is without any
partition. On the other hand, WSALVAL ranges be-
tween 0 and 199,998, so we it into 500 subintervals by
considering each 400 dollars as one subinterval. This
has led to a 90 x 500 image. It is worth noting that
practically it is hardly ever necessary to consider im-
ages larger than 1000 x 1000 (500 x 500 was sufficient
in our tests), since a full 1000 x 1000 image already
implies 108 records in the database.

We generated the appropriate 60 images and ran
our tests. The first step after creating the images was
to determine which of them contained valid informa-
tion and drop those which did not. Recall that for each
image pixel we compute whether or not it is valid. Our
algorithm first checks the tri-color images and drops all
images with high co-occurrence of black-gray pixels, or
those having low entropy. Out of 60 possible images 51
were rejected because of the above reasons. The 9 im-
ages that were accepted were ranked according to their
continuity (i.e., in increasing order of their variance).

In all the images shown, the X attribute is the hor-
izontal one, with values growing from left to right. Y
is the vertical axis with values growing from top to
bottom. Z is depicted by its gray level, with light
being smaller than dark (the reverse of the customary
gray level assignment). The black dots indicate invalid
pixels. White areas indicate that no record exists for
the X and Y values covering these areas. Recall, gray
pixels are considered valid at this stage.

Figure 4 was rejected for being invalid. In this im-
age there is a preponderance of black (invalid) pixels,
thus it was rejected. The meaning of this rejection



| Code || Description | Range |
AGE Person’s age 0..90
AGI Adjusted gross income —9999..99, 999
CAPGAIN || Amount of capital gain 0..99,999
DIVVAL Amount of dividends from stocks 0..99,999
UCVAL Amount of unemployment benefits | 0..99,999
WSALVAL || Total wage and salary 0..199,998

Table 1: Attributes of first data set

is that the adjusted gross income and the total wages
and salaries have no relation with a person’s age. It is
interesting to note that the reason there are no values
below the diagonal is that it is practically impossible
for the adjusted gross income to be greater than the
total wages and salaries.

Figure 4: X = total wages and salaries, Y = adjusted
gross income, Z = age

Figure 5 has a relatively small number of invalid
pixels but it was rejected due to low entropy of the
gray level image. The vast majority of valid pixels in
this image have the same value of 0 (no unemployment
was being paid). Thus even though the variance is low,
the image was rejected for being unenlightening. It is
interesting to note the triangular shape of the data,
with the base to the left. The reason is that it is
unlikely for both the very young and very old to have
a high income.

Figure 5: X = total wages and salaries, Y = age, Z =
unemployment benefits

Among the 9 valid images of the data set investi-
gated, Figure 6 represents the image with the highest
ranking. (Figure 7 is merely a 3-D plot of the high-
est ranking image, and conveys, essentially, the same
information.) The rising values of Z as a function of
X and Y are clearly evidenced. The story told by
this data is that as the adjusted gross income rises,
so does the amount of capital gain. However, this is
most marked around middle age. Youngsters and old
people have less income. Another interesting feature
is the vertical line appearing most notably at the low
end of the capital gain range. It means that as people
get close to retirement age (around age 57), they are
more likely to have capital gain, even if they are on a
lower income scale.

Figure 6: X = age, Y = capital gains, Z = adjusted
gross income

Figure 7: X = age, Y = capital gains, Z = adjusted
gross income
4.2 Second Census Data

The second dataset we tested was the census
dataset, nhis93ac (National Health Interview Sur-
vey 1993 (NHIS)). The data set is available from
http://ferret.bls.census.gov/ by using the FER-
RET data system. It has several hundred numeric and
nominal attributes and consists of 45,951 records. We
chose 7 numeric attributes for our tests. These at-
tributes are described in Table 2.

For these 7 attributes there are 105 possible triples
and thus our algorithm analyzed 105 images. The va-
lidity check rejected 86 of the 105 images and accepted
19.

The highest ranking image (Figure 8, Figure 9) of
this data set makes the case quite strongly that higher
income implies higher education. However, there are
side tales to be learned from this picture. The dark-
ening of the left-hand side of the image in a uniform
manner (or the clearly identified slope in the three-
dimensional rendition) means that children until the
age of 15 will have virtually the same number of school
years, regardless of their family’s income. The high
number of black pixels on the right means that where
very old people are concerned, their number of school
years is not well distributed. We also notice that old



| Code || Description | Range
AGE Person’s age 0..99
BDDAY12 || Bed Days in Past 12 Month 0..365
DV12 Doctor Visits in Past 12 Month 0..997
EDUC Education of Individual — Completed Years | 0..18
INCFAMR || Family Income 0..8 (levels)
NCOND Number of Conditions 0..14
WEIGHT Weight Without Shoes (=1 for children under 18) 50..500

Table 2: Attributes of second data set

e

Figure 9: X = age, Y = income, Z = education
people have, in general, less education then their mid-
dle aged counterparts within the same income class.

5 Discussion and Future Research

Our discussion hitherto relied entirely on mapping the
data to an image, thus generating a hypothesis on
three variables. This was done primarily for pedagog-
ical reasons. The experimental results provided also
dealt with three-dimensional hypotheses, because it is
easy to visualize these results.

It is clear, however, that the method proposed is
easily generalizable in the number of dimensions. The
validity of a pixel can be calculated in the manner de-
scribed above for any dimension. The co-occurrence
matrix will become simply a co-occurrence hypercube
in the appropriate dimension and the entire discus-
sion follows through. The dimension will play, though,
a role, as far as space complexity is concerned. Al-
though, as was previously stated, the main objective
of the paper was to introduce the viability of our novel
methodology, rather than optimize computational ef-
ficiency, we will devote the next few paragraphs to
complexity-related issues.

The first issue is the tradeoff between dimensional-
ity and granularity. While theoretically our method is
easily generalizable to any dimension, the size of an
“image” is multiplied by the number of buckets for
every added dimension. We have used 256 for two di-
mensions, but this number is clearly not feasible for
four dimensions and above. This can be compensated
by taking smaller histograms.

Note that our treatment of the X and Y values
differs from our treatment of the Z value. We com-
puted X and Y linearly, while we used the trimmed
histogram idea for the Z value. We are currently con-
sidering a uniform treatment of all variables according
to the trimmed histogram. In our tests so far, this
has no effect on the ranking of our attributes. How-
ever, applying this uniform treatment makes the entire
process much more efficient, since the complexity now

depends solely on the dimension of the relation and on
the record size, but not on the database size. Thus,
the real cost of our algorithm depends on dimensional-
ity and granularity. Once those parameters are fixed,
the size of the dataset does not matter (meaning that
scalability is not an issue) since the algorithm scans
the database exactly once.

Assume that every record has k attributes (fields).
Then the number of triples (X,Y,Z) the algorithm
considers is (];) The number of quadruples would be

(g), etc. The total number of relations of all sizes

is 2%, On the other hand, if we construct trimmed
histograms of size d (d buckets), then the space re-
quirement for i-dimensional relations is d*. Thus, our
space requirements for computing simultaneously all
relations of dimension no greater than 4 is y_,_; (I;) dt.
Hence, if the above value fits in memory, we can com-
pute all relevant relations in time proportional to a
single scan.

Example: Suppose that every database record
has £ = 50 attributes. For i = 4, there are 1,225
two-dimensional images, 19,600 three-dimensional im-
ages, and 230, 300 four-dimensional images. If we pick
d = 30, then two-dimensional, three-dimensional and
four-dimensional images of interest will be of sizes 900,
27,000, and 810,000, pixels, respectively. Thus, the
total requirement is around 1GB. This means that
given a platform of 1GB memory, we can compute all
relations for a database of any size in core doing a
single database scan. In contrast, it is not feasible to
use any statistical method (e.g. [5, 26] for brute-force
testing of such magnitude. We provide a method that
ranks the hypotheses to be tested. There is currently
no known method that ranks relations of dimensions
higher than 2.

Finally, it would seem like our algorithm will only
detect hypotheses that are uniformly valid. This is not
entirely true. If the image is composed of a number of
segments, each of whose variance is small, the overall
picture will still have a small variance. However, there
is one type of case that would be of interest and yet
might “slip through the cracks”. This is the case of
an image containing regions with small variance and
other regions that are extremely noisy. The noisy re-
gions will cause the variance to be high, yet we would
like to know the range of values where the hypothe-
sis holds. As it stands now, our algorithm will not
rank this image high. However, we have been adding
a segmentation component to our algorithm. The lat-



Figure 8: X = age, Y = income, Z = education
ter should help distinguish an image with large regions
having a low variance.
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