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Abstract

In recent years, several methods have been
proposed for implementing interactive similarity
gueries on multimedia databases. Common to all
these methods is the idea to exploit user feedback
in order to progressively adjust the query parame-
ters and to eventually converge to an “optimal” pa-
rameter setting. However, all these methods also
share the drawback to “forget” user preferences
across multiple query sessions, thus requiring the
feedback loop to be restarted for every new query,
i.e. using default parameter values. Not only is
this proceeding frustrating from the user’s point
of view but it also constitutes a significant waste
of system resources.

In this paper we preseReedbackBypass, a new
approach to interactive similarity query process-
ing. It complements the role of relevance feed-
back engines by storing and maintaining the query
parameters determined with feedback loops over
time, using a wavelet-based data structure (the
Simplex Tree). For each query, a favorable set of
guery parameters can be determined and used to
either “bypass” the feedback loop completely for
already-seen queries, or to start the search process
from a near-optimal configuration.

FeedbackBypass can be combined well with

all state-of-the-art relevance feedback techniques
working in high-dimensional vector spaces. Its
storage requirements scale linearly with the di-
mensionality of the query space, thus making even
sophisticated query spaces amenable. Experimen-
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tal results demonstrate both the effectiveness and
efficiency of our technique.

1 Introduction

Similarity and distance-based queries are a powerful way
to retrieve interesting information from large multimedia
repositories Fal9g. However, the very nature of multi-
media objects often complicates the user’s task of choos-
ing an appropriate query and a suitable distance criterion
to retrieve from the database the objects which best match
his/her needsgK97. This can be due both to limitation
of the query interface and to the objective difficulty, from
the user’s point of view, to properly understand how the
retrieval process works in high-dimensional spaces, which
typically are used to represent the relevigaturesof the
multimedia objects. For instance, the user of an image re-
trieval system will hardly be able to predict the effects that
the modification of a single parameter of the distance func-
tion used to compare the individual objects can have on the
result of a query.

To obviate this unpleasant situation, several multimedia
systems now incorporate sorfeedbacknechanisms so as
to allow users to provide an evaluation of theevance
of the result objects. By analyzing such relevance judg-
ments, the system can then generate a new, refined query,
which will likely improve the quality of the result, as ex-
perimental evidence confirmBRHOMS9E. This interactive
retrieval process, which can be iterated several times until
the user is satisfied with the results, gives rise teed-
back loopduring which the default parameters used by the
guery engine are gradually adjusted to fit the user’s needs
(see e.g.QRCT97)).

Although relevance feedback has been recognized as a
highly effective tool, its applicability suffers from two ma-
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1. Depending on the query, numerous iterations might
occur before an acceptable result is found, thus con-
vergence can be slow.

2. Once the feedback loop of a query is terminated,
no information about this particular query is retained
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whose storage overhead is linear in the dimensionality
of the query space, thus makes even sophisticated query
spaces amenable. Its resource requirementindepen-
dentof the number of processed queries but depend only
on the complexity of the query parameter function, which
guarantees proper scalability and performance levels. Fur-
thermore, storage requirements can be easily traded-off for
the accuracy of the prediction. Experimental results pre-
sented below demonstrate both the effectiveness and effi-
ciency of our technique.

The rest of the paper is organized as follows. SecZion
provides the background on relevance feedback mecha-
nisms and on related work. In SectiBmwe describe our ap-
proach and state the basic requirements for an effective im-
plementation of~eedbackBypass. Section4 provides a
thorough description of the Simplex Tree and of related im-
plementation issues. Experimental results on a real-world
image data set are presented in SecBorSection6 con-
Figure 1: FeedbackBypass in action. The middle line cludes the paper.
shows the 5 best matches computed using default parame-
ters for the query image on top. The bottom line shows th€  Background and Related Work
results obtained for the same query when the paramete
suggested bireedbackBypass are used

FeedbackBypass results

(Rie frame our discussion within the contextvefctor space
similarity models, for which a multimedia object is repre-

) . ! ASE S
for re-use in further processing. Rather, for furtherS€nted by aD-dimensional vector (i.e. a point i) of

queries, the feedback process is started anew with dd€&tures p = (p1, ..., pp). The similarity of two points

fault values. Even in the case where a query objecP @1dd is measured by means of somistance function
has already been used in an earlier feedback loop, afi" such space. Relevant examples of distance functions in-
iterations have to be repeated. clude L, norms (; is the Manhattan distancé,;, is the

Euclidean distance) and their weighted versions. For in-

Note that both problems concern tbfficiencyof the feed- ~ stance, the weighted Euclidean distance is

back process, whereas thffectivenessf retrieval will de-

pend on the specific feedback mechanisms used by the sys- D 1/2

tem, on the similarity model, and on the features used to . _ (s — )2

represent the objects. Low(p,a: W) = <; wi (P = i) ) @
This paper present®eedbackBypass, a new approach o -

to interactive similarity query processing, which com- Also quadratic distances can be used to capture correla-

plements the role of current relevance feedback enginedions between different coordinates of the feature vectors.

FeedbackBypass is based on the idea that by storing and he well-known Mahalanobis distance is defined as

maintaining the information on query parameters gathered b D

from past feedback loops it is possible to either “bypass” dMahatanobis (P, & W) = Z Z wij(pi = 4i) (i — 45)

the feedback loop completely for already-seen queries or ==t

to “predict” near-optimal parameters for new queries. In and leads to arbitrarily-oriented ellipsoidal iso-distant sur-

both cases, as an overall effect, the number of feedback arfdces in feature spac&K97. Note that this distance is

database search iterations is greatly reduced, thus resultimgdeed a “rotated” weighted Euclidean norm.

in a significant speed-up of the interactive search process. The typical interaction with a multimedia retrieval sys-
Figure1 shows a query image together with the 5 besttem that implements relevance feedback mechanisms can

results obtained from searching with default parameters e summarized as followShl88:

data set of about 10,000 coI_or IMages. ,‘NO resuIE Imag%uery formulation. The user submits an initial query
belongs to the same semantic category “Mammal” of the Q = (q, k), whereq is called thequery pointand

guery image (see Sectidnfor a description of image cat- . L

egories). The bottom line of the figure shows the 5 best fhles ;y!gtnon the number of results to be returned by
matches obtained for the same query wkeedbackBy- '
pass is applied and the system uses the predicted queruery processing. The query pointq is compared with

parameters. WitlreedbackBypass, we obtain 4 relevant the database objects by using a (default) distance func-
images (i.e. 4 mammals) among the top 5 query results. tion d. Then, thek objects which are closest tpac-
The implementation ofFeedbackBypass utilizes a cording tod, Result(Q,d) = {p1,...,px}, are re-

novel wavelet-based data structure, caliichplex Treg turned to the user.



itive feedback (scores) and the Mahalanobis distance, the
“optimal” query point (based on the available set of results)
is a weighted average of the good results, i.e.:

, >_; Score(p;) X pj

q = (2
@ (b) 2. Score(p;)

Figure 2: The “query point movement” (a) and the “re- Re-weighting. The idea of re-weighting stems from the ob-
weighting” (b) feedback strategies servation that user feedback can help identify feature com-

ponents that are more important than others in determining
whether a result point is “good” or not. Consequently, such
Feedback loop. The user evaluates the relevance of thecomponents should be given a higher relevance. For sim-
objects inResult(Q, d) by assigning to each of them plicity of exposition, let us consider a retrieval model based
arelevance scoreScore(p;). On the basis of such ©on weighted Euclidean (see Equatibnand also refer to
scores a new queryy’ = (q’, k), and a new distance Figure 2 (b). In order to assess the relative importance
function,d’, are computed and then used to determineof the i-th feature vector component, the distribution of
the second round of results. the “good”p; ; values, i.e. the values of the good matches
along thei-th coordinate, is analyzed. In an earlier version
Termination. After a certain number of iterations, the ofthe MARS systemRHOM98, it was proposed to assign
loop ends the final result beinesult(Qopt, dopt),  to thei-th coordinate a weighi; computed as the inverse
whereQop: = (qopt, k) is the “optimal” query the  of the standard deviation of thg ; values, i.ew; = 1/a;.
user had in mind, and,,: the “optimal” distance [ater on, it was proved if$F94 that the “optimal” choice
function to retrieve relevant objects fQx, ;. of weights is to havey; « 1/0?. Similar results have been
Every interactive retrieval system provides a specific im-Proven for quadratic distance functiodSE9d, as vyell as
plementation for each of the above steps. For instanc for th_e case whgre the number of good matches is less than
: he dimensionality of the feature spa¢e{0d.

the choice of the initial query point depends on the sys- .
tem interface and, also considering the nature of the mul- In a recent paperHOQ Rui and Huang have extended

timedia objects, can includecuery-by-sketcfiacility, the the re-weighting strategy to a “hierarchical model” of sim-

choice from a random sample of objects, the upload of thélarity, where above strategy is first separately applied to
query point from a user's file, etc. A ntjmber of options each individual feature, and then each feature (rather than

is also available for implementing the actual query pro—eaCh feature_compor_\ent) is assigned a weight which takes
cessing step, which typically exploits index structures forthe overall distance into account that good matches have

S : i _ from the query point by considering only that very fea-
Rggsdérgggsal-onal data, such as X-tre@xK96] and M ture. Note that forF' features this amounts to define the

More relevant to the present discussion are the issue‘%'St"’m.Ce between objeqﬁsandq as a weighted sum of fea-
concerning the feedback loop. The usdisfary relevance ture distances, each of which the authors assume to have a

scores is the simplest one, even from the user’'s point oguadratlcform RHOQ.

view. In this case the user can mark a result object either

as “good” or “bad”, and implicitly assigns a neutral ("no- 3 The FeedbackBypass Approach

opinion”) score to non-marked objects. Graded, and even

continuous, score levels have also been used to allow for &he basic idea of our approach is to “bypass”, or at least to

finer tuning of user’s preferenceRIHOM9S,. reduce, the loop iterations to be performed by an interactive
The two basic strategies for implementing the feedbackimilarity retrieval system by trying to “guess” what the

loop concern the computation of a new query poiuigry ~ user is actually looking for, based only on the initial query

point movementand the change of the distance function, he/she submits to the system.

which can be accomplished by modifying the weights (im-  If we abstract from the specific differences existing be-

portance) of the feature componenes-(veighting. tween the systems and concentrate on what all such systems
Query point movement. The idea behind this strat- share, two important observations can be made:

egy is to try to move the query point towards the “good”

matches (as evaluated by the user), as well as to move it1. All systems assume that the user has in mind an “op-

far away from the “bad” result points (see Fig@é)). A timal” query point as well as an “optimal” distance

well-known implementation of this idea dates back to Roc-  function for that query.

chio’s formula Bal8g, which has been successfully de-

ployed in the context of document retrieval. More recently, 2. Each time a new distance function is computed, this

guery point movement has been applied by several image is taken from garameterized classf functions (e.g.

retrieval systems, such as the MARS systé&thiDM9g. the class of weighted Euclidean distances), by appro-

Ishikawa et al. [SF9§ have proved that, when usimps- priately setting the values of the class parameters.
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Figure 3: The optimal query mapping for 3 sample query ~—
points, assuming Mahalanobis distance

. . . Figure 4: An interactive retrieval system enriched with the
This general state of things can be synthetically represe”telgeedbackBypass module

as a mapping:
Example 1 Assume that objects are color images, which
a — (9opt; dopt) = (Aopt, Wopt) (3)  arerepresented by using a 32-bins color histogram, and that
similarity is measured by the weighted Euclidean distance.
Since the sum of the color bins is constant (it equals the
number of pixels in the image) and one of the weights of
the distance function can be set to a constant value, say 1,
without altering at all the retrieval process, it turns out that

which assigns to the initial query poigtan optimal query
point, gopt, and an optimal distance functiod,,:. The
equivalence just highlights that,,. is the distance func-
tion obtained when the parameters are seWg, and

that_qopt can b? ob_tained froEn the initial query point by M, is a function fromR3! to R31+51. O
adding to it the “optimal offset’A,p¢ = qopt — q. In the
following we refer to the paifAopt, Wopt) as theoptimal Figure4 shows the basic architecture of a generic inter-

query parameterSOQPs, of queryy. Figure3 provides an  active retrieval system enriched wiffeedbackBypass,

intuitive graphical representation of the above mapping fokyith the flow of interactions being summarized in Fig-

three 2-dimensional query points. ure 5 using a C++ like notation. Upon receiving the ini-
FeedbackBypass is bjclsed on the observatiqn that, astig| user queryy, the system forwardg to FeedbackBy-

more and more query points are added, an “optimakry  pass by invoking itsMopt method, which returns the pre-

mapping M,,, from query points to query points and dis- gjcted OQPYAopt, Wopt) for g. Then, the usual query

tance functions, will take shape, and that “learning” suchprocessing-user evaluation-feedback computation loop can

mapping can indeed lead to “bypass” the feedback loop. take place. When the loop ends, the new OQPs are passed
Let O C R” be the domain of query points and let {o FeedbackBypass by invoking itsinsert  method, to

W C R” be the set of possible parameter choices, wherge stored as new optimal parametersdo€learly, this in-

eachW € W corresponds to a distance function in the sertion step can be skipped at all if no feedback information
considered class anfl is the number of independent pa- has been provided by the user.

rameters that characterize a distance function. Then, the
problem faced byeedbackBypass can be precisely for-

/l[data structure for optimal query parameters (OQPs)

mulated as follows: class Ogp {

Vector Delta(D);
Problem 1 Given theQ query domain and a class of dis-  Vector W(P);
tance functions with set of parametey® , “learn” the /I get the user query

i . D i i Vector &g = getUserQuery();
query mappingMo,; : Q — R x W which associates /I obtain OQPs from FeedbackBypass

to each query poing € Q the optimal query parameters ogp & = FeedbackBypass:Mopt(q);

_ Ogp &vPred = v.copy();
(Aopt, Wopt) = Mopi(q). /I main feedback loop

. hile(feedbackLoop) {
In other terms, the problem can be described as that of I compute results for q using OQPs

H H i H Vector results[] = queryEvaluate(q, Vv);
qurnlng th% gletlmal way to map (query) pointsiRf into Il get relevance scores for results
points of . It should be remarked that when query score scores] = getUserFeedback(results)
points are normalized, the dimensionality of both the input // compute new OQPs given the scores

newValues(q, v, scores);
(feature) and the output space faf,,; can be reduced by
1 /I in case feedback information has been provided
) L . . . ) if(vPred != v)
Of course, statistical techniques fdimensionality re- Il insert new OQPs for query

duction could be applied to lower the dimensionality of FeedbackBypass:insert(q, v);
both the input and the output space. We do not consider
dimensionality reduction in this paper, and leave it as arFigure 5: Basic interactions between an interactive retrieval
interesting follow-up of our research. system andreedbackBypass




3.1 Requirements In order to define wavelets i@ C RP we first need

to organize this high-dimensional vector space as a collec-
tion of intervalsS = {S,} such that their union covers
Re whole query domain, that i C J, S». The de-
limiters of the intervals managed by the Simplex Tree are
taken from the sets of points for which user feedback has
peen provided. Let us denote witlone of such delimiters,
i.e. a query poinstoredin the Simplex Tree. For eaghwe
maintain in the Simplex Tree also if§-dimensional vec-

tor of OQPs,M,,:(s). GivenS and a new query poiry,

" he wavelet-based prediction of the OQPsdds then ob-
should have a complexitindependendf the num- tained, as explained in more detail below, from the OQPs

ber of queries and only a low (e.g. linear) complexity . e . :
in the dimensionalities of the feature and the outputOf the stored points that delimit the (unique) interval that

containsq.
spaces. s

The method we seek for learning/,,; from sample
gueries has to satisfy a set of somewhat contrasting requir
ments, which are summarized as follows:

Limited Storage Overhead. Since the number of possi-
ble queries to be posed to the system is huge and wil
grow over time, it is not conceivable to just do some
“query book-keeping”, i.e. storing the valuesif, ,,
for all already-seen queries. The method we see

Prediction. The method should also be able to provide4-1 Multi-dimensional Triangulation

reasonable “guesses” for new queries. It is also regjven an initial set of query points for which feedback data
quested that the quality of this approximation has tojs available, we define suitable intervals on which we can
increase over time, as more and more queries and Usease our wavelet byiangulatingthe set. In general, a tri-
feedback information are processed. angulation is a decomposition into simplices, i.e. intervals
.. . . . ) ] spanned byD + 1 points—that is, triangles ii®?, tetrahe-
Dynamicity. Since we consider an interactive retrieval grons inR?, and so forth. Triangulations are one of the fun-
scenario, it is absolutely necessary that the method igamental problems in computational geometry and very ef-
able to efficiently handle updates, i.e. incorporate adficient techniques to find “good” triangulations are known
ditional data without rebuilding the approximation of oy |ow dimensional spacesvieh84 PS83. Computing
My from scratch. triangulations like the Delaunay triangulation, which min-

h b bl hi iof q imizes the lengths of edges of the simplices, is computa-
we ave been able to achieve a satisfactory trade-oft, expensive and too time consuming for dimensions
thus meeting all above requirements, by |mplement|ngnigher than 10.

FeedbackBypass using a wavelet-based data structure,

; . Instead, to keep the computational effort low, we use an
which we call theSimplex Tree p P

incrementaltriangulation technique as we go forward and
split for every new point its enclosing simplex. More for-
4 The Simplex Tree mally, letS = {s1,...,sp;1} be the set of points spanning

) the simplex that encloses the new to-be-stored query point
The Simplex Tree forms the core of our approach. It Or-y. Then

ganizes the query domai@ as a set of non-overlapping
multi-dimensional intervals on which the approximation Sp = {s;|j # h} U{q}, 1<h<D+1
for M,,; can be defined. ’ -

Recall that we want to approximate the optimal queryis a decomposition of into D + 1 simplices? Figure6
mappingM,,; : @ — RP x W, whereQ C R” and  shows examples for splits in two and three dimensions, re-
RP x W C RN, with N = D + P (see Problen), given  spectively.

a small but evolving sample of data points, namely queries
for which feedback data is available.

Of the various technigues that mathematical approxima-
tion theory provides, we have chosen wavelets to approxi- "
mate the query mapping. Unlike other transforms, such as
the Fourier transform, wavelets model a target function as D=3
composition of functions with a limited support. Therefore,
modifying the wavelet at a later point in time entails only
local recomputations but no re-organization of the repre-
sentation as a whofe.In the following, we make use of Note that splitting a simplex can be doneGx{1) time
this locality and develop the approximation of the optimalfor a fixed dimension, and that the the number of simplices
query mapping step by step by local recomputation aroun@cales linearly with the number of stored query points. Ob-
newly added feedback points. We will use the well-knownviously, we can only split a simplex if the new point is in-

Haar-Wavelet in the following. side the simplex itself. To this end we need to define an

Figure 6: Splitting of 2- and 3-dimensional simplices

1For a comprehensive overview of wavelets and multi-resolution anal-  2For simplicity, we use the same notation to denote both a simplex, i.e.
ysis in particular, see e.gkgi94, Swe9og an interval ofRP, and the set of it$ + 1 vertices.



/I initially called with the root simplex
-» Simplex &SimplexTree::Lookup(Simplex &S, Vector &q) {
/I when in leaf node, we know we found it
if (S.IsLeaf()) return S;
/I otherwise check each child

for (int h = 0; h < D + 1; h++)
if (S.child[h]->Contains(q))

A /I descend into h-th child
return Lookup(S.Child[h],q);
}
Ogp &SimplexTree::Predict(Point &q) {
/I get the enclosing simplex

Simplex &S = Lookup(q);
/I interpolate in point q using the points of S
return Wavelet::Interpolate(S,q);

}
void SimplexTree::Insert(Point &g, Ogp &v) {
B /I get enclosing simplex
Simplex &S = Lookup(q);
/I get predicted values in this point
Ogp &vPredict = Predict(q);
/I if predicted and actual OQPs differ
/I by more than ’epsilon’ insert the point
i . i if (v.Difference(vPredict) > epsilon)
Figure 7: The structure of the Simplex Tree & 2) o (e B e ot D 4 0 hes)(
Lo ) ) /I get the h-th corner of the simplex
initial simplex, denoted, such that® C Sy, i.e. Sy cov- Vector &pCorner = GetCorner(h);

ers the entir? _query qomain' . Z girr?"ler‘)tl(:zxabaitmgfc)l(uéj;":)gcé?r?erp(grqas ;dfdthcifinstead
The specific details on how, can be defined depend Simplex &SSon = S.CreateSimplex(pCorner, q);

on the data set at hand. For instanceQit= [0, 1]7, set- A Som Pex @S ehild

ting So = {(0,0,...,0),(D,0,...,0),...,(0,0,..., D)} ' ’

guarantees tha® C Sy, as it can be easily verified.
On the other hand, when the data set consist of normal-
ized histograms (i.e. the sum over the bins equals 1), by
dropping the value of one bin (e.g. the last one) leads tqree isO(n) in the worst case; being the number of stored
a query domainQ which already is a S|mplex namely query points, and(logp,; n) in the best case. We will

E = vector of optimal query parameters (OQPs)

Figure 8: Basic functionality of the Simplex Tree

So ={(0,0,...,0),(1,0,...,0),...,(0,0,..., 1)} assess the average behaviour experimentally in Se&tion
Interpolation. To interpolate off the Simplex Tree, i.e.
4.2 The Data Structure define a wavelet representation of the mapping, first ob-
The Simplex Tree is an index structure that can be characerve that for each poistin the Simplex Tree the value of
terized as follows: Mopi(s) = (ma(s),ma(s),...,mn(s)) is stored. Thus,
) ] ] . given a query pointg for which an approximation of
e each node is a simpleX defined byD + 1 points; M,,:(q) is sought, we can solve the problems of approxi-
e every inner nodeS has pointers taD + 1 children g‘tﬁg?g each of theV m;(q) values independently of each

Sh'_WhICh partition 5 and_are palrW|§e disjoint, i.e. Using an unbalanced Haar-Wavelet for approximating
S—U, Sh andShl ﬂSh2 =0 Vhq, hs; . . . .
t v; = m;(q) means to perform a linear interpolation dn
e every leaf node stores for each of its+ 1 pointss;  given the values;® = m;(s;) of the D+1 points defining
the corresponding OQP3/,,.(s;); the simplexS = {s1,...,sp+1} enclosingg. SinceS'is a
] D-dimensional linear subspace, solving
e Sp, the root, covers the entire query dom&ln

Figure 7 shows the Simplex Tree corresponding to a 2- @ -5 .. ap — s1.0 & — v;51
dimensional triangulation. 521 — 81,1 .- $2.p — 81,0 i — v | _
The operations necessary to maintain the index ar
sketched in Figur®. Below, the individual parts are dis-
cussed in more detail.
Lookups. Given a new query point, we need to deter- for 7; yields the desired approximation of = m;(q).
mine in which simplex the new query point is contained. Note that, for a given data set, the complexity of interpola-
Starting with the root node we traverse the tree descendintjon is O(1), since neitheD nor P change.
at each inner node into the child node which contains the Inserts. As opposed to typical spatial index structures
new point3 the Simplex Tree is not an index whose aim is to store
We do not re-organize the tree in case it gets unbalancegoints to be searched. Instead, it stores points to organize
due to the distribution of the data. Hence, the depth of théhe feature space into simplices. As a consequence, not ev-
3D ery point needs to be inserted, since it is sufficient to insert
ue to lack of space, we omit the discussion of special cases where

the query point is not properly contained in one of the child simplices butonly those points that can improve the quality of the ap-
it is an element of the delimiting hyperplanes of several simplices. proximation in asignificantway. These are the points for

Sp4+1,1 —S1,1 ... Sp41,p —S1,p U;°D+L — ;51




which
max |m;(q) — v;| > €
(2

holds, for a given threshold In other words, if all the pre- == TR WO i B
dictions®;’s are already almost equal to the corresponding
m;(q)’s there is no need to stotgin the Simplex Tree. The
particular choice of the thresholddetermines the quality
of the approximation: for low thresholds the approxima-
tion is more accurate whereas high thresholds cause mo

?ladl(' More |mpo_rtant|,ﬂr}owever, is the tha]f?aefr of the Op'randomly sample queries, whereas images in other classes
Imafquéery mapping. [i,,; IS COMPosed ol low Ireéquen- -, q just used to add further noise to the retrieval process.
cies, only very few query points are stored, whereas for &or each query image, any image in the same category was

query mapping composed of high freql_Jenues, MOre qUery,sidered a “good” match whereas all other images were
points are needed to reach approximations of suitable qual:

! L A .. —considered “bad” matchesggardless of their color simi-
ity. As a limit case, when the OQPs always commdgz WlthIarity. This leads to hard conceptual queries, which how-

Xaver well represent what users might want to ask to an im-
Tree. Consequently, the resource requirements of the SirT()j1 b 9

: > 'age retrieval system. Since within each category images
plex Treedo notdepend on the number of queries for which | v diff | |
feedback is provided but on the intrinsic complexity of the argely differ as to color content, any query based on a color

) ; ) distance cannot be expected to find more than a fraction of
optimal query mapping and on the insert threshold. relevant images to be close in color space. For instance, all
. ) the 4 images shown in Figu&belong to the “Fish” cat-

5 Experimental Evaluation egory: only the 2nd image (“shark”) has a dominant blue

We have implemente@eedbackBypass in C++ under color, whereas others have strong components of yellow,
Linux, and tested its performance in order to answer théfay, and orange, respectively. A similar evaluation proce-

Figure 9: Sample images from the “Fish” category

834), Blossom (189), TreeLeaf (575), Bridge (148), and
onument (298). This subset of images was then used to

following basic questions: dure was also adopted iRHOQ.
To measure the effectivenesskdedbackBypass we
¢ Which are the actual prediction capabilitiesFefed- ~ consider classicairecisionandrecall metrics Bal8g, av-

backBypass? How much feedback information does eraged over the set of processed queries. For a given num-
FeedbackBypass need to perform reasonably well? berk of retrieved objects, precision (Pr) is the number of
How long does it take to learn the optimal query map-retrieved relevant objects overand recall (Re) is the num-
ping? ber of retrieved relevant objects over the total number of
relevant objects (in our case, the number of images in the
e How much do the predictions dfeedbackBypass  category of the query).
depend on the specific data set? Alternatively, is |n our experiments we used a typical valuekof= 50,
FeedbackBypass robust to changes in the type of and in any casé never exceede80. This is because we
queries to be learned? consider that a real user will hardly provide feedback in-
formation for larger result sets. As a consequence, since
bY the number of retrieved good matches is limited above by
k (and in practice stays well below tlelimit), the use of
g_istance functions more complex than weighted Euclidean,
such as Mahalanobis, was not considered. Indeed, as ob-
annotated with @ategory(such as “birds”, “monuments”, s_ervgd in R_HO(], improvement due to feedback informa-_
fion is possible only when the number of good matches is

etc.). From each image, represented in the HSV colo .
) J P ot much less than the number of parameters of the dis-

space, we extracted a 32-bins color histogram, by diVidin%nce function to be learned, which is 31 in our case but
the hue channel H into 8 ranges and the saturation chann ! L
! ! g Hrat would be31 x 32/2 = 496 for the Mahalanobis distance.

S into 4 ranges. To compare histograms we use the class Th | h ; hree diff Sl
of weighted Euclidean distances, with the (unweighted) 1 n€ results we show refer to three different scenarios:

Euclidean distance being the default function. We imple-
mented both query point movement and re-weighting feed-
back strategies, as described in Sec#pwhich means that
M, is a function fromR3! to 12 (see also Examplg).
The setup for the experiments was as follows. From
the whole data set we selected 2,491 images belonging e FeedbackBypass, for which precision and recal-
to 7 categories: Bird (318 images), Fish (129), Mammal  waysrefer to “new” (i.e. never seen before) queries
4IMS| MasterPhotos 50,0001ttp://www.imsisoft.com . for which th_e optimal qL,Jery pointand the optimal dis-
5See alsdittp:/kdd.ics.uci.edu/databases/ tance function, as predicted by theedbackBypass
CorelFeatures/CorelFeatures.data.html . module, are used in place of the user query and the

e How much do we gain, in terms of efficiency,
“skipping”, or shortening, the feedback loop?

For evaluation purposes we used the IMSI data set consis
ing of about 10,000 color imagésEach image is already

e Default: this is the strategy currently used &y inter-
active retrieval systems, which starts the search by us-
ing the user query point and the default distance func-
tion (i.e. the Euclidean one in our case);
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e AlreadySeen: this is mainly used for reference pur- 0 005 01 015 02 025
pose, and corresponds to the case where - Recal
backBypass module delivers predictions for already (©

seen queries, for which the predicted parameters in-
deed coincide with the optimal ones. It can be ar-Figyre 11: Precision (a), recall (b), and precision vs. recall
gued that the more the results fréreedbackBypass  cyrves (c) after 1000 queries

and AlreadySeen are similar, the moré&eedback-
Bypass is approaching the intrinsic limit established
by the use of a given class of distance functions and of ol I
specific relevance feedback strategies. ' o1l T

008 |-
0.06 |~

For each query, after measuring precision and recall for theg oz~

cision
Recall

first round ofk results, we automatically run (using the cat- o1 it — 0.04 1

egory information associated to each image) the feedback |, ., “I* o

loop until it converges to a stable situation, i.e. when no 0 200 400 600 800 100 0 200 400 600 800 100
changes are observed anymore in the result list. The corre- no- ofaueries no- ofveries
sponding query parameters are then serfigedbackBy- @) (0)

pass for insertion.
Figure 12: Precision (a) and recall (b) BéedbackBy-
5.1 Speed of Learning pass for different values of:

Figures10 (a) shows average precision as a function of the In th . . h idered
number of processed queries. For this figure the number [N the previous experiments we have considered a same

of retrieved objects was set fo = 50. It is evident that Value ofk both to train the system and to evaluate it. How-
the performance oFeedbackBypass monotonically in- ever, it is also important to understand if trainirged-
creases with the number of queries, and that the differencleackBypass with larger values ofc can be better than
betweerFeedbackBypass and theDefault strategy is al- training FeedbackBypass with less information. Clearly,
ready S|gn|flcant a.fter_ the first feW hundred queries. Th|S iSprecision results Shown in F|guﬂé (a) are Of ||tt|e use to
?ASO emphasized 'F’,‘ gg.uﬂéé(g), wdher(? we show values of i nurpose, since they are obtained with a different num-
eprecision gainFriain, defined as- ber of retrieved objects for each curve. Thus, we have com-
pared several versions 6eedbackBypass each trained
with a specifick value, when they are used to answer
gueries requesting the same number of objects from each
and similarly for theAlreadySeen case. The number version. The basic conclusion that can be drawn from the
of good matches doubles for already seen queries, and inesults shown in Figuré3is that using larget: values is
crease by0% for queries never seen before. worthwhile, even if less objects are retrieved. This is par-
Figuresll(a), (b), and (c) show, respectively, the valuesticularly evident for thek = 80 curve, while less for the
of average precision, recall, and precision vs. recall aftecasek = 50.
1000 queries, whelk varies betweem0 and80. The graphs
confirm that our method is able to provide accurate predi05 2
tions even when the number of retrieved objects per query,”
k, is low. This can also be appreciated in Figut8¢a) and  We now turn to consider how much the performance of
(b), where precision and recall curves fore= 20,50, and  FeedbackBypass depends on the specific queries for
80 are plotted versus the number of queries. which predictions are required. For this experiment we

Pr(FeedbackBypass)

PrGainfeedbackBypass) = ( PrDefaul)

—1) X 100

Robustness
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separately measured precision for the 7 query categories. _
. .. . . ]
Looking at precision results (see Figutd (a)) it can be Q 01 N .
observed thaFeedbackBypass is able to provide useful € ok
predictions in all cases where there is a significant differ- 0.05 L b N
ence between thBefault and theAlreadySeen cases. In- - N
deed, such a difference is a clear indication that feedback o kit [ HL MR Irs
information actually leads to improve the results. This is Bird Fish Mammal Blossom Leaf Bridge Monument
particularly evident for the largest query category (“Mam- (b)

mal”). On the other hand, when feedback only slightly im-

proves the quality of the results (see the “TreeLeaf” cate-_ .

gory, denoted simply as “Leaf” in the figure), predictions Flgl_Jre 14: Precision (a) and recall (b) for the 7 query cate-
for new queries do not provide benefits, as it could havedOres

been expected. This general behavior is only violated for i i o

the “Fish” category, where it seems that no improvement Default. Note that this “SavepI-Objects” metric is sim-
can be obtained frorfreedbackBypass on new queries, ply computed as: Saved-ObjectsSaved-Cycles< k
even if performance oAlreadySeen is particularly good. )

However, since “Fish” is the smallest category (129 im-Figurel15 presents results far = 20 andk = 50. In both
ages), it can be argued that the number of sampled querié&ses it can be seen_that the savings improve over time, and
is still not enough to well approximate the optimal query that after 1000 queries they amount to about 2 cycles for
mapping for that category. Similar results are observed ik = 50, which translates in a net reduction of 100 objects

Figure14 (b) for the recall metric. retrieved from the underlying system.
Finally, in the last experiment we assess the Simplex
5.3 Efficiency Tree as such. Figur&6 shows the average number of

: . simplices traversed to reach a leaf node, together with the
An important aspect that we analyze here is how much WEf‘jepth of the tree, i.e. the maximum number of simplices

CC?Qa%?IntEZ giggﬁede??grﬁgﬁssz;n;r?rirrnzgﬁg\lgergfr)i/evalthat could be traversed. Both are logarithmically increas-
Y P ing, however, the average number of traversed simplices

: o i
system will also depend on the specific access methods thé significantly lower than the depth of the Simplex Tree

are used to retrieve the stored opjects, as well as by th\(/evhich leads to fast predictions of the optimal query param-
indexed features. In order to provide unbiased results, we

consider the following performance metrics: ters and underlines the efficiencyr#edbackBypass.

e The average number of feedback iterations Hestd- 25 T 120 T
backBypass saves with respect to tHeefault strat- L, 2 KES0 e e 100 GoEg T
egy, in order to obtain the same level of precision. < 15| | & eop 1
Thus, for each query we start the feedback loop ei- % L i % 60 ]
ther from default or from predicted query parameters, & os | & 1
and measure how many iterations are needed before of ]
no further improvements are possible. This “Saved- ® 300 400 500 600 700 800 900100 ® 300 400 500 600 700 800 500100
Cycles” measure tells us how many query requests to no. of queries no. of queries
the underlying system we save, on the average, for (@) (b)

each user query.

e The average number of objects thatdenothave to ~ Figure 15: Average number of feedback cycles (a) and re-
retrieve for achieving the same level of precision thantrieved objects (b) saved WiyeedbackBypass
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Figure 16: Average number of simplices traversed per
guery and depth of Simplex Tree [Meh84]

6 Conclusions

In this paper we have presentededbackBypass, a hew
method to speed-up the process of interactively search-

ing for relevant information in multimedia databases. The[ORCt97]

key idea ofFeedbackBypass is to organize the informa-

tion gathered from user interaction as a multi-dimensional
wavelet stored into the so-called Simplex Tree. Approxi-
mations obtained from this wavelet can be used to either
“bypass” the feedback loop completely for already-seen
queries, or to “predict” near-optimal parameters for newlPS85]
gueries. We detailed the operations on the Simplex Tree,
including inserts, lookups, and interpolation.

Our experiments show thateedbackBypass works RHO0]
well on real high-dimensional data, and that its predictioné
consistently outperform basic retrieval strategies which
start with default query parameters. We have also quan-
tified the savingg-eedbackBypass provides in terms of
number of queries and of retrieved objects.

A key feature ofFeedbackBypass is its orthogonality
to existing feedback models, ileeedbackBypass can be
easily incorporated into current retrieval systems regardless
of the particular mathematical model underlying the feed-
back loop. FeedbackBypass is distinguished by its low
resource requirements which grow polynomially with the [Sal88]
dimensionality of the data set, thus making it applicable to
high-dimensional feature spaces.

Our future research is geared toward the application of
FeedbackBypass to other types of multimedia data and a [SK97]
thorough investigation of the relationship between the re+
source requirements and the accuracy of the delivered pre-
dictions.
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