
Fast Evaluation Techniques for Complex Similarity Queries

Klemens Böhm Michael Mlivoncic Hans-J¨org Schek Roger Weber

Database Research Group, Swiss Federal Institute of Technology Zurich, Switzerland
fboehm, mlivoncic, schek, weberg@inf.ethz.ch

Abstract

Complex similarity queries, i.e., multi-feature
multi-object queries, are needed to express the in-
formation need of a user against a large multi-
media repository. Even if a user initially issues
a single-object query over one feature, a system
with relevance feedback will automatically gener-
ate a complex similarity query. Relevance feed-
back is only useful if response times are inter-
active. Therefore, this article contributes to the
important problem how to evaluate such complex
queries efficiently. We describe a new evalua-
tion technique calledGeneralized VA-File-based
Search (GeVAS). It builds on the VA-File [27],
supports queries over several feature types, and
borrows the idea to search an index structure with
several query objects in parallel from Ciaccia et
al. [8]. Our main contributions are twofold: 1) we
show that GeVAS does not degenerate for queries
with many objects or many feature types. 2) We
develop a number of variants of GeVAS, tailored
to the different distance measures and distance-
combining functions, and we show that they yield
a significant performance improvement.

1 Introduction
Similarity search has been touted as an effective approach
to find relevant images in a multimedia document collec-
tion. In the conventional case, the user provides a reference
image, and the infrastructure identifies the images that are
most similar. However, such a query image typically is
only a rough approximation of what the user is seeking.
Typically, one wants to bring together characteristics of
various reference images, and to have different similarity
measures for different information needs. Thus, we need
complex similarity queries to express a given information

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

need. In what follows, a complex similarity query (or com-
plex query, for short) is amulti-object multi-feature query,
i.e., a query with several query images and explicit refer-
ences to different feature types.

An important application for such queries isrelevance
feedback, a concept that increases the result quality of
similarity search. The idea behind relevance-feedback is
that the system interprets user judgements on preliminary
search results to generate a new, more precise query. While
early relevance-feedback models, notably [21], generate a
new, artificial query point, more recent models generate
queries with several query objects (see [12] forquery ex-
pansion with text documents), or they prune, add or re-
weight feature types [22]. Preliminary experiments have
shown that different models are most adequate for differ-
ent scenarios [22, 18]. Thus, relevance feedback requires
complex queries. Furthermore, to be acceptable to the user,
a system featuring relevance feedback must evaluate such
queries efficiently over large image collections. Previous
work on relevance feedback over images was restricted to
small collections, e.g., [22].

Briefly, the objective of this article is to develop fast
evaluation techniques for complex similarity queries that
enable relevance feedback methods for very large collec-
tions. Existing approaches on complex query evaluation
either are not general enough [8], or there typically is a
large gap between the evaluation times of simple queries
and complex ones. This is the case for the well-knownA0-
algorithm [9] and a recent elegant extension called Quick-
Combine [11]. Furthermore, their applicability is restricted
to components that implement the generic interface re-
quired [28].

Subsequently, we assume that we are free to choose the
physical organization of the data and the search algorithms
on top. This article proposes the GeVAS set of algorithms
(’GeVAS’ = ’Generalized VA-File based Search’). GeVAS
generalizes and combines existing techniques in a natural
way, namely theVA-File [27], the CPZ-approach [8],
as we call it, andparallel access to indices, a concept
subsequently denoted asfeature fusion on-the-fly. On the
other hand, its investigation in quantitative terms is an
open issue. The contributions of this article are as follows:

1. Description of GeVAS. While the approach is natu-
ral, there are some problems regarding implementa-
tion that we will address.

Query

Q1 Qnreference objects

F1,1 F1,m[1] Fn,1 Fn,m[n]feature types

V1,1,1 V1,1,l[1,1] V1,m[1],1 V1,m[1],l[1,m[1]] Vn,1,1 Vn,1,l[n,1] Vn,m[n],1 Vn,m[n],l[n,m[n]]
feature
values

Figure 1: Query Model

2. Providing evidence that GeVAS is feasible. VA-File
based similarity search computes bounds on the query
distance of each data object. If these bounds are not
tight, the technique would degenerate. We show that
this is not the case by a formal analysis and by exten-
sive experiments covering all relevant cases.

3. Refinement of GeVAS for different similarity
measures. We investigate the relationship between
the similarity measure in use and query-evaluation
times. These variants are either not obvious, or the
benefit in quantitative terms is not obvious.

4. Extensive evaluation of the GeVAS variants. We
compare the different variants of GeVAS experi-
mentally, using large image collections. We achieve
significantly better performance in most cases: For
instance, one optimization (precomputation of dis-
tances) has the effect that query-evaluation time is
independent from the number of data objects

The remainder of this article has the following struc-
ture: Section 2 introduces our model of complex similar-
ity queries. Section 3 describes the evaluation alternatives.
Section 4 summarizes our formal analysis of the feasibility
of GeVAS. Section 5 is a description of our experimental
setup. Section 6 presents our experimental results. Sec-
tion 7 concludes. [5] is an extended version of this article.
A prototype system which implements all these concepts is
available on the Web [15].

2 Query Structure and Semantics

A common implementation of image similarity search is
as follows: a number offeature-extraction algorithms map
each image to points infeature spaces. Similar images are
mapped to points that lie close to each other in the feature
spaces. Hence, an evaluation of asimple similarity query,
i.e., a query with one reference image and one feature,
is implemented asnearest-neighbor search (NN-search) in
the respective feature space.

2.1 Query Structure

This subsection describes the structure of complex queries
which is borrowed from [19, 6]. Figure 1 displays the gen-
eral structure of a query. A query consists ofn reference
objects Γ = fQ1; : : : ;Qng. For each reference object, there

may be an arbitrary number of feature types (Fi;1; : : : ;Fi;m[i],
for eachQi). Finally, the point(vi; j;1; : : : ;vi; j;l[i; j]) is the
representation of query objectQi in feature spaceFi; j. For
the sake of presentation, Figure 1 omits the weights at the
various levels of the query model. The following examples
provide some intuition regarding the structure of a query.

Example 1 (Complex Query) A user is looking for an im-
age of a black cow, but he only has a picture of a brown cow
and one of a black horse at hand. The corresponding query
has two reference objects Q1 (cow) and Q2 (horse). There
is one feature type for each image: F1;1 is the shape feature
of Q1, F2;1 the color feature of Q2.

Example 2 (Relevance Feedback) Usually, a user would
not type in a complex query as insinuated in Example 1.
Rather, he tells the system which images he likes and for
what reasons. To continue the above example, his initial
query might have returned an image A with a black horse
and image B with a brown cow. The user would rate the im-
ages as follows: image A contains an object with the right
colorbut wrong shape, and image B has the right shapebut
the wrong color. The resulting query is equal to the one in
Example 1 but is now generated by the system. Note that
relevance feedback based on Rocchio [21] will often not
suffice. With the example, Rocchio would produce artificial
vectors for the shape and color feature that lie between the
two vectors for the images.

2.2 Query Semantics

Distances. To state what a similarity query stands for, we
introduce the notions offeature distance, reference-object
distance, andquery distance. The feature distancex i; j mea-
sures the dissimilarity of reference objectQi and data ob-
ject P regarding feature typeFi; j. The i-th reference-object
distancexi of a data object is acombined distance to thei-th
reference object with regard to the feature representations
Fi;1; : : : ;Fi;m[i]. We abbreviate this distance of data objectP
with δi(P). Usually, there are several ways to combine the
distances of features to an overall distance, e.g., Weighted
Average. Moreover, we allow to weight the individual fea-
tures to reflect their importance for the current information
need. Finally, the query distance is a combined distance
over all reference objects. We also allow for weighting on
this level of the query model. In the following, we use the
abbreviationδ(P) for the query distance ofP.

Distance-Combining Functions. Each objectPa of
the databaseD and each reference objectQi is mapped
to a set of feature representationsfpa;1; : : : ;pa;mg and
fqi;1; : : : ;qi;mg, respectively. Thel-th feature representa-
tion of an object lies in adl-dimensional feature space.
A distance measureδl(pa;l ;qi;l) defines the distance of
two points in this space. A common measure is the
(weighted) Minkowski metricLs:

Ls : δl(pa;l ;qi;l) = s

vuut dl

∑
j=1

w j � j(pa;l) j � (qi;l) jj
s (2.1)

where(pa;l) j is the j-th componentpa;l . Throughout this
paper, we may omitl or s, as well as the weights, when
the explicit mention is not needed. Based on theL2 met-
ric, we introduce a distance function(L2)

2 that avoids the
square root. Although this distance function is not a metric,
it yields the same ordering of data points as theL2-metric.
But its computation is significantly cheaper.

To describe the reference-object distance and the query
distance, we introduce the notion ofdistance-combining
function. It combines a set of distances to an overall dis-
tance. More formally:

Definition 2.1 (Distance-Combining Function)
∆ : (R)

m ! R is a distance-combining function
for m distances. ∆ is monotonic in all arguments,
i.e. ∆(x1; : : : ;xm)� ∆(x01; : : : ;x0m) if xi � x0i for all i.

Note that monotonicity is a natural requirement: if one of
the distances becomes larger, the similarity decreases. The
following distance-combining functions implement differ-
ent ways of combining distances. The examples combine
reference-object distances to a query distance.

Example 3 (Fuzzy-And, Fuzzy-Or, Weighted Average)
Given a set of n reference objects, Fuzzy-Andimplements
the idea that a data object should be close to all of them.
This leads to the maximum function (max) for ∆, i.e.:
δ(P) = ∆and

�
δ1(P); : : : ;δn(P)

�
=

n
max
i=1

δi(P).

If the reference objects represent a set of possibilities,
and each of them is acceptable, the Fuzzy-Ordistance-
combining function would be more appropriate. Rather
than ∆ = max, it uses ∆ = min.

Finally, let w 2 R
n be the weights of the individual dis-

tances such that ∑n
i=1 wi = 1. Then Weighted Averageis

given as ∆ = ∑n
i=1wi�.

Normalization and Weighting. Combining feature dis-
tances as described so far is not sufficient since the mean-
ing of a distance value depends on the distance distribution.
For example, assume we would deploy Fuzzy-Or on a dis-
tance from the feature space[0;1]10 and on one from the
feature space[�10;10]100. As distances in the first space
are much smaller than in the later one, Fuzzy-Or yields the
distance from the first space in almost all cases. This would
mean that the second feature did not matter with regard
to overall similarity. We normalize distances with a well-
chosen normalization function for each distance measure
to avoid such situations. A common normalization scheme
is a linear transformation using the Gaussian parameters of
the distance distribution ofδ:

Example 4 Let µl and σl be the mean distance and the
standard deviation of distances in the l-th feature space us-
ing the distance function δl . Then the Gaussian normalized
distances ~δl

(x) are given by: ~δl
(x) = x�µl

σl
.

Note that normalized distances may be smaller than 0. As
such, the term ”distance” is not appropriate as distances

are elements ofR+ . But for the sake of clarity, we do not
introduce a new name.

Some relevance-feedback models further require
weighting of individual reference objects, feature types
and dimensions within a single feature vector. Dimension
weights are implemented by the distance function, e.g.,w i
in Equation 2.1. Weighting reference objects and feature
types is straightforward with Weighted Average. But this
is not the case with Fuzzy-And or Fuzzy-Or. Fagin et al.
solved this problem for a slightly different setting, and we
deploy their solution in our context (cf. [10]).

Problem Statement. Finally, we can define the nearest
neighbor search problem for complex queries.

Definition 2.2 (Nearest Neighbor Search; NN-Search)
Let δ(P) be the query-distance function for the data
object P, given a set of reference objects and a family of
features, as described by the query model. Further, let
k be the number of nearest neighbors to return. The an-
swer set A of a k nearest neighbor search (k-NN-search) is:

A =
n

P
��� P 2D ^ rank(P)� k

o
with

rank(P) = 1+ ∑
P02D

(
1 δ(P0)< δ(P)
0 otherwise

With the above definition, the size of the answer setA may
be larger thank, e.g., if several objectsP haverank(P) = k.
If the user insists on seeing onlyk answers, we may drop
the jA j� k objects with the largest rank fromA in a non-
deterministic way.

While distances measure dissimilarity, it would also be
possible to work withscores that measure the similarity.
Scores arenormalized by definition, i.e., from the interval
[0;1] (1=identity, 0=no similarity at all). We deploy acor-
respondence function [8] to map query distances to overall
scores. Hence, unlike [9, 8, 28], we do not need to deal
with scores at the intermediate levels.

3 Evaluation of Complex Queries
This section investigates how to evaluate complex queries
efficiently. Our reflections on the different kinds of queries
are not independent of each other. Our proposals how to
evaluate multi-feature and multi-object queries build on ef-
ficient evaluation techniques for simple queries. The ap-
proach for multi-feature multi-object queries is a general-
ization of the ones for multi-feature single-object queries
and single-feature multi-object queries. Finally, since we
expect IO-costs to dominate the costs of query evaluation,
we will strive to keep these costs small. Reducing CPU
costs will be an issue only when they are larger than IO
costs. These subsections introduce the GeVAS algorithms
step by step, together with the optimizations.

3.1 Single-Feature Single-Object Queries

Feature representations of images typically are high-
dimensional. There is evidence [13, 1] that NN-search in
high-dimensional spaces is effective and yields satisfactory

retrieval quality. However, the exact evaluation of such
queries is linear in the number of data objects [16, 27, 4, 3].
A well accepted implementation of NN-search works with
quantized representations of the points, as first described
in [27] with the vector-approximation file (VA-File). Ex-
tensions of the method include the IQ-Tree [3] and the A-
Tree [23]. In the following, we review the VA-File idea.

Structure of the VA-File. The VA-File consists of two
files: one contains a short approximation of the feature rep-
resentation of each data point, the other one the exact rep-
resentations of each point. We obtain the quantizations by
laying a grid over the data space and approximating the
points by their surrounding cells (cf. Figure 2). Grid lines
are chosen such that the number of objects between two
neighboring lines is roughly the same. Note that we do not
need a distance function to build the VA-File.

Subsequently,b denotes the number of approximation
bits per dimension, andd is the dimensionality of the fea-
ture space. In Figure 2,d = 2, andb = 2. A realistic value
for b would be between 6 and 8, as shown in [27].

Given the feature representationq of a query point, its
distance to the cell of a pointp is a lower bound of the
distance ofp and q. Analogously, we can upper bound
that distance (cf. right half of Figure 2). More formally,
m[j;0], ..., m[j;2b

] are the partition points in dimensionj,
s j(p) 2 f0; : : : ;2b�1g is the number of the interval ofp in
dimensionj, i.e., the approximation ofp for dimensionj,
andq j is the value ofq in dimensionj. The lower bound of
the distance ofp andq is as follows, using the L2 metric:

lBnd2(p;q) =

vuuuut
d�1

∑
j=0

8><
>:
(m[j;s j(p)]�qj)

2 qj <m[j;s j(p)]
(qj�m[j;s j(p)+1])2 qj >m[j;s j(p)+1]
0 otherwise

(3.1)

VA-File based query evaluation. NN-query evaluation
consists of two phases. The first phase (filtering phase) it-
erates through the approximation file and computes a lower
and an upper bound on the distance of the current data point
to the given query point (cf. Figure 2). These bounds allow
the pruning of the vast majority of data objects. The second
phase (inspection phase) then retrieves the exact represen-
tation of the remaining objects and computes their distance.
More formally, the second phase inspectsp if and only if
lBnd2(p;q) � nndist

(q), wherenndist
(q) denotes the NN-

distance ofq. Experience shows that the number of data
objects dealt with in the second phase is almost indepen-
dent of the number of data objectsN; a typical number is
five objects fork = 1 andN = 500;000.

Implementation of VA-File based query evaluation.
The following optimizations reduce computation costs:

1. The distances between the query point and each line
of the grid are precomputed before the first phase.
This simplifies computations of the bounds.

2. We avoid thes-th root when dealing with anLs metric.
Due to the monotonicity of the root-function, we
still obtain the correct rank. We compute the correct
distance only for the objects in the answer set.

3. We keep track of thek smallest upper bounds seen
so far during the first phase. We can terminate the
computation of the current lower bound when it is
larger than thosek upper bounds.

3.2 Multi-Feature Single-Object Queries

This subsection discusses evaluation of multi-feature
single-object queries, i.e., there is one reference object with
m features. Multi-feature single-object queries require nor-
malization, as described in Subsection 2.2. We see two
alternative evaluation schemes,feature fusion and feature
fusion on-the-fly. Feature fusion works with both VA-File
and trees as underlying data structure (even though we de-
scribe it only for the VA-File). The second scheme in turn
is feasible with the VA-File only.

New but impractical approach: feature fusion. In-
dexes may apply to individual attributes or to combinations
of attributes with relational databases. In analogy to the
combination case, the idea with feature fusion is to concate-
nate the feature points representing a data object, always in
the same order, and to build an index or a VA-File on these
new points. As with simple queries, approximation-based
data structures such as the VA-File are more appropriate
than traditional hierarchical methods like the SR-Tree [16].
Namely, when concatenating several features, the over-
all dimensionality increases, and those traditional meth-
ods further deteriorate. Feature fusion avoids the random-
access phase, in comparison to theA0-algorithm [9]. How-
ever, this comes at additional storage costs.

While our query model allows for explicit references to
different feature types plus weights, one might wonder why
one ’large’ feature that is a concatenation of all the individ-
ual features is not sufficient. At first sight, this seemingly
leads to higher result quality. However, the additional flex-
ibility of our model is necessary: The number of feature
types available is large and the costs of evaluating a query
grow with the sum of the number of dimensions. On the
other hand, it depends on the concrete information need
whether an additional feature type leads to better query re-
sults. A feature type may not be of much help if another
type can more or less substitute it, if the similarity notion
of the feature-extraction algorithm is too restrictive from a
user perspective, or if the weight of a feature type chosen
by a relevance-feedback model is very small. The respec-
tive feature may be left aside in such cases.

New approach: feature fusion on-the-fly. In contrast
to feature fusion, the points corresponding to one data ob-
ject are now brought together only in main memory during
query evaluation. For each feature type, we build a VA-File
such that the order of objects is the same in all files. Evalu-
ation of multi-feature queries again consists of two phases.
The first one scans through all approximation files in paral-
lel. For each object, the approximations determine bounds
on the normalized feature distances which are combined to
bounds on the query distance. After pruning, the second
phase accesses the exact representations of each remaining
data object in the different vector files, computes its ex-

� � � �� �� �

� �

� �

� �

� �

� � � � � � � � 	

�
�

�
��

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

�
 	 � � � � � � � �

� � � � � � � � � � � � � �

� �

� �

� �

� �

� �

� �

� �

� �

00 111001

data space

0

1

0

1

query

lB
n

d

uB
nd

Figure 2: Structure of the VA-File

act query distance and returns the objects with the smallest
query distance. Hence, search efficiency is almost equal to
the one of feature fusion except for the second phase: in-
stead of reading onlyk 0 points as with feature fusion, we
have to readk0 �m points, one for each feature type. These
additional costs however are not significant, as our experi-
ments will show. Consequently, feature fusion on-the-fly is
almost as efficient as feature fusion, but without exorbitant
additional storage costs.

It is important to notice that feature fusion on-the-fly is
not feasible with hierarchical methods, i.e., both ”classical”
tree-based approaches [2, 16] and approaches extending the
VA-File [3, 23]. This is because the leaf nodes of trees for
different features do not contain the same objects.

3.3 Single-Feature Multi-Object Queries

We now investigate the evaluation of queries consisting of
n reference objects with the same feature type. This subsec-
tion also pinpoints relationships between the query seman-
tics and the techniques for query evaluation.δ(p;Γ) de-
notes the query distance in the single-feature multi-object
query case whereΓ is the set of feature representations of
the query objects.

Existing approach: CPZ-approach. Tree-based im-
plementations of simple NN-search compute a lower and
upper bound on the distance between data points in a
bounding region and the query point. They use these
bounds to prune bounding regions and to decide on their or-
der of inspection [14]. Furthermore, recall that a distance-
combining function takes object distances as arguments
and returns the query distance. The approach used in [8]
is the computation of the bounds on the query distance of
the bounding regions. They do so by applying the distance-
combining function to the bounds on the object distances of
the bounding regions. The bounds on the query distance are
used for pruning and ordering the bounding regions, as in
the simple case. In other words, NN-search traverses the
tree with all query points in parallel.

New approach: VA-File for multi-object queries. It
is straightforward to adapt the CPZ-approach to the VA-
File: one determines the bounds on the distance between
the current data point and each reference object. These
bounds are then combined to the bounds on the query dis-

tance. These are indeed bounds as the distance-combining
function is monotonic. The computational complexity of
the first phase of the approach iso(d �N � n). Obviously,
if n is large enough, the computational costs may exceed
the ones for reading the quantizations from disk. In some
cases, however, it is possible to reduce the above complex-
ity to o(d � (N +n)) depending on the the metric in use and
the distance-combining function. We will refer to this op-
timization asprecomputation of bounds. It is a generaliza-
tion of Optimization 1 in Subsection 3.1.

For instance, assume that we use theL1-metric and
Weighted Average to combine distances. LetlBnd j(qi;p)
denote the lower bound on the distance in dimensionj be-
tween the feature pointqi of the i-th reference object and
the one for the current data point (p). It is given as:

lBnd j(qi;p) =

8><
>:

m[j;s j(p)]� (qi) j (qi) j < m[j;s j(p)]
(qi) j�m[j;s j(p)+1] (qi) j > m[j;s j(p)+1]
0 otherwise

(3.2)

Leaving aside the weights for the ease of presentation,
the combined lower bound is then as follows:

lBnd(p) =
n

∑
i=1

d

∑
j=1

lBnd j(qi;p) =
d

∑
j=1

n

∑
i=1

lBnd j(qi;p)

!
(3.3)

The term in parentheses in the last equation only depends
on the grid slice in which the data point in dimensionj
lies, given a query. That term has the same value for all
points in this slice. So we precompute these values for all
dimensions and all slices. The number of slices is rather
small, e.g., there are only 256 slices per dimension with
8 bits. LetlBnd j(s) be the precomputed combined lower
bound for thes-th slice in dimensionj. The computational
complexity to precompute alllBnd j(s) is o(d � n). The
computation of combined lower bounds simplifies to:

lBnd(p) =
d

∑
j=1

lBnd j(s j(p)) (3.4)

An analogue scheme can be deployed to determine up-
per bounds on the combined distances, abbreviated with
uBnd. Summing up, the first phase of VA-File based NN-
search consists of two steps: 1) precomputinglBnd j(s) and
uBnd j(s) for all dimensions and all slices, and 2) applying

Equation (3.4) to each data object. The overall complexity
is thus:o(d � (N +n)).

Unfortunately, this scheme is not always applicable.
For instance, if we use Fuzzy-And to combine distances,
we cannot change the order of max and∑ (cf. Equa-
tion (3.3)). Analogously, we cannot deploy the precom-
putation scheme with theL2-metric because of the square
root. In these cases and ifn is large, the computational
costs may exceed the ones for IO. The rationale behind the
following optimization is to avoid this for most settings.

Refinement of our new approach: early abort of
distance combination. The discussion so far has insin-
uated that the GeVAS algorithms compute bounds on all
distances of the current data object before applying the
distance-combining function, if precomputation of bounds
is not feasible. However, this is not necessary in many
cases. When combining distances withWeighted Average,
we can abort as soon as the left inequality holds (maxDist
is the smallest upper bound seen so far):

i

∑
j=1

w j � x j >maxDist)

n

∑
j=1

w j � x j > maxDist i< n

The implication holds becausew j > 0, andx j � 0. x j � 0
because we do not normalize.

Let us now look atFuzzy-And as the distance-combining
function. We can abort the computation of the combined
distance if the maximum distance encountered so far ex-
ceeds the upper boundmaxDist. Namely,

i
max
j=1

x j >maxDist)
n

max
j=1

x j >maxDist i < n

With Fuzzy-Or, we cannot do much. We have to com-
puteall distances and cannot prune according tomaxDist.
But min(maxDist;x1; : : : ;xi�1) is an upper bound forxi.

Our implementation covers further cases, but explicitly
dealing with them here does not provide any additional in-
sight. Finally, early abort of distance combination is also
feasible with multi-feature queries. But IO-costs domi-
nate with such queries, and the effect of the optimization is
limited. The following table lists all combinations of met-
ric and distance-combining function and indicates whether
a precomputational scheme is available (++), or, alterna-
tively, whether early abort of distance combination is ex-
pected to yield significant cost reduction (+):

distance-combining func L1 L2 (L2)
2 L∞

Weighted Average ++ + ++ +
Fuzzy-Or 0 0 0 0
Fuzzy-And + + + ++

3.4 Multi-Feature Multi-Object Queries

Finally, we deal with the general case, again elaborating
the relationship between similarity measure and perfor-
mance. To evaluate multi-feature multi-object queries with
GeVAS, the techniques from the previous two subsections
need to be combined. While the combination is relatively
straightforward in some cases, the obvious approach leads
to IO-costs that are unnecessarily high in the general case.

Query

Q1 Q2

F1,1 F1,2 F2,1 F2,2= Q2 Q2Q1Q1

F2,2F1,1 F1,2=2,1

Query

Figure 3: Restructuring a complex query.

Optimization: Shared iterators. The sets of feature
types of different reference objects may overlap. Rather
than reading the approximation file of each feature type
several times, the ideal evaluation scheme has the following
characteristic: one iteration over the approximation file for
a certain feature type evaluates all sub-queries that refer to
that feature type. We call this techniqueshared iterators.
It is feasible independent of the metric and the distance-
combining function in use.

New approach: Restructuring of the query. For
multi-object queries, we have developed an optimization
that precomputes bounds. Unfortunately, it is not applica-
ble with the query in Figure 3 (left). The reason is that the
color feature distances of the data objects toQ1 andQ2 are
not directly combined with each other. We can avoid this
effect with an additional measure. If the complex query
only uses one type of distance-combining functions, we can
restructure the query from a set of multi-feature queries into
a set of multi-object queries. As a result, the transformed
query contains a multi-object query for each feature type.
Our evaluation technique of the last subsection (precompu-
tation of bounds) can handle it efficiently. Unfortunately,
restructuring of a query is not feasible if it uses different
types of distance-combining functions.

4 Quality of Bounds
Prior to conducting performance studies, it is not evident
whether the performance of GeVAS will be as good as the
one of VA-File based search for simple queries. [25]has
investigated the relationship of the number of bits, the ap-
proximation error and the expected performance of the VA-
File. Our investigation showed that the VA-File is faster
than a sequential scan or a tree, if the number of candidates
in the second phase is small, e.g. smaller than 100. Other-
wise, the second phase invokes too many random accesses
to the vector data, and performance deteriorates, much like
with trees. Furthermore, we have found that the number of
candidates is directly related to the error of the approxima-
tions, i.e. the difference between the bounds and the dis-
tance. For instance, increasing the number of bits by one,
halves the error of the bounds. This reduces the number of
candidates significantly.

These relationships also hold in the complex case. How-
ever, it is not obvious how many bits are required to keep
the bounds tight, i.e. whether we need more bits than in the
simple case. The number of candidates would become so
large with a bad configuration that the second phase lasts

Search Engine
Ranking

Client

F1 F2 Fn...

Feature data

A1 A2 An
...

Approximation data

(a) GeVAS

Ranking

Client

F1

...A1

SE1

F1

A1

SE1

F1

A1

SE1

(b) A0-algorithm

Figure 4: Different architectures for query evaluation.

longer than a sequential scan over the exact vector repre-
sentations. In analogy to the simple case studied in [25],
we have investigated the influence of the number of query
objects on the error of bounds and on the number of candi-
dates [5]. Our approach is as follows: we show that the er-
ror of bounds is at most twice as large as in the simple case
with an infinite number of query objects using the same
number of bits in the worst case. Thus, we can achieve the
same tight bounds for a multi-object query as for a simple
query by increasing the number of bits per dimension by
at most 1. In the case of multi-feature queries or multi-
feature multi-object queries, we may regard the different
features as one large feature. Thus, the number of bits only
increases logarithmically with the total number of dimen-
sions [25]. For instance, if the number of dimensions in-
creases by a factor of 4, we need one additional bit per
dimension to keep the number of candidates constant.

5 Experimental Setup

The remainder of this article reports our experimental eval-
uation. The evaluation includes all query-evaluation tech-
niques this article has mentioned. Our implementation of
theA0-algorithm [9] uses the VA-File [27] as the indexing
method for the sources. In the case of multi-object queries,
we extended the R�-Tree [2], the SR-Tree [16] and the M-
Tree [7] according to the CPZ-approach. These tree-based
evaluation alternatives are ’fully optimized’.

Figure 4 illustrates the architectures of our approach and
the one of theA0-algorithm. TheA0-algorithm obviously is
on top of search components, while our approach integrates
all feature data into one component. One may argue that the
architecture in Figure 4 (b) lends itself to parallelization
in a cluster of workstations while the one in Figure 4 (a)
is limited to a single machine. However, we already have
reported on a parallel implementation of the VA-File [26].
Our results have shown that the speedup is roughly linear in
the number of components. An analogous extension for the
complex case is straightforward (and already implemented)
and achieves the same speedup. In what follows, we con-

ducted all experiments on a single machine.
Hardware. All experiments ran on a PentiumIII with

450 MHz and 512 MBytes main memory. The data was
stored on a SCSI Harddisk with an average seek time of
7 ms, and a data transfer rate of 16 MB/s. We cached all
the internal nodes with the tree-based index methods. Only
the leaves were read directly from disk, bypassing the file
cache of the system. All data was fetched directly from the
disk without any caching with the VA-File.

Data Sets and Further Settings. We have gathered
around 230,000 images from diverse sources. We have ex-
tracted the following feature types for each of these images:
1) color moments in the Lab-color space [24], subsequently
abbreviated withF9 or F45, 2) RGB color histograms with
64 bins (F64) [20], and 3) texture moments based on gabor
filters (F30) [17]. The number in the abbreviations stands
for the dimensionality of the respective features. The fol-
lowing experiments only use these real data sets and no
synthetic ones. The page size of the tree algorithms was
8 kB throughout all experiments. We always used 8 bits
per dimension for the VA-File. All experiments measured
average times for the 15-NN-search.

We distinguish between two scenarios with multi-object
queries: a best case scenario and a bad case scenario. The
first scenario uses the objects in the answer set of a previous
NN-query as the reference objects. This corresponds to the
situation where relevance feedback constructs the query.
The bad case scenario randomly selectsn points from the
data set. With both scenarios, we used the Weighted Av-
erage distance-combining function and the(L2)

2 distance
measure. Experiments with other functions and measures
yielded almost identical results.

6 Experiments

6.1 Single-Feature Multi-Object Queries

Figure 6.1 depicts the elapsed times of the approaches as a
function of n for the best case scenario for a real data set
with 45 dimensions and 230,000 objects, using a logarith-

F45 , k=15, best case

0.01

0.1

1

10

100

1000

1 4 7 10
Number of ref. objects (n)

E
la

p
se

d
ti

m
e

[s
]

M-Tree R*-Tree SR-Tree
A0 GeVAS

F45 , k=15, bad case

0.01

0.1

1

10

100

1000

1 4 7 10
Number of ref. objects (n)

E
la

p
se

d
ti

m
e

[s
]

M-Tree R*-Tree SR-Tree
A0 GeVAS

(a) (b)

Figure 5: Elapsed times for multi-object queries. (a) Best case; and (b) bad case.

mic time scale. TheA0-algorithm is not bad for smalln
and even beats some of the trees (due to the superiority of
the VA-File). However, search costs ”explode” with the
number of reference objects. Remember, however, that the
approaches are not fully compatible. For all other meth-
ods, elapsed times are mostly independent ofn, as IO is
the dominant cost factor. GeVAS outperforms the extended
trees by one to two orders of magnitude.

In the bad case scenario depicted in Figure 6.1,A0 per-
forms poorly: search costs with two reference objects are
more than 100 times larger than with only one. The main
reason is that theA0-algorithm must fetch a large number
of items from each source until 15 matches are found. For
instance, in the bad case forn = 5, theA0-algorithm ran-
domly accessed 10 percent of all data objects, leading to
a response time of around twenty minutes in our setup.
This dramatic deterioration was already mentioned and ex-
plained in [9]. The difference between QuickCombine and
A0, as reported in [11], is much smaller than the one be-
tween GeVAS and theA0-algorithm. Performance of the
M-Tree and the R�-Tree is about equal for varying num-
bers of reference objects as they access all leaf pages, but
poor in absolute terms (two orders of magnitude below the
one of GeVAS). Only the SR-Tree performs worse in the
bad case than in the best case as it was the only tree ca-
pable to prune some leaf pages in the best case. GeVAS
executes the queries in the bad case as fast as in the best
case.

The next series of experiments leaves the number of ref-
erence objects constant (n= 5), and varies the data sets. We
measured the elapsed times and determined the improve-
ment factor of GeVAS over the other approaches. Fig-
ure 6 shows the respective results. Note that the factor
scale is logarithmic, and bars with values above 1 mean that
GeVAS performs better by the factor shown. Figures 6.1
and 6.1 contain the graphs for the elapsed times of the best
case scenario and the bad case scenario, respectively. In
the bad case, GeVAS typically is faster by a factor of at
least 10 than the other approaches. When comparing toA 0,
the factor easily exceeds 1000. In the best case, only the
SR-Tree with the data setF9 is competitive to GeVAS, as
the dimensionality of this data set is only 9.

For quantification of the speedup due to the precompu-
tation of bounds described in Section 3.3, we compared the
elapsed times and the CPU times of an optimized GeVAS
implementation with a non-optimized one. We used the
(L2)

2 metric, Weighted Average as distance combining
function and theF45 feature. We added the times of the
SR-Tree with early abort of distance computation as a ref-
erence point. Figure 7 depicts the elapsed times and CPU
times as a function of the number of reference objects.
Even the unoptimized VA-File-based algorithm performs
always better than the one based on the SR-Tree by at least
a factor of 3 with regard to elapsed time. Comparing the
elapsed times (left diagram) with the CPU times (right dia-
gram) of the non-optimized algorithm, computational costs
dominate the response time forn > 5. With the optimized
algorithm, computational costs are almost constant, i.e.,
only the costs for precomputing the bounds grow withn.
This means that search costs are bound by the IO-costs. In
other words, the number of reference objects does not af-
fect overall response time.

6.2 Multi-Feature Single-Object Queries

This subsection compares the performance of a) feature
fusion, b) feature fusion on-the-fly, and c) Fagin’sA 0-
algorithm for multi-feature queries. All three cases deploy
the VA-File. We will abbreviate (b) withVAF-single and (c)
with Single-A0. In contrast to the multi-object case, multi-
feature queries are closer to best-case queries than to bad-
case queries. This is because many feature types are cor-
related, and features rank the data objects more or less in
comparable order. Figure 6.3 graphs elapsed times for the
various approaches for different combinations of two fea-
ture types. TheA0-algorithm performs well, but worse than
feature fusion. Feature fusion on-the-fly is slightly worse
than feature fusion. We conclude that search costs depend
on the total number of dimensions. Only a small portion of
the costs is due to the access to several files.

6.3 Multi-Object Multi-Feature Queries

Finally, we quantify the benefit of query restructuring.
Figure 6.3 graphs elapsed time using two feature types,
i.e., each reference object refers to the same two feature

0.1

1

10

100

1000

Im
p

ro
ve

m
en

t
fa

ct
o

r

Elapsed time, n=5, k=15, best case

M-Tree R*-Tree SR-Tree A0

F9 F64F45F30

5645 5068 1566 5289

0.1

1

10

100

1000

Im
p

ro
ve

m
en

t
fa

ct
o

r

Elapsed time, n=5, k=15, bad case

M-Tree R*-Tree SR-Tree A0

F9 F64F45F30

(a) (b)

Figure 6: Multi-object queries – improvement factor of elapsed time. (a) Best case; and (b) bad case.

0.1

1

10

100

1000

E
la

p
se

d
ti

m
e

[s
]

1 5 10 20 50 100

Number of ref. objects (n)

SR-Tree, full opt. GeVAS, no opt. GeVAS, full opt.

0.1

1

10

100

C
P

U
ti

m
e

[s
]

1 5 10 20 50 100

Number of ref. objects (n)

SR-Tree, full opt. GeVAS, no opt. GeVAS, full opt.

(a) (b)

Figure 7: Effect of the optimizations with multi-object queries. (a) elapsed times; (b) CPU times.

types. Furthermore, we again distinguish between a best
case and a bad case scenario and between an evaluation
with restructuring (”full opt.”) and a non-optimized eval-
uation (”no opt.”). Obviously, restructuring keeps the re-
sponse times almost constant. Even with 100 reference ob-
jects, elapsed times are not much larger than with only one
reference object. Moreover, there is no difference between
a bad case and a best case, i.e., the optimized evaluation of
complex queries is very stable.

7 Conclusions

Complex similarity queries yield better results than sim-
ple ones. Formulating such complex queries in a natural
way is easy when using relevance-feedback mechanisms.
The topic of this article has been the efficient evaluation of
such queries. We have combined/generalized existing ap-
proaches, resulting in a set of techniques referred to as Gen-
eralized VA-File-based Search (GeVAS). We see our main
contributions in showing that GeVAS is feasible, and in in-
vestigating the relationship between query semantics and
efficiency of query evaluation. This has given rise to var-
ious optimizations that are not evident, or whose benefits
are not evident. We have evaluated our techniques and the
refinements using a full-fledged prototype over large data
sets. We have shown that the optimizations give rise to a
significant improvement in most cases. Future work will
investigate the transformation of relevance judgements into

the various forms of multi-object multi-feature queries.
Online Demo and Extended Version. We have imple-

mented the GeVAS set of algorithms as described in this
paper, and used them to enable relevance feedback in our
large image retrieval system [15]. The current system con-
tains more than 220,000 images, deploys around 20 differ-
ent feature types with dimensionalities between 9 and 560,
and features relevance feedback with various models. This
requires the full complexity of the query model described
in this paper. Finally, there is an extended version of this
paper covering additional aspects like the quality of bounds
for complex queries [5].

Acknowledgments. We thank the member of the
database group at ETH, notably Torsten Grabs, Uwe R¨ohm,
Heiko Schuldt, and Can T¨urker for good comments on ear-
lier versions of this article.

References
[1] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On the surprising

behavior of distance metrics in high dimensional spaces. InProc. of
the Int. Conf. on Database Theory, volume 1973 ofLecture Notes in
Computer Science, p. 420–434, London, UK, 2001.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-
Tree: An Efficient and Robust Access Method for Points and Rect-
angles. InProc. of the ACM SIGMOD Int. Conf. on Management of
Data, p. 322–331, Atlantic City, NJ, USA, 1990.

[3] S. Berchtold, C. B¨ohm, H. V. Jagadish, H.-P. Kriegel, and J. Sander.
Independent Quantization: An Index Compression Technique for

0.1

1

10

100

E
la

p
se

d
ti

m
e

[s
]

Feature Fusion VAF-single Single-A0

F9 & F45F9 & F30F9 & F64

Optimizations for Complex Queries

0.1

1

10

100

0 20 40 60 80 100
Number of ref. objects (n)

E
la

p
se

d
ti

m
e

[s
]

no opt., bad case no opt., best case
full opt., bad case full opt., best case

(a) (b)

Figure 8: Elapsed times for (a) 2-feature queries and (b) multi-feature multi-object queries.

High-Dimensional Data Spaces. InPro. of the Int. Conf. on Data
Engineering, p. 577–588, San Diego, CA, 2000.

[4] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When
is “Nearest Neighbour” Meaningful? InProc. of the Int. Conf. on
Database Theory, volume 1540 ofLecture Notes in Computer Sci-
ence, p. 217–235, Jerusalem, Israel, 1999.

[5] K. Böhm, M. Mlivoncic, H.-J. Schek, and R. Weber. Fast Eval-
uation Techniques for Complex Similarity Queries. Technical re-
port, Dept. of Computer Science, 2001. Available at http://www-
dbs.ethz.ch/�weber/paper/VLDB01Long.ps.

[6] K. Chakrabarti, K. Porkaew, and S. Mehrotra. Efficient Query Re-
finement in Multimedia Databases. InPro. of the Int. Conf. on Data
Engineering, p. 196, San Diego, California, USA, 2000.

[7] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An Efficient Access
Method for Similarity Search in Metric Spaces. InProc. of the Int.
Conference on Very Large Databases, p. 426–435, Athens, Greece,
1997.

[8] P. Ciaccia, M. Patella, and P. Zezula. Processing Complex Similarity
Queries with Distance-Based Access Methods. InProc. of the Int.
Conf. on Extending Database Technology, volume 1377 ofLecture
Notes in Computer Science, p. 9–23, Valencia, Spain, 1998.

[9] R. Fagin. Combining Fuzzy Information from Multiple Systems. In
Proc. of the ACM Symposium on Principles of Database Systems, p.
216–226, Montreal, Canada, 1996.

[10] R. Fagin and E. L. Wimmers. A Formula for Incorporating Weights
into Scoring Rules. InProc. of the Int. Conf. on Database Theory,
volume 1186 ofLecture Notes in Computer Science, p. 247–261,
Delphi, Greece, 1997.

[11] U. Güntzer, W.-T. Balke, and W. Kiessling. Optimizing Multi-
Feature Queries for Image Databases. InProc. of the Int. Conference
on Very Large Databases, p. 419–428, Cairo, Egypt, 2000.

[12] D. Harman. Information Retrieval: Data Structures and Algo-
rithms, chapter 11: Relevance Feedback and Other Query Modifi-
cation Techniques, p. 241–263. Prentice Hall, Englewood Cliffs,
New Jersey, 1992.

[13] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What Is the Nearest
Neighbor in High Dimensional Spaces? InProc. of the Int. Confer-
ence on Very Large Databases, p. 506–515, Cairo, Egypt, 2000.

[14] G. Hjaltason and H. Samet. Ranking in Spatial Databases. InPro-
ceedings of the Fourth International Symposium on Advances in
Spatial Database Systems (SSD95), number 951 in Lecture Notes
in Computer Science, p. 83–95, Portland, Maine, 1995.

[15] http://simulant.ethz.ch/Chariot/, 2000.

[16] N. Katayama and S. Satoh. The SR-tree: An Index Structure for
High-Dimensional Nearest Neighbor Queries. InProc. of the ACM
SIGMOD Int. Conf. on Management of Data, p. 369–380, Tucson,
Arizon USA, 1997.

[17] B. Manjunath and W. Ma. Texture Features for Browsing and Re-
trieval of Image Data.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(8):837–842, 1996.

[18] H. Müller, W. Müller, D. M. Squire, and S. Marchand-Maillet.
Strategies for positive and negative relevance feedback in image re-
trieval. In Proceedings of the International Conference on Pattern
Recognition (ICPR’2000), volume 1 ofComputer Vision and Image
Analysis, p. 1043–1046, Barcelona, Spain, 2000.

[19] S. Nepal and M. Ramakrishna. Multi Feature Query By Multi Exam-
ples in Image Databases. InProceedings of the Tenth International
Conference on Management of Data, Pune, India, 2000.

[20] W. Niblack, R. Barber, W. Equitz, et al. The QBIC Project: Query-
ing Images by Content, Using Color, Texture, and Shape. InStorage
and Retrieval for Image and Video Databases, volume 1908 ofSPIE
Proceedings, p. 173–187, San Jose, CA, USA, 1993.

[21] J. Rocchio Jr. Relevance Feedback in Information Retrieval, The
SMART Retrieval System: Experiments in Automatic Document Pro-
cessing, chapter 14, p. 313–323. Prentice Hall, Englewood Cliffs,
New Jersey, USA, 1971.

[22] Y. Rui, T. Huang, and S. Mehrotra. Relevance Feedback Techniques
in Interactive Content-Based Image Retrieval. InStorage and Re-
trieval for Image and Video Databases, p. 25–36, San Jose, Califor-
nia, USA, 1998.

[23] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-
tree: An Index Structure for High-Dimensional Spaces Using Rela-
tive Approximation. InProc. of the Int. Conference on Very Large
Databases, p. 516–526, Cairo, Egypt, 2000.

[24] M. Stricker and A. Dimai. Spectral Covariance and Fuzzy Regions
for Image Indexing. Machine Vision and Applications, 10:66–73,
1997.

[25] R. Weber and K. B¨ohm. Trading Quality for Time with Nearest-
Neighbor Search. InProc. of the Int. Conf. on Extending Database
Technology, volume 1777 ofLecture Notes in Computer Science, p.
21–35, Konstanz, Germany, 2000.

[26] R. Weber, K. Böhm, and H.-J. Schek. Interactive- Time Similar-
ity Search for Large Image Collections Using Parallel VA-Files. In
Research and Advanced Technology for Digital Libraries, 4th Euro-
pean Conference (ECDL), volume 1923 ofLecture Notes in Com-
puter Science, p. 83–92, Lisbon, Portugal, 2000.

[27] R. Weber, H.-J. Schek, and S. Blott. A Quantitative Analysis
and Performance Study for Similarity-Search Methods in High-
Dimensional Spaces. InProc. of the Int. Conference on Very Large
Databases, p. 194–205, New York City, New York, USA, 1998.

[28] E. L. Wimmers, L. M. Haas, M. T. Roth, and C. Braendli. Using
Fagin’s Algorithm for Merging Ranked Results in Multimedia. In
Proceedings of the Fourth IFCIS International Conference on Co-
operative Information Systems, p. 267–278, Edinburgh, Scotland,
1999.

