Efficient Management of Multiversion Documents by
Object Referencing

Shu-Yao Chien Vassilis J. Tsotras*
CSE Dept., UC Riverside

tsotras@cs.ucr.edu

CS Dept. UCLA

csy@cs.ucla.edu

Abstract

Traditional approaches to versioning documents are
edit-based, and represent successive versions using edit
scripts. This paper proposes a reference-based version-
ing scheme that preserves the rich logical structure of
the evolving document via object references. This ap-
proach produces better support for queries, and rec-
onciles the storage-level and transport-level represen-
tations of multiversioned XML documents. In par-
ticular, we present efficient algorithms for supporting
projection and selection queries, and for querying the
document evolution history. Then, we show that our
representation is also efficient at the transport level,
where XML documents are exchanged between remote
parties. In fact, with the reference-based scheme, an
XML document’s history can also be viewed and pro-
cessed as yet another XML document. Finally, we
demonstrate the effectiveness of the new scheme at the
storage level, for which we define a usefulness-based
page management policy, adapted from transaction-
time databases, to ensure efficient temporal cluster-
ing between versions. The experimental evaluation
of the new scheme against previous representations
used in temporal databases and persistent-object man-
agers shows the performance advantages of the new
approach.

1 Introduction

With the advent of the WWW, an abundance of
semistructured documents is stored and disseminated
from different application domains. Since such doc-
uments evolve (updates, new releases) the problem of
document versioning has become of significant interest
for content providers, cooperative work, and informa-
tion systems in general. Various stardarization groups,
have recognized the importance of versions [21], but

This research was supported by NSF grants 1IS-9907477,
EIA-9983445, 11S-0070135, and the Dept. of Defense.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Carlo Zaniolo*
CS Dept. UCLA

zanioloQcs.ucla.edu

left it for later standards, because of the many research
issues still unresolved. This situation creates an ex-
citing window of research opportunities. While there
has been very little previous work on versioning web
based semistructured documents [5, 21], much relevant
work was done for other applications, such as software
configuration management [11], CAD systems[10] and
temporal databases [1, 3, 9, 12, 16, 18, 19].

Some of the problems occurring in multiversion
documents are similar to those of transaction-time
databases, where object histories are maintained (new
objects are added without discarding the old ones)
[14]. Using timestamping, various efficient indexing
and clustering techniques have been proposed for tem-
poral relations [1, 3, 9, 12, 16, 18, 19]. Version man-
agement schemes have also been proposed in OODBs;
however, they are not designed to support documents
and to optimize the retrieval of complex documents
[2, 4, 8, 10].

Change management for semistructured data has
been proposed in Chorel [5]; the focus though is on
modeling version changes for individual objects, and
the performance of storing and retrieving complete
document versions was not discussed.

Two version management schemes used in software
configuration management [11] are RCS [17] and SCCS
[15]. RCS uses an edit-based approach for represent-
ing multiple versions of an evolving textual object. A
recent approach to XML versioning based on RCS is
[13]. Typically, RCS [17] stores the most current ver-
sion verbatim, while previous revisions are represented
via reverse edit scripts. These scripts describe how to
go backward in the object’s development history. For
any version, but the current one, extra processing is
needed to apply the reverse edit script to generate the
old version. The symmetric approach to the problem
uses instead a forward edit script where the original
versions are stored intact, and successive versions are
generated by following the script. A timestamp-based
scheme is instead used for SCCS [15], where each tex-
tual object is marked with two timestamps (or version
numbers) denoting the version lifespan of the textual
object. Versions are retrieved in SCCS by scanning
through the file and retrieving valid segments based
on their timestamps. Both RCS and SCCS lack so-
phistication in their secondary storage management

since they were not proposed for database applications.
Moreover, neither approach supports complex queries,
or queries on the evolution of the structure of the doc-
ument. In fact, most of today’s software configuration
tools still treat a document as a sequence of lines of
text, thus ignoring the rich structure of the document.

Another requirement for web-based semistructured
documents is the ability of the versioning scheme
to support the transport of multiversion documents
across applications and to remote sites. The riches of
the XML environment play a pivotal role here. The
ideal solution is to represent the history of a versioned
document as yet another XML document—this will
turn web-browsers, style sheets, query processors, and
the many great XML tools into a ready-made support
environment for XML versions. However, neither the
edit-based, nor the time-stamped versioning schemes
are conducive to our objective as they are too complex
and therefore less suitable for the transport level.

To address the above requirements, this paper intro-
duces a reference-based versioning scheme. The prop-
erties of the new scheme are:

1. Tt preserves the logical document structure across
versions thus enabling efficient version retrieval
and content-based querying. In addition to ver-
sion reconstruction and historical queries, the
scheme supports structural projection queries.

2. It is effective at the transport level. The reference-
based scheme allows the whole history of a multi-
versioned document to be represented as yet an-
other regular XML document.

3. It is efficient at the storage level. This is achieved
by extending our reference-based scheme with
storage techniques based on the notion of page
usefulness; similar techniques (e.g. “single version
current utilization”) are used by transaction-time
databases [1, 12, 18, 19] for clustering temporal
information.

The rest of the paper is organized as follows. The
reference-based versioning scheme is introduced in Sec-
tion 2. Section 3 examines how various version related
queries are efficiently evaluated upon the new scheme.
Section 4 discusses the transport level support and
shows the scheme’s XML representation. In Section 5
we propose a technique for the efficient storage and re-
trieval of documents. We compare our scheme against
previous techniques, like the multiversion B-tree [1]
and a Partially Persistent List (Section 6), and show
its effectiveness in Section 7. Conclusions are given in
Section 8.

2 The Reference-Based Scheme

In our previous work [6], we proposed techniques for
the efficient storage and retrieval of multiversion doc-
uments represented by edit-based schemes. However,
we soon realized the limitations of this popular version
scheme. In fact, except retrieving version difference,

Figure 1: An RBV M tree; T stands for a text node,
V a version node, E an element node, R a reference
node, and A an attribute node.

it does not support queries well in general, since the
information is split between the actual database and
the script. Furthermore, the edit script represents a
special object that cannot be easily accomodated at
the transport level without XML extensions.

The reference-based representation to be discussed
next, solves these logical problems without perfor-
mance drawbacks.

2.1 The Reference-Based Version Model
(RBV M)
Background. In the following discussion, we describe
changes between versions by five commonly used tree-
edit operations, namely, INSERT a subtree, DELETE
a subtree, UPDATE the content of a node, COPY a
subtree, and MOVE a subtree [23].We also define that
an element is changed if its textual content is updated,
or any of its sub-elements is changed. Otherwise, the
element is unchanged. A mazimum unchanged ele-
ment is one which itself is unchanged but its parent
node is changed.
The Model. The basic ideas behind RBV M are :

o keep a view for each version

e share unchanged elements among versions
That is, when representing a new version, each maxi-
mum unchanged element is represented by a reference
record, and that reference record refers to the logi-
cal location of that unchanged element in the previous
version.

Thus RBV M represents a simple extension with re-
spect to the data model described in the XPath spec-
ification [20], in which XML documents are modeled
as ordered-trees containing various types of nodes. To
simplify the following discussion (without loss of gen-
erality), we consider only the following nodes: element
nodes, text nodes, and attribute nodes. In addition, we
introduce wversion nodes and reference nodes, which,
respectively, serve as root nodes of versions and refer-
ences to maximum unchanged elements.

The RBV M models each version of an XML docu-
ment as an ordered tree which contains: element, text,
attribute and reference nodes, and is rooted with a
version node. A series of versions are modeled as an or-
dered forest of version trees as illustrated in Figure 1.
Version sharing has also been proposed in [4, 3] where

Edit operations :

1. DELETE the "TSQ.2 Tutorial"
chapter.

2. INSERT the "A Second Exanple"

chapter. Version 1

T

Version 2

"The "Test Data"

Cont ext "

Figure 2: Sample RBV M versions.

TS
"I'ntroduction
to TSQL2"

vy g e
id="t.3 H

" Concept s"

Edit operations :
1. UPDATE the textual content of
the "A Second Exanpl e" chapter.
2. COPY the "Concepts" section
and insert it after the
"Test Data" section under the

"Test Data" "A Second Exanple" chapter.

Figure 3: Sample RBV M versions (cont’d).

a B+-tree is used to store the pages of a large object
and subsequent versions share common paths of this
B+-tree. The RBVM is at the logical level and applies
to any tree structured complex object. Furthermore
it does not assume any physical representation of the
versioned object while at the physical level it supports
the notion of usefulness for better version clustering.
Example. An example is given in Figures 2 and
3. Figure 2 shows the first two versions of a sample
XML document. The initial version, Version 1, con-
tains two chapters — “Introduction to TSQL2”, and
“TQL2 Tutorial” —, and each chapter contains one
and two sections, respectively. The initial version is
always fully materialized. Version 2 is generated by
modifying Version 1 with the following changes :

e DELETE the “TSQL2 Tutorial” chapter,

e INSERT the “A Second Example” chapter after
the first chapter.

Since the first chapter of Version 2 is the same as the
first chapter of Version 1, a reference record is used in

Version 2 to represent that unchanged element instead
of storing the actual content. The reference record
contains the tree address of the unchanged chapter in
Version 1 — V1.1 — which refers to the first element
at the first level of Version 1. The second chapter of
Version 2 is a new chapter and, thus, is fully mate-
rialized and stored locally. Last, a link is built from
Version 1 to Version 2. Note that the deleted chapter
does not need any handling because it does not exist
in Version 2.

Version 3 is generated from Version 2 via the fol-

lowing changes :

e UPDATE the textual content of the “A Second
Example” chapter.

e COPY the “Concepts” section and insert it af-
ter the “Test Data” section under the “A Second
Example” chapter.

As shown in Figure 3, the “Introduction to TSQL2”
chapter remains unchanged, thus, is represented by a
reference record — (V'2.1). Note that reference records

PROCESS (K,J) {
if (K<M) then current[K] = J;
for (each element I from current[K] upto J) {
if (islocal(I))
actual_obj = fetch(I);
else
actual_obj = ASK(K-1, ref(I));
if (K>=M) then output actual_obj to Version[Kl}
current[K] = J;
return actual_obj };

ASK(K1,I) {
return PROCESS(K1, I)};

Figure 4: Recursive Procedures for Materialization.

of a version always refer to its previous version, which
in turn might refer to its previous version. Therefore,
reference records are logical and may be indirect.
The second chapter is changed because its textual
content is updated and a new “Concept” section is
copied and inserted under it. Therefore, it contains
three reference nodes and each of them refers to corre-
sponding elements in the previous version. Note that
the last reference record is also indirect because it
refers to a sub-element of an element represented by a
reference record. Last, a link is built from Version 2
to Version 3.
Restructuring and Duplicating. It is often the
case that two sections of the old version are switched in
anew version. Also some passages and footnotes might
be repeated at various points in the document. Our
reference-based representation handles these changes
via simple reference records, whereas the edit script
based version requires the re-insertion of the moved
sections and the repeated objects.

2.2 Version Materialization
Materializing a sequence of versions, from Version M
to Version N where M < N, starts from Version N.
The elements of Version N are scanned sequentially
starting from its root. Each version element that is
stored locally is directly output. For an element that
is a reference node, the previous version, i.e., Version
N —1, is asked for the actual element. If Version N —1
has stored the element locally, it returns the element
to Version V. Otherwise the previous version is recur-
sively asked until the actual element is found. If the
actual element is found in Version I, M < I < N, it
will also belong to all versions between I and N. As
a side effect, when Version N is fully materialized, in-
volved intermediate versions have also been partially
materialized.

The overall materialization of versions between M
and N can be expressed as follows:
for (K=N; K>=M; K= K-1)

PROCESS (K, last(K));

Procedure PROCESS is shown in Figure 4; last(K)
denotes the tree address of the last element in Version
K.

In Figure 4, K and M are version numbers, while
I, J, and current[K] hold tree addresses for a given

version. current[] is a global array and it holds a
tree address for each version which serves as a pointer
of processing progress. Thus, for each version K,
M < K < N, Version[K] denotes the current version
being assembled. Tree addresses for a given version
are totally ordered. Thus, a call to PROCESS (K, J)
for K > M results in materializing and storing in
Version(K) each element from current[K] up to J;
the value of current[K] is also reset to J (to be used
by later calls to PROCESS(K,_) that resumes the
materialization of Version K).

To obtain the object with tree address I,
PROCESS(K, J) checks if I is actually stored in the
current working version, Version K. If so, it stores it
in actual-obj. Otherwise, I holds a tree reference to a
previous version object—which we denote by ref(I).
Then, the previous version is asked for this object, by
calling ASK(K — 1,ref(I)), and storing the result in
actual_obj. Observe that ASK (K —1,ref(I)) materi-
alizes Version K — 1 from current[K — 1] (left by the
previous call of PROCESS on this version) to ref(I).

If a request for element I is served by a version
earlier than M, the materialization continues before
version M (version M — 1, etc.) but only elements
requested by versions M through N are materialized.
The first line in the routine PROCESS deals with
this situation. As version M — 1 is not fully materi-
alized, the page holding the tree address of element I
(or its reference record) is needed. Since elements in
a version are stored by document order, the pages of
each version can be indexed by a sparse append-only
index. This index maintains the tree address of the
first element in each page and can be used to locate
the tree address of element I.

3 Queries on Versioned Documents
There has been much interest in query languages for
XML and semistructured documents. Our focus here
is to evaluate the effectiveness of our RBV M model to
support the different kinds of queries that arise natu-
rally for versioned XML documents instead of design-
ing a new query language. These include queries on
document history and evolution—in addition to the
usual content-based queries on version instances, and
a combination of the two, as summarized by the fol-
lowing taxonomy:

o Temporal Selection. This basically retrieves either
a particular version of the whole document (temporal
snapshot) in its entirety, or successive versions of the
same—e.g., retrieve version 9 to 17. An algorithm for
the efficient support of this query was presented in the
previous section.

e Document Evolution € Historical queries. These
queries focus on the changes between successive ver-
sions of the document. They include queries such as,
“What’s new in version 5 of this document?” The
computation of structured diff discussed in [5] is an-
other example of this query kind.

o Structural Projection. For instance, if the user re-
quests Section 4.1, Subsection 4.2.2, and Chapter 6
from a document, we can represent this request by the
following projection list.: PL = [4.1, 4.2.2, 6]. In a
projection list, we assume that the tree addresses are
listed in their natural order, and they do not overlap.
Thus, e.g., if the list contains node 4.1, neither 4.1,
nor its descendants (such as, 4.1.3, 4.1.4.2) can appear
later in the projection list.

If we view successive versions as successive textual

lines on a screen (of unbounded width), then the struc-
tured projection can be viewed as elimination of ver-
tical columns, as in projections for the relational data
model. (But this analogy holds only to a point, since,
say, Section 4.1 in one version might be shifted to the
right (left) in the next version by the insertion (dele-
tion) of, say, Section 3.9.) Structural projection is
a key ingredient in many queries involving temporal
selection (“Show Chapter 1 for versions 15 to 32.”),
history queries (“Show the history of changes for this
document’s abstract”), and content-based queries. An
efficient algorithm for Structural Projection is given
below.
o Content-Based Selection This retrieves all versions
that qualify the predicates in the *where’ clause of the
query. Content-based selection often occurs in queries
that also include structural selection, temporal selec-
tion, and even document history.

Structural Projection. We assume that a Projec-
tion List PL is given consisting of a sequence of non-
overlapping tree addresses. We want to materialize a
structured projection according to this list for versions
M to N. We will keep a request list RL(K'). Then, the
initialization step sets RL(K) = PL for M < K < N
for every version before M, i.e., for K < M, RL(K) is
initialized to the empty list. During processing, we add
to RL(K) the tree addresses for the elements requests
by the next version. The addition of a tree address I
to a sorted projection list L leaves L unchanged when
L contains I, or one of tree ancestors (super-objects);
otherwise I is inserted into this sorted list. If L con-
tains proper sub-objects (tree descendants) of I these
are removed from L.

For instance, the addition of 4.1.3 to [4.1, 4.2.2, 6]
leaves this list unchanged. But the addition of 4.2 to
the list changes it to [4.1, 4.2, 6].

Observe the similarity between the recursive pro-
cedures in Figure 4 and those of Figure 5. How-
ever, in the former, we visit directly the elements in
the version, while here we sequentially process the
tree addresses in RL(K) (by the statement for each
address I in RL(K) up to J). Therefore we access
the element version with address I (using the sparse
index); three cases are now possible.

1. Version K holds element I. In this case islocal(I)
is true and fetch(I) returns the actual object.
2. Version K represents element I or a super-object of

SP_PROCESS (K,J) {
for (each address I in RL(K) up to J) {
if (ismix(I)) then
replace I in RL[K] by its children;
I = firstchild(I) }
else {
if (islocal(I)) then actual_obj = fetch(I);
if (isref(I)) then actual_obj =
SP_ASK(K-1, refval(I)); }
delete I from RLI[K];
if (K >= M) then
Output sub-objects of actual_obj
which are in PL[K];
}

return actual_obj;

}
SP_ASK(K1,I) {
add I to RL[K1];
return SP_PROCESS(K1, I) }

Figure 5: Recursive Procedures for Projection.

I via a reference to the previous version. In this case,
isref(I) is true. For instance, say that I = 4.5.3 and
version K represents object 4 as a reference to object
6.2 in version K — 1. Then, the element 4.5.3 of K is
actually element 6.2.5.3 in version K — 1. The function
refval is used to implement this mapping; in this case
refval(4.5.3) = 6.2.5.3.

3. When neither of the two previous cases occur,
then object K is a mixture of some locally stored
sub-objects and references—in this case, ismiz(I) is
true. Then, we must decompose element I into its sub-
elements (children) and process them individually. We
do that by replacing I in RK (L) by its children and
resuming from its first child, denoted firstchild(I).
For versions between M and N once an object for the
request list is materialized we output every sub-object
of actual_obj which was in the original list.

The overall materialization of projections M and N
requires the initialization of the RL(K) lists followed
by the invocation of SP_PROCESS(K,last(K))
starting from N and going back to M
Content-Based Selection. In many queries this is
also combined with structural projections. Selection is
easily performed on versions (or their structured pro-
jections) materialized by the algorithms previously dis-
cussed. Further optimization is also possible by push-
ing selection onto the referenced elements of the pre-
vious version; this is an interesting problem but due
to space limitations details are omitted.

Evolution History Retrieval. Generating evolu-
tion history upon users’ request is an important fea-
ture of version management systems. A typical query
could be: Retrieve the differences between Version M
and the previous version. Typical algorithms [23] for
computing differences between two structured docu-
ments all share a two-phase strategy: the matching
elements in the two versions are first found, and then,
the edit script is constructed from that. The first phase
is computationally expensive, while the second phase
only requires a bottom-up, breadth-first search on the
two versions. With the RBV M model, the first phase
is no longer necessary, since that information is already

<!-- ORIGINAL DTD -->

<!ELEMENT OrdinarylIssuePage
(volume_info,sectionList§>

<!ELEMENT volume_info (#PCDATA)>

<!ELEMENT sectionList (sectionListTuple)x*>

<!ELEMENT sectionListTuple
(sectionName,articles)>

e

QO ©@
» W N

<!-- VERSION DTD -->
1 <!ELEMENT Repository (Version)+>
N.2 <!ELEMENT Version (OrdinaryIssuePage)>
<V'ATTLIST Version v_number CDATA #REQUIRED>
N.3 <!ELEMENT RefRecord>
<V'ATTLIST RefRecord v_number CDATA>
<'ATTLIST RefRecord start_element IDREF>
<!'ATTLIST RefRecord end_element IDREF>
N.4 <!ELEMENT OrdinaryIssuePage
(volume_info,sectionList)>
N.5 <!ELEMENT volume_info ((#PCDATA) |RefRecord)>
<!ATTLIST volumn_info id ID>
N.6 <!ELEMENT sectionList
((sectionListTuple)* | RefRecord)>
<!ATTLIST sectionList id ID>
N.7 <!ELEMENT sectionListTuple
((sectionName,articles) | RefRecord)>
<!ATTLIST sectionListTuplle id ID>

Figure 6: A sample DTD and its version DTD.

embedded in the references (each reference denotes a
matching segment). Therefore, generating version dif-
ference for RBV M only requires a one-pass bottom-up
breadth-first search over Version M and its previous
version.

In summary, RBV M provides an excellent basis for
supporting the assortment of queries of different types
that are typical on versioned XML documents.

4 Transport Level: RBVM in XML
Since the reference-based model preserves the logical
structure of each version, it is perfectly suited to sup-
port transport level. With a version DTD, the content
of a reference-based version repository can be repre-
sented in XML and seamlessly viewed, retrieved, trans-
ported, or restructured by applications which under-
stand the DTD. In the following, we discuss how to
derive a DTD for the version repository based on its
original document DTD.

Since RBV M itself has ordered-tree structure, it
can be naturally described by DTD. The DTD of a
RDV M repository can be derived from the original
DTD of documents simply by the following steps :

e Three new DTD elements are defined to represent
(i) the repository, (ii) the versions, and (iii) the
reference records.

e For each element defined in the original DTD (ex-
cept the root) its content model is modified to in-
clude a reference record element as an alternate.

e An ID attribute is added to each element (that
does not have one already).

Figure 6 shows a DTD simplified from the SIG-
MOD Record page and its version DTD. The version
DTD starts with the definitions of the root element
Repository whose content is a list of version elements.
Then the version element is defined at point N.2, which

contains one occurrence of the root element of the orig-
inal DTD, OrdinarylssuePage, which is defined at
G.1. The version type also has an attribute to keep
its version number. The reference record is defined at
point N.3, which is an empty element with three at-
tributes that represent (i) the referenced version num-
ber, (ii) the id of the starting element, and (iii) the id
of the end element of the segment to be copied from the
specified version. The definition of the root element of
the original DTD, OrdinarylssuePage, is unchanged
while, for the other elements, their content model is
extended to include the RefRecord element as an al-
ternate. Indeed, the occurrences of such elements are
reference records instead of the actual objects when
they remained unchanged from the previous version.
For example, the sectionList element defined at G.3 of
the original DTD is changed to include a RefRecord
element as an alternate content. The result version
DTD is shown in Figure 6. Based on the above pro-
cedure, the version DTD can be automatically derived
from the original DTD and be used by any application
which understand the content of the repository.

Recently, a schema definition language, XML

Schema [22], was proposed by the World Wide Web
Consortium (W3C) to support richer semantics for
XML documents. The previous procedure to derive
a version DTD from the original DTD can be eas-
ily extended to derive a Version schema for any XML
document defined by a schema. The procedure is as
follows:

e Define new element types for repository, versions,
and reference records.

e For each element type defined in the original
schema, except the root element, change its con-
tent model to a union type whose member types
consist of the original content model and the ref-
erence record type. That indicates the fact that
the occurrence of the element may be a reference
record if it is unchanged from the previous ver-
sion.

e Define an ID attribute to each element type that
does not have one.

5 Usefulness-Based Storage Scheme

In order to improve performance, we develop algo-
rithms that enhance the above reference-based scheme
with a wusefulness-based clustering scheme. The
usefulness-based clustering is an extension of the clus-
tering schemes found in temporal databases (e.g. ver-
sion utilization [12] or page usefulness [18]).

At the storage level, the reference-based scheme
stores both the reference and actual object nodes of a
version in data pages sequentially by their document
order (the order in which the first character of the
XML representation of each node appears in the XML
representation of the version). Along the evolution
process, the number of valid objects data pages con-
tain may decrease because some objects are deleted.

Version 1 <r oot >: (V1)

P1 <1>:(ch A) P2
<1.1>:(title t1)
<1.2>:(sec sl)

<1.3>:(sec s2)
<2>:(ch B)

<2.1>:(title t2)

<2.2>:(sec s3)

Version 2

<root >: (V2) <2.2>:(sec s4)
P3 <1>: (R=>V1. 1) P4
<2>:(ch O
<2.1>:(title t6)
Version 3 <root >: (V3) <1.3>: (sec s2)
P5 <1>:(ch A P6 <2>:(ch O
<1.1>:(title t1) <2.1>:(title t6)

<1.2>:(sec sl) <2.2> (R=>V2.2.2)

Figure 7: A sample RBV M version repository.

This process will make a later version have its valid
objects sparsely scattered among data pages. As a re-
sult, materializing such a version needs to access more
pages and, thus, the I/O cost increases. To solve this
problem, sparsely scattered objects should be clustered
together. In the following we describe a mechanism
which clusters objects in in a controlled way.

Figure 7 shows a simplified example from Figure 2 3
where all text nodes, and attribute nodes are ignored
as well as those element nodes at the bottom level.
Each object starts with its tree address. If the object
is a reference record it is denoted as (R=T) where
T is the tree address of the referred unchanged ele-
ment. Otherwise, it is an actual object and stored
locally. In this example, we assume that (1) reference
records have the same size as the actual object records
(whereas they are normally smaller), and, (2) a page
holds four (object or reference) records.

Let us start with the definition of the segmental use-
fulness of a data page.

Definition: Consider page P and let S be the log-
ical segment it contains for version V. Let pages
Py, P,,---, P, be the extra pages needed to be ac-
cessed for materializing S, and let B be the page size.
The segmental usefulness of page P for version V is
the ratio of the size of S over the total size of pages
P7P17P27"'7Pn :

size(S)

Bx(n+1)
O

Version 1 has all actual objects, so its objects are
stored by the document order in data pages P1 and
P2 as shown in Figure 7. Pages P1 and P2 both have
segmental usefulness of 100% because the nodes they
contain are all stored locally.

The representation of Version 2 contains both refer-
ence records and actual objects. The first four records
are stored in a new data page P3. Consider the over-
all “logical” segment corresponding to page P3, which
we will denote S3. This logical segment starts from
the root object in Version 2 and extends until the 7¢"
object of Version 2 (title t6). Note that, S3 is com-
prised of three acutal elements, root, ch C and title

t6, and one reference record, (R=V1.1). The tree ad-
dress V1.1 refers to the sub-tree rooted at ch A of
Version 1 which consists of three elements, ch A, title
t1, and sec sl and are stored in page P1. Therefore, to
physically materialize S3, pages P1 and P2 must also
be accessed. Qut of the twelve records read (i.e., the
records in pages P1, P2 and P3) seven correspond to
real objects (i.e., “useful” objects), one is a reference
record (from page P3), and three are expired (ch B
and its two sub-elements). Collectively, 58% of three
accessed data pages, P3, P1 and P2, are useful for Ss.
That is, the segmental usefulness of page P3 is 58%.
The last node of Version 2, (sec s4), is stored in the
next new page, P4. Since page P4 is the end page of
Version 2 and its only object is actual object, it is con-
sidered 100%. For each version, there exists only one
end page.

The usefulness of a page represents the I/O effi-
ciency of materializing the overall logical segment it
contains. If the usefulness of a page is U and its logi-
cal segment is S, the total size of data pages accessed
for materializing S is size(S)/U. The 58% segmental
usefulness of page P3 implies that the total number
of records accessed for materializing S3 is 172% of the
size of S3.

To guarantee low I/O cost, we define a minimum
required usefulness U,,,;,- A page will be called use ful
as long as its usefulness is greater or equal than U, ;.
The next question is what to do with pages whose
usefulness is below Uj,;,- For example, assume Uj,;pn
has been set to 50% and now consider Version 3 whose
reference-base representation is :

<root >: (V3),<1>:(R=V21),
<2>:(R=V22),<21> (R=V221),
<22> (R=V222),<23>: (R=V21.3).

If the first four nodes were stored in a new page,
say page P’, materializing this segment in P’ requires
reading pages P’, P3, P1, and P2. However, only seven
out of the sixteen objects read are useful; that is, P’
has segmental usefulness only 43.75% which is below
Upmin- The cost of materializing the segment of P’
is high: 229%, To avoid high I/O cost, it is better
to materialize the actual objects of a useless page and
cluster them together in pages. This effectively creates
copies of actual records.

Copy Procedure. Instead of storing page P’, the
version materialization algorithms in Figure 4 — PRO-
CESS() and ASK() — are used to identify the actual
objects of the logical segment in P’. These objects are
copied and stored in new data pages P5 and P6 as
shown in Figure 7. Since page P6 is not full, the next
reference record, < 2.2 >: (R = V2.2.2), is stored af-
ter the last copied object, (title t6). The usefulness of
page P6 is 50% because materializing its segment in-
volves one extra page P4 and four objects out of these
two pages are useful. So, P6 is useful and kept intact.
Complexity Analysis. In [7] it is shown that the
space used by our scheme is bound by (O(Scpy)), where

Schg is the total number of version changes The cost
for reconstructing any given version can be computed
from the number of pages that have to be read into
main memory. Reconstruction of a version of size S;
needs ﬁ x 5i pages, where B is the capacity of
the page [7]. Last, the complete version insertion

algorithm is the following :
INSERT() {
for (each element, E) {
Insert E in the accepting page until
page is full;
if (accepting page is USEFUL) {
Write current accepting page;
Generate a new accepting page;

llse if (accepting page is USELESS) {
Materialize the segment it contains;
} 1}

Two further refinements are used in the version
insertion algorithm to minimize unnecessary copy-
ing. To materialize page P we have to access pages
Py, ..., P,; but if P is also accessed to materialize the
page preceding P it can be excluded from the count
of P. Furthermore, the materialization of the segment
corresponding to P might write two or more pages.
Then we might stop the materialization as soon as the
first page boundary is reached, and return to step 2 at
that point; the second page and the other pages might
in fact be still useful.

6 Timestamp-Based Schemes

A document can be visualized as an ordered list of its
element objects. This logical order need be preserved
when reconstructing a version of the document. Hence,
when physically storing a document we can utilize a
data structure that maintains such an order (for exam-
ple a B+-tree or an ordered list). Document version-
ing is then reduced to making this data structure par-
tially persistent. A data structure is called persistent
if an update creates a new version of the data structure
while the previous version is still retained and can be
accessed (if the old version is discarded, the structure
is called ephemeral). Partial persistence implies that
updates are applied only at the latest version of the
data structure.

6.1 Utilizing a Multiversion B-Tree

Assume that we have a B+-tree that indexes the ob-
ject positions in the first version of a document. That
is, the leaves of this B+-tree contain records with keys
1, 2, 3, etc. where record k stores the object in the
k — th position of the document. However, since each
object insertion/deletion affects the position number
of all the objects after it, updating this B+-tree be-
comes very inefficient. Adding/deleting one object in
the beginning of the document would update all the
positions after this object. This problem can be re-
solved if the object positions are encoded in a way
not altered by document changes. One simplistic and
straightforward solution is to identify object positions
by an ordered sequence of large non-consecutive inte-
gers. Then a future insertion between positions z and

y can be indexed by a number that lies between x and
y. The choice of numbers as well as the scheme to as-
sociate new numbers for future insertions depends on
the document evolution.

There have been various approaches to making a
B-+-tree partially persistent [1] [12] [19]. In our exper-
iments we used the MVBT since its code is publicly
available. The MVBT also uses a notion of usefulness.
With the exception of root pages, a page is “useful” as
long as it has at least D valid records (D is less than
B, the page capacity). The space used by the MVBT
is linear to the number of changes Scp,. If version V;
had S; objects, then the MVBT reconstructs it with
O(logr(Schg/B) + Si/B) 1/0’s [1].

6.2 Utilizing a Partially Persistent List

Let L be an ephemeral list that maintains the relative
positions of its elements. Inserting or deleting an ele-
ment from L corresponds to finding the position of this
element in L and performing the update. Let L(i) be
the sequence of elements the list had at version V;. Our
aim is to reconstruct L(7) by accessing only pages that
were “useful” during version V;. A page is useful for
a given version as long as it has enough valid records
from this version. Assume that the very first version
of L is stored sequentially into pages. As deletions ar-
rive, some of these pages will become non-useful and
thus have to be copied. However, this copying needs
to maintain the list logical order, i.e., the relative po-
sitions of the list elements. Moreover, since insertions
can happen anywhere in the list, some space is needed
inside each page for future insertions. Since list recon-
struction starts from the top element in the list, the
first page of L must be identified for any given version.
Furthermore, a useful page should also maintain the
next useful page in the list (which may change many
times for a given page). In [7] we present a partially
persistent list that uses linear space and reconstructs
version V; with O(log(Secng/B) + Si/B) 1/0’s.

7 Performance Analysis

We compare the performance of the three page-
usefulness document version management schemes
(namely Reference-Based Scheme, Partially Persistent
List, and Multiversion B-Tree). As baseline cases we
also report the performance of the basic RCS approach
and a “Snapshot” scheme which simply keeps a full
copy of each document version. For each method we
observed the version retrieval cost and the space con-
sumption. The page size is set to 4K bytes.

We first compare the behavior of all schemes under
the same usefulness requirement. For this experiment
we used a document evolution with the following char-
acteristics : 1) the size of each version is approximately
100 pages; 2) each version changes about 20% from the
previous version (half of the changes are insertions and
the other half are deletions); 3) the usefulness parame-
ter is set to 50%; 4) the document evolution had a total

300 . .

. Snapshot —+—
; MVBT, 50% Useful ------
250 i Partially Persistent List, 50% Useful ----- 1
RBVM, 50% Useful -
RCS -

Version Retrieval Cost (pages)

50 I I I I !
20 40 60 80 100

Total number of versions

9000 .

8000 |- Snapshot —— 4
MVBT, 50% Useful ---x---
Partially Persistent List, 50% Useful ---%--
r RBVM, 50% Useful & B

7000

6000

5000

4000

3000

Version file size (pages)

2000

1000 |- X

o € .
20 40 60 80 100
Total number of versions

Figure 8: Version retrieval and storage cost with 50% usefulness requirement.

350

RBVM
300 Partially Persistent List ---x--- B
MVBT -

250 -

150

Version Retrieval Cost (% of answer size)

50 [1

0 L L L L
0 20 40 60 80 100

Usefulness Requirement (%)

900

800 [RBVM
Partially Persistent List ------
MVBT -

700 1
600
500
400 |

300

Storage Cost (% of RCS storage)

200

100

0 20 40 60 80 100
Usefulness Requirement(%)

Figure 9: Version retrieval and storage cost v.s. Usefulness

of 100 versions. Changes are uniformly and randomly
distributed among data pages.

Figure 8 shows the version retrieval cost measured
as the number of page I/O’s needed to reconstruct a
version. The “Snapshot” scheme clearly has the mini-
mal version retrieval cost, since each version is already
stored in its entirety on disk. As expected, all page-
usefulness schemes have version retrieval cost that is
proportional to the size of the reconstructed version.
(In this experiment, the average version size remains
the same —about 100 pages—, so the retrieval cost of
the three page-usefulness schemes and the Snapshot
scheme are approximately parallel to the horizontal
axis). The retrieval overhead against the Snapshot
scheme is because a useful page includes some non-
valid objects. Thus RBVM, MVBT and PPL have to
access more pages than the Snapshot scheme. How-
ever, this overhead is constant. In particular, the
RBVM, in average, has the best retrieval performance
among the three page-usefulness schemes. In addition,
in the RBVM scheme when the usefulness of a segment
falls below the threshold, several new pages are nor-
mally generated. Because of this larger granularity,
the retrieval cost shows more substantial fluctuations
below MVBT and PPL. The MVBT is slightly better
than the PPL because PPL uses some page capacity
to identify the next-page in the list. The RCS strategy
needs to read the whole database prior to the target
version. Therefore, retrieving later versions gets more

expensive than earlier versions.

While the Snapshot provided the minimal retrieval
cost, its storage cost is too expensive (at worst it’s
quadratic). RCS has the minimal storage cost since
it stores only the changes. The space of all page-
usefulness schemes grows linearly with the number of
changes (which increases with the number of versions).
However, each scheme increases at a different rate.
In particular, the partially persistent schemes (PPL,
MVBT) use more space than RBVM. This is because
in the partially persistent schemes copies are triggered
either by insertions or by deletions. In contrast, in the
RBVM scheme, copies are triggered by deletion oper-
ations only, thus resulting in less copying. Moreover,
the MVBT and PPL schemes “reserve” some empty
space in a new page for future insertions. This space
may remain unused, thus increasing the overall storage
cost.

The effect of usefulness. To study the effect of the
usefulness parameter we run the above document evo-
lution using different U,,;,. The experimental results
are illustrated in Figure 9. The performance of the
PPL and MVBT schemes is depicted until Uy, = 50%
since this is the highest usefulness they can achieve. In
contrast, the RBVM scheme can achieve higher useful-
ness. The version retrieval cost is depicted as the per-
centage of the answer size. Clearly, as the usefulness
increases, a given version is stored in smaller number
of pages (since a page can hold more valid records) and

the retrieval cost decreases. Another interesting obser-
vation has to do with the behavior at very small U’s.
Note that the RBVM scheme fills up a new page with
records without reserving space for future insertions in
this page. As a result, the usefulness of a RBVM page
can only decrease due to record deletions. A small U
implies that a page will be considered useful even if it
has very few valid records. For RBVM this means that
many pages may have low usefulness because of dele-
tions. Since these pages are still useful, they are not
copied. Hence, the answer will be clustered in many
RBVM pages, thus increasing the retrieval cost. In
contrast, fewer pages in the PPL and MVBT schemes
will reach small usefulness since new insertions in the
reserved space will increase usefulness.

As expected, when the usefulness increases, the
space of all methods increases, too. Figure 9 depicts
the storage cost as a percentage over the (minimal)
RCS storage.

Setting the usefulness parameter serves as an opti-
mization tool for each of the three schemes in the pres-
ence of limited storage. For instance, if only 200% ex-
tra space is available, the MVBT scheme can guarantee
35% usefulness, PPL 45% usefulness, while the RBVM
75% usefulness. Choosing higher usefulness (RBVM)
is definitely preferable since the retrieval time will be
better.

Increasing and Decreasing Document Sizes. We
further examined evolutions where the document size
consistently increases or decreases. The results of
these experiments also show that the RBVM scheme
performs better than both the MVBT scheme and the
PPL scheme. Experiment results are available at [7].

The page-usefulness schemes provide a more robust
behavior than traditional approaches (e.g. RCS). At
the expense of some (linear) extra space, the version
retrieval cost is proportional to the target version size.
Among them, the RBVM scheme provides the superior
performance that can be easily tuned through the use-
fulness parameter (depending on the characteristics of
the document evolution or users’ access pattern).

8 Conclusions

In this paper we introduced a versioning scheme for
semi-structured document and showed its effectiveness
at both the transport and storage levels. Moreover,
the presented scheme supports retrieval of complete
versions and content-based queries.

References

[1] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Wid-
mayer, “An Asymptotically Optimal Multiversion B-
Tree”, VLDB Journal, Vol.5, No.4, 1996, pp.264-275.

[2] D. Beech, B. Mahbod, “Generalized Version Control
in an Object-Oriented Database”, IEEE Fourth Inter-
national Conference on Data Engineering, Feb. 1988.

[3] F. Warren Burton, John G. Kollias, D. G. Mat-

sakis, V. G. Kollias, Implementation of Overlapping
B-Trees for Time and Space Efficient Representation

[7]

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

20]

[21]

(22]

23]

of Collections of Similar Files, The Computer Journal
33(3): 279-280 (1990).

M.J. Carey, D.J. DeWitt, J.E. Richardson and E.J.
Shekita, Object and File Management in the EXO-
DUS Estensible Database System, In Proc. VLDB
Conference, pp. 91-100, 1986.

S. Chawathe, H. Garcia-Molina, “Representing and
Querying changes in semistructured data”, Proc. of
the International Conference on Data Engineering,
1998, pp. 4-13.

S.-Y. Chien, V.J. Tsotras, and C. Zaniolo, Ver-
ston Management of XML Documents, WebDB 2000
Workshop, Dallas, TX, 2000.

S.-Y. Chien, V.J. Tsotras, and C. Zaniolo, Efficient
Management of Multiversion Documents by Object
Referencing, UCLA Tech.Rep.No 010024, June 2001.
H.-T. Chou, W. Kim, A Unifying Framework for Ver-
sion Control in a CAD Environment, In Proc. of
VLDB Conf., Kyoto, Japan, 1986.

M. C. Easton, Key-Sequence Data Sets on Inedible
Storage, IBM Journal of Research and Development
30(3): 230-241 (1986).

R.H. Katz, E. Change, “Managing Change in
Computer-Aided Design Databases”, Proc. of VLDB
Conf., Brighton, England, Sep. 1987.

D. B. Leblang The CM Challenge: Configuration
Management that Works, Configuration Manage-
ment, ed. by Walter F. Tichy. Published by Wiley
Co. 1994, pp.1-38.

D. Lomet and B. Salzberg, Access Methods for Mul-
tiversion Data, ACM SIGMOD Conference, pp: 315-
324, 1989.

A. Marian, S. Abiteboul, G. Cobena and L. Mignet,
Change-centric management of versions in an XML
warehouse In Proc. of the 27th VLDB, Rome, Italy,
Sep. 2001.

G. Ozsoyoglu and R.T. Snodgrass, Temporal and
Real-Time Databases: a Survey, IEEE Transactions
on Knowledge and Data Engineering, Vol. 7, No.4,
pp. 513-532, 1995.

M.J. Rochkind, The Source Code Control System,
IEEE Transactions on Software Engineering, SE-1, 4,
Dec. 1975, pp. 364-370.

B. Salzberg and V.J. Tsotras, A Comparison of Access
Methods for Time-Evolving Data, ACM Computing
Surveys, Vol. 31, No. 2, pp: 158-221, 1999.

W. F. Tichy, RCS-A System for Version Con-
trol, Software-Practice & Experience 15,7,July 1985,
pp.637-654.

V.J. Tsotras, N. Kangelaris, “The Snapshot Indez, an
I/0-Optimal Access Method for Timeslice Queries”,
Information Systems, An International Journal, Vol.
20, No. 3, 1995.

P.J. Varman and R.M. Verma, An Efficient Multiver-
sion Access Structure, IEEE Trans. on Knowledge and
Data Engineering, Vol.9, No. 3, pp: 391-409, 1997.
World Wide Web Consortium, XML Path Language
(XPath) Version 1.0. Nov. 16, 1999. See http: //www.
w3. org/ TR/ xpath.html

WWW Distributed Authoring and Versioning (web-
dav). See http://www. ietf. org/ html. charters/
webdav-charter. html.

XML Schema, World Wide Web Consortium. See
http://www. w3. org/ XML/ Schema.

K. Zhang, Algorithms For The Constrained Editing

Distance Between Ordered Labeled Trees And Related
f{gblleggg, Pattern Recognition, vol.28, no.3, pp.463-

