Declarative Data Cleaning:
Language, Model, and Algorithms

Helena Galhardas*
INRIA Rocquencourt, France
Helena.Galhardas@inria.fr
Eric Simon
INRIA Rocquencourt, France

Eric.Simon@inria.fr

Abstract

The problem of data cleaning, which consists of remov-
ing inconsistencies and errors from original data sets,
is well known in the area of decision support systems
and data warehouses. This holds regardless of the ap-
plication — relational database joining, web-related,
or scientific. In all cases, existing ETL (Extraction
Transformation Loading) and data cleaning tools for
writing data cleaning programs are insufficient. The
main challenge is the design and implementation of a
data flow graph that effectively and efficiently gener-
ates clean data. Needed improvements to the current
state of the art include (i) a clear separation between
the logical specification of data transformations and
their physical implementation (ii) an explanation of
the reasoning behind cleaning results, (iii) and inter-
active facilities to tune a data cleaning program. This
paper presents a language, an execution model and
algorithms that enable users to express data cleaning
specifications declaratively and perform the cleaning
efficiently. We use as an example a set of bibliographic
references used to construct the Citeseer Web site.
The underlying data integration problem is to derive
structured and clean textual records so that meaning-
ful queries can be performed. Experimental results
report on the assessment of the proposed framework
for data cleaning.

*Founded by “Instituto Superior Técnico” - Technical Uni-
versity of Lisbon and by a JNICT fellowship of Program
PRAXIS XXI (Portugal).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Daniela Florescu
Propel, USA

Daniela.Florescu@propel.com

Dennis Shasha
Courant Institute, NYU, USA

shasha@cs.nyu.edu
Cristian-Augustin Saita
INRIA Rocquencourt, France

Cristian-Augustin.Saita@inria.fr

1 Introduction

The development of Internet services often requires the
integration of heterogeneous sources of data. Often the
sources are unstructured whereas the intended service
requires structured data. The main challenge is to
provide consistent and error-free data (aka clean data).
To illustrate the difficulty of data cleaning for the
Web, we first introduce a concrete running example.
The Citeseer Web site (see [13]) collects all the bibli-
ographic references in Computer Science that appear
in documents (reports, publications, etc) available on
the Web in the form of postscript, or pdf files. Us-
ing these data, Citeseer enables Web clients to browse
through citations in order to find out for instance, how
many times a given paper is referenced. The data used
to construct the Citeseer site is a large set of string
records. The next two records belong to this data set:
[QGMW96] Dallan Quass, Ashish Gupta, Inderphal Singh
Mumick, and Jennifer Widom. Making Views
Self-Maintainable for Data Warehousing. In Proceedings
of the Conference on Parallel and Distributed
Information Systems. Miami Beach, Florida, USA, 1996.

Available via WWW at www-db.stanford.edu as
pub/papers/self-maint.ps.

[12] D. Quass, A. Gupta, I. Mumick, and J. Widom:
Making views self-maintanable for data, PDIS’95

Establishing that these are the same paper is a chal-
lenge. First, there is no universal record key that could
establish their identity. Second, there are several syn-
tactic and formatting differences between the records.
Authors are written in different formats (e.g. “Dallan
Quass” and “D. Quass”), and the name of the con-
ference appears abbreviated (“PDIS”) or in full text
(“Conference on Parallel ...”). Third, data can be in-
consistent, such as years of publication (“1996” and
“1995”). Fourth, data can be erroneous due to mis-
spelling or errors introducing during the automatic
processing of postscript or pdf files, as in the title of
the second record (“maintanable” instead of “main-

tainable”). Finally, records may hold different infor-
mation, e.g., city is missing in the second record.

1.1 Existing technology

The problem of data cleaning is well known [1] for de-
cision support systems and data warehouses. Extrac-
tion, Transformation Loading (ETL) tools and data
reengineering tools provide powerful software plat-
forms to implement a large data transformation chain,
which extracts data flows from arbitrary data sources
and progressively combine these flows through a vari-
ety of data transformation operations until clean and
appropriately formatted data flows are obtained [18].

The main challenge with these tools is the design of
a data flow graph that effectively generates clean data,
and can perform efficiently on large sets of input data.
The difficulty comes from (i) a lack of clear separation
between the logical specification of data transforma-
tions and their physical implementation, and (ii) the
lack of data lineage and user interaction facilities to
tune a data cleaning program.

Consider the problem of removing duplicates from
the set of author names extracted from the sample
Citeseer data set. This problem a priori requires com-
paring all pairs of author names using an approximate
matching function and grouping together all author
names that are most probably denoting the same per-
son (e.g., “Dallan Quass” and “D. Quass”). After that,
each group can be inspected and a representative (e.g.,
“Dallan Quass”) can be chosen.

Some tools (Integrity [21] and Informix Data-
Cleanser DataBlade module [4]) provide an approxi-
mate matching operator. However, this operator is not
logical; it consists of a specific optimized algorithm,
parameterized with some user-provided criteria, that
avoids an exhaustive comparison of all pairs of records.
For instance, only those pairs of authors whose last
name starts with the same letter will be compared if
the user provides a “blocking criteria” based on the
initial of the last name. Sometimes, the algorithm
implemented by the matching operator is well docu-
mented (e.g., multi-pass neighborhood method [11]).
In other cases it is either obscure or confidential. This
is a problem because the choice of the pairs of records
to compare strongly influences the reliability of the re-
sult of the matching operation. For instance, it is im-
portant to know if successful matches have been lost
by the algorithm, when in fact this depends on the
mathematical properties of the approximate matching
function, and the data manipulated. Even if a match-
ing algorithm is documented, this is not satisfactory
because a single non exhaustive matching algorithm
cannot fit all situations.

To understand the second difficulty, it is important
to realize that the more “dirty” the data, the more
difficult it is to automate their cleaning with a fixed
set of transformations. In the Citeseer example, when

the years of publication are different in two records
that apparently refer to the same publication, there is
no obvious criteria to decide which date to use; hence
the user must be explicitly consulted. In existing tools,
there is no specific support for user consultation except
to write the data to a specific file to be later analyzed
by the user. In this case, the integration of that data,
after correction, into the data cleaning program is not
properly handled. Furthermore, the process of data
cleaning is unidirectional in the sense that once the
operators are executed, the only way to analyze what
was done is to inspect log files. This is an impediment
to the stepwise refinement of a data cleaning program.

1.2 Contributions

This paper describes a data cleaning framework that
attempts to separate the logical and physical levels.
The logical level supports the design of the data flow
graph that specifies the data transformations needed
to clean the data, while the physical level supports the
implementation of the data transformations and their
optimization. For instance, at the logical level, the
matching operator specifies the approximate match-
ing functions used to compare two records, while at
the physical level, a specific implementation can be
chosen that avoids, say, the evaluation of all record
combinations without loosing pertinent combinations.
An analogy can be drawn with database application
programming where database queries can be specified
at a logical level and their implementation can be opti-
mized afterwards without changing the queries. More
specifically, this paper presents the following techni-
cal contributions that have been implemented in the
AJAX system [6]:

e A declarative language for data cleaning, based on
five logical data transformation operators. These
operators extend the data transformations ex-
pressible with SQL99 and can be composed to
express all the data transformations from data
cleaning we have found in the research literature.

e The semantics of operators integrates the genera-
tion of exceptions that provides the foundation for
explicit user interaction and the stepwise refine-
ment of data cleaning using a data lineage mech-
anism.

e A notation to specify the properties of approxi-
mate matching functions. These properties enable
the system to select an optimized implementation
for the matching operation.

The paper is organized as follows. Section 2 gives
an overview of our data cleaning framework. Section
3 presents the syntax and semantics of our declara-
tive language for specifying a data cleaning program
at the logical level. The fourth section explains the
implementation of matching operations while Section

5 reports the experiments done using a Citeseer data
set of 500,000 records. Section 6 summarizes other
related work and Section 7 concludes.

2 Framework Overview

The development of a data cleaning program actually
involves two activities. One is the design of the graph
of data transformations that should be applied to the
input dirty data. The focus there is to define “qual-
ity” heuristics that can achieve the best accuracy (i.e.,
level of cleaning quality) of the results. A second ac-
tivity is the design of “performance” heuristics that
can improve the execution speed of data transforma-
tions without sacrificing accuracy. Our data cleaning
framework separates these two activities by providing
a logical level where a graph of data transformations
is specified using a declarative language, and a phys-
ical level where specific optimized algorithms can be
selected to implement the transformations.

2.1 Logical Level

To illustrate our approach, suppose we wish to migrate
the Citeseer data set (which is a set of strings corre-
sponding to textual bibliographic references) into four
sets of structured and clean data, modeled as database
relations: Authors, identified by a key and a name;
FEvents, identified by a key and a name; Publications,
identified by a key, a title, a year, an event key, a
volume, etc; and the correspondence between publica-
tions and authors, Publications-Authors, identified by
a publication key and an author key.

A partial and high-level view of a possible data
cleaning strategy is the following;:

1. Add a key to every input record.

2. Extract from each input record, and output into four
different flows the information relative to: names of
authors, titles of publications, names of events and
the association between titles and authors.

3. Extract from each input record, and output into a pub-
lication data flow the information relative to the vol-
ume, number, country, city, pages, year and url of each
publication. Use auxiliary dictionaries for extracting
city and country from each bibliographic reference.
These dictionaries store the correspondences between
standard city/country names and their synonyms that
can be recognized.

4. Eliminate duplicates from the flows of author names,
titles and events.

5. Aggregate the duplicate-free flow of titles with the flow
of publications.

At the logical level, the main constituent of a data
cleaning program is the specification of a data flow
graph where nodes are data cleaning operations of the
following types: mapping, view, matching, clustering,
and merging, and the input and output data flows of
operators are logically modeled as database relations.

The design of our logical operators was based on the
semantics of SQL primitives that we extended to sup-
port a larger range of data cleaning transformations.
Each operator can make use of externally de-
fined functions or algorithms that implement domain-
specific treatments such as the normalization of
strings, the extraction of substrings from a string,
the computation of the distance between two values,
etc. External functions are written in a 3GL program-
ming language and then registered within the library
of functions and algorithms of the data cleaning tool.
The semantics of each operator includes the auto-
matic generation of a variety of exceptions that mark
tuples which cannot be automatically handled by an
operator. This feature is particularly required when
dealing with large amounts of dirty data as is usually
the case of data cleaning applications. Exceptions may
be generated by the external functions called within
each operator. If external functions are written in
Java, the programmer specifies the generation of ex-
ceptions by using the Java mechanism of exceptions.
For each exception thrown, the data item that gener-
ated it is then stored together with a textual descrip-
tion of the exception. At any stage of execution of a
data cleaning program, a data lineage mechanism en-
ables users to inspect exceptions, analyze their prove-
nance in the data flow graph and interactively correct
the data items that contributed to its generation. Cor-
rected data can then be re-integrated into the data flow
graph. This functionality proved to be essential in our
experiments with Citeseer. Details are given in [8].

Publications

/‘Litla ;Jthors

- /-
% "?

DirtyPubs

DirtyTitles ... DirtyAuthors

Titles ... Authors
. . .,
&KemeyDaa . /, .
. ‘. .
,
A

Cm&s Counlns 1 e L 2
9 a ‘. B
,
. ‘. .
z . /

Logi cal
I evel

DirtyData 7 7777777777
. DirtyTitles ... DirtyAuthors,
PR A
~<—KeyDirtyData ‘7
. Al NL = Nested Loop
==L : NJ = Neighborhood Join
L7 @/ ’ : TC = Transitive Closure
,,,,,,
Physi cal /
I evel DirtyData

Figure 1: Framework for the bibliographic references

Example 2.1: The above data cleaning strategy is
mapped into the data flow graph of Figure 1. The num-
bering beside each data cleaning operation corresponds to
a step in the strategy. For each output data flow of Step
2, the duplicate elimination is mapped into a sequence of
three operations of matching, clustering, and merging. Ev-
ery other step is mapped into a single operator.

2.2 Physical level

At the physical level, certain decisions can be made
to speed up the execution of data cleaning programs.
First, the implementation of the externally defined
functions can be optimized. Second, an efficient al-
gorithm can be selected to implement a logical oper-
ation among a set of alternative algorithms. As sug-
gested earlier, a very sensitive operator to the choice
of execution algorithm is matching. An original con-
tribution of our data cleaning system is to associate
with each optimized matching algorithm, the mathe-
matical properties that the distance function used in
the matching operator must have in order to enable
the optimization, and the parameters that are neces-
sary to run the optimized algorithm. Then, our system
enables the user to specify, within the logical specifi-
cation of a given matching operator, the properties of
the distance function, together with the required pa-
rameters for optimization. The system can consume
this information to choose an algorithm to implement
a matching. The important point here is that users
control the proper usage of optimization algorithms.
They first determine (in the logical specification) the
matching criteria that would provide accurate results,
and then provide the necessary information to enable
optimized executions. Figure 1 shows the algorithms
selected to implement each logical operation.

3 Specification Language

This section gives a presentation by example of the five
logical operators (mapping, view, matching, cluster-
ing, and merging) offered by our declarative language
for expressing data cleaning transformations. A formal
description of our operators and the BNF grammar for
their syntax can be found in [7]. In [7], we also show
how to express data cleaning transformations existing
in commercial systems or introduced in the research
literature as a composition of our operators.

3.1 Mapping Operator

A mapping operator takes a single relation as input
and produces one or more relations. It expresses arbi-
trary one-to-many database mappings. That is, each
tuple from the input relation can generate zero or more
tuples into the output relations, independently or not
from the other tuples of the input relation.

Example 3.1: The following mapping operator trans-
forms each tuple of relation DirtyData{paper} into a tuple
of relation KeyDirtyData{paperkey, paper} by adding a se-
rial number to it. This transformation corresponds to Step
1 of Figure 1.

CREATE MAPPING AddKeytoDirtyData

FROM DirtyData

LET Key = generateKey(DirtyData.paper)

{ SELECT Key.generateKey AS paperKey,
DirtyData.paper AS paper INTO KeyDirtyData }

Example 3.1 illustrates the syntax of a mapping op-
erator. The create clause indicates the name of the
operation. The from clause is a standard SQL from-
clause that specifies the name of the input relation.
Then, the let keyword introduces a let-clause which is
a sequence of assignment statements.

Example 3.2: The mapping command below trans-
forms KeyDirtyData defined above into four target rela-
tions. The schemas of the relations returned by table
functions extractAuthorTitleEvent and extractAuthors are
{authorlist, title, event} and {id, name} respectively. This
operation corresponds to Step 2 in Figure 1.
CREATE MAPPING Extraction
FROM KeyDirtyData kdd
LET AuthorTitleEvent = extractAuthorTitleEvent(kdd.paper),
Authld = SELECT id, name
FROM extractAuthors(AuthorTitleEvent.authorlist)
WHERE length(kdd.paper) > 10
{ SELECT kdd.paperKey AS pubKey, AuthorTitleEvent.title
AS title, kdd.paperKey AS eventKey INTO DirtyTitles }
{ SELECT kdd.paperKey AS eventKey,
AuthorTitleEvent.event AS event INTO DirtyEvents
CONSTRAINT NOT NULL event}
{ SELECT Authld.id AS authorKey,
Authld.name AS name INTO DirtyAuthors
CONSTRAINT NOT NULL name }
{ SELECT Authld.id AS authorKey,
kdd.paperKey AS pubKey INTO DirtyTitlesDirtyAuthors}

In each assignment statement, a relation is as-
signed a functional-expression that involves the invo-
cation of an external function (previously registered
into the library of external functions of the data clean-
ing system). If the functional-expression returns an
atomic value, the assignment is an atomic assign-
ment statement. The let-clause in Example 3.1 con-
tains an atomic assignment statement that assigns
a relation Key using an external (atomic) function
generateKey that takes as argument a variable Dirty-
Data.paper ranging over attribute paper of DirtyData.
If the functional-expression returns a table then the
assignment is a table assignment statement. The let-
clause in Example 3.2 contains two table assignment
statements. In the first one, relation AuthorTitleEvent
is assigned an external function directly, whereas in the
second one relation Authld is assigned an SQL select
from where expression that makes use of a previously
defined relation.

We explain the semantics of an assignment state-
ment using the statement of Example 3.1. For ev-
ery tuple, noted DirtyData(a)!, in DirtyData, if gener-
ateKey(a) does not return an exception value exc, then
atuple Key(a, generateKey(a)) is added to relation Key.
Otherwise, a tuple DirtyData®®“(a) is added to relation
DirtyData®*“. In which case, no tuple will be gener-
ated in relation Key for tuple DirtyData(a). We shall
say that this statement defines a relation Key{paper,
generateKey}2. Note that the input relation of a map-

I'Where a denotes a string representing a paper.

2For convenience, we shall assume that the name of the at-
tribute holding the result of the function is the same as the name
of the function.

ping can also be used as an argument of an external
function in an assignment statement. This means that
the result of the external function for a given tuple of
the input relation may depend on the other tuples of
the relation. This provides a more general usage of ex-
ternal functions than SQL currently does and makes
the mapping operator very expressive. The semantics
of a table assignment statement is similar except that
each tuple from the input relation may generate a set
of tuples into the relation assigned in the statement.

The where keyword introduces a filter expressed
as a conjunctive normal form in a syntax similar to
an SQL where-clause. This filter can reference any at-
tribute from the input relation or the relations defined
by the let-clause. Finally, the schema of the output re-
lations is specified by one or more select into expres-
sions, called output clauses, that specify the schema
of each output relation, and its associated constraints.
For instance, the “{ SELECT Key.generateKey AS ...}”
clause in Example 3.1 indicates that the schema of
KeyDirtyData is built using the attributes of Key and
DirtyData. Output constraints can be of the following
kinds: not null, unique, foreign key and check.
Their syntax is the same as SQL assertions, but their
meaning is different due to the management of excep-
tions when constraints are violated. For instance, in
Example 3.2, if for a given input tuple, one of the out-
put constraints is violated, the execution of the map-
ping does not stop but instead the input tuple is added
to relation KeyDirtyData®*“.

We now explain the semantics of the mapping oper-
ator3. First, the assignment statements that compose
a let-clause are evaluated in their order of appearance
in the let-clause. This completely defines the instances
of the relations assigned in the let-clause. Then, the
filter specified by the where-clause is evaluated to gen-
erate a relation, say U, resulting from the cartesian
product of all the relations defined by the let-clause
followed by the elimination of all the tuples of U that
do not satisfy the filter. Next, relation U is used to
construct the instance of each output relation (by pro-
jecting on its attributes). Finally, for each output re-
lation, the constraints are checked for each tuple.

3.2 View Operator

The view operator merely corresponds to an SQL
query, augmented with some integrity checking over
its result. As such, it can express limited many-to-one
mappings (those expressible in SQL), whereby each tu-
ple in the output relation results from some combina-
tion of tuples taken from the input relations. However,
the difference in semantics with a regular SQL query is
the management of exceptions that can be generated
by the constraints in the output-clause.

Example 3.3: The following example specifies the

3Note that this does not define how a mapping operator is
actually implemented.

view operation that aggregates together the data that re-
sult from the extraction of volume, number, year, etc of
each citation with the corresponding titles and events, free
of duplicates (step 5 in Figure 1).

CREATE VIEW viewPublications

FROM DirtyPubs p, Titles t

WHERE p.pubKey = t.pubKey

{SELECT p.pubkey AS pubKey, t.title AS title, t.eventKey
AS eventKey, p.volume AS volume, p.number AS number,
p.country AS country, p.city AS city, p.pages AS pages,
p.year AS year, p.url AS url INTO Publications

CONSTRAINT NOT NULL title }

3.3 Matching Operator

A matching operator computes an approximate join
between two relations. More specifically, it computes
a distance value for each pair of tuples in the Cartesian
product of the two input relations using an arbitrary
distance function. This operator is fundamental in all
data cleaning. It could be expressed as an SQL query
that includes a call to an external function, and thus
as a view operation. However, as we shall see later, a
matching operation can be implemented by different
kinds of specialized algorithms, but recognizing when
to use such algorithms in the general syntax of an SQL
query would be quite difficult. On the contrary, mak-
ing it a first class operator facilitates its optimization.

Example 3.4 illustrates a matching operation. The
let-clause has the same meaning as in a mapping op-
eration with the additional constraint that it must
define a relation, named distance, within an atomic
assignment statement. Here, distance is defined
using an atomic function editDistanceAuthors com-
puting an integer distance value between two au-
thor names. The let-clause produces a relation dis-
tance{authorKey1, namel, authorKey2, name2, editDis-
tanceAuthors} whose instance has one tuple for ev-
ery possible pair of tuples taken from the instance of
DirtyAuthors. The where-clause filters out the tuples
of distance for which editDistanceAuthors? returned a
value greater than a value computed (by maxDist) as
15% of the maximal length of the names compared.
Finally, the into clause specifies the name of the out-
put relation (here, MatchAuthors) whose schema is the
same as distance.

Example 3.4: This (self-)matching operator takes as
input the relation DirtyAuthors{authorKey, name} twice. Its
intention is to find possible duplicates within DirtyAuthors.

CREATE MATCHING MatchDirtyAuthors

FROM DirtyAuthors al, DirtyAuthors a2

LET distance = editDistanceAuthors(al.name, a2.name)
WHERE distance < maxDist(al.name, a2.name, 15)
INTO MatchAuthors

The only subtlety in the SQL-like syntax of the match-
ing operator is the possible use of the symbol “+” fol-
lowing a relation name in the from clause (it could

4“When E is defined using an atomic function foo, we abu-
sively allow to use expression E as a shorthand of foo

be “al +” in the above example). It indicates that
a relation, called DirtyAuthors™ ™" containing all
the pairs of records of DirtyAuthors that did not match
(i.e., that do not appear in the output relation) will
also be returned by the operator. Exceptions can be
thrown by the evaluation of the external functions in
the let-clause.

3.4 Clustering Operator

A clustering operation takes a single input relation
that defines a set of elements and returns a single
output relation that groups the elements into a set of
clusters. Conceptually, the output relation is a nested
relation wherein each inner relation corresponds to a
cluster. There are two ways of specifying the set of
elements defined by the input relation. First, each tu-
ple of the input relation can define an element. In this
case, each element of a cluster will be identified by its
tuple identifier in the input relation. A typical exam-
ple of a clustering operation in this case is an SQL
group-by query that groups together all the tuples of
a relation that are identical on some attribute values.
However, we allow arbitrary clustering operations that
are more general than the SQL group-by.

As a second possibility, each tuple of the input rela-
tion can define a distance between two elements each
of which being identified by a specific attribute of the
input relation, called key attribute. In this case, the
clustering operation will be applied to the union of all
the elements found in the pairs defined by each tuple
of the input relation. Each element of a cluster is iden-
tified by its corresponding key attribute value in the
input relation. Example 3.5 illustrates the clustering
operation in this case.

Example 3.5: Consider the relation MatchAuthors
generated by the matching operation of Example 3.4. We
specify a clustering operation over MatchAuthors where
each cluster consists of a set of DirtyAuthors tuples that
are sufficiently close to each other (they probably corre-
spond to the same author). The clustering method views
each tuple of MatchAuthors as a binary relationship be-
tween DirtyAuthors tuples, and groups in the same cluster
all tuples that are transitively connected.

CREATE CLUSTERING clusterAuthorsByTranstiveClosure
FROM MatchAuthors

ON authorKeyl, authorKey?2

BY METHOD transitive closure

WITH PARAMETERS authorKeyl, authorKey?2

INTO clusterAuthors

The on clause specifies how the input relation de-
fines the set of elements to be clustered. If this clause
is omitted then each tuple of the input relation defines
an element. Otherwise, the attributes corresponding
to the identifiers of the first and second components
of the pairs of elements defined by the tuples of the
input relation are specified in the clause. The at-
tributes of the input relation used by the clustering
algorithm are specified through a with parameters

clause. Other clustering methods require more pa-
rameters to be passed in the with parameters clause;
for instance, if we use a “nearest-neighbor” clustering
method, an additional parameter is the maximum dis-
tance from the centroid of the cluster. Many clustering
methods exist (see e.g., [14]), each providing certain
properties to the clusters they produce. For instance,
the transitive closure method of Example 3.5 produces
disjoint clusters. Unlike the other operators, the clus-
tering operator does not generate exceptions.

The result of the clustering operation is a relation
that always has one attribute, named cluster_id, plus
additional attributes determined as follows. If each
tuple of the input relation defines a pair of elements
with a distance value, then the output relation has
two additional attributes each of which correspond-
ing to the identifier of an element in the first or sec-
ond component of those pairs. Otherwise, each ele-
ment of a cluster identifies a tuple in the input rela-
tion and there is one additional attribute in the out-
put relation corresponding to a tuple identifier. In our
example, the output of the clustering operation over
MatchAuthors is a relation with three attributes, one
for each of the two DirtyAuthors relations, and one clus-
ter_id attribute. Thus, clusterAuthors has for schema
{cluster_id, authorKeyl, authorKey2}.

Example 3.6: Suppose that we apply the clustering
operation using a transitive closure to the following tuples
of MatchAuthors:

MatchAuthors: 1 | D Quass | 6 | Dallan Quass | 1
1| D Quass | 7| Quass | 1
2| A Gupta|10 | H Gupta | 1

Then, we would have the following tuples in the output re-
lation, say clusterAuthors (not all tuples are listed below):

1] null
6 | null
7 | null
null | 1
null | 6 ...
2 | null
10 | null ...

clusterAuthors: 1

NN FHFHR

3.5 Merging Operator

The merging operation takes a single relation as input
and returns one relation as output. It partitions the
input relation according to some grouping attributes
and collapses each partition into a single tuple using
an arbitrary aggregation function. This operator is not
expressible in SQL99 because it requires the possibility
of having user defined aggregation functions.

Example 3.7: Consider the clusterAuthors relation
obtained in the previous example. Each cluster contains a
set of names. For each cluster, a possible merging strategy
is to generate an output tuple composed of a key value,
e.g., generated using a generateKey function, and a name
obtained by taking the longest author name among all the
author names belonging to the same cluster. Thus, the for-
mat of the output relation of the merging operation would
be a relation, say Authors, of schema {authorKey, name}.

Example 3.8 describes this merging operation. The
using clause is similar to a from clause with the fol-
lowing differences. Until now, a let clause was always
defined wrt the relation(s) indicated in the from. In
the case of merging, the let clause is defined wrt the
grouping attribute(s) of the relation indicated in the
using clause. We are interested to merge each clus-
ter into a single tuple so the clusterAuthors relation
and the cluster_id attribute are specified in the using
clause. Essentially, each assignment statement is eval-
uated by iterating over the clusters of the input rela-
tion (that have been previously grouped by cluster_id).
The let-clause is used to construct the attribute values
that will compose each tuple over the target relation.

Example 3.8:

CREATE MERGING MergeAuthors

USING clusterAuthors(cluster_id) ca

LET name = getLongestAuthorName(DirtyAuthors(ca).name)
key = generateKey()

{ SELECT key AS authorKey, name AS name INTO Authors }

We use a specific notation to ease access to the at-
tribute values of the elements of a cluster, which are
identifiers. Suppose that the identifier’s attributes of
the input relation, say P, are associated with relations
S: and Sy. Let A be an attribute of S;. Then, if p is
a variable ranging over the attribute domain cluster_id
of P, the expression S;(p).A refers to the set of tuples:
{x.A | xis a tuple over S; and the identifier of x belongs
to cluster p}. In the example above, ca is a variable
ranging over the cluster_id attribute of clusterAuthors.
Therefore, expression (DirtyAuthors(ca).name) refers to
the set of author names associated with all the DirtyAu-
thors identifiers of cluster ca. This set is passed to the
function getLongestAuthorName that throws an excep-
tion if there is more than one author name with maxi-
mum length belonging to the same cluster. In general,
the evaluation of the merging operator generates ex-
ceptional tuples whenever exceptions are thrown in the
let-clause or some output constraint is violated.

4 Implementation of Matching

Our data cleaning system takes a specification of a
data cleaning program expressed in the declarative
language and generates a Java program, in which each
operator’s specification is translated into a Java class.
Several important optimization decisions are made
during the code generation. In this section, we focus
on the implementation of matching.

4.1 Optimization problem

A matching operator with an acceptance distance of
€ computes a distance value for every pair of tuples
taken from two input relations, and returns those pairs
of tuples (henceforth, called candidate matches) that
are at a maximum distance of € from each other. In
fact, since the distance function is an approximation
of the actual closeness of two records, a subsequent

step must determine which of the candidate matches
are the correct matches (i.e., the pairs of records that
really correspond to the same individual).

For very large data sets, the dominant factor in the
cost of a matching is the Cartesian product between
the two input relations. There are two main kinds
of optimizations that enable to reduce this cost. The
first one is to pre-select the elements of the Cartesian
product for which the distance function must be com-
puted, using a “distance filter” that allows some false
matches (i.e., pairs of records that are falsely declared
to be within an e distance), but no false dismissals
(i-e., pairs of records falsely declared to be out of an
€ distance). This pre-selection of elements is expected
to be cheap to compute. A second type of optimiza-
tion is to use an approximate method that compares a
limited number of records with a good expected prob-
ability that most candidate matches will be returned.

4.2 Distance-filtering optimization

This type of optimization has been successfully used
for image retrieval [5]. Formally, the result of a match-
ing between two input relations S; and S in which the
distance, dist, between two elements of S; and S, is
required to be less than some ¢, is a set:

{(z,y,dist(z,y)) | ¢ € S1 Ay € Sa Adist(z,y) < e} (1)

The distance filtering optimization requires finding
a mapping f (e.g. get the first five letters of a string)
over sets S; and S, , with a distance function dist’
much cheaper than dist, such that:

Vz,Vy, dist'(f(z), f(y)) < dist(z,y) (2)

Having determined f and dist’, the optimization
consists of computing the set of pairs (z,y) such that
dist'(f (z), f(y)) <€, which is a superset of the desired
result:

Dist_Filter = {(z,y) | z € S1 Ay € Sa Adist' ((f(z), f(y)) < €}
Given this, the set defined by (1) is equivalent to:
{(z,y,dist(x,y)) | (z,y) € Dist_Filter A dist(z,y) <€} (3)

Input:Si, So, dist, €, dist', f

P set of partitions of S1 according to f
P> set of partitions of S» according to f
for each partition p; € P do {
for each partition p2 € P> such
that dist'(f(p1), f(p2)) <€ do {
for each element s1 € p1 do {
for each element sy € py do {
if dist(s1,s2) < € then
Output = Output U (s1,s2) }}}}

Figure 2: Neighborhood Join algorithm

A generic algorithm that implements this optimiza-
tion is shown in Figure 2. This algorithm, called
Neighborhood Join or NJ for short, is effective when

both the number of partitions generated by the map-
ping f, and the number of elements in the partitions
selected by the condition on dist’ wrt €, are much
smaller than the size of the original input data set.

This optimization is illustrated below on a match-
ing operation of the Citeseer data cleaning program
that takes as input the relation DirtyTitles{pubKey, ti-
tle, eventKey} twice, and is specified as shown below
(the line between the %’s is explained later)®. We as-
sume that maxDist is an integer. The editDistanceTitles
function is based on the Damerau-Levenshtein metric
[20] that returns the number of insertions, deletions
and substitutions needed to transform one string into
the other.

Example 4.1:

CREATE MATCHING MatchDirtyTitles

FROM DirtyTitles pl, DirtyTitles p2

LET distance = editDistanceTitles(pl.title, p2.title)

WHERE distance < maxDist

%distance-filtering: map=length; dist=abs %

INTO MatchTitles

The Damerau-Levenshtein edit-distance function
has the property of always returning a distance value
bounded by the difference of lengths [of the strings
compared. Thus, if [exceeds the maximum allowed
distance maxDist, there is no need to compute the edit
distance because the two strings are undoubtedly dis-
similar. This property suggests using as mapping f,
the function computing the length of a string, and as
dist' a function abs such that abs(z,y) = |z — y|.

A key feature of our data cleaning framework is to
enable the specification of the properties of the dis-
tance function that can be used to optimize the ex-
ecution of the matching as annotations in the create
matching clause. The above example shows the anno-
tation (between the %’s) for the distance filtering prop-
erty®. Here, the type of property is specified as well as
the mapping and distance functions, whose code must
be provided to the system. These annotations are used
by the data cleaning system to guide the code gener-
ation for an operation. The next section shows the
effectiveness of this kind of optimization on the Cite-
seer example.

4.3 Approximate methods

A virtue of the distance filtering optimization is that,
as a consequence of Equation (2), it does not allow
false dismissals. The optimization presented here op-
timizes the computation of candidate matches at the
risk of losing candidate matches. A good representa-
tive of this type of method is the multi-pass neighbor-
hood method (MPN) proposed in [11].

The MPN method consists of repeating the two fol-
lowing steps after performing the outer-union of the

5In the Citeseer application, the distance filtering optimiza-
tion was also applicable for matching author and event names.
6This obviously supposes that when the NJ algorithm was
registered within the data cleaning system, the parameters map
and dist required by the algorithm were declared to the system.

input relations: 1) choose a key (consisting of one or
several attributes, or substrings within the attributes)
for each record and sort records accordingly; 2) com-
pare those records that are close to each other within
a fixed, usually small, sized window. The criteria
for comparing records is defined by a distance func-
tion encoded in a proprietary programming language
(for instance, “C”) [12]. Each execution of the two
previous steps (each time with a different key) pro-
duces a set of pairs of matching records (i.e., candidate
matches). Formally, suppose that there are n records
to be matched and the size of the window is p, p < n.
Then (n — p) + 1 windows will be defined over the n
sorted records. Each window, noted W;, contains the
list of records from record i to record i+ p. Thus, for a
single pass, given O; = {(z,y, dist(z,y)) | r € Wi,y €
W, dist(z,y) < €}, the result of MPN is: Ug;p)ﬂ 0;.
When there are several passes, a final transitive clo-
sure is applied to all the pairs of records that have been
returned, yielding a union of all pairs generated by all
independent passes, plus all those pairs that can be
inferred by transitivity of equality (on record ids).
An annotation for MPN within the matching of Ex-
ample 4.1 could be the following: %MPN: key = title;
window size = 100%. Note that only the parameters of
the physical algorithm are specified in the absence of
particular mathematical properties of the algorithm.

5 Experiments

The purpose of our experiments was to assess the pos-
sibility of specifying implementations of matching us-
ing annotations in the logical specification of matching.
We ran our experiments on a single-CPU Pentium III
workstation with a 1686 CPU at 501MHz, cache size
512KB, and 1G bytes of RAM having Linux as its op-
erating system. We used ORACLESi as our database
system and JDK1.3 to execute the Java code.

We compared the performance of three distinct
physical algorithms for the matching operator: nested
loop (NL), that corresponds to the naive semantics
of the matching; multi-pass neighborhood method
(MPN) and neighborhood join (NJ). The last two were
presented in Section 4 and correspond to optimiza-
tions of the first algorithm. All algorithms were im-
plemented in Java’. Since the MPN method computes
an approximation of the candidate matches defined
by a matching operation, we used a measure of qual-
ity, called recall, defined as the number of matches
returned by the algorithm divided by the number of
candidate matches.

We applied these algorithms to the matching of au-
thors, events, and publications for two subsets of dirty

7A fourth physical algorithm where the optimization capa-
bilities of an RDBMS could be used to execute the matching
operation was also considered. It was not taken into account in
the measurements since most RDBMS do not optimize approx-
imate joins.

bibliographic references with respective cardinalities of
100,000 records (15MB), and 500,000 records (86 MB).
The matching of authors (resp. events) computes the
pairs of duplicate author names (resp. event names),
while the matching of publications considers two publi-
cations as duplicates if their titles are close enough and
the corresponding events are equal (this is an extension
of the MatchDirtyTitles matching presented in exam-
ple 4.1). All matching operations used a matching
criteria based on the Damerau-Levenshtein distance.

We compared the results of MPN and NJ. The MPN
method has two parameters: the sort keys and a win-
dow size. The algorithm is executed as many times as
the number of sort keys. The sort keys tested were the
following: sort entries by author name and alphabetic
order from left to right and from right to left, respec-
tively; sorts entries by author name without blank
spaces; and sort entries by author’s last name. We
combined these keys in order to run the algorithm for
1, 2 and 4 passes. The window sizes tested were: 100;
1,000; and 10,000. The NJ used the distance filtering
presented in section 4 that is defined by: map=length;
dist=abs®. By definition, the NJ algorithm has always
a recall of 1.

Table 1 shows the results obtained®. The columns
named MPN refer to the multi-pass neighborhood al-
gorithm and the last column, named NJ refers to the
neighborhood algorithm. Let us pick the fourth line of
the table . The first MPN(a) column contains the min-
imum execution time (T = 4.9) to obtain a recall (R
= 0.806) superior to 0.8. The second MPN(a) column
registers the window size (WS = 100) and the number
of passes (NP = 2) needed to obtain such time and re-
call values. The two MPN(b) columns report the same
measures (T = 745.0, R = 0.987) and parameters (WS
= 10,000; NP = 4) for obtaining a maximum recall
value. The last column represents the execution time
(T = 790.0) of the NJ algorithm (recall = 1).

Comparing the time/recall columns, we conclude
that in general, MPN can be faster but less accurate
than NJ. If execution time is crucial and accuracy can
be neglected to a certain level, MPN is worthwhile;
otherwise NJ is the best choice. The differences ob-
served depend on the domain of data the matching is
applied to. For event names, whose values are strongly
unstructured (even if a normalization against a dic-
tionary has been applied), the NJ algorithm is able
to achieve a recall of 1 much faster than the MPN

8The selectivity of the filter (percentage of comparisons com-
puted) was: 11% for events (filter based on the length of the
event name); 30% for authors (filter based on the length of the
last name and on the length of the entire name without blank
spaces); and 16% for publications (filter based on the length of
the title).

9The execution times obtained for the NL execution (for
100,000 tuples) were 30, 180 and 4 minutes for Authors, Events
and Publications, respectively. The execution times obtained
using the NJ (as shown in table 1) for the same subsets of data
correspond to gains of 33%, 72%, and 68% respectively.

method; this difference is less remarkable for author
names. Thus, the results of this experiment confirm
the usefulness of providing more than one physical im-
plementation for the same matching operator.

6 Other Related Work

Related work falls into three main categories: high
level languages to express data transformations, data
cleaning frameworks, and algorithms to support
matching, clustering and merging operations.

Several languages have been recently proposed to
express data transformations: SQL99 [10], WHIRL’s
SQL [2], and SchemaSQL [15]. Our language supports
operations such as clustering and merging that are not
expressible in SQL99. Furthermore, in SQL the occur-
rence of an exception immediately stops the execution
of a query. In contrast, our semantics enables to com-
pute the entire set of tuples that caused the occurrence
of exceptions. Last, unlike SQL, our language enables
the optimization of a matching operation by making
it a first-citizen operator in the language. WHIRL’s
SQL extends SQL queries with a special join operator
that uses a similarity comparison function based on the
vector-space model commonly adopted in statistical
information retrieval. This join operator is a special
case of our matching operator. Furthermore, WHIRL
does not support clustering and merging operations.
SchemaSQL is a powerful extension of SQL that in-
cludes operations to restructure a relational schema.
This language is useful to perform integration queries
in relational multi-database systems. It is complemen-
tary to our language in the sense that we do not al-
low schema restructuring operations involving meta-
data whereas SchemaSQL does not allow neither arbi-
trary clustering and merging operations nor optimized
matching.

Several frameworks have been proposed for data
integration and cleaning. We already compared our
work to commercial ETL and data cleaning tools. Re-
search prototypes include IntelliClean [16] and Potter’s
Wheel-ABC [19]. Lee et al [16] propose a rule-based
approach to express matching, clustering and merging
operations, which is implemented using the Java Ex-
pert System Shell. However, their framework provides
a fixed matching algorithm (the MPN method) and
the approach does not clearly scale up for very large
data sets due to the use of an expert system shell.
Like us, Potter’s Wheel promotes an interactive ap-
proach whereby users are able to apply a set of simple
transformations to modify samples of data and see the
results interactively. However, unlike us, their focus is
on interleaving data transformation and discrepancy
detection to facilitate the refinement of data transfor-
mations. Their techniques for automatic discrepancy
detection that run as a background process behind the
data transformation could be applied to our context.
The transforms supplied by Potter’s Wheel fall into
two categories: one-to-one and many-to-many map-

Dirty tuples | Matching || MPN(a):T/R | MPN(a):WS/NP || MPN(b):T/R | MPN(b):WS/NP || NJ:T/R
100,000 Authors 0.4/0.915 100/1 58.95/0.998 10,000/2 25.8
100,000 Events 6.9/0.846 100/2 398.1/0.999 10,000/2 66.0
100,000 Publications 0.17/0.887 100/1 6.27/0.999 10,000/2 1.7
500,000 Authors 4.9/0.806 100/2 745.0/0.987 10,000/4 790.0
500,000 Events 454.5/0.862 1,000/2 3607.0/0.975 10,000/2 2555.0
500,000 Publications 0.73/0.861 100/1 77.0/0.996 10,000/2 63.0

Table 1: Implementation of the matching using MPN and NJ. T/R is the execution time/recall ratio. WS is the window

size, and NP is the number of passes for the MPN method.

pings of rows. The first set of transforms correspond
to dispatchers according to the classification presented
in [3] so they can be expressed as mapping operators
by our framework, as we detail in [7]. The second
set of transforms encloses the fold and unfold trans-
forms. If these operations manipulate only values of
columns, they correspond to our mapping and merg-
ing operators. However, if as in SchemaSQL, they
exchange data values with metadata values (column
names), they are not expressible in our framework.

Finally, several algorithms have been proposed to
implement matching, clustering, and merging opera-
tions. The MPN algorithm [11] described earlier has
been further optimized in [17] using a tighter integra-
tion of the matching and clustering phases. [9] pro-
poses an approximate string join algorithm using the
distance filtering optimization we presented in Section
4, and implemented on top of an RDBMS.

7 Conclusions

We presented a data cleaning framework whose main
originality is a separation in two clear layers: logical
and physical. The main features of the framework de-
scribed in this paper are: (i) a declarative language
to specify the flow of logical transformations; (i) a
declarative specification of user interaction based on
the automatic generation of exceptions during opera-
tor’s execution, and (%) a declarative way to select an
optimized implementation for the matching operator.
Our experiments showed that the separation between
the logical specification of a matching and its imple-
mentation gives the proper control to the user of the
tradeoff that arises between performance and recall.

Acknowledgments

The authors would like to thank Judy Cushing and
Toana Manolescu for having reviewed a previous ver-
sion of this paper.

References

[1] S. Chaudhuri and U. Dayal. An Overview of Data Ware-
housing and OLAP Technology. SIGMOD Record, March
1997.

[2] W. Cohen. Integration of Heterogeneous Databases with-
out Common Domains Using Queries based on Textual
Similarity. In Proc. of ACM SIGMOD, 1998.

[3] Y. Cui and J. Widom. Lineage Tracing for General Data
Warehouse Transformations. In Proc. of VLDB, 2001.

(4]
(5]

(10]
(11]

(12]

(13]
(14]

(15]

[16]

EDD. Home page of DataCleanser DataBlade Module.
http://www.npsa.com/edd/.

C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equit. Efficient and ef-
fective querying by image content. JIIS, 3(3/4), 1994.

H. Galhardas, D. Florescu, D. Shasha, and E. Simon.
AJAX: An Extensible Data Cleaning Tool. In SIGMOD
(demonstration paper), 2000.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-
A. Saita. Declarative Data Cleaning: Language, Model,
and Algorithms. Extended version of the VLDB’01 paper,
2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita. Improving data cleaning quality using a data lineage
facility. In Workshop on Design and Management of Data
Warehouses (DMDW), Interlaken, Switzerland, June 2001.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, and D. Srivastava. Approximate String
Joins in a Database (Almost) for Free. In Proc. of VLDB,
Rome, September 2001.

P. Gulutzan and T. Pelzer. SQL-99 Complete, Really. R&D
Books, 1999.

M. A. Hernandez and S. J. Stolfo. The Merge/Purge prob-
lem for large databases. In Proc. of ACM SIGMOD, 1995.

M. A. Hernandez and S. J. Stolfo. Real-world data is dirty:
Data Cleansing and the Merge/Purge problem. Journal of
Data Mining and Knowledge Discovery, 2(1):9-37, 1998.

N. R. Institute. Research (CiteSeer).
http://citeseer.nj.nec.com/.

A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall Advanced Reference Series, 1988.

L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian.
SchemaSQL - A Language for Interoperability in Relational
Multi-database Systems. In Proc. of VLDB, Mumbai, 1999.

M. L. Lee, T. W. Ling, and W. L. Low. A Knowledge-
Based Framework for Intelligent Data Cleaning. Informa-
tion Systems Journal - Special Issue on Data Extraction
and Cleaning, 2001.

A. Monge. Matching Algorithms within a Duplicate De-
tection System. IEFEE Data Engineering Bulletin, 23(4),
December 2000.

E. Rahm and H. H. Do. Data Cleaning: Problems and Cur-
rent Approaches. IEEE Data Engineering Bulletin, 23(3),
September 2000.

V. Raman and J. M. Hellerstein. Potter’s Wheel: An In-

teractive Data Cleaning System. In Proc. of VLDB, Rome,
2001.

T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. Journal of Molecular Theory,
147:195-197, 1981.

Vality. Home page of the Integrity
http://www.vality.com/html/prod-int.html.

Index

tool.

