The MV3R-Tree: A Spatio-Temporal Access Method for
Timestamp and Interval Queries

Yufei Tao
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
http://www.cs.ust.hk/~taoyf

Abstract

Among the various types of spatio-temporal
queries, the most common ones involve window
queries in time. In particular, timestamp (or
timeslice) queries retrieve all the objects that
intersect a window at a specific timestamp.
Interval queries include multiple consecutive
timestamps. Although several indexes have been
developed for either type, currently there does
not exist a structure that can efficiently process
both query types. This is a significant problem
due to the fundamental importance of these
queries in any spatio-temporal system that deals
with historical information retrieval. Our paper
addresses the problem by proposing the MV3R-
tree, a structure that utilizes the concepts of
multi-version B-trees and 3D R-trees. Extensive
experimentation proves that MV3R-trees
compare favorably with specialized structures
aimed at timestamp and interval window queries,
both in terms of time and space requirements.

1. Introduction

It is estimated that there will be more than 500 million
mobile phone users by year 2002, and the figure is
expected to surge to over 1 billion by year 2004. Spatio- -
temporal database management systems (STDBMS) will
play a crucial role in tracking users efficiently and
providing better communication services. STDBMS are
also important for traffic supervision systems, which
monitor vehicle locations and motion patterns in order to
provide services such as congestion prevention, route
direction, speed limitation and so on. Urban planning is

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To copy otherwise,
or to republish, requires a fee and/or special permission from the
Endowment.

Proceedings of the 27th VLDB Conference,

Roma, Italy, 2001

Dimitris Papadias
Department of Computer Science
Hong Kong University of Science and Technology
Clear Water Bay, Hong Kong
http://www.cs.ust.hk/~dimitris

another domain where, rather than moving, objects (e.g.,
buildings) appear or disappear at certain time points.
Related systems record the development of landscapes
over the years, which makes it possible to retrieve urban
situations at any given time in the past.

The above are only a few of the numerous applications
in which STDBMS are essential. Traditional spatial
database systems, however, focus on static objects.
Supporting objects with dynamic behavior demands new
querying languages, modelling methods, novel attribute
representations [FGN'00], and, very importantly,
specialized access methods [TSP'98]. Examples of such
methods include the STR-trees and TB-trees [PJT00],
which are aimed at efficient trajectory retrieval, and the
TPR-trees [SJL'00] that focus on predicting objects’
future locations by storing their current positions and
velocities. The same problem was also addressed in
[KGT99].

In this work we deal with retrieval of historical
information, where the most common type of query
processing involves window queries about objects that
move (appear, disappear, change), usually in discrete
time. Timeslice or timestamp queries retrieve all objects
that intersect a window at a specific timestamp. Interval
queries include several consecutive timestamps. Various
indices have been proposed to support either type of
queries. MR-trees [XHL90] and HR-trees [NS98]
maintain a separate R-tree for each timestamp, but allow
consecutive trees to share branches. The structures are
very efficient for timestamp queries, as search degenerates
into a static spatial window query for which R-trees are
very efficient. Their disadvantage is extensive duplication
of objects (even if they do not move) which leads to huge
space requirements for most typical applications. As a
side effect of this fact, their performance on interval
queries is very poor.

Another technique is based on 3-dimensional R-trees
where the third dimension corresponds to time. An object
which does not change its position during a certain period
of time is modelled as a 3D box, bounding both its spatial
and temporal attributes. A moving object can be modelled
by multiple boxes, each corresponding to a different
version. The strength of 3D R-trees is that the temporal

attribute is integrated tightly with the spatial attributes, so
that interval queries can be answered efficiently. Another
advantage is its economical space usage as redundant
duplication is avoided. The most serious problem of this
structure is its poor performance on timestamp queries.
The query time no longer depends on the live entries at
the query timestamp, but on the total number of entries in
history.

In this paper, we attempt to overcome the
shortcomings and combine the advantages of previous
structures by proposing the MV3R-tree, an access method
for retrieving the past locations of discretely moving
objects. An MV3R-tree involves a multi-version R-tree
(MVR-tree) and a small auxiliary 3D R-tree built on the
leaves of the MVR-tree (i.e., not on the actual objects).
MVR-trees involve several heuristics that take into
account the features of R-trees to improve performance
significantly. The space consumption of an MV3R-tree is
up to an order of magnitude smaller than that of an HR-
tree, while maintaining comparable timestamp query
performance. Furthermore, the auxiliary 3D R-trees
outperform traditional 3D R-trees for most queries. Our
method constitutes a general approach for enhancing the
performance of multi-version framework for multi-
dimensional access methods.

The rest of the paper is organized as follows. Section 2
surveys the access methods directly related to our work,
discusses their advantages, and analyses their problems.
Section 3 presents MV3R-trees and the corresponding
insertion, deletion and query processing algorithms.
Section 4 contains an extensive experimental evaluation,
while section 5 summarizes the contributions and
provides directions for future work.

2. Related work

Since MVB-trees provide the initial motivation for the
multi-version framework, section 2 starts with an
overview of this structure. Next we describe HR-trees and
3D R-trees.

2.1 Multi-version B-trees

Multi-version B-trees (MVB-trees) [BGO'96] are
extensions of B-trees that index the evolution of one-
dimensional data in transaction time temporal databases
[ST97], where insertions and deletions can only happen at
the current time. Figure 2.1 illustrates a simple example.
Each entry has the form <key, tyu tens, pointer>. For leaf
entries, the pointer points to the actual record with the
corresponding key value, while, for intermediate entries,
the pointer points to a next level node. The temporal
attributes t,,,, and ¢,,; denote the time that the record was
inserted and deleted in the database respectively. An entry
is said to be alive at a timestamp ¢ if #,,,,< t <t.,q, and dead
otherwise (notice that the lifespan of an entry does not

include ¢,,,). The value of ¢,,, for currently live entries is
“#”° which denotes the special reserved word
“NOWTIME”. If a new entry is inserted at timestamp ¢,
tsare 18 Set to ¢ and 7,4 to *. On the other hand, if an entry
is deleted, ¢, is changed (from *) to ¢. Deletions are
logical; the actual records are not physically removed
from the database.

Root A B C
<5,1,% A> <5,1,%> <43, 1, %> <72, 1,%>
<43,1,* B> <8, 1,*> <48, 1, *> <78, 1, *>
<72,1,%*% C> <13, 1, *> <52,1,2> <83, 1, *>
<25,1,3> <59,1,3> <9s5,1,3>
<27,1,3> <68, 1, 3> <99, 1, *>
<39,1,3> <102, 1, *>

Figure 2.1: Example of MVB-tree

There can be multiple roots in an MVB-tree, and each
root has a jurisdiction interval, which is the minimum
bounding lifespan of all the entries in the root. Processing
of timestamp (interval) queries starts by retrieving the
corresponding root(s) whose jurisdiction interval(s)
contains the queried timestamp(s). Then search is guided
by key, ty., and t,,,. For each timestamp ¢ and each node
except the roots, it is required that either none, or at least
b-P,, o, entries are alive at ¢, where P,..,, 1S a tree
parameter and b the node capacity (for the following
examples P, .,=1/3 and b=6). This weak version
condition ensures that entries alive at the same timestamps
are mostly grouped together in order to facilitate
timestamp queries. Violations of this condition generate
weak version underflows, which occur as a result of
deletions at the current time.

Insertions and deletions are carried out in a way
similar to B-trees except that overflows and underflows
are handled differently. Block overflow occurs when an
entry is inserted into a full node, in which case a version
split is performed. To be specific, all the live entries of the
node are copied to a new node, with their ¢, modified to
the current time. The value of ¢,,; of these entries in the
original node is changed from * to the current time (in
practice this step can be avoided since the deletion time is
implied by the entry in the parent node). In Figure 2.2, the
insertion of <28,4,*> at timestamp 4 (in the tree of Figure
2.1) causes node A to overflow. A new node D is created
to store the live entries of A, and A “dies” (notice that all
* are replaced by 4) meaning that it will not be modified

in the future.
Root A B C D

<5,1,4, A> <5,1,4> <43, 1, *> <72,1,%*> <5, 4, *>
<43,1,*,B> <8,1,4> <48, 1, *> <78, 1, *> <8, 4, *>
<72, 1,*,C> <13, 1, 4> <52,1,2> <83, 1, *> <13, 4, *>
<5,4,* D> <25,1,3> <59, 1, 3> <95, 1, 3> <28, 4, *>
<27,1,3> <68, 1, 3> <99, 1, *>
<39, 1, 3> <102, 1, *>

Figure 2.2: Example of block overflow and version split

Notice that, version splits create data redundancy for
those entries duplicated (i.e., entries with keys 5, 8, and
13 in node D), as they should be ideally represented with
one record (since they did not incur an update). Such

redundancy harms interval query performance as both the
original and duplicated versions may need to be retrieved.

In some cases, the new node may be almost full so that
a small number of insertions would cause it to overflow
again. On the other hand, if it contains too few entries, a
small number of deletions will cause it to underflow. To
avoid these problems, it is required that the number of
entries in the new node must be in the range [b-Pi,,,
b-Py,,] (for the following examples, P;,,=1/3, P,,,=5/6). A
strong version overflow (underflow) occurs when the
number of entries exceeds b-Py,, (becomes lower than
b-Py,,). A strong version overflow is handled by a key
split, a version-independent split according to the key
values of the entries in the block. Notice that the strong
version condition is only checked after a version split, i.e.,
it is possible that the live entries of a node are above b-Py,,
before the node block-overflows.

Strong version underflow is similar to weak version
underflow, the only difference being that the former
happens after a version split, while the latter occurs when
the weak version condition is violated. In both cases a
merge is attempted with the copy of a sibling node using
only its live entries. If the merged node strong version
overflows, a key split is performed. Assume that at
timestamp 4 we want to delete entry <48,1,*> from the
tree in Figure 2.1. Node B weak version-underflows since
it contains only one live entry <43,1,*>. A sibling, let
node C, is chosen and its live entries are copied to a new
node, let C'. The insertion of <43,4,*> into C' causes
strong version overflow, leading to a key split and finally
nodes D and E are created (Figure 2.3).

A B

C
<5,1,%*> <43, 1, 4> <72,1,4>
<8, 1,*> <48, 1,4> <78, 1, 4>

Root <13, 1, *> <52,1,2> <83, 1, 4>
5.1 A> <25,1,3> <59, 1,3> <95,1, 3>
<43, 1.4 B> <27,1,3> <68, 1, 3> <99, 1, 4>
T2 14Co <39,1,3> <102, 1, 4>
<43, 4,* D> D E

*
<83, 4, * E> 43,4 %> 83,4 %>
<72, 4, *> <994, *>
<78, 4, *> <102, 4, *>

Figure 2.3: Example of weak version underflow

As shown in [BGO'96], MVB-trees require O(N/b)
space, where N is the number of updates ever made to the
database and b is the block capacity. Answering a
timestamp range query requires O(log,M+r/b) 1/O’s,
where M is the number of live objects at the queried
timestamp, and r is the number of output objects. Both the
space requirements and query performance are
asymptotically optimal. A variation of MVB-trees which
reduces the tree sizes by a constant factor can be found in
[VV97]. Recently, the multi-version technique, has been
applied to R-trees, to produce the BTR-tree [KTF98], a
bitemporal access method, and the PPR-tree [KGT'01] for
indexing multimedia objects that move continuously.

2.2 Historical R-trees

Historical R-trees (HR-trees) [NS98] are based on the
overlapping technique [BKK90], another framework for
transforming a single version data structure into a
transaction time access method. The structure maintains
an R-tree for each timestamp, but common branches of
consecutive trees are stored only once in order to save
space. Figure 2.4 illustrates part of an HR-tree for
timestamps 0 and 1. At timestamp 1, object e changes its
position, so its old version e, should be deleted from the
tree for timestamp 1, while its new version e; will be
inserted. This causes the creation of two leaf nodes: D,
which contains the entries of Dy plus e;, and E;, which
contains the entries of E, after the deletion of e,. The
change(s) are propagated to the root (causing the creation
of By and C)) so even if only one object changes its
position, the entire path may need to be duplicated. Trees
of previous timestamps are never modified. Notice that
node A, is shared by both trees, indicating that no object
in its subtree issued any change at timestamp 1.

timestamp 0 timestamp 1
R, [T 1%
LTI T [0 [T 1]
A 0) B 1
[3]bo [1 [coldo Teo] [ag]b0 [&i] [coldo T 1]
DO E0 D1 E1

Figure 2.4: Example of an HR-tree

A timestamp query is directed to the corresponding R-
tree and search is performed inside this tree only. Thus,
the query degenerates into an ordinary window query and
is handled very efficiently. An interval query should
search the corresponding trees of all the timestamps
involved. A query processing algorithm that uses
“negative pointers” to avoid multiple visits to the same
node via different parents was proposed in [TPO1].

2.3 3D R-trees

The idea behind 3D R-trees is to view time as just
another dimension and integrate it in the tree construction
along with the other dimensions. The movements of 2D
objects can be modelled as distinct boxes in three-
dimensional space. The temporal projection denotes the
period when the corresponding object remains static,
while the spatial projections of the box correspond to the
object’s position and extents during the period. Whenever
an object moves to another position, a new box is created
to represent its new static period, position, and extents.
Similarly, an interval query is also modelled as a box
enclosing the spatial query window and query interval.

3D R-trees do not include a mechanism, such as the
weak version condition in MVB-trees, to ensure that each
node has a minimum number of live entries at a given
timestamp. This affects performance of timestamp and
short-interval queries, especially if dead space is taken

into account. Consider, for instance, the timestamp query
in Figure 2.5. Since there is only one live entry at query
timestamp ¢, the node has a lot of dead space with respect
to ¢, meaning that there is a high chance that the query
window intersects the bounding box but no object inside
it. This problem is especially serious when there are many
objects with long lifespans, as these objects will force the
nodes that contain them to have long lifespans as well,
leading to considerable mutual overlaps [KS91].

time

il
\
)

=2

[/

—7

timestamp query y
X

Figure 2.5: A timestamp query in 3D R-trees

Another reason for poor timestamp and short-interval
query performance is due to the fact that, since there is a
single tree for the whole history, the cost depends on the
total number of records, rather than on the number of
records alive at the queried timestamps, as in MVB- and
HR-trees. On the other hand, long interval queries are
efficient because: (i) there is no redundancy; (ii) R-trees,
in general, optimize queries with similar extents along all
dimensions (e.g., quadratic queries in 2D).

It is evident from the above discussion, that currently
there does not exist a structure that can effectively handle
both timestamp and interval queries. Towards this goal, in
the next section, we propose the MV3R-tree, a structure
originally motivated by MVB-trees, but with several
heuristics to improve the overall performance
significantly.

3. MV3R-Trees

A simple idea to deal with both timestamp and interval
queries is to maintain two independent structures, an HR-
tree and a 3D R-tree, and use the most appropriate one in
each case. This, however, would require huge space (for
the HR-tree). In addition, although this approach can deal
effectively with timestamp and long interval queries, it is
rather inefficient for short intervals, because neither 3D
R-trees nor HR-trees can handle such intervals well.
Multi-version 3D R-trees (MV3R-trees) overcome these
problems by combining two structures: a multi-version R-
tree (MVR-tree) and a small auxiliary 3D R-tree built on
the leaf nodes of the MVR-tree. Figure 3.1 illustrates the
general structure of the MV3R-tree.

MVR-tree

3D R-tree

Figure 3.1: Overview of an MV3R-tree

As with MVB-trees, an MVR-tree can contain
multiple R-trees, which we refer to as “logical trees”.
Each entry has the form <S, ty,s, fens, pointer>. S denotes
the spatial minimum bounding rectangle (MBR) as
defined in R-trees. The meanings of the other attributes
are the same as in MVB-trees. MVR-trees inherit the
concept of weak version condition from MVB-trees to
guarantee that the number of live entries during a
timestamp are either 0, or at least b-P,.,gion-

A small MVR-tree with height 2 is shown in Figure
3.2 (b=3, Pyersion=1/3). Object boxes (A to G) are sketched
with thin lines, and leaf nodes (H, I, and J) with bold
lines. K represents the root of the tree. Unbounded boxes
(C, 1, and K) are alive until the current timestamp. Objects
are inserted in alphabetic order. At timestamp ¢, while
objects A and B have already been deleted (C is alive), the
insertion of D causes node H to overflow. A new node I is
created to store a version duplicate of C, and D (notice
that I and H store temporally adjacent parts of box C). The
subsequent insertion of E and F will cause an overflow at
node I which is handled by a key split that creates node J.
Figure 3.2 shows the final situation after the insertion of
G, and the deletion of D, E, G, F at subsequent
timestamps.

time |

=554

version copy|of C

B,
7=
7aon

H K

Yy 7

Figure 3.2: 3D visualization of a logical tree

Our implementation of MVR-trees involves several
heuristics to reduce the structure size and improve query
performance. Furthermore, these heuristics are applicable
to other multi-dimensional access methods when they are
converted to corresponding multi-version structures.

3.1 Insertion and overflow handling in MVR-trees

MVR-trees involve distinct insertion policies for leaf
and intermediate nodes. The main difference is that for
leaf nodes, we will try to avert version splits, which cause
redundancy, as much as possible provided that the
timestamp query performance is mnot compromised
significantly. Since leaf nodes account for a large
proportion of the structure’s total size, avoiding
redundancy will lead to significant reduction in the total
space. Furthermore, a small number of leaf nodes will
facilitate interval query processing using the auxiliary 3D
R-tree. For intermediate nodes, more redundancy is
permitted in order to maintain good performance for
timestamp and short-interval queries.

Figure 3.3 illustrates the process of insertion for
intermediate nodes. The R*-tree [BKS 90] choose subtree
function determines the node, let A, where the new entry
is inserted. In case that the node is full, a version split
occurs and all the live entries are copied to a new node A',
with their #,,, modified to the insertion time. The new
entry is inserted into A'. If the total number of (live)
entries in A' is above b-Py,,, a strong version overflow
occurs which triggers a key split. The general process is
similar to MVB-trees except that we do not consider at all
strong version underflows (thus, there is no parameter Py,
in MVR-trees). The reason for this choice is two-fold: (i)
underflows in MVR-trees happen much less frequently
than overflows; (ii) we will handle underflows by entry
re-insertion, which may trigger block overflows in several
other nodes. In the sequel, we abbreviate weak version
underflows as underflows without causing any ambiguity.

Insertion Block Version Strong Key
i Version j
Overflow Split T Split

Figure 3.3: Insertion in intermediate nodes

Another difference from MVB-trees is that key and
version splits need to take into account the spatial extents
of the nodes. For key split we apply the R*-tree split
function to minimize the overlap area of the two new
nodes. For version splits we may need to tighten the
MBRs of the new entries. This is illustrated in Figure 3.4.
Assume that at timestamp 10, node A is version split,
generating node B. Let B, be the entry duplicated from
Ay; then Aj, B, point to the same node C. Since only two
entries (Cs and Cq4) in node C are alive at timestamp 10
and bounded by B;, the MBR of B; is probably much
smaller than that of A;. Meanwhile, since the lifespan of
A; does not include timestamp 10, its MBR does not

cover Cg, and may be tightened.

C

<Cl, 1,3>
<C2,1,3>
<C3,2,8>
<C4,2,8>
<C5, 5, %>
<C6, 10, *>

Figure 3.4: Tightening of MBRs

Insertion in leaf nodes, shown in Figure 3.5, is more
complicated. The node is again selected by choose
subtree, but block overflows are handled differently. In
order to avoid version splits, we try the following
alternatives (in this order): (i) general key split, (ii)
insertion after reinserting one of the existing entries of the
node, and (iii) insertion of the object in another node.
Only if these alternatives fail, a version split occurs. In the
sequel we describe each of the three techniques in detail.

General key split is motivated by the fact that, in some
cases a node to be version split can instead be key split
without violating the weak version condition (recall that a
key split does not generate redundancy). Consider, for
example, the full node of Figure 3.6 (b=10, P,¢i0n=1/3).

A B

<Al1,1,10,C> <B1,10,*,C>

If a new entry is to be inserted, the entries can be
distributed to two nodes so that for each timestamp in the
range [1,*) there exist at least b-P,,,;,, entries alive. Thus,
version split, which will generate version redundancy for
entries S; to Sy, can be avoided. In many cases, however,
it may be difficult, or impossible, to achieve such a
partitioning of the entries. Furthermore, the two new
nodes should have small overlap. The difference between
general and ordinary key split is that the second one is
applied when all the entries in the node to be split are
alive and their #,,,, equals the current time (which is the
case after strong version overflows). Thus, the weak
version condition can always be satisfied. Figure 3.7
shows the algorithm for general key split.
1. General Key Split

2. Insert in node after
Insertion Block reinserting one of its entries
Overflow 3. Insert in another node

4. Version Split

Strong
Version
Overflow

Figure 3.5: Insertion in leaf nodes

— Key Split

<SI,1,2> <S7,1,%*>
<S2,1,2> <S8, 1,%*>
<S3,1,%> <S9,2, *>
<S4, 1,%> <S810,2, *>
<ss, 1,
1

*>

<6, 1,
Figure 3.6: A node that can be general key split

Algorithm General Key Split(this_node)
Choose split axis Agyjie
sort all the entries according to their starting points on Ay
for(k=0to b+ 1—2b-Pyesion)

Distribute the first & + b-P,,,, entries into the first

group and the rest into the second group

if both groups satisfy the version condition

Overlap = overlap area of the two groups

if Overlap < min_Overlap

min_Overlap=Overlap; record the distribution
sort all the entries according to their ending points on Ay
and goto line 3
10. return distribution with min_Overlap provided that
min_Overlap<0.5-area of the original node’s MBR
Figure 3.7: The general key split algorithm

PR

VXA

If general key split fails, we try to reinsert an existing
entry of the node, in order to make room for the new
entry. This breaks the convention in multi-version
structures (such as MVB-, BTR-, PPR-trees, etc.) that
dead nodes cannot be modified. In MVR-trees, any leaf
node can store a re-inserted entry provided that it satisfies
the following conditions: (i) its lifespan must cover that of
the entry; (ii) it should be dead if the entry is dead (we
want to preserve live nodes for future insertions); (iii) its
area should not be enlarged much, in order to ensure good
performance for timestamp queries. In practice, only dead
nodes with lifespans in the near past are modified.

The algorithm choose subtree to reinsert, shown in
Figure 3.8, tries to find such a node that satisfies the

Algorithm Choose_Subtree to Reinsert
(this_node, entry to_reinsert)
1. if this_node.level=0 (i.e., a leaf)
2. if this_node is not full return this_node
/* entry_to_reinsert will be inserted into this node */
else return failure
list={all entries in this_node}
if this_node level=1 and entry_to_reinsert is dead
list=list-{live entries}
list=list-{entries whose lifespans do not cover that of
entry to_reinsert}
8. list=list-{entries with area enlargements greater than the
threshold}
9. sort list in ascending order of the area enlargement incurred
by the reinsertion
10. list=list-{entries with area enlargement above the specified
percentage w.r.t. the best entry}
11. for each entry e in /ist Choose Subtree to_Reinsert (e,
entry_to_reinsert); return success if a leaf node is found
12. return failure after all the entries in /ist have been searched
Figure 3.8: Choose subtree to reinsert

NonkAEW

Algorithm Reinsert

1. Retrieve all entries that can be reinserted without violating
the version condition (note: taking the new entry into
account) into set Sy,

2. Sort entries in Sy, according to the benefits generated by
their reinsertion

3. while (S, is not empty)

4. entry_to_reinsert = the first entry in S,

5. remove entry_to_reinsert from Sy,

6. Choose_Subtree to_Reinsert(root,
entry_to_reinsert)

7. if successful re-insertion then return success

8. return failure
Figure 3.9: Reinsert algorithm

above conditions. The thresholds for area enlargement
(line 8) are set to 1%, 0.1%, and 0% for nodes of level 0,
1 and higher. For instance, an entry can be re-inserted in a
leaf node only if the enlargement is less than 1% of the
original node area. Above level 1 the re-insertion should
not cause any area enlargement. Furthermore (line 10), the
area enlargement should not be worse than that of the best
entry by a percentage (we use the same thresholds).

The re-insertion algorithm is presented in Figure 3.9.
We first retrieve the set of entries that can be reinserted,
i.e., the entries whose removal from the node will not lead
to violation of the weak version condition. Then we sort
these entries according to the benefits generated by their
reinsertion. Dead entries always come before live ones.
This is because live entries will be reinserted only into
live nodes, which may also overflow and induce the same
problem in the future. Among the dead and live entries,
sorting is based on the area decrease of the node MBR
caused by the entry deletion; entries that lead to larger
area decrease are preferred. Finally each entry in the
sorted list is retrieved, and choose subtree to reinsert is
applied to check if it can be reinserted.

Notice that, unlike R*-trees, we reinsert a single entry,
even if it is possible to reinsert more. This is due to the
following reasons: (i) Reinsertion saves space but does
not achieve structure improvement, as happens for R*-
trees; (ii) Reinsertion of a single entry already achieves
the objective of averting the version split. Any empty
room in earlier nodes may be utilized by subsequent re-
insertions to avoid future version splits.

The third heuristic tries to insert the new entry into
another node that is not full. Specifically, we backtrack to
the upper level and try to insert the entry into another
branch. As before, in order to avoid query performance
deterioration, we only consider branches that will incur
small area enlargements: the area enlargements of
candidate branches can only exceed that of the best
branch by a certain percentage. In our implementation, we
apply this heuristic for the two lowest levels of the tree
with thresholds 1% and 0.1% (for levels 0 and 1
respectively). Using these values, on average 5% of the
branches per node are attempted for most typical datasets.

We determined the order of the previous optimization
heuristics by taking into account both the update cost and
the quality of handling. General key split, which does not
require reading any more pages, is the most efficient
method in terms of update cost. Furthermore, it reduces
the number of entries in the new nodes so that they will
not overflow again in the near future; thus, it is the first
method considered. The other two heuristics are more
expensive. In particular, re-insertion of an existing entry
can search multiple branches, while insertion in another
(sub-optimal) node may require backtracking up to level
2. However, as we show in the experimental evaluation,
their costs are compensated by the space savings. Only if
the three previous heuristics fail, a version split occurs as
the final alternative after a block overflow.

3.2 Deletion and underflow handling in MVR-trees

If a deletion does not incur structural changes, it is
handled in a way similar to R*-trees. After the entry to be
deleted is found, its ,,,; is modified from * to the current
time. An entry is physically deleted, only if its 7y, is
equal to the current time (multiple updates may happen at
the same timestamp). As with insertion, we follow two
different policies for leaf and intermediate nodes when
handling underflows caused by deletion.

Assume that an underflow occurs at the current
timestamp ¢. For an intermediate node, we set the f,,; of
its live entries to 7. Then, these entries are re-inserted into
the most recent logical R-tree after setting ¢,.~t. Notice
that MVB-trees (also BTR- and PPR-trees) handle
underflows by merging with sibling nodes, while MVR-
trees apply the R*-tree algorithms.

For leaf nodes, in order to avoid redundancy caused by
entry reinsertion, we first attempt to borrow a live entry
from a sibling node. Consider, for instance, the two nodes

A, B and their parent S in Figure 3.10 and suppose that at
timestamp 2, entry A, is deleted causing an underflow of
node A. Instead of copying and reinserting the live entries
of A immediately, we try to acquire a live entry from node
B to “fill” A. The entry to be moved should have the
following properties. First, it must be alive and its lifespan
must be covered by that of A. In this example, all the live
entries in B satisfy this condition. Second, after the
removal of the entry, the version condition must still be
satisfied in B. Notice that entries B, and B; cannot be
moved because their deletion from B will cause weak
version underflow for timestamp 1. Third, inserting this
entry to node A will not cause its MBR to increase above
a threshold. In our implementation we set this threshold to
1% of the original node area. Only if this heuristic fails,

reinsertion is performed.
S A B

<Al 1,2> <BI,1,2> <B5,2,*>
<SI,1,% A> <A2,1,%> <B2,1,*> <B6,2,*>
<A3, 1, %> <B3,1,*> <B7,3,*>

<S2,1,* B>
.. <B4,2,*>

Figure 3.10: Borrowing a live entry from a sibling

3.3 Construction of the auxiliary 3D R-tree

The auxiliary 3D R-tree is built on the leaves of the
MVR-tree in order to process interval queries. Because,
given a moderate node capacity, the number of leaf nodes
in an MVR-tree is much lower than the actual number of
objects, this tree is expected to be fairly small compared
to a complete 3D R-tree. Its construction is
straightforward: whenever a leaf node of the MVR-tree is
updated, the change is propagated to its entry in the 3D R-
tree. Adding the auxiliary tree not only improves interval
query performance, but may also provide flexibility in
other scenarios. An obvious example concerns spatio-
temporal joins, an extension of spatial joins that retrieve
all pairs of tuples satisfying some spatial condition during
a time interval (or timestamp). Such queries can be
processed by using the auxiliary trees and efficient R-tree
join algorithms (e.g. [BKS93]).

3.4 Query processing with MV3R-trees

The combined structure gives two choices for query
processing: the auxiliary 3D R-tree or the MVR-tree. For
timestamp queries the MVR-tree is expected to perform
better, while for long intervals the 3D R-tree is preferable.
For short interval queries, selecting the appropriate tree
calls for optimization methods that require analysis
beyond the scope of this paper. We adopt the simple, but
effective, heuristic that the 3D R-tree will be used
whenever the temporal query length exceeds a certain
threshold. Notice that the threshold may increase as time
evolves, because a 3D R-tree’s performance gradually
deteriorates as the tree grows (while this is not a problem
for the MVR-tree).

Querying with the auxiliary 3D R-tree is
straightforward except that we treat MVR-tree nodes as
the leaf level. Timestamp query processing using MVR-
trees involves retrieval of the root whose jurisdiction
interval covers the queried timestamp, and then search is
performed similarly to R-trees. A problem arises for
interval queries that may need to search multiple trees: we
should avoid duplicate visits to the same node via
different parents. Duplicate pointers to a node are created
in version splits or entry re-insertions. In both cases the
two entries pointing to the same node have disjoint
lifespans. Consider the example of Figure 3.11a, where
entries A and B point to the same child node C (due to a
version split at timestamp 10). A; and B, are temporally
adjacent, while A, spatially covers the entries (i.e., C;, C,)
alive before, and B, the entries (i.e., C,, C3, Cy) alive after
timestamp 10. Figure 3.11b shows the bounding boxes for
the entries in 3.11a, as well as a query box. C, and C; (in
bold lines) intersect the query box so their subtrees (nodes
E and F) should be searched. Since node C may be
reached twice (by following A; and B,), we may attempt
redundant visits to E and F. Such duplicate visits will
result in severe 10 cost as shown in [BS96], which solved
the problem for MVB-trees using reference points and
backward pointers between nodes. Unfortunately, these
techniques are not applicable to MVR-trees. In BTR-trees
and PPR-trees, a list is maintained in memory to keep the
IDs of the visited pages. This approach, however, is not
practical as it confines the maximum page accesses in a
query to the amount of available memory.

R B time cube of Bl
<A1,1,10,C>|<B1,10,20,C cube of C4 | cube of C3
Cl<C1,1,8D> /
<C2112.E> abedf 1| query cube
<C3,10,20,F> cube of C2
<C4,10,20,G: f —
y cube of Al

(a) Duplicate pointers (b) Inferring future visits
Figure 3.11: Avoiding duplicate visits

Figure 3.12 describes an algorithm that avoids
duplicate visits to the subtree of a node, but not to the
node itself (e.g., C will be visited twice but E and F only
once). The idea of the algorithm is to postpone visiting the
branches of a shared node, if some branch will be visited
in the future. Suppose, for instance that we have come to
node C via A; (this_node=C, parent entry=A;). The
entries of C will be checked (lines 1-2) in order to find
one that intersects both A; and the query box. If no such
entry exists, the algorithm backtracks to the previous
level. Even if there are entries in C that intersect the query
(but not A,), they will be visited later. In our example, C,
intersects A, and the query box, so the algorithm proceeds
to line 4, at which point it has to decide whether to visit
the qualifying subtrees now, or postpone it. Lines 4-6

check if there is any other entry e in the node that
intersects the query and outlasts A; (which implies that it
has a different parent). C; satisfies both conditions,
meaning that C will be visited again in the future through
C;'s parent. Thus, the visits to E and F are postponed.

Algorithm Interval query (this_node, parent_entry, query box)

1. forevery entry e in this_node

3. if (e.box intersects parent _entry.box and query _box)
goto line 4

3. return /* no solutions at this level */

4. for every entry e in this_node

S. if (ebox intersects query box) and (e,q >
parent entry.te,g)

6. return /* postpone visiting subtrees for later */

7. for each entry e that intersects query_box

8. Interval_query(e.pointer, e.box, query _box)

Figure 3.12: The interval query algorithm for MVR-trees

4. Experiments

In this section, we compare MV3R-trees with HR- and
3D R-trees through extensive experimentation. Due to the
lack of real data, synthetic datasets with real-world
semantics were generated by the GSTD method [TSN99].
GSTD has been employed (e.g., [NST99, PJT00, TPO1])
as a benchmarking environment for access methods aimed
at moving objects. For all the following experiments, the
datasets contain regions with density 0.2. Unless
otherwise stated, both the initial locations and movements
of the objects are uniform. The spatial universe is a unit
square, whereas timestamps are represented as integers.
At each timestamp, the percentage of objects that will
change their positions is roughly the same and
corresponds to the agility of the dataset, i.c., a dataset has
agility p, if on average p% of the objects change their
positions at each timestamp.

In order to simulate real life situations, we execute
workloads with 500 timestamp and interval queries where
the percentage of interval queries can be 0%, 20%, ..., or
100%. Notice that 0% implies a workload with only
timestamp queries, and, similarly, 100% means only
interval queries. In each workload, the order in which
queries are applied is random. Cost is measured in terms
of node accesses. Three parameters are taken into account
when measuring the relative and absolute performance of
the access methods, namely, the agility of the dataset, the
spatial extents and the temporal lengths of the queries. For
each of these factors we consider three representative
values: (i) agilities 3%, 10%, and 20% represent slow,
medium, and fast datasets; (ii) extents 0.5%, 2%, and 8%
of the spatial universe, represent small, medium and large
queries; (iii) query lengths 3.75%, 7.5%, 15% of the total
number of timestamps represent short, medium and long
queries. In order to generate these values, we set
max_length to 7.5%, 15%, 30% respectively, and the

query lengths distribute uniformly from 0 to max_length.
All timestamps are queried with the same probability.

The R-tree implementations are based on R*-trees
[BKS'90]. For HR-trees, overflows are always treated
with splits, as entry reinsertion may cause considerable
duplication. The page size is fixed to 1024 bytes for all
cases. Using this size, the fanouts of HR-trees, 3D R-
trees, and MVR-trees are 42, 36, and 36 respectively. The
parameters of the MV3R-tree are as follows: P,ei0,=0.35
and P,,,=0.85. Notice that P,,, must be at least twice as
large as P, (to ensure both the new nodes after a key
split can satisfy the weak version condition). The last
parameter specifies the maximum temporal length for a
query to be answered by the MVR-tree. In this work, this
parameter is 80% of the minimum jurisdiction interval of
all the roots in an MV3R-tree. As a rough estimate this
corresponds to 5% of the total number of timestamps.
Longer intervals are answered by the auxiliary 3D R-tree.

4.1 Evaluation of heuristics for MV3R-trees

In the first set of experiments we demonstrate the
effectiveness of the optimization heuristics employed for
node overflows and underflows in MVR-trees. We use a
medium agility (p=10) dataset with 50K objects at each
timestamp, evolving for 200 timestamps. As a benchmark
we implemented BTR-trees (designed for indexing bi-
temporal data which is 2-dimensional; therefore the BTR-
-tree could be used for indexing regions). The size of the
MVR-tree is 87.1 megabytes, while the BTR-tree is 124
megabytes. In order to compare the query performance,
we substituted the MVR- with the BTR-tree in the
MV3R-tree structure, and executed workloads with (i)
queries with medium size and length, and (ii) large, long
queries. Figure 4.1 shows the number of node accesses as
a function of the percentile of interval queries using the
above workload types. Obviously the optimization
methods lead to significant improvements, which increase
with the percentage of interval queries. The size reduction
of MVR-trees (usually around 60%) with respect to BTR-
trees results in a small number of leaf nodes to be indexed
by the auxiliary 3D R-tree facilitating its efficiency on
interval queries. As a side effect timestamp queries are
slightly compromised, but the differences are very small.

Next, we also create slow and fast datasets and
measure the percentage of cases that each heuristic was
applied during updates. Table 4.1 shows the results for
insertions, and Table 4.2 for deletions. For block
overflows, general key split is applied infrequently. This
is not surprising considering the tight conditions that a
node must satisfy before it can be key split. However,
since general key split is cheap and provides significant
advantages when it occurs, we try to apply it whenever
possible. Reinserting an existing entry handles the
majority of the block overflows. Because reinsertion fills
up the empty positions in the dead nodes, the tree tends to

be more compact. Notice that the frequency of reinsertion
increases with the agility, which decreases the percentage
of insertions in another node and version splits. In all
cases the probability that a version split will happen after
an overflow is less than 20%. According to Table 4.2,
about Y of weak version underflows are treated by
borrowing another entry, and the remaining by
reinsertion, independently of the agility.

—=—MVR-tree = —*—BTR-Tree
400 2000
node accesses node accesses

350
300 1600
250 1200
200
150 800
100 400

50

0 0

0 20 40 60 80 100 0 2 100

0 60 80
% of interval queries % o?(l)merval queries

(a) First workload (b) Second workload
Figure 4.1: Comparison of MV3R-trees and BTR-trees

General |Reinsertan |Insert in Version split
key split |existing entry |another node
Low agility 2.6 40 38.3 19.1
Medium agility 22 50.2 32.6 13
High agility 2 61 26.8 10.2
Table 4.1: Frequency (%) of heuristics after overflows
Borrow entry from neighbor Reinsert
Low agility 26 74
Medium agility 27 73
High agility 26.5 73.5

Table 4.2: Frequency (%) of heuristics after underflows

4.2 Comparison with HR- and 3DR-trees

In order to compare the sizes of HR-trees, MV3R-
trees, and 3D R-trees we created datasets with cardinality
5K and agilities in the range [1%, 30%]. Figure 4.2a
shows the sizes of each structure after 100 timestamps as
a function of agility. As expected, 3D R-trees have the
smallest size, whereas HR-trees are the largest. MV3R-
trees are about 1.5 times larger than 3D R-trees, and
significantly smaller than HR-trees implying that much
less redundancy is necessary in MV3R-trees. For agility
values below 5, this difference is about an order of
magnitude. Recall that, as discussed in section 2, each
update in HR-trees can spawn many new nodes, which
explains the inefficiency of the structure. For agility
values above 10%, the sizes of HR-trees almost stabilize
because the structure essentially degenerates to individual
R-trees, one for each timestamp. Figure 4.2b compares the
sizes of 3D R-trees with the auxiliary 3D R-trees built in
MV3R-trees. The auxiliary tree is around 15 times smaller
and accounts for only 3% of the size of the corresponding
MV3R-tree.

In order to evaluate the query performance for a wide
range of situations, we compared the access methods
under various settings of agility, window sizes and

interval lengths. All the following experiments are
executed over datasets of S0K objects that evolve for 200
timestamps. Figure 4.3 shows the cost of each structure as
a function of the interval query percentage in the
workload. In each diagram, we set one of the above
parameters to its medium value, and test the two extreme
values for the other parameters. In Figures 4.3a and 4.3b,
for instance, we use workloads with medium query
lengths and test respectively (i) small query windows and
slow datasets, and (ii) large query windows and fast

datasets.
—#— MV3R-tre¢c—h— HR-tre¢—%— 3D R-tree —4— Aux. 3D R-tree —%—3D R-tree
25 8
Mbytes \ Mbytes
20
6
15
4
10
5 2
0 N o —¢6—6—6—9
0 5 10 15 20 25 30 0 5 10 15 20 25 30
agility agility
(a) All methods (b) Aux. vs normal 3D R-trees

Figure 4.2: Size comparison

—®— MV3R-tree —®— 3D R-tree —*—HR-tree

400 10k

node accesses node accesses
300

1

200 1k ¢
R Pz
0 100

0 20 40 60 80 100 0 20 40 60 80 100

% of interval queries

(a) Med L, small S, low A

% of interval queries

(b) Med L, big S, high A

500 10k
node accesses node accesses

400

1k
300 4
2001 100
100

10

0

20 40 60 80 100

% of interval queries

(d) Med S, high A, long L

0
0 20 40 60 80 100
% of interval queries

(c) Med S, low A, short L

230 node accesses 10kTnode accesses
200
150 .
1k 4
100
50
0 100
0 20 40 60 80 100 0 20 40 60 80 100

% of interval queries % of interval queries
(e) Med A, small S, short L (f) Med A, big S, long L
A=agility, S=size, L=length
Figure 4.3: Query performance comparison
As shown in the Figure 4.3, MV3R-Trees have the
best overall performance. HR-trees are slightly better for
timestamp queries, but the difference does not justify the
excessive space requirements and poor interval query
performance of this structure. MV3R-Trees consistently

outperform 3D R-trees even when all queries are
intervals. The only case that 3D R-trees are better occurs
at the right end of Figure 4.3d, where both the agility and
the query length have their maximum values. This is
because, high agility increases the redundancy (and the
size) of the MVR-tree while the longer the query’s
interval is, the more redundancy will be retrieved. In
summary, MV3R-trees compare favourably with HR-trees
and 3D R-trees even in the extreme cases of only
timestamp or only interval queries. The real strength of
the new structure, however, does not lie in the extreme
cases, but in the rather prevalent situation where a
spatiotemporal system has to handle both types of queries.

5. Conclusions and future work

This paper addressed the problem of the indexing and
retrieval of moving regions’ past locations by proposing
the MV3R-tree, a structure that combines the concepts of
MVB-trees and 3D R-trees. Extensive experiments have
shown that MV3R-trees can handle both timestamp and
interval queries efficiently with relatively small space
requirements. The current implementation of MV3R-trees
could be further improved on the following aspects: (i)
analytical cost models for determining the optimal (MVR-
or 3D R-) tree to answer short interval queries, and (ii)
(iii) overflow and underflow handling heuristics that are
more efficient in terms of update cost, and can avert more
version splits.

Although spatio-temporal databases have received
extensive attention in the past few years, many problems
remain unsolved. As mentioned earlier, various
applications place different demands on the indexing
structures. Existing access methods, for example, are not
efficient for scenarios where most of the objects are
moving at steady speeds. This is because, attempting to
update the database whenever the objects change their
positions will cause the STDBMS to spend most of the
time just handling the updates. Furthermore, this would
result in huge space requirements. A better approach is to
store information about objects’ motion patterns (e.g.
velocities). Such a solution would require novel indexing
structures and query processing techniques.

Acknowledgements

This work was supported by the Research Grants
Council of the Hong Kong SAR, grants HKUST
6090/99E and HKUST 6070/00E.

References

[BGO'96] Becker, B., Gschwind, S., Ohler, T., Seeger, B.,
Widmayer, P. An Asymptotically Optimal Multi-
version B-Tree. VLDB Journal 5(4): 264-275, 1996.

[BKK90] Burton, F., Kollias, J., Kollias, V., Matsakis, D.
Implementation of Overlapping B-trees for Time and

Space Efficient Representation of Collection of
Similar Files. The Computer Journal 33(3): 279-280,
1990.

[BKS90] Beckmann, N., Kriegel, H., Schneider, R., Seeger, B.
The R*-tree: an Efficient and Robust Access Method
for Points and Rectangles. 4ACM SIGMOD, 1990.

[BKS93] Brinkhoff, T., Kriegel, H.P., Seeger, B. Efficient

Processing of Spatial Joins Using R-trees. 4CM

SIGMOD, 1993.

Bercken, V., Seeger, B. Query Processing Techniques

for Multiversion Access Methods. VLDB, 1996.

[FGN'00] Forlizzi, L., Giiting, R., Nardelli, E., Schneider, M. A
Data Model and Data Structures for Moving Objects
Databases. ACM SIGMOD, 2000.

[KGT99] Kollios, G., Gunopulos, D., Tsotras, V. On Indexing
Mobile Objects. ACM PODS, 1999.

[KGT'01] Kollios, G., Gunopulos, D., Tsotras, V., Delis, A.,

Hadjieleftheriou, M. Indexing Animated Objects

Using Spatiotemporal Access Methods. To appear in

IEEE TKDE.

Kolovson, C., Stonebraker, M. Segment Indexes:

Dynamic Indexing Techniques for Multi-

Dimensional Interval Data. ACM SIGMOD, 1991.

[KTF98] Kumar, A., Tsotras, V., Faloutsos, C. Design Access

Methods for Bi-temporal Databases. [EEE TKDE

10(1): 1-20, 1998.

Nascimento, M., Silva, J. Towards Historical R-trees.

ACM SAC, 1998.

[NST99] Nascimento, M., Silva, J., Theodoridis, Y. Evaluation

of Access Structures for Discretely Moving Points.

International ~ Workshop on Spatio-Temporal

Database Management, 1999.

Pfoser, D., Jensen, C., Theodoridis, Y. Novel

Approaches to the Indexing of Moving Object

Trajectories. VLDB, 2000.

[SJL'00] Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.

Indexing the Positions of Continuously Moving

Objects. ACM SIGMOD, 2000.

Salzberg, B., Tsotras, V. A Comparison of Access

Methods for Temporal Data. ACM Computing

Surveys 31(2): 158-221, 1997.

[TSN99] Theodoridis, Y., Silva, J. Nascimento M. On the
Generation of Spatiotemporal Datasets. SSD, 1999.

[TSP*98] Theodoridis, Y., Sellis, T. Papadopoulos, A.,
Manolopoulos, Y. Specifications for Efficient
Indexing in Spatiotemporal Databases. IEEE SSDBM,
1998.

[BS96]

[KS91]

[NS98]

[PJTOO0]

[ST97]

[TPO1] Tao, Y., Papadias, D. Efficient Historical R-trees.
IEEE SSDBM, 2001.
[VV97] Varman, P., Verma, R An Efficient Multiversion

Access Structure. [EEE TKDE 9(3): 391-409, 1997.

[XHL90] Xu, X., Han, J., Lu, W. RT-tree: An Improved R-tree
Index Structures for Spatiotemporal Data. Int'l Symp.
on Spatial Data Handling, 1990.

