Dynamic Pipeline Scheduling for Improving Interactive
Query Performance®

Tolga Urhan

Propel Corp.
urhan@propel.com

Abstract

Interactive query performance is becoming an
important criterion for online systems where
delivering query results in a timely fashion
is critical. Pipelined execution is a promis-
ing query execution style that can produce
the initial portion of the result early and in
a continuous fashion. In this paper we pro-
pose techniques for delivering results faster in
a pipelined query plan. We distinguish be-
tween two cases. For cases where the tu-
ples in the query result are of the same im-
portance we propose a dynamic rate-based
pipeline scheduling policy that produces more
results during the early stages of query execu-
tion. For cases where the result tuples have
varying degrees of importance, we propose a
dynamic tuple regulation algorithm that pro-
duces more important tuples during the early
stages of query execution. Experimental re-
sults show that the proposed approaches sig-
nificantly improve the interactive behavior in
both cases.

1 Introduction

The explosive growth of the Internet and the World
Wide Web has made tremendous amounts of data
available on-line. Emerging e-commerce applications
provide online users easy access to data that may be
geographically distributed. Success of many such ap-
plications depends on how fast they start producing
the initial /relevant portion of the result rather than

This work was supported in part by the National Science
Foundation under NSF grant 11S00-86057, by DARPA under
contract number N66001-99-2-8913, and by contributions from
IBM, Microsoft, and Siemens.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Michael J. Franklin

University of California Berkeley

franklin@cs.berkeley.edu

how fast the entire result is computed. Such interac-
tive behavior is desirable in cases where the user only
wants to get an idea about the result quickly, or if
a subset of the tuples in the result are likely to be
sufficient to satisfy the request. Interactive behavior
is even more critical in unpredictable communication
environments (such as the Internet, mobile networks
etc.) where frequent delays or lengthy disconnections
render computing the entire result impractical.

Traditional query processing techniques fail to de-
liver good interactive behavior for wide-area online ap-
plications for two reasons:

1. They cannot cope well with delays in receiving
data - In traditional systems query results are of-
ten delivered after most of the input has been re-
ceived. This results in poor performance if delays
are experienced in getting the data.

2. The execution typically proceeds in a stop-and-
go fashion - Traditional implementations of some
relational operators have more than one execu-
tion phase which have to be executed sequentially
(such as the build and probe phases of hash join).
Since they typically produce all or most of their
result in the final stage they fail to deliver good
interactive behavior unless the initial stages pro-
ceed quickly.

1.1 Pipelined Execution

Pipelined execution is emerging as a promising query
execution style for cases where producing the initial
portion of a result early is important. A fully pipelined
execution style (i.e., where all the operators in the
query plan execute in a pipelined fashion) delivers re-
sult tuples as soon as they are computable from input
tuples while allowing the delays to be overlapped by
other work. Pipelining works only as long as operators
are non-blocking, i.e., they do not stage the data (ei-
ther in memory or on disk) without producing results
for a long time.

In a pipelined query plan the way operators are
scheduled and how the flow of data is controlled can
lead to significantly different kinds of output behavior,
though the cost of the query plan may not be radically
affected. In this paper we propose techniques for con-
trolling the flow of data in a pipelined query plan to

further speed up the delivery of the tuples to the user.
We distinguish between two query types based on the
how the users prefer the result to be delivered and
address them separately:

1. Result tuples are of the same importance - From
the user perspective no output tuple is more
preferable than another output tuple. For such
a query the best behavior is to output as many
result tuples as quickly as possible.

2. QOutput tuples have different degrees of importance
from the user’s perspective - For such a query the
best output behavior is to return more important
results as early as possible.

For the first type of queries we propose a Rate-
based Pipeline Scheduling algorithm that prioritizes
and schedules the flow of data between pipelined oper-
ators so that the result output rate is maximized. The
scheduling algorithm takes into account the character-
istics of operators, such as their cost and productivity
(which could be dynamically changing) when making
scheduling decisions. For the second type of queries
we develop an Importance-based Tuple Regulation al-
gorithm that prioritizes the processing of individual
tuples in order to produce more important tuples as
fast as possible. It allocates more resources to tuples
that are important.

In this paper, we focus on non-blocking pipelined
hash joins. The reasons are twofold. First, hash joins
are frequently used in complex query plans and are
used to combine data from multiple sources. Sec-
ond, join operators lead to complex scheduling prob-
lems since they proceed in more than one operational
stage.

2 Overview of Pipelined Hash Joins

The earliest work in non-blocking pipelined hash joins
is the Symmetric Hash Join (SHJ) [HS93, WA90,
WAO91] which was designed to allow a high degree of
pipelining in parallel databases. SHJ builds two hash
tables, one for each source. When a tuple arrives on
one of the inputs, it is first inserted into the hash ta-
ble for that input, and then immediately used to probe
the hash table of the other input. A result tuple will
be produced as soon as a match is found.

2.1 The Two Stages Double Pipelined Hash
Join

SHJ requires enough memory for both of its inputs.
This requirement prevents SHJ from being used ef-
fectively for complex queries with large inputs. The
Double Pipelined Hash Join (DPHJ) of the Tukwila
project addresses this problem by extending the sym-
metric hash join to use less memory by allowing parts
of the hash tables to be moved to secondary stor-
age [IFFLT99]. It does this by partitioning the inputs.

The input tuples are organized in partitions based on
their join attribute values. When memory fills up a
partition is picked and tuples belonging to that parti-
tion are flushed to disk.

DPHJ proceeds in two stages; namely, a Regular
Stage followed up by a Cleanup Stage. The Regular
Stage works similarly to SHJ, and joins incoming tu-
ples with the ones already in the memory. It is also re-
sponsible for flushing partitions to disk when memory
is exhausted. The Regular Stage fails to join match-
ing pairs of tuples if one of them arrives after the other
one has been flushed to disk. The Cleanup Stage iden-
tifies such pairs using a marking algorithm and joins
them by bringing in flushed partitions one-by-one and
joining them. It is activated when both inputs are
exhausted.

2.2 Three Stages of XJoin

The XJoin operator was originally proposed in order
to achieve good query response in the presence of slow
and bursty delays [UF00]. It is similar to DPHJ in
the way it deals with limited memory: A Regular
Stage similar in spirit to that of DPHJ manages par-
titions and performs memory-to-memory joins. The
Cleanup Stage runs in a similar fashion. In order to
cope with delays, XJoin employs a reactively initiated
stage (called the Reactive Stage) that is activated when
the Regular Stage is blocked due to unavailable input.
It uses the tuples from the disk-resident portion of one
of the partitions to probe the memory resident por-
tion of the corresponding partition of the other source.
The Reactive Stage continues as long as tuples from
both inputs are delayed. It allows joining tuples on
disk with tuples in memory, and produces more re-
sults. The Reactive Stage has the potential of increas-
ing the cost of the query, however, since it runs during
delays the extra overhead is effectively hidden. XJoin
uses a tuple marking algorithm based on timestamps
to prevent duplicate results that can occur due to the
overlapping nature of its stages.

3 Rate-based Pipeline Scheduling

Having described pipelined hash join algorithms we
now provide a dynamic, pipeline scheduling algorithm
based on output rates to improve the execution of a
plan containing non-blocking pipelined hash join op-
erators. The algorithm schedules the processing of in-
put tuples so that the initial portion of the result is
computed quickly. Our solution has the following fun-
damental characteristics.

e Stream-based approach - Rather than scheduling
operators, we schedule “streams”. A stream is a
unit of execution that consumes tuples from an in-
put and produces a result, which is then delivered
to another consumer stream (Figure 1). Adopting
a stream based approach allows making decisions
tailored to the characteristics of streams. In the

case of pipelined hash joins we have the four pos-
sible streams for each join operator: Two streams
each running the Regular Stage one for each of
the two inputs, one stream for the Cleanup Stage
(for DPHJ and XJoin only), and one stream for
the Reactive Stage (for XJoin only).

o Rate-based scheduling decisions - The scheduling
policy we propose aims at increasing the rate
at which result tuples are produced in order to
achieve better interactive performance. When
making decisions, it takes into account various
characteristics of input streams, such as process-
ing costs, expected output cardinality etc.

e Dynamic - The schedule is determined dynami-
cally during run-time and can change when the
system behavior changes due to inputs that are
blocked, operators that finish their execution, etc.

In a pipelined execution model the unit of execu-
tion is the processing of a single tuple on a single
stream. The propagation of an input tuple along adja-
cent streams may ultimately cause a result tuple to be
produced at the top. Figure 1 shows an example of a
pipelined query plan which has many such streams. A
scheduling policy is needed to determine which stream
to process when more than one has available tuples.
Scheduling of streams must be done in a way that im-
proves the interactive behavior.

Figure 1: A query plan can have many streams

We address this problem by taking a rate-based ap-
proach to scheduling individual streams. In the rate-
based approach we manage the scheduling of streams
so that more result tuples are produced at the top of
the query plan in a given unit of time. More specif-
ically the algorithm we present schedules at each in-
stance, the stream with the maximum expected output
rate. The output rate of a stream refers to the rate at
which that stream contributes to the final result.

3.1 Computing Output Rates

Equation 1 gives the expected global output rate,
ORY°bal(s), of a stream s, where 09194 () is the ex-
pected number of result tuples due to processing one
tuple on stream s and its ancestors, and C91°%%(5s) is
the time cost of processing the input tuple and prop-
agating the result up the query plan.

Oglobal s

ORIl () = C'QT“’ES; (1)

Notice that all streams below the root produce in-

termediate tuples. Their output has to be processed

by parent streams before a final output tuple can be

produced (i.e., the output has to be propagated up to

the top operator). We factor the effect of this propa-

gation into the computation of the Q9% and C9lobal
functions:

Oglobal (S) = preyx DT parent(s) X oo X PTiop
Cglobal(s) Cogt(s) + Cost(parent(S)) X prs +
COSt(pa’re’l’Lt(parent(S))) X prs X PTparent(s) + ..

In the equations above, the term parent(x) denotes
the parent of stream s to which stream s sends its out-
put. Cost(s) is the time cost of processing one input
tuple along stream s; top denotes the topmost stream
which returns the result tuples; prs denotes the pro-
ductivity of a stream, i.e., how many output tuples
it produces per input tuple processed. The produc-
tivity differs from the selectivity in that, selectivity
describes how many result tuples will eventually be
produced, whereas productivity describes how many
tuples will be produced at that point in the execution.
The productivity of a stream strongly depends on the
selectivity of the join predicate as well as how many
tuples have been read by the two streams.

O9lobal (5) is trivially computed by multiplying the
productivity estimates of all the streams an input tu-
ple to stream s has to travel in order to propagate
all the way to the top operator. The computation of
C9obal(s) on the other hand, simply totals the local
cost of propagating an input tuple along each stream
starting from stream s. Cost figures for individual
streams are scaled by multiplying them by the number
of input tuples that the stream is expected to receive
and process. Computing the value of Cost(s) can be
done by keeping runtime cost statistics for stream s.

3.1.1 Scheduling the Regular Stage

The productivity of a Regular Stage stream s, denoted
as prg, can be computed as follows:

prs = Ojoin X CurCard(sibling(s))

In the equation above, sibling(s) denotes the
stream with whose tuples stream s joins (i.e., in Fig-
ure 1 the sibling of stream 1 is stream 2), and oo;n, de-
notes the selectivity of the join predicate between these
two streams. CurCard(s) denotes the number of tu-
ples that have been read so far by stream s. Intuitively,
each tuple processed by a regular stage stream s can
potentially join with any of the CurCard(sibling(s))

number of tuples received by its sibling with a proba-
bility given by the join selectivity, i.e., 0join-

Notice that even in a static system the value of
ORY!°bal(s) changes due to the ever-increasing value
of CurCard. As a result of this, the scheduling or-
der changes dynamically and it may be required to
switch between streams even if the current stream is
not blocked. This phenomenon is the reason for adopt-
ing a dynamic scheduling strategy.

3.1.2 Scheduling the Cleanup Stage

The Cleanup Stage Stream joins the accumulated tu-
ples of two inputs and produces only the output that
has not been produced by the two Regular Stages that
operate on those inputs. Therefore its productivity is:

prs = Cardleft X Cardright X Ojoin — Nproduced

In the equation above Cardye: is the cardinality of
the left input (similarly for the right) and Ny oduced is
the number of tuples that have been produced by the
Regular Stages. The Cleanup Stage becomes runnable
only after the two inputs of the join operator have been
fully received.

3.2 Scheduling the Reactive Stage

The Reactive Stage joins tuples accumulated on disk
with tuples in the memory and produces only the out-
put tuples that were not produced by the Regular
Stages. The productivity can be computed using the
number of memory- and disk-resident tuples (respec-
tively denoted as Nyyir and Nppopeq), join selectivity,
and the number of tuples that have been previously
produced.

prs Nprobed X Nbuilt X Opartition — Nproduced

Opartition = Ojoin X Npartitions

Notice that instead of using the join selectivity ;o
we used Opartition, i.€., the partition selectivity. When
the tuples are organized into partitions the probability
of having two matching tuples increases. Intuitively,
a tuple Ty that is in the same partition as another
tuple, Ts has more chance of matching tuple Ts than
an arbitrary tuple T¢ .

By comparing the output rates of all Reactive Stage
streams it is possible to find which Reactive Stage to
execute if more than one could be executed. How-
ever, a more interesting side-effect of comparing out-
put rates of streams is that a Reactive Stage could
be activated even when there are no delays. This hap-
pens when a Reactive Stage stream has an output rate
larger than other first stage streams. This case could
occur when enough tuples have accumulated on the
disk but there was not sufficient delay to trigger the
execution of the Reactive Stage.

Notice that this approach goes against the original
policy used to activate the Reactive Stage, i.e. when
the inputs are delayed. The original policy for activat-
ing the Reactive Stage tries to overlap the extra cost
of the Reactive Stage by scheduling it to run during
delays. This helps control the overall cost of the query
while producing more tuples earlier. When there are
no delays, only the first stage, which joins memory-
resident tuples is scheduled. This approach, however,
seriously reduces the number of result tuples produced
when the memory is limited.

Using output rate information for scheduling
streams solves this problem by allowing the Reactive
Stage to be executed when its expected output rate
becomes large enough. Since this could happen even
in the absence of delays the extra cost of executing the
Reactive Stage will increase the total cost of the query
and will delay the completion of the query. Executing
the stage, however, allows more output to be produced
earlier.

3.3 Implementation Issues

The rate based scheduling algorithm schedules at each
instance, the stream with the maximum expected out-
put rate. The output rates, however, can change dy-
namically during the execution of a query plan. There-
fore the scheduling of the streams must dynamically
adapt to the ever-changing output rates.

Ideally the output rates would be recomputed ev-
ery time a tuple is processed by a stream. Such fine
grained scheduling can be, however, extremely costly.
Our approach is to invoke the scheduler periodically
(e.g., once every second) in order to avoid this over-
head. When invoked, the scheduler re-computes out-
put rates of all streams and schedules the stream with
the maximum output rate among the eligible streams.
If the scheduled stream becomes ineligible unexpect-
edly before the next run of the scheduler, the eligible
stream with the next higher priority is scheduled.

3.4 Experiments

We compared the interactive performance of the Rate-
based approach to three other policies: RoundRobin,
CheapestFirst , and FqualTime. The RoundRobin pol-
icy employs a FIFO scheduling algorithm. It sim-
ply schedules the next stream that is in the ready
queue when the currently running stream releases the
CPU. CheapestFirst schedules the stream which has
the cheapest tuple processing cost and does not take
into account the number of output tuples generated.
EqualTime schedules the runnable streams in a way
that allocates time equally among the streams. In
our experiments the scheduler is activated once every
second for RateBased, CheapestFirst, and EqualTime
policies. In our experiments the scheduler is activated
once every second for RateBased, CheapestFirst , and
EqualTime policies.

We have implemented a non-blocking pipelined
hash join algorithm that has all three stages mentioned
in Section 2. The experiments were performed on a
Sun Ultra Sparc 5 workstation with 128 MB of RAM.

Our database consists of relations each containing
50K tuples that are populated similar to the Wiscon-
sin benchmark [BDT83] tables using different random
seeds. The tuple sizes are fixed at 100 bytes/tuple un-
less otherwise noted. In the experiments we used 2-
and 4-way join queries. The join predicates are one-
to-one, hence the result for both queries contains 50K
tuples.

Since the output behavior of each stream depends
on its cost characteristics we have introduced artificial
tuple processing costs associated with each of the in-
put relations. For the 4-way join case processing an
input tuple from three inputs cost 2, 5, and 10 times
more than the fourth input. For the 2-way join one
of the inputs is 5 times more costly to process than
the other. Using different processing costs allow us to
examine the abilities of scheduling policies when faced
with different kinds of streams. The cost statistics are
dynamically collected as the query is executing.

In the experiments we use an implementation of
XJoin in order to see the performance of scheduling
policies where all three types of stages are subject to
scheduling. We use a small memory setting: Each
XJoin operator is allocated the minimum amount of
memory it requires.

3.4.1 Results of Experiments

Figures 2 and 3 show the cumulative response times of
queries with 4 and 2 input relations. For the case with
2 relations there are 4 streams that can be scheduled (2
Regular Stage streams, 1 Reactive Stage Stream, and
1 Cleanup Stage Stream which becomes runnable only
at the end). For the case with 4 relations there are 16
streams. The x-axis shows a count of the result tuples
produced and the y-axis shows the time in seconds at
which that result tuple was produced. The reason we
show the response time for all 50,000 output tuples is
to be able to see what effect each policy has on the
completion time of the query (i.e. the time last tuple
is delivered). However, our focus is on the interactive
performance of scheduling decisions, therefore, most
of the discussion in this section will apply to the left
hand region of the graphs where response times for the
initial result tuples are shown.

As can be seen in the graphs, RateBased pro-
vides the best interactive performance for both cases
whereas others suffer from bad decisions. This is espe-
cially true for the 4-relation case (Figure 2) in which
scheduling policies have to take into account all 16
streams, and hence, have more effect in the output be-
havior. For that case, RateBased provides upto 50%
reduction in response time for the initial portion of
the result. RateBased produces the initial 1% of the
result (i.e., 500 tuples) in 41 seconds whereas Fqual-

Time, RoundRobin, and CheapestFirst produce the
same amount of tuples in 56, 61, and 117 seconds,
respectively.

CheapestFirst is the worst in terms of the interac-
tive performance in both cases and also suffers from a
poor completion time for the 4 relation case. This is
surprising considering that it schedules the lower-cost
streams more often. The reason for its poor perfor-
mance is twofold: First, it does not schedule expensive
Regular Stage Streams that fetch input tuples. This
reduces the availability of potentially matching tuples
that are needed to produce output. Second, it prefers
running the Reactive Stages over running the expen-
sive Regular stages. This not only increases the cost of
the query plan with only minor improvements in the
output rate, but also prevents expensive stages from
being scheduled even if cheaper Regular Stages block
(i.e. while waiting for IO etc).

EqualTime gives equal time to all the streams and
allows expensive streams to get a chance to execute.
This behavior results in the production of more po-
tentially matching tuples, so it produces more result
tuples. RoundRobin is surprisingly good for the 2 rela-
tion case although it has poor interactive performance
for the 4 relation case. As with EqualTime it allows
all streams to get a chance to execute, therefore its
interactive performance is better than CheapestFirst.

A discussion of the effect of the Reactive Stage on
query cost is in order. As has been mentioned above,
the execution of the Reactive Stage increases the num-
ber of result tuples produced at the expense of increas-
ing the execution cost, and hence, the completion time
(which is otherwise constant for a query plan no matter
what scheduling policy is used to schedule). By look-
ing at the completion times in the graphs it is possible
to tell which policies schedule the Reactive Stage more
often then the others. For the 4 relation case Cheapest-
First ends up invoking the Reactive Stage more often
and for the 2 relation case FqualTime does.

We have also performed experiments for the large
memory case where all input tuples can fit into the
memory and saw that Rate-based scheduling policy
continued to provide the best interactive performance
(not shown due to space limitations).

4 Importance-based Tuple Regulation

Rate based pipeline scheduling aims to produce initial
results as quickly as possible, however, it is not opti-
mized to speed up the delivery of important tuples. An
effective interactive query system must also take into
account the preference of the users in terms of which
tuples are more important and present the important
tuples before the less important ones.

One way to achieve this kind of output behavior is
to let the user specify the importance criteria using an
ORDER BY clause. The execution engine then places
a sort operator at the top of the query plan that or-
ders the result according to the importance criteria.

Time (secs)

Cheapest First ——
Equal Time ---x--- -
Rate Based ------
unndquin B

0 Il Il Il Il Il Il
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Output Card

Figure 2: 4 input relations - 16 streams to schedule.

Although this approach returns important tuples be-
fore less important ones it has two drawbacks. First,
sorting is usually implemented as a blocking operation
and produces the sorted result only towards the end of
the query execution. Second, the query plan beneath
the sort operator usually does not take into account
the relative importance of tuples it processes and may
end up delivering important tuples late.

The correct approach for handling the first issue
(i.e., blocking sort) is to use a sort algorithm that
allows the user to “peek” at the result at any point
during the query execution and see a sorted list of tu-
ples that has been produced so far by the query plan.
The well known insertion sort algorithm can be used
to achieve this effect.

In this section we focus on solving the second prob-
lem, i.e., processing tuples within the query plan so
that more important tuples are output earlier. This
can be achieved by giving more emphasis to tuples
that are more important (i.e., that are located at the
top of the result set with respect to a user defined or-
dering) and allocating more resources to them. This
behavior may come at the expense of a significant de-
lay in the production of less important tuples, but this
hardly matters if the decision that will be made by the
user eventually depends on the more important tuples.

Rather than making a binary decision about the
importance of a tuple (i.e. important vs. unimpor-
tant) and processing only the important ones, we take
a probabilistic approach. In this approach a tuple is
processed with some probability that increases with its
importance. In other words, an important tuple will
have a higher chance of being processed immediately
than a less important tuple. As a result more impor-
tant tuples are allowed to get ahead of less important
ones, while occasionally allowing less important tuples
to be processed too. Delivering some of the less im-
portant tuples, as opposed to not delivering them at
all, provides the user a more global view of the result.

A recent work that is closely related to ours is the
“juggle”. Juggle is a best-effort reordering algorithm
that attempts to solve similar problems as we do. How-
ever, the scenarios at which juggle and our methods are

70

60 - ek
——X
X//*'—X‘—/X//* e
50 | .~ e]
%= B /S*“,*"* g0
— L o
%) X X geE 8 i
g 401 K L
° P 2R
g S0r X g i
= sexmg
20 AR .
55;* Cheapest First —+—
L /A& Equal Time - |
10 /%
4 Rate Based ------
Il Il Il Il Il Il RPUndR?bln \D

0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Output Card

Figure 3: 2 input relations - 4 streams to schedule.

aimed differ somewhat, as do the mechanisms they use.
We describe the Juggle operator in detail in Section 5.

4.1 Selective Input Processing (SIP)

In order to produce important tuples early, our algo-
rithm selectively processes each tuple with a proba-
bility that increases with its importance. SIP works
right above a scan operator: When an input tuple is
received its importance value (called i —value) is com-
puted. The i —wvalue of a tuple is defined to be between
0 and 1 with 0 representing the least important tuple
and 1 representing the most important tuple in the
result set. Then a random value between 0 and 1 is
picked. If the ¢ —value of the tuple is greater than this
random number, the tuple is processed. Otherwise the
tuple is temporarily staged in memory or on disk (if
memory is not available). Staged tuples are processed
at the end of the query execution after all the input
has been read (Figure 4.)

The importance of the result is derived from the
sorting column. Needless to say only tuples that con-
tain the sorting column can be selectively processed as
outlined above (e.g., Tuples of Table A in the exam-
ple). Tuples which do not contain the sorting column
are processed normally. This behavior is revised in the
next section when we present variations of the basic al-
gorithm.

order by A.scol

JOINA ,B
Ignore tuple until prgcessimmediately
end of execution
e | E—
no yes

SCAN B

| ——
Input tuple

i-value > randomval ?
SCAN A

| ——
Input tuple

Figure 4: Selective processing of input tuples.

Computing importance

The i — value of a tuple is directly related to its
expected position in the result set. We use the “rank”
of a tuple, which changes between 0 and 1, to indi-
cate its position in the result in ratio to the expected
result cardinality. A rank value of 0.05 would mean
that the tuple is expected to be at the 50th position
among 1000 result tuples. The rank of a tuple can
be computed (approximately) by using the value of its
sorting column and statistics (such as the value distri-
bution) that are maintained for this column. A map-
ping function then converts the rank to an i — value.
We consider two such functions:

e Conservative Mapping (CM): i —value = 1 —rank
. Conservative mapping relates the i — value lin-
early to the expected rank of the tuples.

e Aggressive Mapping (AM): i — value = 1 —
V2 x rank — rank?. When this function is plot-
ted it outlines a lower-left quadrant of a unit circle
touching « and y axes at positions (1,0) and (0,1).
AM is more selective than CM for all the tuples,
i.e., it causes fewer tuples to be processed, and is
biased towards important ones.

Notice that computing the ¢ — value of a tuple im-
plicitly relies on query statistics. How these statistics
are computed, however, is outside the scope of this
paper. The reader is referred to a recent work on mid-
query re-optimization of query plans [KD98] for dy-
namic collection of statistics during query execution.

In this paper our focus is on ways of enforcing the
tuple flow so that the importance of tuples (whatever
it may be) is used effectively to achieve good interac-
tive output behavior. Therefore, these two functions
should be considered only as a rough measure of the
importance of tuples rather than as a perfect measure.

4.2 Selective Join Processing (SJP)

Even though SIP partially reorders input tuples it can
only be applied at the scan operator which reads the
table with the sort column. The output behavior of a
query plan involving other operators (such as joins),
however, cannot be controlled solely by ordering tu-
ples of one source. As an example, consider a join
in which the table with the sort column arrives very
early. In that case the output behavior will be deter-
mined by the later arriving table because most of the
join result will be produced when the tuples of the sec-
ond table arrive and therefore the output order will be
determined by how these tuples arrive.

We address this problem by moving reordering logic
from scan operators to join operators. The reason is
that the order in which results are output is more de-
pendent on the order in which tuples are matched by
the join operators rather than the order that they are
delivered by the scan operator.

The resulting algorithm, called Selective Join Pro-
cessing (SJP), is similar to (SIP) in that it processes
tuples selectively using the mapping functions de-
scribed before. Rather than deciding whether to pro-
cess an input tuple, it, instead, decides whether two
matching tuples should be joined based on the impor-
tance of the result tuple that would be generated. No-
tice that in order to estimate the importance of the
result tuple one of the inputs of the join operator must
supply the sort column. This means that the SJP al-
gorithm can be employed at all the join operators that
are consumers of the input supplying the sort column.

SJP works as follows: When an input tuple, say 71,
matches a previously received tuple from the other in-
put, say Ty , SJP first computes the i — value of the
result tuple that will be generated (using one of the
mapping functions). Then it decides whether to actu-
ally join these two tuples with some probability based
on the ¢ — value. For the case when two tuples are
to be joined, a result tuple is generated as usual. For
the case when tuples are not joined, the later arriving
tuple (in this case T) is marked as “ignored” and will
not be used again until both inputs have been fully
fetched. Tuples marked as ignored are then processed
to compute the remainder of the result.

4.3 Further improvements - Value Chaining

SJP regulates tuple flow at all join operators that have
an input supplying the rank column. Depending on the
shape of the query plan, however, a great portion of
the tuple flow may be left unregulated. For instance,
in the first plan in Figure 5 SJP can be employed at
operators J1, J2, and J3, whereas it is only applicable
at operator J1 in the second plan. This means that
considerable work may have been spent on computing
tuples by operators J2, and J3 that will eventually
be ignored because they match with an unimportant
tuple at operator J1.

order by A.scol order by A.scol

SJP possible at j1, j2, j3

SJP possible only at j1

Figure 5: Limited applicability of SJP.

A technique we call Value Chaining, solves this
problem for certain kinds of queries, by allowing tu-
ple regulation at other parts of the query plan that do
not have access to the sorting column. The key obser-
vation is that the importance of the tuples of a table
(say table B in Figure 5) can be uniquely inferred if
there is a primary key - foreign key join between the
sorting table (i.e. table A) and table B in the form

of B.fkey = A.pkey (i.e., a functional join) and that
a matching tuple from A has arrived. In that case a
B tuple joins with only one A tuple and therefore its
importance can be uniquely identified (i.e., it will be
the same as that of the matching A tuple). In other
words the importance of an A tuple is propagated to
a matching B tuple, allowing tuple regulation at op-
erator above the scan of B (i.e., at J2, and J3 in the
figure). Value Chaining requires a hash table to store
the primary key and the sorting column of the sorting
relation. When a tuple is received from the sorting re-
lation, the value of its sort column and the primary key
column are stored together in a hash table, hashed by
the primary key value. When a tuple is received from
table B we use the value of its foreign key to lookup
the hash table. If an entry is found then we use the
value of the corresponding sort column to compute the
importance of a tuple from table B. If no entry is found
then the tuple from table B is processed normally.

The Value Chaining method can be used in conjunc-
tion with either SIP or SJP. When used with SIP, the
lookup occurs for each Tupleg when it arrives. With
SJP the lookup occurs when Tuplep is about to be
joined with another tuple.

4.4 Experimental Results

In order to show the effectiveness of importance-based
tuple reordering we have implemented proposed algo-
rithms in PREDATOR and used the same machine
as was used in the previous set of experiments de-
scribed in Section 3.4. The database is also populated
similarly. We used simple 2- and 3-way join queries.
Queries involve an ORDER BY statement which is as-
sumed to describe the relative importance of tuples.

4.4.1 Basic Performance of SIP and SJP

In the first set of experiments we investigate the basic
output behavior of four policies (combination of two
reordering policies, SIP and SJP, and two mapping
functions Conservative Mapping, CM, and Aggressive
Mapping, AM). We have also included in our experi-
ments the output behavior of a do-nothing approach
(labeled as NoOrder) which does not employ any re-
ordering of the tuples at all. Lastly, we have included
the behavior of the do-nothing approach in the ide-
alized case when the tuples of the sort table arrive
already in sorted order. The output behavior of this
imaginary case is labeled as SortedInput. Inclusion of
this case is only meant for investigating the output be-
havior for the ideal case when the input was already
sorted.

We used two variations of a query that joins two
input tables. The first query involves joining two ta-
bles of equal size each having 50K tuples. The second
query involves joining a small table having 10K tuples
with another table having 50K tuples. The smaller ta-
ble supplies the ordering column. The second variation
is used to examine the case where the ordering table

is received quickly (since it has fewer tuples). In that
case the order in which the result tuples are produced
is mainly determined by the other table.

Figures 6 and 7 show experimental results for the
first variation, and Figures 8 and 9 show the results for
the second variation. Each graph shows, for each of the
approaches, the output characteristics of the query ex-
ecution after the query has executed for a certain time
(5 seconds, and 25 seconds for both queries). As such,
each graph is a “snapshot” of the query result taken at
a specific time.! The x-axis contains the policies and
y-axis indicates the portion of the result (in percent-
ages) output by the policies at that point in time.

For each of the policies five bars are plotted. The
first bar represents how much of the most important
tuples has been output. We assume that the top 1%
of the tuples with respect to the ordering criteria rep-
resent the most important tuples. The next three bars
represent tuples that are in the top 3, 10, and 30%
of the result (i.e., progressively less important tuples.)
The fifth bar represents how much of the entire result
has been output at that point in time.

Variation 1 - Query with equally sized relations

Figures 6 and 7 show the results with a query join-
ing two equal sized tables. The graphs show that em-
ploying a tuple regulation algorithm based on the im-
portance values speeds up delivery of the important
tuples compared to NoOrder. For instance, after 5
seconds SJP/AM has produced 30 % more important
tupes than NoOrder has. After 25 seconds the im-
provements are bigger: All four tuple regulation poli-
cies are able to return more than twice as many im-
portant tuples as NoOrder. Also, aggressive versions
of SIP and SJP (i.e., SIP/AM and SJP/AM) perform
better than their conservative counterparts (SIP/CM
and SJP/CM) in terms of the amount of important
tuples returned. This behavior is, however, at the ex-
pense of producing fewer tuples overall. For example,
at 25 seconds, about 90 percent of the most important
tuples (i.e., the ones in the top 1 percentile) are re-
turned by SJP/AM, but only about 25 percent of all
the result has been returned by the same policy.

In the idealized case, when the input tuples arrive
already sorted, about 22 percent of all the most impor-
tant tuples are returned in the first 5 seconds (Sorte-
dInput in Figure 6). The performance of SortedIn-
put, however, degrades considerably later performing
the same as the NoOrder. Figure 7 shows that both
SIP/AM and SJP/AM return about 50 % more impor-
tant tuples than SortedInput. This is both surprising
and counterintuitive, as one would assume the query
with an already sorted input should outperform one
that partially reorders tuples at all.

The reason for this phenomenon is as follows: Af-

IThe two variants take 46, and 53 seconds respectively if
no tuple regulation is applied. The overhead due to employing
SIP algorithm increases the completion time by about 2 seconds
for both variants, whereas the overhead of SJP increases the
completion time by about 4 seconds.

Percentage Output

SIP/CM

SIP/AM SJP/ICM SJP/AM NoOrder Sorted

Figure 6: Output after 5 secs. Variation 1.

ter the query has executed 25 seconds SortedInput will
have received all the tuples in the first four groups
(i.e., top 1%, 3%, 10% and 30%) and some of the re-
maining tuples (since the tuples arrive in sorted or-
der). Those sorted tuples that have not yet been
matched with a tuple from the other (non-sorted) in-
put will be produced in the order non-sorted tuples
arrive without taking into account the importance of
tuples. Since, processing less important tuples delays
processing more important tuples the output behavior
is penalized. Tuple regulation algorithms avoid this
trap by dropping (i.e. hiding) less important tuples
thereby saving join overhead that is best allocated to
more important tuples.

Variation 2 - Query with small sorting relation

In this variation the table which contains the order-
ing column is read quickly because it has less tuples.
Most of the result is produced when the tuples of the
bigger table arrive. This means that the ordering of
the result tuples will depend on the ordering of the
tuples from the bigger table. We have excluded con-
servative version of SIP and SJP from the graphs since
they perform worse than their aggressive counterparts.

The figures show that SJP/AM performs much bet-
ter than other policies. This time, however, SortedIn-
put is unable to provide good performance at all. This
is due to the fact that the order in which join results
are produced is more dependent on the order of the
tuples received from the bigger table. In other words
the sort order does not propagate to the top of the
plan. SIP/AM also suffers from the same problem. It
operates on the sorting table (i.e. the smaller one).
However, the entire ordering table has been read by
the 25th second, and SIP/AM ceases to be effective
beyond that point. This behavior manifests itself as
the plateau in the second figure. SJP/AM, however,
continues to regulate tuple flow well after that point.

These two experiments show that SJP has better
control over the tuple flow in a query plan. Moreover,
aggressively dropping less important tuples improves
the delivery of more important tuples.

We also performed experiments to measure the ef-
fectiveness of the Value Chaining (VC) technique (not
shown due to space limitations). We found that VC
improved the delivery of the important results in types
of query plans for which it was designed. When used

Percentage Output

7 - - -

LAY

SIP/ICM SIP/AM SJP/ICM SJP/AM NoOrder Sorted

Figure 7: Output after 25 secs. Variation 1.

in conjunction with SJP, VC increased the number of
important tuples produced by SJP about 50% during
the early stages of query execution.

5 Related Work

The Juggle operator [RRH99] is a pipelined best-effort
reordering operator whose goal is also to produce im-
portant results faster. It takes an unordered set of
tuples and produces a result that is nearly sorted. In-
put tuples are buffered in a sorted list which is up-
dated as new tuples arrive. When the parent operator
requests a tuple the Juggle operator returns the tu-
ple at the top of the sorted list. The main difference
between the Juggle operator and the tuple regulation
algorithms is that, the Juggle operator is sensitive to
the rate at which its parent operator consumes the
output of the Juggle operator: It returns a tuple when
its parent asks for one. If the parent operator requests
tuples faster than Juggle operator can produce them,
then no reordering will be possible. This is because as
soon as the Juggle operator receives a tuple there will
be a pending request by the parent. As such juggle
degenerates into a “no-op”. Another difference is that
the Juggle operator is optimized for cases in which
the user preferences change dynamically due to user
actions (such as browsing a long list of results and
jumping from one region of the result to another re-
gion). Our approach is optimized for the case where
the importance of the tuples do not change.

The Ripple Join operator [HH99, Hel97] works simi-
lar to the three join algorithms described in this paper;
SHJ, DPHJ, and XJoin are a type of Ripple Join. Rip-
ple Join was initially developed to approximate query
aggregates in a real-time fashion. It, however, imposes
a scheduling for processing its inputs in order to pro-
vide certain statistical guarantees.

The work described in [WA91] extends authors’ ear-
lier work on Symmetric Hash Join with an optimiza-
tion framework. Although the authors do not address
the scheduling issues explicitly, they analyze the be-
havior of tuple flow in a fully pipelined query plan and
its relation to the output characteristics.

The eddies [AHO0] work relates to our rate-based
pipeline scheduling work. An eddy is a query mech-
anism, and encapsulates a set of pipelined operators
and adaptively routes tuples through them. Thus, it

Percentage Output

SIP/AM

SJIP/AM NoOrder Sortedinput

Figure 8: Output after 5 secs. Variation 2.

effectively reorders operators in a query plan and aims
to reduce the cost of the query execution and query
completion time. Eddies are designed for cases where
it is not possible to get a good query plan or good es-
timates. Our techniques are intended for less extreme,
but still dynamic, situations. Also their objective is
slightly different than ours — our Rate-based pipeline
scheduling mechanism may slightly increase the query
completion time if doing so will improve the delivery
of the initial results.

Carey and Kossmann [CK97, CK98] proposed ways
of improving the “TOP N” queries where the user is
only interested in the topmost N tuples with respect to
some ordering criteria. Their algorithms only focus on
minimizing the time it takes to finish producing first
N tuples. They do not focus on giving query results
incrementally, as they become available.

6 Conclusions

In this paper we have proposed scheduling algorithms
that improve the interactive performance of pipelined
queries. We have considered two kinds of queries and
addressed them separately. For queries where the tu-
ples in the query result are of the same importance
we proposed a dynamic rate-based pipeline schedul-
ing policy that produces more results during the early
stages of query execution. For cases where the result
tuples have varying degrees of importance, we pro-
posed a dynamic tuple regulation algorithm that pro-
duces more important tuples during the early stages
of query execution. Our results show that the pro-
posed approaches significantly improve the interactive
behavior of these two types of queries.

Pipelined query execution is emerging as a pow-
erful alternative to traditional query processing tech-
niques for scenarios where good user experience is criti-
cal. Although scheduling and optimization issues have
been extensively studied for decades, techniques for
improving the interactiveness of pipelined query exe-
cution have only recently been investigated. The need
for such techniques will continue to increase with the
widespread adoption of E-commerce applications that
interact with customers, decision makers, and business
partners.

L e

Percentage Output

SIP/AM SJP/AM NoOrder SortedInput

Figure 9: Output after 25 secs. Variation 2.

References

[ABF197] L. Amsaleg, P. Bonnet, M. Franklin, A. Toma-
sic, and T. Urhan Improving Responsiveness for Wide-
Area Data Access. IEEFE Data Eng. Bul., 20(3).

[AHO0] R. Avnur, J. Hellerstein. Eddies:Continuously
Adaptive Query Processing. ACM SIGMOD Conf.,2000.

[BDT83] D. Bitton, D. J. Dewitt, C. Turbyfill. Bench-
marking Database Systems, a Systematic Approach.
VLDB Conf., 1983.

[BM96] R. Bayardo, and D. Miranker. Processing Queries
for the First Few Answers. Proc. 3rd CIKM Conf., 1996.

[CK97] M. J. Carey, and D. Kossman. On Saying “Enough
Already!” in SQL. ACM SIGMOD Conf., 1997.

[CK98] M. J. Carey, and D. Kossman. Reducing the
Breaking Distance of an SQL Query Engine. VLDB
Conf., 1998.

[HH99] P. J. Hass, J. M. Hellerstein. Ripple Joins for On-
line Aggregation. ACM SIGMOD Conf., 1999.

[Hel97] J. M. Hellerstein. Online Processing Redux. Data
Eng. Bul., 20(3).

[HS93] W. Hong, M. Stonebraker. Optimization of Par-
allel Query Execution Plans in XPRS. Distributed and
Parallel Databases, 1(1):9-32, 1993.

[IFFL*99] Z. Ives, D. Florescu, M. Friedman, A. Levy,
D. S. Weld. An Adaptive Query Execution System for
Data Integration. ACM SIGMOD Conf., 1999.

[KD98] N. Kabra, D. DeWitt. Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans
ACM SIGMOD Conf., 1998.

[RRH99] V. Raman, B. Raman, J. M. Hellerstein. On-
line Dynamic Reordering for Interactive Data Process-
ing. VLDB Conf., 1999.

[SLR97] P. Seshadri, M. Livny, R. Ramakrishnan. The
Case for Enhanced Abstract Data Types. 23rd VLDB
Conf., 1997.

[SP97] P. Seshadri, M. Paskin PREDATOR: An OR-
DBMS with Enhanced Data Types. ACM SIGMOD
Conf., 1997.

[UF00] T. Urhan, M. J. Franklin XJoin: A Reactively-
Scheduled Pipelined Join Operator. IEEE Data Eng.
Bul., 23(2).

[WA90] A. N. Wilschut, and P. M. G. Apers. Pipelining
in Query Execution. Conf. on Databases, Parallel Ar-
chitectures, and their Applications, 1991.

[WA91] A. Wilschut, and P. Apers. Dataflow Query Exe-
cution in a Parallel Main-Memory Environment. PDIS
Conf., 1991.

