Data Staging for On-Demand Broadcast

Demet Aksoy
University of California, Davis
aksoy@cs.ucdavis.edu

Abstract

The increasing deployment of broadband ser-
vices that are inherently broadcast-capable
has made wide-area data broadcast an attrac-
tive data delivery alternative for large client
populations. There has been significant work
towards developing on-line broadcast schedul-
ing algorithms for systems where all data
items are readily available in the server’s main
memory. These studies ignore the data man-
agement issues that arise when the data to be
broadcast must be obtained from secondary
storage or remote locations. In this paper,
we propose three complementary solutions
to such data staging concerns: opportunis-
tic scheduling, server caching, and prefetch-
ing. These techniques exploit hints provided
by the scheduling algorithm. A detailed per-
formance evaluation using an IP Multicast-
based testbed shows that these data staging
techniques can dramatically enhance the per-
formance of a large-scale on-demand broad-
cast system.

1 Introduction

The dramatic growth of the Internet has brought
about the deployment of a new type of Internet infras-
tructure optimized for supporting high-speed retrieval
and delivery of data for huge numbers of users, such as

*This work was supported by the University of California
Davis — Junior Faculty Research Fellowship, and in part by
the National Science Foundation under NSF grants IIS00-86057,
TRI96-32629, and IR195-01353, by DARPA under contract num-
ber N66001-99-2-8913, and by contributions from IBM, Mi-
crosoft, Sun Microsystems, and Siemens.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

Michael J. Franklin

University of California, Berkeley
franklin@cs.berkeley.edu

*

Stan Zdonik

Brown University
sbz@cs.brown.edu

Content Delivery Networks, Cooperative Web Caches,
and Wide-area Distributed Storage Networks. These
new services are typically implemented using an over-
lay network in which a privately maintained, small-
diameter network consisting of high-speed communi-
cation channels, application-level routers, and caches
reduces the need to use the public Internet backbone.
Prominent examples include the offerings of such com-
panies as Akamai, Fast Forward Networks (now part
of Inktomi), Edgix, and Cidera.

These systems have a great deal of flexibility in
the types of communication they can employ, since
they use their own communication channels and
application-level routing protocols. For example, ser-
vices can be deployed using broadcast or multicast,
satellite communication, and other techniques that are
not widely available on the public Internet. Broadcast
is particularly appealing in a content delivery scenario
because of its inherent scalability [AF99]. Unlike uni-
casting, where an item must be sent once for each out-
standing request, with broadcast-based delivery a sin-
gle transmission of an item can satisfy all outstanding
requests for the item.

1.1 On-Demand Broadcast

Data broadcasting systems can be distinguished ac-
cording to whether they are based on a push model
or a pull model [FZ98]. Using push, the data items
are sent out to the clients without explicit requests for
such items. In contrast, with a pull-based model, data
items are broadcast by a server in response to requests
received from clients. We refer to such an arrangement
as on-demand data broadcast.

2=

v e

Ve

2 7 AL
—
Proxy —
—
Server P —
E —
= Clients

Data Sto

Figure 1: Example Data Broadcasting Scenario

An example of an on-demand data broadcast envi-
ronment is shown in Figure 1. In this scenario clients
send requests for data items to a server via an in-
dependent uplink channel. The server receives these
requests and, when necessary, places them in a ser-
vice queue. Based on the received requests the server
selects data items to broadcast, and sends them to
the clients using the downlink channel. Clients mon-
itor the broadcast to receive the items they are in-
terested in. Broadcast can be used to send data di-
rectly to Internet browsers (e.g., in a system such as
DirectPC [Dir96], Starband [Sta00], AlohaNet [Alo00]
etc.) or to proxy caches from which the clients will re-
trieve the data using standard protocols. Our interest
is in large-scale dissemination systems. Such systems
could conceivably be used by millions of clients and
could provide access to millions of data items. Figure 1
depicts an on-demand broadcast environment similar
to what could be provided using a Direct Broadcast
Satellite infrastructure such as Hughes Network Sys-
tem’s DirecPC. In this case, the uplink is a primarily
terrestrial, wired network such as the Internet, while
the downlink is a high-bandwidth satellite link. Other
technologies are also possible.

1.2 Broadcast Scheduling and Data Staging

A key design consideration in the development of a
large-scale on-demand data broadcast server is the
scheduling algorithm used to select items to be broad-
cast. Such an algorithm aims to choose the most ben-
eficial data items to be broadcast based on the un-
fulfilled requests that have been received from clients.
There has been significant work on the development
of on-line scheduling algorithms for data broadcast
(e.g., [DAWS86, VHI7, ST97a, AF99]). A key concern
in the face of high downlink bandwidths! has been de-
veloping low overhead algorithms so that the available
broadcast bandwidth can be fully utilized.

For a large regional or national-scale information
service, however, the implicit assumption of having all
data items immediately available for broadcast is in-
appropriate for two reasons: First, the sheer size of the
data available and the highly-skewed nature of accesses
to it (see [BCEFT99] for access distributions for WWW
proxies) make a main-memory-only system both tech-
nically infeasible (for the near term) and economically
wasteful (for the foreseeable future). Second, even if it
were possible to cache the entire data set in memory at
the server, the costs of keeping the cached copies up-
to-date would be prohibitive. Thus, in a large-scale
system we expect the majority of the data to reside
in locations with significantly higher latency than the
server’s memory, such as local secondary and tertiary

!The downlink bandwidth is usually much higher than that
of the uplink in order to match the asymmetry in data flow, i.e.,
a client request is typically only a few bytes while the requested
data item can be quite large.

storage, as well as at remote sites around the Internet.
Significant performance degradation can be expe-
rienced due to such additional latency. As a result,
scheduling efficiency is not sufficient to guarantee the
full utilization of the downlink channel. To address
this problem, we designed a set of mechanisms that
coordinate the broadcast scheduling with the location
and retrieval of the data items to be broadcast. We
refer to this integrated functionality as data staging.

1.3 Data Staging Solutions

In this paper, we attack the data staging problem using
three complementary approaches based on:

1. Increasing bandwidth utilization: It is not possible
to fully exploit the high bandwidth of the down-
link channel if the server stalls between successive
broadcasts. In cases where the most beneficial
data item to broadcast is not readily available, an
available data item should be broadcast. We refer
to this technique as Opportunistic Scheduling.

2. Decreasing the need to fetch an item: Obviously
one should try to make the best use of the avail-
able memory space on the server. The key to suc-
cessful caching is to retain those items that are
most likely to be scheduled. For this purpose, we
exploit hints maintained by the scheduling algo-
rithm to differentiate between hot (popular) and
cold (not-so-popular) items. We refer to this tech-
nique as Hint-based Cache Management.

3. Decreasing the fetch latency: Access latency can
be reduced by obtaining items from slow or re-
mote locations before they are needed. This trans-
lates to bringing the items that are likely to be
scheduled in the near future into the cache. We
refer to this technique as Prefetching.

In the following, we first describe the general archi-
tecture of an on-demand broadcast server. We then
describe the proposed data staging mechanisms in de-
tail, and present performance analysis results obtained
using our data broadcast prototype testbed.

2 Broadcast Data Staging Techniques

We have developed an on-demand broadcast server
that can provide good performance even when much
of the data is not memory-resident. A primary con-
cern is to ensure that none of the precious broadcast
bandwidth goes unused due to the latency incurred
to obtain a scheduled item. Therefore, the scheduler
must be non-blocking; i.e., if the scheduler chooses a
non-resident item to be broadcast, it should initiate
an asynchronous request for that item and continue.
Practical considerations, however, limit the num-
ber of outstanding asynchronous requests a system can

service

queue server cache

user

requests \E schedule

Data Store / Downlin
Remote Site3

Figure 2: Normal Scheduling

tolerate. For example, in our Windows NT-based im-
plementation, we found that beyond a (configuration-
specific) point, allowing too many outstanding I/0 re-
quests became detrimental to performance. For this
reason, our server respects a preset limit on the num-
ber of outstanding data fetch requests.

Figure 2 depicts the server architecture. The server
maintains two structures for managing requests for
data items: the Service Queue and the Pending List.
The Service Queue contains information about out-
standing client requests. Since the broadcast of an
item satisfies all outstanding requests for that item,
there is a single entry for each unique item that has
outstanding requests. Thus, when a request is received
at the server, the Service Queue is checked to see if
an entry already exists for the requested item, and if
s0, the information in that entry is updated accord-
ingly, otherwise a new entry is added to the Service
Queue. We describe the scheduling algorithm in Sec-
tion 3. Note that when an item is chosen to be broad-
cast, its corresponding entry is removed from the ser-
vice queue. The Pending List is used to keep track of
items for which an asynchronous fetch request is pend-
ing. The limit on the number of outstanding requests
is enforced by bounding the size of the Pending List.

The scheduler loops continuously: First it checks
for the completion of any asynchronous fetches in the
Pending List. Any such items that have arrived in
the server’s memory are broadcast in the order they
were received, and their entries are removed from the
Pending List. Note that the order in which items are
received is not necessarily the same as the order in
which they were requested. After all such items have
been processed, the scheduler is run to select a data
item to broadcast from among those that have an out-
standing request in the service queue: If the Pending
List is not full, then the scheduler is run in Normal
mode. Otherwise, it is run in Opportunistic mode.

In the normal scheduling mode, the server
searches the Service Queue to select an item to broad-
cast. Once an item is selected, a look-up is done in
the local cache. If the scheduled item is present (i.e.,
a cache “hit”), then the item is handed over to the
network controller to be transmitted over the down-
link in the next available broadcast slot. Otherwise,

(i-e., a cache miss) an entry for the item is made in
the Pending List (see Figure 2), and a request is sent
(asynchronously) to the device or remote site contain-
ing the item. In this case, the server continues to the
next iteration of the processing loop without broad-
casting an item. Note that as long as an item has an
entry in the Pending List, the server does not create
a new service queue entry for any incoming requests
for this item. This is because at that point the item is
already slated to be broadcast when it arrives.

When the Pending List is full, the scheduler op-
erates in opportunistic scheduling (OS) mode.
When in OS mode, the scheduler chooses only cache-
resident pages to be broadcast. There are two po-
tential dangers with such a restriction. First, it nat-
urally disrupts the heuristics used by the scheduler.
If the scheduler makes too many poor choices, then
the effectiveness of the broadcast schedule (and hence,
the performance of the system) could be severely de-
graded. Second, if the process of finding good cache-
resident items to broadcast adds too much overhead
to the search process, then it is possible that broad-
cast bandwidth could go unused. The challenge in
designing the algorithm for OS is to strike a balance
between efficiency and effectiveness. We describe two
OS approaches in Section 5.

2.1 Cache Management and Prefetching

The absence of scheduled items from the cache disrupts
the functioning of the broadcast scheduling heuristics.
Therefore, we have investigated two techniques for im-
proving the hit rate at the server cache. The first tech-
nique is a specialized cache replacement policy that
uses hints obtained from the broadcast scheduler to
distinguish between hot and cold items, thereby di-
rectly improving the cache hit rate. This policy called,
“LH”, for Love-Hate hints, is described in Section 6.

The second technique is prefetching. Our use of
prefetching is complementary to the LH cache man-
agement approach. LH aims at keeping items that are
likely to be broadcast again in the near future (i.e.,
hot items) in cache. In contrast, prefetching aims to
bring into the cache, pages that are not cache resident
(i-e., cold items) when they are likely to be broadcast
in the near future.

With the prefetching mechanism, a set of frames in
the cache is reserved for holding prefetched items. The
prefetch process snoops the service queue to identify
items that are likely to be broadcast soon and tries to
ensure that they are in memory when they are even-
tually chosen for broadcast. Similar to the handling of
fetches for cache misses, a prefetch request for an item
is sent asynchronously to the item’s location.

It is important to note that the three data staging
techniques: opportunistic scheduling, hint-based cache
management, and prefetching are integrated with the
scheduling algorithm being used.

3 The RxW Scheduling Algorithm

In this section, we present a brief sketch of the
Rz W broadcast scheduling algorithm [AF98, AF99],
which serves as the basis for our integrated broad-
cast scheduling and data staging techniques. RzW has
been shown to provide good performance over a wide
range of workloads. Intuitively, Rz W schedules a data
item either because it has many outstanding requests
or because it has at least one outstanding request that
has waited for a long time. In this work, we focus on
scheduling the broadcast of fixed-length items such as
disk or database pages.

Rx W maintains two values with every service queue
entry: 1) the number of outstanding request(s) for the
page (R); and 2) the arrival time of the oldest of those
requests, which is used to compute the waiting time of
the oldest outstanding request for that page (W). Rz W
chooses the item to broadcast according to its R x W
value. Ideally, the highest R x W value is preferred,
however, this search could be quite time consuming
which risks wasting downstream bandwidth. Thus, ap-
proximate algorithms have been developed. Our server
uses one called RxW.a where « is a tunable parameter
that controls the desired level of approximation.

The server maintains two sorted lists threaded
through the service queue: 1) R-list: based on the num-
ber of outstanding requests, and 2) W-list: based on
the waiting time of the oldest request for that page.
The search for the page to broadcast starts from the
entry at the top of the R-list (the page with the most
outstanding requests). Its R x W value is computed
and recorded as the current maximum. Next, the en-
try at the top of the W-list (the entry with the oldest
outstanding request) is examined and its Rz W value
is compared to the current maximum. The algorithm
then keeps alternating between the two lists; it selects
the first page whose R x W value is greater than or
equal to « times the threshold. The threshold is the
running average of the R x W values of the pages
broadcast so far. After each broadcast decision, the
threshold is updated and the service queue entry for
the selected page is removed.

The setting of the a parameter determines the
performance tradeoffs among schedule quality and
scheduling overhead. The smaller the value of the a
parameter, the lower is the overhead (fewer entries are
scanned) with a correspondingly lower accuracy. 2

2When « is set to 0, only two entries (the one at the top
of the R-list and the one on the top of W-list) are examined.
At the other extreme when alpha is set to oo, the algorithm
stops the search when the maximal R X W value is guaranteed
(see [AF99] for more details).

4 Experimental Environment
4.1 Prototype

In order to study our solutions, we have implemented
a prototype on-demand broadcast testbed on a clus-
ter of pentium-based machines running Windows NT
4.0. Each machine has two network cards, so the
testbed environment consists of two separate Ether-
net networks: a 10 Mb/sec network used as the uplink
(i-e., for requests) and a 100 Mb/sec network used as
a broadcast downlink. The uplink employs TCP for
sending requests to the server. The downlink employs
UDP (Unreliable Datagram Protocol) for multicasting
the data to all of the workstations in the cluster using
the IP-multicast support provided with Windows NT
4.0. During experiments, the testbed is isolated from
all external networks to avoid external interference.
The server is a dual-processor machine with two
400MHz Pentium II CPUs and 256MB of memory.
The server has two main responsibilities: request pro-
cessing (queuing new requests), and broadcast man-
agement (making scheduling decisions and broadcast-
ing pages). To ensure that the request arrival rate
is fixed across all algorithms, the request processing
thread is given top priority. The server has two 9.1GB
fast wide SCSI disks. One of these was reserved exclu-
sively for use as secondary store for data items.

4.2 Workload, Metrics and Measurements

For the experiments, we used a workload generator
running on a dedicated machine. The generator pro-
duces item requests and sends them individually over
the uplink. Requests are generated according to a Zipf
distribution [Knu81] with 6 set to 1. Recall that the
Zipf distribution produces skewed access patterns ac-
cording to: p; = W where p; is the probability
e

of accessing page 1, N is Jthe size of the database and
0 is the skewness parameter. Unless noted otherwise,
the results reported here were obtained using a request
arrival rate of 1000 requests/sec. The database used
in the experiments consists of 10000 16K pages. File
system buffering was disabled during the experiments
S0 as not to interfere with the measurements.

The cache size is varied between 5% and 100% of the
database. We focus on the results for up to 40% of the
database where most of the differences are observed.
Where noted in the sections that follow, we sometimes
add a synthetic delay to the retrieval of items from
disk in order to model higher-latency situations.

The main metric used in the performance study is
average waiting time. In order to reduce the over-
head of individual measurements, we measure average
waiting time after equilibrium is reached at the server
by applying Little’s Law [Tri82] to the logical service
queue length (i.e., the number of individual requests
waiting in the queue). Equilibrium occurs when the re-
quest satisfaction rate converges to the request arrival

rate. Thus, the data points in the experiments that fol-
low were collected over runs of hundreds of thousands
or more requests. In addition to average waiting time
we report additional metrics where necessary.

The scheduling algorithm used in these experiments
is RxW as described in Section 3. We have ob-
served that in our experimental testbed configuration,
Rz W.90 provides a good trade-off between scheduling
overhead (i.e., the time it takes to make a schedul-
ing decision) and scheduling quality (i.e., closeness to
the optimal bandwidth allocation). Therefore, in our
experiments, we use a = 0.9. It should be noted, how-
ever, that we have tested our solutions using the full
RxW algorithm and its approximations with different
a values. Although the specific behavior of the var-
ious data staging approaches changes somewhat for
different approximation settings, the trends described
in this paper hold for all cases tested.

Given this background we now examine the data
staging approaches we have proposed in greater detail
and present the experimental results we have obtained.

5 Opportunistic Scheduling
5.1 Algorithms

Opportunistic Scheduling (OS) is the scheduling mode
that is used when the server has reached its limit
on outstanding asynchronous requests, as described in
Section 2. In OS mode the scheduling algorithm is re-
stricted so that it selects only cache-resident pages for
broadcast. We propose two approaches to broadcast
scheduling in OS mode. Both approaches enforce two
requirements on items chosen for broadcast: 1) they
must have at least one outstanding request (i.e., they
have a corresponding entry in the Service Queue), and
2) they must be cache-resident. The two approaches
are:

Best Available (OS-BA) - In this approach,
the Service Queue entries are augmented with a bit
that indicates whether or not the associated item is
currently cache-resident. This bit is set when a page is
brought into cache and reset when the page is replaced
in the cache. The RxzW scheduling algorithm is run
over this queue just as described in Section 3, except
that all non-resident pages are ignored. Thus, OS-BA
attempts to find the best available (memory-resident)
page according to the RxW criteria.

Figure 3 shows an example. In the figure, the
shaded Service Queue entries represent pages that are
currently not in the cache. Assume that the threshold
(i-e., the running average of R x W values) is 500 due
to past history. Because we are using RzW.90, this
results in a stopping condition of 450 (500 x 0.90).
The search starts on the R-list and considers the first
cache-resident page it encounters (page c in this case).
The Rx W value of page ¢ is 90, which does not qualify.
It then switches to the W-list where it first examines

page 2, which has an R x W value of only 60. The
search continues until page n is examined. This page
has an RzW wvalue of 470, which is greater than the
stopping condition, so the search halts and page n is
chosen. In contrast, during normal scheduling page a
would have been chosen since its R x W value (1100)
is larger than the stopping condition (450).

R-List W-List
‘)
max(R)_ @ [..550 L200 Y Thaxw)
b 100 90 X
RxW.90 c 90 60 z
threshold = 500 d 85 51 d
stop when :
R; x W, > 500*0.9 K 50 12 b
R; x W, > 450
i i nl 47 10 n<—/—3
x 7 3 k
z 1 2 a
y 1 1 c

Figure 3: Scheduling for Best Available

Scan Cache (OS-SC) - The second opportunistic
approach completely foregoes the use of the Rz W algo-
rithm during opportunistic scheduling. This algorithm
directly searches the cache, choosing for broadcast the
first page it encounters that has at least one outstand-
ing request. The key question for OS-SC is where to
start the scan of the cache. We tried several alterna-
tives and found (much to our surprise) that the best
performance was obtained when the scan proceeded
up from the bottom of the LRU queue (as maintained
by the buffer manager). The reason for this behavior
is omitted due to space considerations. In the exam-
ple of Figure 3, OS-SC is likely to schedule page z for
broadcast.

Before examining the individual approaches, it is
important to emphasize that both OS approaches are
extremely effective in solving the problems caused by
non-resident data items. Thus, in the following it is
important to keep in mind that, although we might
be able to gain further improvements, we are tuning a
basic technique that is already very effective.

5.2 Opportunistic Scheduling: Evaluation

In this section, we describe the results of an experi-
mental comparison of the two opportunistic schedul-
ing approaches. In this experiment, the disk is used as
the backing-store for non-resident pages, and only the
actual disk latencies are incorporated into the study.
The size of the Pending List is set to 100.3

Figure 4 shows the average waiting time for the two
opportunistic scheduling approaches as the cache size

3We tested settings between 20 and 400 and found a steep
increase in response times for limits less than 100 and a more
gradual increase as the limit is increased beyond 100. Values
less than 100 cripple the Normal Mode Scheduler; values greater
than 100 run into NT thread limits.

is increased from 5% to 40% of the database size. As
a point of comparison we also ran the RzW.90 algo-
rithm in a blocking mode (SYNCH) where it simply
stalls when a non-resident page is scheduled for broad-
cast. As would be expected, the performance with
all of the approaches improves as the cache size is in-
creased. Across all ranges the blocking algorithm per-
forms worse than the opportunistic algorithms. At a
cache size of 30% SYNCH is approximately 27 times
slower than either opportunistic solution. As would
be expected, the blocking algorithm makes poor use of
the broadcast bandwidth. The blocking approach uses
only 22% of the available bandwidth even at a cache
size of 40% of the database. Compared to the 98%
utilization obtained for the OS cases, this result shows
that as expected ignoring the data staging problem can
result in very poor performance. The penalties would
be far greater if the non-resident items were stored at
higher-latency locations such as remote sites.

For the opportunistic scheduling algorithms we see
that beyond 30% both approaches converge because
the hit rate becomes high enough that the Pending
List is hardly ever full; thus, the OS mode is not used.
0S-SC, which simply starts at the bottom of the LRU
chain and picks the first item it finds with an outstand-
ing request, performs significantly better than OS-BA
— almost twice as good at a cache size of 10%.

o 20 e —
&
= 15 A
‘®
= 10 - SYNCH
2 - 0S-SC
© 5 -+ 0S-BA

0 . . ;

0% 10% 20% 30% 40%
cache size (pages)

Figure 4: Average Waiting Time

7 OOS-BA|__
6 - mOS-SC|

allocation error
D
|

5% 10% 20% 30% 40%
cache size

Figure 5: Scheduling Error

In principle, the performance differences between
the OS approaches can stem from two factors: the effi-

ciency with which they make scheduling decisions, and
the quality of the broadcast schedule they produce.

In terms of efficiency the data broadcast rate of OS-
SC is very close to the maximum effective bandwidth
throughout the whole range of cache sizes. On the
other hand, OS-BA pays a price for searching the ser-
vice queue, particularly for smaller cache sizes. With
a small cache and a low hit rate, the OS mode is used
more frequently. This has the effect of making each use
of OS-BA more expensive. This is because by choos-
ing only cache-resident pages for broadcast, OS has
the side-effect of pushing those pages lower in the Ser-
vice Queue. This increases the work that OS-BA must
do to find a qualifying cache-resident page. At a cache
size of 5% OS-BA lets over 10% of the maximum ob-
tainable bandwidth go idle. Beyond a cache size of
10% OS-BA is as efficient as OS-SC.

The other contributing factor to performance is
scheduling quality. In order to examine scheduling
quality we introduce a new metric called bandwidth
allocation error. To compute this metric, we measure
the number of times each page is broadcast during the
run of an experiment, and compare that with what
the optimal bandwidth allocation would yield. In the
optimal allocation, pages should be broadcast in pro-
portion to the square root of their access probabili-
ties [DAWS86]. Based on this, we calculate the theo-
retically optimal allocation for each page according to
the Zipf distribution and calculate the error as follows:

> pi * (optalloc; — expalloc;)
all_cached_alloc

Error =

where p; is the probability of access for page i, optalloc;
is the rate at which page ¢ should be broadcast accord-
ing to the theoretical optimum definition, expalloc; is
the rate at which page ¢ was broadcast during the ex-
periment. We normalize this weighted difference by
all_cached_alloc, the allocation error of the RzW.90
algorithm when all pages are in the cache, in order to
focus on the error attributable to the OS approaches
themselves. The quality differences among the ap-
proaches can be seen in the bandwidth allocation er-
rors shown in Figure 5. As can be seen, beyond a
cache size of 5% OS-SC provides better scheduling
quality. The reason behind this is that OS-SC dis-
tributes bandwidth to colder pages while OS-BA give
too much bandwidth to hot pages. Since OS-SC is
more efficient and produces better schedules, it has
better performance than OS-BA for small cache sizes.

6 Server Cache Management

Next we examine a modification to the cache replace-
ment policy at the server, in order to improve the cache
hit rate, thereby reducing the need for OS.

The Least Recently Used (LRU) replacement pol-
icy, while extremely popular has a well-known weak-
ness. “Cold” pages that are placed at the top of the

LRU chain remain in memory until they float down
to the bottom and are finally replaced. These cold
pages effectively reduce the cache size. Following the
square root law of the optimum bandwidth allocation
[DAWS6] and using a Zipf distribution, approximately
1/3 of the broadcast slots should be given to the top
10% hottest pages, with 2/3 going to the remaining
90%. Thus, many cold pages are accessed (i.e., chosen
for broadcast) but for small to medium cache sizes,
such individual cold pages are not likely to be chosen
again before they are replaced.

Cache replacement policies that are effective at
avoiding LRU’s problems with cold pages have been
developed (e.g., LRU-K [OOW93] and 2Q [JS94]).
These policies maintain past reference history even for
items that are no longer in the cache. While such al-
gorithms could be used in our environment as well, we
have a unique advantage: the RzW algorithm already
provides valuable information that can reliably be used
to distinguish hot pages from cold, without the need
to store additional access history. In the following, we
describe an alternative extension to LRU cache man-
agement that exploits this information. We refer to
this policy as “LRU with Love/Hate Hints” (LH).

6.1 LRU With Love/Hate Hints (LH)

The main idea behind the LH replacement policy is
to distinguish between hot and cold pages in the Ser-
vice Queue. When chosen for broadcast, hot pages are
tagged with a “love” hint, which causes them to be
placed at the top of the LRU chain; Cold pages are
tagged with a “hate” hint, which causes them to be
placed at the bottom of the LRU chain, where they
are likely to be chosen as replacement victims. Distin-
guishing between hot and cold pages is straightforward
using RxW. Intuitively, a page can be considered hot
if it is high on the R-list (i.e., it has many requests),
and can be considered cold if it is high on the W-list
(i.e., it has not been broadcast for a long time). For
instance, returning to the example of Figure 3, if page
a is scheduled for broadcast, we can assume that it is a
hot page since it is being scheduled with a high number
of outstanding requests and a low waiting time. On the
other hand, if page y is being scheduled we can assume
that it is a cold page since it is being scheduled only
after accumulating a high waiting time. Using this in-
tuition, a page chosen for broadcast is marked with a
love-hint if it meets the following two tests:

1. During the scheduler’s search of the Service
Queue, the page is encountered on the R-list be-
fore it is encountered on the W-list.

2. The page appears in the top hotRange pages of
the R-List, where hotRange is described below.

The first test simply ensures that the page is higher
on the R-list than on the W-list, which indicates that

it might be a “hot” page. This test is not sufficient,
however. In some cases, more pages than can fit in
cache would satisfy this test, therefore, the second
test is applied in order to further limit the number
of pages marked with love hints. hotRange is calcu-
lated as cacheSize x %ygft pages, where entryCnt
is the number of entries in the Service Queue at the
time of scheduling decision, and dbSize is (an estimate
of) the number of unique pages that can be requested
by the client population. This formulation allows the
number of pages marked with love hints to be scaled
to the cache size and to the intensity of the workload.

If a page does not receive a love-hint, it will receive
a hate-hint. Pages with love hints are treated normally
with respect to the LRU policy. Pages with hate-hints
are demoted to the end of the LRU chain.

6.2 Caching: Evaluation

In order to evaluate the LH approach, we repeated the
experiment of the previous section using LH instead
of LRU as a replacement policy. As a comparison
point, we also tested a third policy called PCACHE.
PCACHE uses perfect a priori knowledge of the data
access distribution and pins the pages with the highest
access probabilities in cache without any replacement
taking place. PCACHE is not a practical policy for
our environment, rather it represents the ideal case
that LH is attempting to approach. The average wait-
ing time for the three replacement policies is shown in
Figure 6. In all cases, opportunistic scheduling with
0S-SC (the best performing algorithm in the previous
experiment) is being used in addition to the caching
policy. Note that the curve labeled “LRU” is the “OS-
SC” curve from Figure 4 of the previous experiment.

14
12 n —+LH

_ \ ~<PCACHE
g 10 = LRU
)
% 8 4
=
6
(=]
o
g a1
T

2]

0 : :

0% 10% 20% 30% 40%)
cache size (pages)

Figure 6: Average Wait Time

As shown in Figure 6, LH is able to provide substan-
tial benefits over LRU for smaller cache sizes (where
the replacement policy has the largest impact). At
cache sizes of 10% or less, using LH instead of LRU
results in a factor of 3 improvement. Furthermore, al-
though it may not be apparent due to the scale here,
LH also provides a factor of 2 improvement over LRU

100%
90% -
80% +
70% -
60% -
50% -
40%
30% -
20% -
10% +

0% -

O miss

M opp
@ hit

scheduling attempt

5% 10% 20% 30% 40%
cache size

Figure 7: Success Rate for LRU

at a cache size of 20%. Comparing LH to the idealized
PCACHE, it can be seen that at a cache size of 10%
and beyond, they have the same performance.

There are three possible outcomes for each schedul-
ing iteration: 1) cache-hit: when we are in normal
scheduling mode and the item is in the cache at the
time it is selected by the scheduler; 2) cache-miss:
when we are in normal scheduling mode and the se-
lected page is not cache-resident; 3) opp: if we are
in opportunistic scheduling mode, a specialized case
of a hit, as we alter the heuristics in order to ensure
a cache hit. Figures 7 and 8 plot the distribution of
these outcomes for LRU and LH respectively. As can
be seen, LH successfully improves the cache hit rate
for small cache sizes and thereby reduces the need for
opportunistic scheduling. Increasing the cache hit rate
is equivalent to increasing the variety of pages that can
be broadcast.

These results indicate that LH is an effective re-
placement for LRU in an on-demand broadcast server,
and that LH is able to distinguish between hot and
cold pages almost as accurately as if it had perfect
knowledge of the workload.

7 Prefetching

In this section we examine a third complementary ap-
proach to the data staging problem, namely, prefetch-
ing items that are likely to be broadcast in the near
future. As with cache management, we exploit prop-
erties of the Rz W algorithm to make such predictions.

7.1 Reducing I/0O latency

The goal of prefetching is to predict which pages are
likely to be needed in the near future and to take steps
to ensure that they are brought into the cache by the
time they are needed. Recall that for a skewed request
distribution an ideal broadcast schedule consists of a
small number of frequently broadcast hot pages and a
high number of cold pages. As shown in the previous
section, the LH cache replacement policy is effective at
identifying hot pages and retaining them in the cache.
Thus, when used in conjunction with LH, prefetching
will likely be needed primarily for cold pages. Stated in
RxW terms: the cache replacement policy is effective

100%
90% - — —

80% - o e I

70% - L L L | |[Omiss
60% - —— | — | |®opp
50% | L L |@hit

40% A — — —
30% - — — =
20% - — — =
10% 1 — — —

0%

scheduling attempt

5% 10% 20% 30% 40%
cache size

Figure 8: Success Rate for LH

at keeping high R-valued pages in cache, so prefetching
should concentrate on high W-valued pages.

Fortunately, the characteristics of RxW scheduling
are such that the W-list is a much more stable struc-
ture on which to base prefetching than the R-list. The
W-list is effectively a FCFS queue: new entries are
appended to the tail of the W-list, and their relative
ordering does not change. While hot pages are likely
to be chosen for broadcast before they obtain a high
position in the W-list, cold pages slowly but inexorably
move towards the top. Note that due to the stability
of the W-list, cold pages are broadcast in the order
that they are added to the list. Thus, an effective
technique for improving the hit rate for cold pages is
to keep the top W-list pages memory-resident. The
maximum allowable number of such items is a config-
uration parameter referred to as the Prefetch Window
(prfWindow). Pages within the prfWindow are guar-
anteed to be either in the cache or to be in the process
of being prefetched at any time.

We have added a fairly direct implementation of
this concept to our prototype broadcast server. When
prefetching is enabled, a budget of prfWindow pages
is reserved in the cache (i.e., taken out of the LH-
managed space) for keeping prefetched pages. The
mechanism works as follows: Initially, asynchronous
fetch requests are made for the pages in the top
prfWindow entries on the W-list. When they arrive,
these pages are pinned in the cache until they are
broadcast. When a prefetched page is eventually cho-
sen for broadcast, the page is unpinned, and handled
according to the LH replacement policy (most likely
it will be marked with a hate hint and soon ejected).
The process of broadcasting a page that was within
the prfWindow brings a new page into the prfWin-
dow. This page is prefetched asynchronously if it is
not already cache resident. Otherwise it is pinned in
the cache until it is scheduled. Note that if a page is
scheduled for broadcast while it is in the process of
being prefetched, that page will be treated as an asyn-
chronously fetched page (it will be broadcast) when it
arrives at the cache.

o5 |—LH |
- PRF |
020
(]
2
=
=15
=
() 4
Q10
IS
°
5
] / . 7
0% ~ —
0.1 1 10
latency (sec)

Figure 9: Average Wait varying Latency

7.2 Prefetching: Evaluation

We first repeated the previous experiment with
prefetching. In this case, we have observed that
prefetching provides little or no additional benefit
across the entire range of cache sizes studied. The
reasons behind this result are interesting. Our mea-
surements indicated that as we expected, prefetching
was improving the hit rate. However, in this case, the
savings of using prefetching is the latency associated
with retrieving cold items from the local disk. It turns
out that in this experimental setting, requests for cold
pages typically accumulate waiting times on the or-
der of seconds before the page is chosen for broadcast.
Compared to this long wait, the latency associated
with the disk read (on the order of 10’s of milliseconds)
is not significant. Thus, in retrospect, it is apparent
that prefetching cold pages will not help here.

This observation, however, leads us to investigate
the benefits of prefetching for higher-latency situa-
tions, such as tertiary storage or obtaining the items
from remote sites across the Internet. To examine
these situations, we introduce a synthetic delay into
the asynchronous fetching process. That is, we ar-
tificially delay the retrieval of non-resident pages by
sending the asynchronous fetch requests to a wait list
rather than to the local disk in order to simulate larger
latencies. Figure 9 shows the performance of LH and
LH with prefetching (labeled PRF) for a system with
a 20% cache as the latency for obtaining non-resident
pages is increased from 0.1 seconds (i.e., on the order of
a random disk access) to 10 seconds (i.e., on the order
of a request to a heavily-loaded site over a slow net-
work). In this case the prfWindow is set to 300 pages.
As already described, prefetching does not help for rel-
atively low latencies. For longer latencies, however, it
can have very significant benefits. For example, at a
latency of 5 seconds here (note the log-scale x-axis),
prefetching provides a more than 3-fold improvement
in performance. Note that this improvement is in ad-
dition to those already obtained by the OS-SC and LH
techniques.

These results lead us to conclude that prefetching
has the potential to be a very important technique

for use in environments where the items to be broad-
cast reside on tertiary storage or must be fetched from
servers across the Internet. This latter class of sys-
tems is particularly important, as one emerging use of
on-demand broadcast is for WWW proxy servers.

8 Related Work

There has been significant work on scheduling algo-
rithms for on-demand data broadcast [DAW86, DWS8S,
VH96, ST97b, AF99]. Scheduling approaches for
variable-length data, particularly for multimedia ap-
plications have also been proposed [VH97, ST97a,
AM98]. However, with the exception of Dykeman and
Wong [DW8S], all of this work ignored data staging
issues. This latter study recognized the potential ben-
efits to be gained by integrating data movement with
the broadcast scheduling algorithm. However, since
their environment had much lower bandwidths and
much smaller databases to broadcast, efficiency was
not an important concern. As a result, the proposed
solutions used very expensive scheduling and cache re-
placement algorithms that are not appropriate for a
large-scale system. Triantafillou et al. [THPO1] have
recently studied data staging for on-demand broad-
cast. They have used RxW, but did not exploit its in-
herent hints and did not consider prefetching of data
items. Similar to Dykeman et al., their study ad-
dressed local disk latencies using disk scheduling algo-
rithms. Finally, both Dykeman et al. and Triantafillou
et al. studied their solutions using a simulation which
did not capture the overhead and resource contention
that arises in a real system. This is a key issue, as the
use of Opportunistic Scheduling is motivated in large
part due to the overheads observed with asynchronous
processing in a working prototype.

In the multimedia community, Ozden et al. [ORS96)
studied data staging for multimedia storage systems
using buffer replacement algorithms and prefetching.
The data staging problem in this case is different than
ours due to the sequential access characteristics of
video files. Data staging concerns also appear more
traditional information systems. Tan et al. [TTS198]
have studied the distribution and the placement of
data over numerous geographically dispersed locations
based on the assumption that all requests and load as
well as all network configurations are known apriori.
Therefore the suggested solutions are not applicable
for on-line algorithms of on-demand broadcast systems
where the client requests are not known apriori.

Substantial prior work also exists in prefetching for
video-on-demand systems [FD95], client-server archi-
tectures [PZ91], for file systems [PGGT95] and for
navigational access systems [BPS99]. Our work on
prefetching differs from these studies because of spe-
cific attributes of the algorithm we use to implement
our broadcast server. For example, we exploit the
predictable behavior of the Rz W scheduling algorithm

with respect to cold pages to be able to do prefetching
without any trace analysis or hints from the applica-
tion.

9 Conclusion

We have investigated the integration of data staging
concerns with an on-demand data broadcast server for
large-scale applications using three complementary so-
lutions. First, Opportunistic Scheduling is used to in-
crease the bandwidth utilization. When running in OS
mode, the scheduler is restricted to choosing cache-
resident items for broadcast. We proposed two ap-
proaches to OS and showed that the decision on which
available page to broadcast should be based on the
overall bandwidth allocation rather than the schedul-
ing heuristics used. We proposed the approach OS-
SC which produces high quality of the schedules with
low overhead. Second, we described the LRU with
Love/Hate hints (LH) cache replacement policy, which
exploits hints easily obtained from Rz W to effectively
keep hot pages in the cache. We showed that the
performance of LH is very close to the idealized algo-
rithm that makes use of perfect knowledge of page ac-
cess probabilities. Third, we developed an integrated
prefetching scheme, whose job is to ensure that cold
pages are cache-resident by the time they are scheduled
to be broadcast. Prefetching was found to be helpful in
higher-latency situations, as would arise when obtain-
ing data from remote sites across the Internet. These
results demonstrate that while it is tempting to look at
data broadcast merely as a communications problem,
an essential component for large-scale data broadcast
systems is data management, such as optimizing the
location and flow of large amounts of data.

References

[AF98] D. Aksoy and M. Franklin. Scheduling for
large-scale on-demand data broadcasting. In
Proc. of IEEE INFOCOM, March 1998.

D. Aksoy and M. Franklin. RxW: A schedul-
ing approach to large scale on-demand broad-
cast. IEEE/ACM Transactions on Networking,
(6):846-861, Dec. 1999.

Alohanet. SkyDSL. www.alohanet.com/, 2000.
S. Acharya and S. Muthukrishnan. Scheduling

on-demand broadcasts: New metrics and algo-
rithms. In Proc. ACM/IEEE Mobicom, 1998.
L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and Zipf-like distri-
butions: Evidence and implications. In Proc.
INFOCOM, 1999.

P. A. Bernstein, S. Pal, and D. Shutt. Context-
based prefetch for implementing objects on re-
lations. In Proc. VLDB, 1999.

H.D. Dykeman, M. Ammar, and J.W. Wong.

Scheduling algorithms for videotex systems un-
der broadcast delivery. In IEEE ICC, 1986.

[AF99]

[Alo00]
[AMYS]

[BCF199]

[BPS99]

[DAWS6)]

[Dir96]

[DW383)]

[FDY5]

[FZ98]

[7S94]

[Knu81]

[OOW93]

[ORS96]

[PGG195)

[PZ91]

[ST97a]

[ST97D]

[Sta00]

[THPO1]

[Tris2]

[TTST98]

[VHY6]

[VH97]

Hughes network systems, DirecPC homepage.
www.direcpc.com, 1996.

H.D. Dykeman and J.W. Wong. A performance
study of broadcast information delivery sys-
tems. In Proc. IEEE INFOCOM, 1988.

C. S. Freedman and D. J. DeWitt. The SPIFFI
scalable video-on-demand system. In ACM
SIGMOD, San Jose, CA, 1995.

M. Franklin and S. Zdonik. Data in your face:
Push technology in perspective. In Proc. ACM
SIGMOD, June 1998.

T. Johnson and D. Shasha. 2Q: A Low Over-
head High Performance Buffer Management
Replacement Algorithm. In Proc. VLDB, 1994.

D. Knuth. The Art of Computer Programming
- Volume III. Addison-Wesley, 1981.

E.J. O’Neil, P.E. O’Neil, and G. Weikum.
The LRU-K Page Replacement Algorithm For
Database Disk Buffering. In Proc. ACM SIG-
MOD, pages 297-306, 1993.

B. Ozden, R. Rastogi, and A. Silberschatz.
Buffer replacement algorithms for multimedia
storage systems. In IEEE Int. Conf. on Multi-
media Computing and Systems, June 1996.

R.H. Patterson, G.A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In Proc. SOSP, 1995.

M. Palmer and S. Zdonik. Fido: A cache that
learns to fetch. In Proc. VLDB, Sep. 1991.

C.J. Su and L. Tassiulas. Broadcast schedul-
ing for distribution of information items with
unequal length. In Proc. Conf. on Information
Sciences and Systems, Kobe, 1997.

C.J. Su and L. Tassiulas. Broadcast scheduling
for information distribution. In Proc. IEEE IN-
FOCOM, 1997.

Starband. High speed sattellite Internet ser-
vice. www.starband.com, 2000.

P. Triantafillou, R. Harpantidou, and M. Pater-
akis. High performance data broadcasting: A
comprehensive system’s perspective. In Proc.
2nd Int. Conf. on Mobile Data Management,
Hong Kong, Jan. 2001.

K.S. Trivedi. Probability and Statistics with Re-
liability, Queueing and Computer Application.
Prentice-Hall Inc, 1982.

M. Tan, M. D. Theys, H. J. Siegel, N. B.
Beck, and M. Jurczyk. A mathematical model,
heuristic, and simulation study for a basic data
staging problem in heterogeneous networking
environment. In Proc. Heterogenous Comput-
ing Workshop, March 1998.

N.H. Vaidya and S. Hameed. Data broadcast
in assymetric wireless environments. In Proc.
WOSBIS, New York, November 1996.

N.H. Vaidya and S. Hameed. Log-time algo-

rithms for scheduling single and multiple chan-
nel data broadcast. In Proc. WOSBIS, 1997.

