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Abstract

The proliferation of XML and its set-
tlement as the de facto standard for
information interchange in Internet,
as well as the development of query
languages like XPath, have lead to
a paradigm transition in the Inter-
net database world in favor of tech-
niques based on semistructured data
models. At the same time, there has
been an increase in the deployment of
implementations of the LDAP proto-
col to store the most varied informa-
tion. Its data model characteristics
lie closer to the semistructured model
than to the relational or object model
used in traditional database systems,
while also offering additional benefits
for the distribution, parallelization and
off-site processing of queries. In this
paper, we present the internal data
representation and query model of an
LDAP-based system used for the stor-
age of XML documents and processing
of XPath queries. The feasibility of our
approach, as well as its practical rel-
evance is backed up by experimental
data.
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1 Introduction

With the release of the Lightweight Directory
Access Protocol (LDAP) v3 [21], the popularity
of directories to store information about users,
networks, etc., has steadily increased. Even
commercial companies offer LDAP support in
their browsers and operating systems, making
directory services a viable alternative to more
traditional systems for the storage and efficient
retrieval of information.

At the same time, the Internet community
has been moving away from static HTML, to-
wards more dynamic and easily configurable
options that allow the decoupling of content,
usually represented as XML data [2], and for-
mat, usually represented as CSS data [10]. This
transition has lead to an increase in the in-
volvement of the database community in is-
sues related to semistructured databases [1, 8],
a reevaluation of semistructured data mod-
els, and even to the creation of models and
mechanisms to efficiently represent and process
semistructured data in relational database sys-
tems [18, 25]. These relational systems have,
nevertheless, limitations due to differences in
the representation and query model [19] that
support the need for XML processing systems
closer to its semistructured nature.

The purpose of this paper is to describe in
detail the internal data representation, query
model and experimental results of our XML
processing system developed to prove the feasi-
bility of general techniques to efficiently evalu-
ate XPath queries using LDAP. Besides provid-
ing support for network operations and query
distribution over a set of nodes, the LDAP
model is so close to the DOM model [6], that we
are able to process XML-based sources with-
out the need to incur in cumbersome trans-
formations, like XML to relational representa-
tions. The combination of these features, plus



the simplicity of our LDAP-based model to ef-
ficiently support XPath queries, make it the
ideal candidate for an XML proxy caching sys-
tem (currently under development at the U. of
Freiburg). For more information, see [12, 13].
The rest of this paper is organized as follows:
Section 2 presents the internal representation of
data and queries, which will be used in section 3
to specify our new query model. Experimental
results for the performance of our system are
presented in section 4, whereas a comparison
with related approaches is made in section 5.
Finally, section 6 concludes this paper.

2 Representing XML in LDAP

The heart of the efficiency and flexibility of our
system with respect to XML lies on the struc-
ture of its internal data and query represen-
tation. Since our system is based on LDAP,
the internal storage model is defined in terms
of LDAP classes and attributes [21]. We refer
readers not familiar with the LDAP model and
protocol to [7] for an informal description of its
features, or to [8] for a formal one.

The main goal of our structure is to: (1) Al-
low for arbitrary XML documents to be stored
efficiently; (2) avoid unnecessary changes in the
LDAP schema that slow down the storage pro-
cess; and (3) allow for efficient query process-
ing, partitioning and forwarding.

Based on these requirements, we have de-
signed several representation models that, de-
spite their simplicity, provide an elegant and
uniform environment for effective processing of
XPath queries in our system. The following
sections go into detail about each one of the
internal representations: XML documents, in
section 2.1; and XPath queries, in section 2.2.

2.1 Data Representation

The most obvious way to represent XML doc-
uments in LDAP is to provide two mappings:
one between the DTDs and the schema defini-
tion to provide the structure, and another one
between the XML document and the LDAP in-
stance level. This intuitive but naive approach
has several disadvantages: (1) The integration
of a DTD in LDAP involves changes to the
schema, that, by definition, is assumed to be
static in LDAP [21]; (2) even in the case where
extensions to the basic LDAP model to allow
dynamic schema changes are used [24], their
update is troublesome and can introduce illegal
nodes at the instance level; and (3) the DTD for
most XML documents is not available, reduc-

ing the number of processable XML documents
considerably.

Therefore, we have developed our internal
representation in such a way to avoid these lim-
itations without losing the ability to incorpo-
rate arbitrary XML documents in our system.
Figure 1 describes the contents of the XMLNode,
XMLElement and XMLAttribute classes that
constitute the basic elements of our represen-
tation.

XMLNode OBJECT-CLASS ::= {

SUBCLASS OF {top}

MUST CONTAIN {oc,oid,name}

TYPE oc OBJECT-CLASS

TYPE oid DN

TYPE name STRING}
XMLElement OBJECT-CLASS ::= {

SUBCLASS OF {XMLNode}

MUST CONTAIN {order}

MAY CONTAIN {value}

TYPE order INTEGER

TYPE value STRING}
XMLAttribute OBJECT-CLASS ::= {

SUBCLASS OF {XMLNode}

MUST CONTAIN {value}

TYPE value DN, STRING}

Figure 1: XML Data Representation in LDAP

The generality of our model to encode ar-
bitrary XML documents is based on two key
factors: (1) The use of the attributes defined
in figure 1 to store information about individ-
ual XML nodes; and (2) the hierarchical na-
ture at the instance level of the LDAP model,
where each node must be assigned a distin-
guished name that defines its unique location
in the hierarchy. Of all the LDAP attributes
defined in the figure, name, order and value
are needed to explicitly represent XML docu-
ments, whereas the oc and oid attributes are
intrinsic to the LDAP model.

<country car_code="D", area="356910",
capital="Berlin">
<name>Germany</name>
<population>83536115</population>
<languages percentage="100">
German</languages>
<province id="B-W", capital="cid-9",
country="D">

</é;évince>
</country>
Figure 2: Excerpt from a Mondial XML file

In order to illustrate the use of the LDAP



classes in figure 1, we have taken as an ex-
ample (figure 2) an excerpt of the Mondial
database available in XML format from [14].
In it, we can see that the element country has
attributes car_code, area and capital and
several subelements (name, population, etc),
some of which have in turn, attributes and/or
textual contents, like Germany or 83536115.

For each element in the XML document, we
create an XMLElement node where the LDAP
attributes name, order, value and oid from
figure 1 are set to their corresponding val-
ues. For example, the languages tag in
the document would create an XMLElement
with name = languages; order = 4, since it
is the fourth node in global document order;
value = German, because the textual content
of the node is the string “German” and oid =
(cn=4, cn=1), which contains information in
the form of an LDAP distinguished name to
determine the location of this node in the doc-
ument hierarchy. The oc attribute, which rep-
resents the LDAP class the node belongs to, is
initialized to oc = XMLElement.

The attribute percentage from the
languages node is processed in a similar way.
We create an XMLAttribute node, where the
LDAP attributes are initialized as follows:
name = percentage, value = 100 and oid =
(cn=5, cn=4, cn=1). We follow the XPath
convention that attribute nodes are stored
as children of their corresponding element,
and therefore, the oid LDAP attribute is
initialized to represent this fact. Finally, the
oc attribute is set to oc = XMLAttribute.

Figure 3 contains the graphical representa-
tion of the LDAP tree generated as a result of
applying the transformation algorithm we have
just described. An algorithmic representation
of this process is described in the XML2LDAP
procedure in the Appendix. Its inverse algo-
rithm (LDAP2XML), not shown in the paper due
to space constraints, performs the translation
in the opposite direction and allows, therefore,
the lossless retrieval of XML documents from
the LDAP instance directory.

2.2 Query Representation

In addition to providing a data representation
model, we also need to be able to represent
queries to determine whether or not a partic-
ular query has already been stored and/or is
answerable using only the data obtained from
previously evaluated queries. This model is of
extreme importance if our system is to be used
as a proxy cache for XML documents, since it

is the basis for the solution to the problem of
cache answerability.

Following the same schema from the previ-
ous section, we have extended the set of stan-
dard LDAP classes to include an XMLQuery
class that contains all relevant information
about a particular query and its result set.

XMLQuery OBJECT-CLASS ::= {
SUBCLASS OF {top}
MUST CONTAIN {oc,hash,context,
scope,xpathquery,result}
TYPE oc OBJECT-CLASS
TYPE hash, scope, xpathquery STRING
TYPE context, result DN}

Figure 4: Query Representation in LDAP

The detailed list of attributes that consti-
tute an XMLQuery is shown in figure 4. The
meaning of the oc attribute is analogous to
that of the data representation classes previ-
ous defined. All nodes used to represent either
a query or part of it, have a value equal to
XMLQuery in their oc attribute.

The hash attribute contains an encoded
string that uniquely identifies a query. The
purpose of this attribute is to serve as a key
that can be used among different evaluation
nodes in our system to exchange information
about the queries already processed and stored
at the node. This caching mechanism helps in
providing a more efficient query processing sys-
tem, as we will see later on.

The next four attributes, context, scope,
xpathquery and result define a query or sub-
query in terms of the characteristics described
in the XPath specification [5].

The context attribute is a set of distin-
guished names defined as the result set of a
(possibly non-existing) previous subquery. The
contents of the result attribute is the set of
distinguished names that contain the LDAP
nodes resulting from applying the query stored
in the xpathquery attribute under the scope
defined in the scope attribute on the context
of the query.

By means of these four attributes, our sys-
tem is able to provide support for subquery
rewriting, remote query processing, cache an-
swerability, and other features that will be
dealt with in detail in the next section.

3 Query Model

The query model used by our system is very
close to the traditional LDAP query model de-
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Figure 3: XML Document in LDAP

scribed in the standard specification [21] and in
other pieces of the literature [7, 8]. However,
our model differs from previous approaches in
our desire to limit to a minimum the num-
ber of changes to the standard LDAP model
so that it can be deployed easily in existing
systems, while at the same time providing full
XPath [5] support. Other papers [8] provide
extensions to the LDAP model that, although
very interesting and valid, either go beyond the
requirements of XPath, or need considerably
more work than our model in order to be de-
ployed in current systems.

By allowing full XPath expressive power,
we are able to support not only XML but
also a whole breadth of semistructured models
whose querying languages are based on varia-
tions and extensions of the same idea exploited
by XPath.

3.1 Traditional LDAP Query Model

In the traditional LDAP model a query is de-
fined in the following way:

Definition (LDAP Query) An LDAP
query Qp = (bQL,SQLLfQLJpQL) is a 4-tuple
filter-based expression where: bg, is the
distinguished name of the base entry in the
directory instance where the search starts
from; sqg, is the scope of the search, which
can be base, if the search is to be restricted to
just the first node; onelevel, if only the first
level of nodes is to be searched; or subtree, if
all nodes under the base should be considered
by the filter expression. fg, is the filter
expression defined as the boolean combination
(written in prefix notation) of atomic filters
of the form (a op t), where a is an attribute
name; op is a comparison operator from the
set {=,#,<,<,>,>}; and ¢ is an attribute
value. Finally, pg, is an (optional) projection
of LDAP attributes that define the set of
attributes to be returned by the query. If pg,

is empty, all attributes are returned.

Example The LDAP query Q@ =
(“en = Cache,dc = top",subtree,(oc =
XMLQuery),{hash}) retrieves the hash
attribute from all XMLQuery nodes under the
cn=Cache,dc=top node, possibly to report
our own cache contents to other nodes in the
distributed caching system.

3.2 XPath Query Model

As specified in [5], the primary purpose of the
XPath standard is to address parts of an XML
document, usually represented in the form of
a tree containing element, attribute and text
nodes.

An XPath Query @ x is formed by the con-
catenation of path expressions that perform
walk-like operations on the document tree re-
trieving a set of nodes that conform to the re-
quirements of the query. Each expression is
joined with the next by means of the classical
Unix path character ’/’.

Definition (XPath Query) An XPath
Query Qx is defined as: Qx = qo/q1/--- /an,
where ¢; is an XPath subquery defined below,
and '/’ is the XPath subquery separator.

Definition (XPath Subquery) An XPath
Subquery ¢; is a 3-tuple ¢; = (Cy,w;, Ciqr),
where: C; is a set of XML nodes that deter-
mine the input context; w; is the Path Expres-
sion to be applied to each node of the input
context (defined below); and C;y; is a set of
XML nodes resulting from the application of
the path expression w; onto the input context
C;. Ciy1 is also called the output context.

Definition (XPath Path Expression) A

Path Expression w; is a 3-tuple w; = a; :: e;[¢;],
such that: a; is an axis along which the navi-
gation of the path expression takes place like
ancestor, child, sibling, etc. (see table 1



| n | a; || bQHL SQur | ty

n | ancestor n ancestors oc=XMLElement

n | ancestor-or-self n {ancestors,base} | oc=XMLElement

n | attribute n onelevel oc=XMLAttribute

n | child n onelevel oc=XMLElement

n | descendant n subtree oc=XMLElement

n | descendant-or-self n {subtree,base} oc=XMLElement

n | following root(n) subtree (& (oc=XMLElement) (order>order(n)))
n | following-sibling parent(n) onelevel (& (oc=XMLElement) (order>order(n)))
n | parent n parent oc=XMLElement

n | preceding root(n) subtree (& (oc=XMLElement) (order<order(n)))
n | preceding-sibling parent(n) onelevel (& (oc=XMLElement) (order<order(n)))
n | self n base oc=XMLElement

Table 1: BaseScope: Axis Translation Function

for a complete list); e; is a node expression
that tests either the name of the node or its
content type; and ¢; is a boolean expression
of conditional predicates that must be fulfilled
by all nodes along the path.

Example The XPath query: Qx = /child :
mondial /child country|attribute
car_code = “D”] is composed of two sub-
queries whose combination selects all country
nodes directly connected to the mondial node
having an attribute car_code with value “D”.

3.3 LDAPQL Model

In our system, we have extended the traditional
LDAP query model described in section 3.1 to
include the necessary modifications to support
XPath queries.

The gist of the modifications rely on the fact
that LDAP only allows searching of the docu-
ment tree in one direction, from the root to the
leaves, whereas XPath contains axis that per-
form queries in the “upwards” direction.

Therefore, we need to extend the notion of
scope in the traditional model to include par-
ents, siblings and ancestors, as defined below.

Definition (LDAPQL Query) An

LDAPQL Query Qpgr is a 4-tuple
QuL = (bQHL,SQHL > fQHL yPQuL )7 such
that: (1) bouL, four and pg,, are defined
as in the LDAP Model; and (2) sg,, is the
scope of the search, which can be: base, if
the search is to be restricted to just the first
node; onelevel, if only the first level of nodes
is to be searched; subtree, if all nodes under
the base should be considered by the filter
expression; parent, if only the parent node
should be considered; siblings, if only the
siblings of the node should be considered; and

ancestors, if all the ancestors of the node up
to the root are to be searched.

Using this new model, we are able to trans-
form any XPath query into a series of LDAPQL
queries that achieve the same goal as the orig-
inal query, as we detail in the next section.

3.4 Evaluation of XPath Queries

Given the nature and structure of the XPath
model described above, in order to evaluate
an XPath query, we compute each input and
output context C; by means of two types of
LDAPQL queries: (1) main queries (M) and
(2) refinement queries (R). Figure 5 contains a
graphical representation of our XPath2LDAPQL
evaluation algorithm (see Appendix), where
each XPath subquery is translated in one main
query and a set of refinement queries, that
uniquely determine the input context for the
next step of the computation. Table 1 con-
tains the representation of the scope transla-
tion function used by the algorithms in the Ap-
pendix as a base template for the main and re-
finement queries.

The number of refinement queries in each
step equals the number of predicates in the con-
ditional expression of the subquery. At the end
of the evaluation, the final context C,, contains
the result of the query.

Theorem 1 (Result Equivalence) Given

an XML document, the evaluation of an
XPath query produces the same result as the
evaluation of the equivalent LDAPQL query
generated by our XPath2LDAPQL algorithm
and performed over the XMLDAP document that
results from the application of our XML2LDAP
algorithm to that same XML document (figure

6).
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Figure 6: Result Equivalence

Example The application of our evaluation
algorithm to the XPath query ) x from section
3.2 produces the following results:
e qo = /child :: mondial/
— Co = {dn(root))}, since we start at the
beginning of the document.
— My = (dn(root),onelevel, (&(oc =
XMLElement)(name = “mondial”)), {})
- Ro={}
— C1 = {dn(mondial)}
e q; = child :: countrylattr :: car_code = “D”]
— C:1 = {dn(mondial)}

— M, = (dn(mondial), onelevel, (&(oc
XMLElement)(name = “country”)), {})
c

— Ro = {(dn(country), onelevel, (&(o
XMLAttribute)(&(name
“car_code” )(value = “D"))), {1}

— C> = {dn(Germany)}, since Germany
is the only country in figure 2 whose
car_code attribute has the value “D”.

3.5 Advantages of our model

The combination of the internal data represen-
tation described in section 2 with the XPath
mapping algorithm we have just proposed, offer
quite a few advantages that make them suitable
for deployment in a distributed query process-
ing or caching environment.

Since an XPath query can be naturally split
in a sequence of subqueries, the problem of
cache answerability becomes an easier one.
By using the context and result attributes,
intermediate evaluation results of a query can

be cached independently of their superordi-
nate query, allowing for the development of
cache answerability algorithms that work at
the subquery level. Since the structure of sub-
queries, as well as their evaluation process is
simpler than that of complete queries, more ef-
ficient algorithms that check for containment
and rewriting possibilities can be implemented.

Another further benefit of working with
XPath queries at the subquery level is the
possibility to perform partial query evalua-
tions, or to evaluate a query until a specific
intermediate result has been achieved. This
provides the basis for efficient evaluation algo-
rithms over user queries that rely on previous
results or a specific context. It is well known
that queries tend to be localized, and that small
variations of the same query appear together in
time, as a result of users refining, redefining, or
extending their queries.

Thanks to our evaluation procedure, we are
able to find context matches not only at the
beginning, or the end of a query, but more
importantly, also within the inner subqueries.
This is of extreme importance for queries per-
formed by means of a compiler or graphical
interface that translates higher level language
queries into XPath, since the same trends, pat-
terns and contexts are used over and over again.

By finding partial matches among the sub-
queries that compose a request, we are able to
do subquery preprocessing following a par-
tial match in the same way a CPU does branch
prediction, but, as opposed to a CPU, we can
benefit from partial subquery results, even in
the case where we “mispredicted”, or did not
have enough information to process the whole
subquery. As the evaluation routine trickles
down, its result is combined with the precom-
puted subquery, eventually leading to the cor-
rect result. The implementation of this proce-
dure involves an almost trivial change to the
XPath2LDAPQL algorithm, where the computa-
tion loop for context C; is unrolled and paral-



lelized based on the (partially) known Cj;_;.
The fact that query evaluation could poten-
tially be performed in parallel due to the de-
tection of partial matches in user requests is the
most important benefit of our approach that
make it suitable for a distributed environment.
This evaluation can be made in parallel either
on the same machine that received the origi-
nal query, or in other machines that might be
less overloaded at the moment. Since each one
of our caches may keep a distributed index of
the contents of all other caches in the system,
it can decide to send a partial evaluation re-
quest to another peer that happens to already
have an answer to part of the query, making
the evaluation process much more efficient.

4 Experimental Results

In order to prove the feasibility of our system as
an efficient LDAP-based query processing sys-
tem for XML, we have performed a series of ex-
periments to determine the following character-
istics: average storage and retrieval time; and
query execution performance improvement.

Preliminary experiments that involve more
than one server and make use of the paral-
lelization capabilities of XPath queries in our
system, although promising, have been left out
of this work due to lack of space.

4.1 Experimental Setup

All experiments have been performed on a Pen-
tium ITT 450 MHz based computer running Red
Hat Linux 6.1, a modified version of the Apache
Server v.1.3.12 and a heavily modified imple-
mentation of the OpenLDAP Server v.1.2.10.
Modifications to Apache involve the integration
of an XML specific cache into the mod_proxy
module, whereas the changes performed on the
OpenLDAP server focused on the implemen-
tation of the internal representation described
in section 2, and a series of modifications to
the query processing and network communica-
tion module. These last changes, which also
involve the addition of a thread pool per con-
nection to the server, have been responsible for
an increase in performance of over two orders of
magnitude with respect to the original OpenL-
DAP implementation when performing a rapid
sequence of LDAP operations, which is crucial
for our translation and evaluation algorithms.
The data files used in our benchmarking ex-
periments come from several sources: the Mon-
dial database [14], that contains geopolitical in-
formation about countries, organizations, etc.;

XSLBench [9], a performance benchmark for
XSLT [4] maintained by Kevin Jones; the ACM
Sigmod Record Database in XML form; and
a database of “Great Books” maintained in
WML at JollyRogers, which serves as an ex-
ample of the use of our system with WAP tech-
nology, since WML is structurally, nothing but
a set of XML documents that conform to the
WML Document Type Definition [22].

4.2 Average and Retrieval
Time

Storage

In this experiment we have measured both, the
average storage time needed by the XML2LDAP
algorithm to incorporate an XML document
in our system, and the average retrieval time
of our LDAP2XML algorithm used to reconstruct
the XML document resulting from a query. For
the retrieval experiments, we have computed a
worst case scenario, where the whole document
must be retrieved, formatted and returned to
the user. For the most part, queries request
only a subset of nodes in the document, mak-
ing the data in table 2 a lower bound on the
efficiency of our algorithms.

As shown in the table, our system can pro-
cess almost 4700 store operations per second,
which correspond to about 2700 XML nodes,
where each node is either an element or an at-
tribute. For the retrieval experiments, 650 op-
erations can be performed per second, which
amount to almost 400 XML nodes. The perfor-
mance of storage operations is so good in com-
parison to the retrieval operations because the
former are performed asynchronously, whereas
the latter must be performed in a synchronous
fashion, since the order in which nodes are re-
ceived is an important factor for the reconstruc-
tion of the original document. Despite the rel-
ative performance disadvantage of read oper-
ations overall, the fact that this number is a
lower bound on the efficiency of our procedure,
and that clients start receiving the document
as soon as the first bytes are generated, imply
that there is no noticeable overhead for read op-
erations seen from the perspective of the client.

4.3 Query Execution Performance Im-
provement

In the last set of experiments, we have tried to
determine the relative performance gain of our
query mechanism with respect to similar XPath
engines by the proper use of LDAP filters and
translation mechanisms detailed in section 3.
For the following set of queries, we have
taken a C-based implementation of an XPath



| File Name Ops || Stor.(s) | Ops/sec. || Retr.(s) | Ops/sec. |
mondial-2.0.xml 57116 13.34 4281.56 85.86 665.22
europe-2.0.xml 18186 3.88 4687.11 26.84 677.57
dream.xml 6231 1.19 5236.13 10.22 609.69
SigmodRecord.xml | 38518 8.43 4569.16 56.33 683.79
books1.wml 138 0.0098 14081.63 0.18 766.66

[ Average - - 4693.50 | -] 659.07

Table 2: Average Storage and Retrieval Time

engine [20] developed for the Gnome project by
Daniel Veillard. At the point where we started
performing our experiments, this engine was
the only open source XPath implementation we
could find written in C that could be compared
to our system (also written in C). We modi-
fied his original version of the parser to use our
LDAP-based system instead of the DOM back-
end required for XPath processing, and com-
pared the results of using the original DOM
and our LDAP-based representation.

Table 3 shows some of the most represen-
tative XPath queries involving simple walk-
throughs and predicate testing, and their pro-
cessing times in seconds using the DOM back-
end and our LDAP-based system. The queries
were performed on a “clean” system loaded
only with the mondial-2.0.xml file used in
previous experiments. As can be seen in the ta-
ble, our system performs better than the DOM
representation in all cases where the query re-
quires more than a mere name lookup. The use
of filters to reduce the search space of possible
answers as early as possible has a tremendous
effect on the performance of our system, not
only on simple queries, like the ones in table 3,
but more importantly on all complex queries
that make use of these simple patterns as their
building blocks. Furthermore, the easiness of
integration of our system in a distributed envi-
ronment, like the Internet, enables the evalua-
tion of such queries in parallel, as described in
detail in section 3.5.

5 Related Work

Although the field of query procedures and op-
timizations for XML have been extensively re-
searched [3, 15], none of these approaches tries
to combine the similar representation models of
LDAP and XML to benefit from the distribu-
tion capabilities inherent in the LDAP model.
In our approach, besides providing evidence
that both representation models can work to-
gether, we try to benefit from the best of both
worlds by taking advantage of the distribution

capabilities of LDAP.

Due to the document and query storage ca-
pabilities of our system, our approach could be
used as a caching system with additional query-
ing capabilities that falls on the realm of active
caching systems like [11]. However, the usual
focus of active caching systems lie on applica-
tions and applets either in Java or Javascript,
whereas our system focuses on semistructured
data and how to efficiently query it.

Other approaches, like the one taken by [25]
rely on content specification of a Web site to
implement their caching strategies. However,
this approach lacks the flexibility and applica-
bility of our system, which does not even rely
on the presence of DTDs to perform its task.
AR@Gos [17], on the other hand, takes a similar
approach to ours, but its focus is on the integra-
tion of materialized views for semistructured
data, that, although feasible as a caching solu-
tion, lacks the underlying structure to be de-
ployed in a distributed environment with more
than one integration point. Furthermore, they
rely on a Java-based PDOM implementation
that cannot be implemented in a setting where
efficiency is a key issue.

Finally, the distributed indexing mechanism
implemented in our caching framework relate
to the notion of active catalogs in Nomenclator
[16], where, interestingly enough, the focus
was on X.500 directories [23], the precursor to
LDAP. Our system differs from Nomenclator
in its widest breadth of features, its applicabil-
ity to caching, and its extensibility regarding
the maintenance of distributed indexing capa-
bilities over semistructured databases.

6 Conclusion

In this paper we have presented the design,
internal data representation details and query
model of an efficient, LDAP-based system for
the processing of XPath queries on XML doc-
uments in a network environment.

We have introduced evaluation algorithms
that allow our system to provide full support



| Query Patterns

| Nr. Result Nodes | DOM back-end | LDAPQL |

/mondial/country 260 0.69 0.71
/mondial//city 3047 217.67 91.40
/mondial/country[@car_code=’D’] 1 6.36 4.68
/mondial//city[@is_cap=’yes’] 230 276.56 116.03

Table 3: Performance for XPath using DOM and HLCaches

for XPath queries, as well as a storage model
based on subquery processing that enables the
seamless integration of distributed and parallel
query execution.

We have further provided experimental data
that characterizes the average access and query
processing times of our system in comparison to
other DOM-based implementations. Although
our approach incurs in some additional over-
head, mainly in terms of storage space, and the
translation to and from LDAP, its advantages
outweigh this factor, especially when dealing
with applications that use small XML files as
their information basis, as it is the case with
wireless applications and WML.
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7 Appendix: Evaluation Algorithms

Algorithm XML2LDAP (D /* XML Document */)

/* Initialize top of LDAP cache */
CurrentNode = “(cn=Cache,dc=top)”

while there is input ¢ from D
/* If 7 is an opening tag, create the Element and link it */
if ¢ is < tagName attr Nameo = attrValueo . . . attr Name, = attrValue, >
NewNode = XMLElement(tagName)
link(CurrentNode, NewNode)
CurrentNode = NewNode

/* Create and link attributes */
for each attrName, attrValue pairs
link(NewNode, XMLAttribute(attrName, attrValue))

/* If i is a closing tag */
if i is < /tagName >

CurrentNode = Parent(CurrentNode)
/* else, i is the textual content of the node */
else

CurrentNode.value = ¢

Algorithm XPath2LDAPQL (Qx /* XPath query */)

/* Initialize Co to the cache root */
Co = “(cn=Cache,dc=top)”
For each subquery q; = (C;,wi, Ci+1) € Qx
/* Create a new XMLQuery node and initialize its attributes */
XMLQuery.context = C;
XMLQuery.xpathquery = w;
XMLQuery.hash = hash(w;)
/* For each node in the context, evaluate w; on it */
for each n € C;
Cit1 = Ci1U EVAL(PET(H, wl))
XMLQuery.result = Cj4+1

Algorithm EVAL (M /* Main query */, R /* Set of subordinate queries */)
Result = LDAP(M)
for each subquery R; € R
Result = Result N LDAP(R;)
return Result

Algorithm PET(n /* distinguished name */, w; /* an expression of the form a; :: e;[¢;] */)

Let My be an LDAPQL query (called main query)
Let R = {R;} be a set of LDAPQL queries (refinement)

/* Translate a; into Mz = (bryy, SMprs fMurPryr) ¥/
(bMyr, SMyy, fMy ;) = BaseScope(n, a;)
for each nodeName = ¢;

fugr = (&(fumyy, ) (name = node Name))

pMy, = {}
/* Translate each predicate cp; into R; = (br,, sr;, fr;,Pr;) */
Let R = {}

for each cp; € ¢;
Let cp; be of the form term; op; value;
(ij ySR;, ij) = BaseScope(LDAP(MHL),termj)
for each (nodeName,nodeValue) € ¢;
fr; = (&(fr;)(&(name = nodeName)(value op; nodeValue)))
Pr; = {}
R=RUR;
Return (Mur,R)



