Aggregate Maintenance for Data Warehousing
in Informix Red Brick” Vista™

Latha S. Colby*
Gopal Mulagund?

Craig J. Bunger*

Richard L. Cole*

William J. McKenna!
David G. Wilhite*

Informix Software Inc.
485 Alberto Way
Los Gatos, CA 95032

Abstract

Dramatic performance gains can be realized
in decision support DBMSs by leveraging pre-
computed aggregates (i.e., materialized ag-
gregate views). Informix Red Brick Vista
provides a comprehensive solution for aggre-
gate computation and management in data
warehousing environments through the effec-
tive use of precomputed aggregates. Vista’s
transparent rewrite, advisor, and maintenance
components allow users to maximize the ben-
efits of precomputed aggregates while mini-
mizing the costs associated with creating and
maintaining them. In this paper, we provide
an overview of Vista’s maintenance subsys-
tem. We describe optimizations used to make
maintenance highly efficient, and discuss how
Vista’s focus on star schemas and data ware-
housing environments influenced the mainte-
nance subsystem.

1 Introduction

Informix Red Brick Decision Server is a specialized
relational database engine that has been designed and

*Email: {craigb,colby,rickcole,dwilhite}@informix.com;
T Work performed while employed at Informix, currently at Or-
acle: bmckenna@oracle.com; ¥Work performed while employed
at Informix, currently at Aztec Software & Technology Services
Ltd: gopalm@aztec.soft.net

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 27th VLDB Conference,
Roma, Italy, 2001

optimized to meet the requirements of large data ware-
houses. Vista is a comprehensive solution for aggre-
gate computation and management that is integrated
in Informix Red Brick Decision Server. Aggregate
query processing can be computationally intensive in
large data warehousing environments. A standard
model of data in such environments is that of facts as-
sociated with points in a dimension space. Aggregates
are typically computed on points in the dimension
space, possibly with constraints placed on dimensional
attributes. Even with a highly efficient query process-
ing subsystem, aggregate queries on large data sets can
often be very expensive to compute. Vista provides
an effective solution for achieving exceptional query
performance through the use of precomputed aggre-
gates while minimizing the costs associated with cre-
ating and maintaining such aggregates. Vista’s query
rewrite component automatically rewrites queries on
detail data to use precomputed aggregates thus allow-
ing end users, query tools, and application program-
mers to derive the performance advantages of aggre-
gates without having to change queries and applica-
tions. The Advisor component of Vista helps maxi-
mize the potential benefit of aggregates while minimiz-
ing the associated costs by performing an analysis of
query logs to determine where aggregates can improve
warehouse performance. The transparent aggregate
maintenance feature of Vista, introduced in Informix
Red Brick Decision Server 6.10, further reduces the
costs associated with maintaining aggregates. Mainte-
nance of aggregates is seamlessly integrated with op-
erations that modify the underlying detail tables.

A precomputed aggregate in Vista is composed of
a view defining an aggregate query over tables related
via foreign-key /primary-key relationships, and a table
(an aggregate table) containing the precomputed re-
sult of the query. Aggregate tables are physically no
different than regular tables and all of Red Brick’s in-
dexing, segmentation and other physical design tech-
niques available to regular tables are applicable to ag-
gregate tables as well. For example, a good aggre-



gate design strategy [5], involves creating referential
relationships between an aggregated fact table and a
dimension or an aggregated (derived) dimension ta-
ble. For large data warehouses, the efficiency of query
processing is an important quality even on aggregated
data. In order to further improve the performance
of queries that reference these aggregate tables (ei-
ther directly or through Vista rewrites), a DBA might
choose to create indexes on these tables. For example,
a STARindex™ could be created on the aggregated
fact table. An aggregate query directed against these
related aggregates can thus benefit from Red Brick’s
STARjoin™ and other efficient query processing tech-
niques.

Techniques for rewriting queries, selecting aggre-
gates, and maintaining aggregates have been proposed
in the literature (e.g., [4], [7], [8]) and implemented by
DBMS vendors (e.g.[1], [2], [3], [6], [10]). In this paper,
we highlight some of the features of Red Brick Vista’s
aggregate maintenance strategy that are designed to
satisfy the unique requirements of data warehouses.

2 Maintenance Functionality Overview

Vista’s aggregate maintenance subsystem, like the
other components of Vista, is fully integrated into the
Red Brick server and, more importantly for data ware-
housing applications, with Red Brick’s bulk loader.

Aggregates can be maintained in immediate mode,
i.e., within the same transaction that updates detail
tables, using either incremental or rebuild (full recom-
putation) strategies. Maintenance is performed au-
tomatically when server-based DML operations (in-
sert/delete/update) and time-cyclic data roll-off/on
operations are performed on the detail table. Red
Brick’s high speed parallel loader, the Table Manage-
ment Utility (TMU), communicates with the server
(via shared memory) to maintain the appropriate ag-
gregates when data is inserted or modified in a batch
load. Maintenance is immediate in this case also be-
cause the loader and server run in the same transac-
tion guaranteeing that the data is “query ready” at the
end of bulk loads that are typical of data warehousing
processes. Both incremental and rebuild maintenance
strategies are utilized. Vista’s incremental mainte-
nance is designed to handle aggregates defined using
any combination of aggregation functions (sum, count,
min, max, sum-distinct, and count-distinct) and
joins under all types of modifications (server-based or
loader-based) to detail data. Aggregates may also be
maintained in deferred mode via rebuild from detail
tables or other finer-granularity aggregates.

A metadata component manages information perti-
nent to precomputed views such as their definition and
information about the schema and constraints of the
aggregates and underlying detail tables. The integra-
tion of Vista with the server (and the loader) ensures
that the validity of aggregates, i.e., their status re-

flecting whether or not they are “in-synch” with detail
tables, is correctly tracked by the metadata layer and
communicated to the rewrite and maintenance compo-
nents. An aggregate may become invalid if, for exam-
ple, automatic maintenance is turned off during a load.
Only valid aggregates are considered for incremental
maintenance and for use in maintaining other coarser-
granularity aggregates during immediate maintenance.
Invalid aggregates can be rebuilt in deferred mode and,
as in the case of immediate maintenance, the main-
tenance subsystem considers finer-granularity aggre-
gates from which to rebuild related coarser-granularity
ones. Foreign-key/primary-key relationships and di-
mensional hierarchies are used in determining an op-
timal maintenance strategy as explained in the next
section.

Aggregates can also be maintained when version-
ing (Red Brick’s data warehouse specific concurrency
mechanism [9]) is enabled. Versioning in Red Brick
is designed to handle bulk loads concurrently with
queries. Unlike traditional OLTP systems, loads in
data warehousing environments involve large amounts
of data and require maintaining integrity constraints
across multiple tables, building indexes and maintain-
ing aggregate tables. Therefore, versioning at the row
or other finer-granularity level is not very useful when
queries and loads involve large sections of data. Ver-
sioning in Red Brick is at a level that allows queries to
see consistent snapshots (older revisions) of tables, in-
dexes, and aggregates while detail table, index and ag-
gregate maintenance operations are being performed.
With versioning, the TMU’s bulk-loads can be applied
in periodic-commit mode where the load can be spec-
ified to commit in certain (time or row) intervals. At
each commit interval the changes to both the detail
table and aggregates are committed.

3 Maintenance Techniques

Vista’s star-schema focused maintenance algorithms
coupled with the server’s core execution engine help
achieve superior performance during maintenance op-
erations. When a detail table is modified, the subsys-
tem determines which aggregates need maintenance
and generates a plan that executes the detail table
modifications and maintains the aggregate tables in a
single transaction.

One of the distinguishing features of Vista’s main-
tenance system is dynamic plan selection. Dynamic
plan selection allows accurate selection of maintenance
strategies based on the actual intermediate results of
maintenance processes. The maintenance subplan for
each aggregate table includes, in general, a plan based
on incremental maintenance and a plan based on re-
building the aggregate. The rebuild plan might be
based on rebuilding the aggregate from either the de-
tail tables or from other finer-granularity aggregates.
Parent-child relationships between coarser and finer-



granularity aggregates are derived from functional de-
pendencies. Both implicit functional-dependencies
and those based on user-defined hierarchies are con-
sidered in determining parent-child relationships be-
tween aggregates. An implicit functional dependency
is one that can be inferred based on implicit schema
properties such as foreign-key/primary-key relation-
ships. User-defined hierarchies are metadata that
the user provides expressing functional dependencies
among columns. The system considers functional de-
pendencies that can be inferred (transitively) from the
set of implicit and user-defined hierarchies while con-
structing a parent-child dependency graph.

The overall maintenance plan is thus based on an
intelligent ordering of plans for maintaining all the ag-
gregates and alternative plans for maintaining each ag-
gregate. The actual choice of a plan for a particular
aggregate is made at execution-time based on run-time
statistics about delta-rows, detail tables and any par-
ent aggregate tables. The choice of incremental vs re-
build plan is also influenced by the type (view defini-
tion) of the aggregate and the type of modifications to
the detail table. For example, an incremental mainte-
nance plan for a view with only count (*) aggregation
functions would not require any groups to be recom-
puted from detail data. Hence, even if the detail data
modifications result in modifications to a large num-
ber of rows in the aggregate table, incremental main-
tenance might be preferable to rebuild. Conversely,
an aggregate table containing max may require some
groups to be recomputed if the changes to the underly-
ing tables are not pure inserts. Thus, rebuilding might
be preferable under the same sets of modifications (as
compared to the previous aggregate). The presence of
a finer-granularity parent aggregate may also influence
whether or not an aggregate is maintained incremen-
tally. If the size of the parent aggregate is significantly
smaller than that of the detail tables then the aggre-
gate may be maintained by rebuilding from its parent
under the same set of modifications for which incre-
mental maintenance might have been a better choice
if the parent aggregate were not present. The mainte-
nance subsystem automatically decides on the appro-
priate maintenance strategy based on these factors.

Figure 1 shows an example of a high-level plan
for maintaining two aggregates Sales-by-qtr and
Sales-by-year when the detail fact table is modified.
In this example, the aggregates are assumed to be com-
puting aggregations on the Sales fact table grouped
by the time dimension columns qtr and year, respec-
tively. Additionally, we assume that a user-defined
hierarchy (functional dependency) exists from qtr to
year. The delta rows would have already been pro-
duced by either the server or the TMU prior to running
the maintenance plan (but in the same transaction as
the maintenance plan).

The root of the plan has a Sequence operator (Node

1). A Sequence operator runs its inputs to completion
in order (left to right in the plan shown). The in-
put plan rooted at Node 2 represents the maintenance
plan for the Sales-by-qtr aggregate while the one
rooted at Node 8 represents the maintenance plan for
the Sales-by-year aggregate. Node 2 is a Choice op-
erator. A Choice operator runs its preliminary inputs
(in this case, a single input marked P0) before making
a decision about which choice inputs (marked CO and
C1) to run. Only 1 choice input is executed. There-
fore, the Choice operator can be used to make run-time
optimizations. In this plan, statistics about the delta
rows and the Sales table are gathered (Node 3) and
examined at run-time to determine whether to execute
the incremental plan rooted at Node 4 or the rebuild
plan rooted at Node 5. The plan rooted at Node 8, the
maintenance plan for Sales-by-year, is similar to the
maintenance plan for Sales-by-qtr. In the rebuild
plan rooted at Node 11 the Sales-by-year aggregate
table is recomputed from the previously maintained
Sales-by-qtr aggregate table utilizing the hierarchy
from qtr to year.

Integration with the server’s core execution engine
also allows the maintenance subsystem to leverage
parallelism and various high performance operators
and optimizations available in the server, e.g., Red
Brick’s unique STARjoin algorithm. The incremen-
tal maintenance algorithm is designed to minimize
detail-table accesses and repeated computations of
sub-expressions. For example, the algorithm is based
on a data-flow model that intelligently partitions incre-
mental changes into groups of rows based on whether
they can be be inserted, deleted, or updated directly in
the aggregate table, or require new aggregation values
to be computed from detail data. Techniques for de-
tecting common subplans and generating star-schema
based access methods further improve the efficiency of
any detail table access necessary for computing new
aggregation values. For example, recomputing a par-
ticular group for incremental maintenance might in-
volve identifying all the fact table rows referencing di-
mension rows corresponding to the values in the group.
The maintenance algorithm could use a STARindex on
the detail tables, if an appropriate one existed, to effi-
ciently identify the fact table rows in the group. The
recompute part of an incremental plan might itself con-
tain different execution choices depending on the pres-
ence of STAR or other indexes such as TARGET™
indexes. Subplans of the maintenance plan that are
common to alternative choice plans are coalesced.

The coupling of the TMU’s load process with the
server enables all of the same maintenance techniques
and optimizations used during server-based DML to be
leveraged during bulk-loads. A single bulk-load could
involve both appends and modifications, i.e., a mix
of inserts and updates, to a table. The TMU first
performs the detail-table load including all referential-



(1)

Sequence

Choice
for
Sales-by-qtr

(2)
co c1
ﬁ / (incr.) (rebild)

Get T Get
delta plan | delta
and for Sequence and
parent | Sales-by-qir () parent

Recompute
Delete
Sales-by-qtr fSala—by—qtr
rows rom
(6) Sales
(7)

stats. stats.
(3) I(_“)___'/\ (9)

Sales-by-year | (1)
. | / \
Recompute
Delete Sales-by-year
Sales-by-year ;
rows rom
(12) Sales-by-qtr
(13)

Figure 1: An example maintenance plan

integrity checking and index maintenance before in-
voking aggregate maintenance (within the same trans-
action) through the server. The detail table load could
involve data that has not been cleaned, i.e., might con-
tain data with duplicates or might contain data repre-
senting a series of changes to a given row. For example,
aload could insert a row and subsequently modify that
same row. Therefore, the set of changes made by aload
represented as sets of inserts and deletes may not be
minimal (e.g., the sets may not have an empty inter-
section). However, the incremental maintenance algo-
rithm can handle changes that are not necessarily min-
imal, for aggregates containing any combination of the
previously mentioned aggregation functions, without
requiring any pre-processing or compressing of deltas.

4 Conclusions

In keeping with Red Brick’s tradition of providing key
technologies that are driven by the unique require-
ments of data warehousing, the features of Vista’s
maintenance subsystem both support and leverage the
properties of data warehouse focused star schemas and
dimensional hierarchies. Integration of the mainte-
nance subsystem with the server’s core execution en-
gine and the TMU help achieve superior performance
during maintenance operations and ensure that de-
tail and aggregate data are query-ready at the end
of warehouse-style bulk loads.

5 Acknowledgements

The authors are grateful to all the members of the Red
Brick development team at Informix who contributed
to the work described in this paper.

References

[1] S. Agrawal, S. Chaudhuri, and V. Narasayya. Au-
tomated selection of materialized views and indexes
for SQL databases. In Proceedings of the 26th VLDB
Conference, 2000.

[2] R. G. Bello, K. Dias, A. Downing, J. Feenan,
J. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized views in Oracle. In
Proceedings of 24th VLDB Conference, 1998.

[3] L. S. Colby, R. L. Cole, E. Haslam, N. Jazayeri,
G. Johnson, W. J. McKenna, L. Schumacher, and
D. Wilhite. Red Brick Vista: Aggregate computation
and management. In Proceedings of the 14th ICDE
Conference, 1998.

[4] V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In Proceedings of
ACM SIGMOD, 1996.

[6] R. Kimball. Aggregate navigation with (almost) no
metadata. DBMS, August 1996.

[6] W. Lehner, R. Sidle, H. Pirahesh, and R. Cochrane.
Maintenance of cube automatic summary tables. In
Proceedings of ACM SIGMOD, 2000.

[7] I. S. Mumick, D. Quass, and B. S. Mumick. Mainte-
nance of data cubes and summary tables in a ware-
house. In A. Gupta and I. S. Mumick, editors, Ma-
terialized Views: Techniques, Implementations, and
Applications, chapter 25. The MIT Press, 1999.

[8] D. Srivastava, S. Dar, H. V. Jagadish, and A. Y. Levy.
Answering queries with aggregation using views. In
Proceedings of the 22nd VLDB Conference, 1996.

[9] R. Taylor. Concurrency in the data warehouse. In
Proceedings of the 26th VLDB Conference, 2000.

[10] M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pira-
hesh, and M. Urata. Answering complex SQL queries
using automatic summary tables. In Proceedings of
ACM SIGMOD, 2000.



